Search Results

Search found 2129 results on 86 pages for 'bound'.

Page 78/86 | < Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • DropDownList and SelectListItem Array Item Updates in MVC

    - by Rick Strahl
    So I ran into an interesting behavior today as I deployed my first MVC 4 app tonight. I have a list form that has a filter drop down that allows selection of categories. This list is static and rarely changes so rather than loading these items from the database each time I load the items once and then cache the actual SelectListItem[] array in a static property. However, when we put the site online tonight we immediately noticed that the drop down list was coming up with pre-set values that randomly changed. Didn't take me long to trace this back to the cached list of SelectListItem[]. Clearly the list was getting updated - apparently through the model binding process in the selection postback. To clarify the scenario here's the drop down list definition in the Razor View:@Html.DropDownListFor(mod => mod.QueryParameters.Category, Model.CategoryList, "All Categories") where Model.CategoryList gets set with:[HttpPost] [CompressContent] public ActionResult List(MessageListViewModel model) { InitializeViewModel(model); busEntry entryBus = new busEntry(); var entries = entryBus.GetEntryList(model.QueryParameters); model.Entries = entries; model.DisplayMode = ApplicationDisplayModes.Standard; model.CategoryList = AppUtils.GetCachedCategoryList(); return View(model); } The AppUtils.GetCachedCategoryList() method gets the cached list or loads the list on the first access. The code to load up the list is housed in a Web utility class. The method looks like this:/// <summary> /// Returns a static category list that is cached /// </summary> /// <returns></returns> public static SelectListItem[] GetCachedCategoryList() { if (_CategoryList != null) return _CategoryList; lock (_SyncLock) { if (_CategoryList != null) return _CategoryList; var catBus = new busCategory(); var categories = catBus.GetCategories().ToList(); // Turn list into a SelectItem list var catList= categories .Select(cat => new SelectListItem() { Text = cat.Name, Value = cat.Id.ToString() }) .ToList(); catList.Insert(0, new SelectListItem() { Value = ((int)SpecialCategories.AllCategoriesButRealEstate).ToString(), Text = "All Categories except Real Estate" }); catList.Insert(1, new SelectListItem() { Value = "-1", Text = "--------------------------------" }); _CategoryList = catList.ToArray(); } return _CategoryList; } private static SelectListItem[] _CategoryList ; This seemed normal enough to me - I've been doing stuff like this forever caching smallish lists in memory to avoid an extra trip to the database. This list is used in various places throughout the application - for the list display and also when adding new items and setting up for notifications etc.. Watch that ModelBinder! However, it turns out that this code is clearly causing a problem. It appears that the model binder on the [HttpPost] method is actually updating the list that's bound to and changing the actual entry item in the list and setting its selected value. If you look at the code above I'm not setting the SelectListItem.Selected value anywhere - the only place this value can get set is through ModelBinding. Sure enough when stepping through the code I see that when an item is selected the actual model - model.CategoryList[x].Selected - reflects that. This is bad on several levels: First it's obviously affecting the application behavior - nobody wants to see their drop down list values jump all over the place randomly. But it's also a problem because the array is getting updated by multiple ASP.NET threads which likely would lead to odd crashes from time to time. Not good! In retrospect the modelbinding behavior makes perfect sense. The actual items and the Selected property is the ModelBinder's way of keeping track of one or more selected values. So while I assumed the list to be read-only, the ModelBinder is actually updating it on a post back producing the rather surprising results. Totally missed this during testing and is another one of those little - "Did you know?" moments. So, is there a way around this? Yes but it's maybe not quite obvious. I can't change the behavior of the ModelBinder, but I can certainly change the way that the list is generated. Rather than returning the cached list, I can return a brand new cloned list from the cached items like this:/// <summary> /// Returns a static category list that is cached /// </summary> /// <returns></returns> public static SelectListItem[] GetCachedCategoryList() { if (_CategoryList != null) { // Have to create new instances via projection // to avoid ModelBinding updates to affect this // globally return _CategoryList .Select(cat => new SelectListItem() { Value = cat.Value, Text = cat.Text }) .ToArray(); } …}  The key is that newly created instances of SelectListItems are returned not just filtered instances of the original list. The key here is 'new instances' so that the ModelBinding updates do not update the actual static instance. The code above uses LINQ and a projection into new SelectListItem instances to create this array of fresh instances. And this code works correctly - no more cross-talk between users. Unfortunately this code is also less efficient - it has to reselect the items and uses extra memory for the new array. Knowing what I know now I probably would have not cached the list and just take the hit to read from the database. If there is even a possibility of thread clashes I'm very wary of creating code like this. But since the method already exists and handles this load in one place this fix was easy enough to put in. Live and learn. It's little things like this that can cause some interesting head scratchers sometimes…© Rick Strahl, West Wind Technologies, 2005-2012Posted in MVC  ASP.NET  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Thursday Community Keynote: "By the Community, For the Community"

    - by Janice J. Heiss
    Sharat Chander, JavaOne Community Chairperson, began Thursday's Community Keynote. As part of the morning’s theme of "By the Community, For the Community," Chander noted that 60% of the material at the 2012 JavaOne conference was presented by Java Community members. "So next year, when the call for papers starts, put-in your submissions," he urged.From there, Gary Frost, Principal Member of Technical Staff, AMD, expanded upon Sunday's Strategy Keynote exploration of Project Sumatra, an OpenJDK project targeted at bringing Java to heterogeneous computing platforms (which combine the CPU and the parallel processor of the GPU into a single piece of silicon). Sumatra entails enhancing the JVM to make maximum use of these advanced platforms. Within this development space, AMD created the Aparapi API, which converts Java bytecode into OpenCL for execution on such GPU devices. The Aparapi API was open sourced in September 2011.Whether it was zooming-in on a Mandelbrot set, "the game of life," or a swarm of 10,000 Dukes in a space-bound gravitational dance, Frost's demos, using an Aparapi/OpenCL implementation, produced stunningly faster display results. He indicated that the Java 9 timeframe is where they see Project Sumatra coming to ultimate fruition, employing the Lamdas of Java 8.Returning to the theme of the keynote, Donald Smith, Director, Java Product Management, Oracle, explored a mind map graphic demonstrating the importance of Community in terms of fostering innovation. "It's the sharing and mixing of culture, the diversity, and the rapid prototyping," he said. Within this topic, Smith, brought up a panel of representatives from Cloudera, Eclipse, Eucalyptus, Perrone Robotics, and Twitter--ideal manifestations of community and innovation in the world of Java.Marten Mickos, CEO, Eucalyptus Systems, explored his company's open source cloud software platform, written in Java, and used by gaming companies, technology companies, media companies, and more. Chris Aniszczyk, Operations Engineering,Twitter, noted the importance of the JVM in terms of their multiple-language development environment. Mike Olson, CEO, Cloudera, described his company's Apache Hadoop-based software, support, and training. Mike Milinkovich, Executive Director, Eclipse Foundation, noted that they have about 270 tools projects at Eclipse, with 267 of them written in Java. Milinkovich added that Eclipse will even be going into space in 2013, as part of the control software on various experiments aboard the International Space Station. Lastly, Paul Perrone, CEO, Perrone Robotics, detailed his company's robotics and automation software platform built 100% on Java, including Java SE and Java ME--"on rat, to cat, to elephant-sized systems." Milinkovic noted that communities are by nature so good at innovation because of their very openness--"The more open you make your innovation process, the more ideas are challenged, and the more developers are focused on justifying their choices all the way through the process."From there, Georges Saab, VP Development Java SE OpenJDK, continued the topic of innovation and helping the Java Community to "Make the Future Java." Martijn Verburg, representing the London Java Community (winner of a Duke's Choice Award 2012 for their activity in OpenJDK and JCP), soon joined Saab onstage. Verburg detailed the LJC's "Adopt a JSR" program--"to get day-to-day developers more involved in the innovation that's happening around them."  From its London launching pad, the innovative program has spread to Brazil, Morocco, Latvia, India, and more.Other active participants in the program joined Verburg onstage--Ben Evans, London Java Community; James Gough, Stackthread; Bruno Souza, SOUJava; Richard Warburton, jClarity; and Cecelia Borg, Oracle--OpenJDK Onboarding. Together, the group explored the goals and tasks inherent in the Adopt a JSR program--from organizing hack days (testing prototype implementations), to managing mailing lists and forums, to triaging issues, to evangelism—all with the goal of fostering greater community/developer involvement, but equally importantly, building better open standards. “Come join us, and make your ecosystem better!" urged Verburg.Paul Perrone returned to profile the latest in his company's robotics work around Java--including the AARDBOTS family of smaller robotic vehicles, running the Perrone MAX platform on top of the Java JVM. Perrone took his "Rumbles" four-wheeled robot out for a spin onstage--a roaming, ARM-based security-bot vehicle, complete with IR, ultrasonic, and "cliff" sensors (the latter, for the raised stage at JavaOne). As an ultimate window into the future of robotics, Perrone displayed a "head-set" controller--a sensor directed at the forehead to monitor brainwaves, for the someday-implementation of brain-to-robot control.Then, just when it seemed this might be the end of the day's futuristic offerings, a mystery voice from offstage pronounced "I've got some toys"--proving to be guest-visitor James Gosling, there to explore his cutting-edge work with Liquid Robotics. While most think of robots as something with wheels or arms or lasers, Gosling explained, the Liquid Robotics vehicle is an entirely new and innovative ocean-going 'bot. Looking like a floating surfboard, with an attached set of underwater wings, the autonomous devices roam the oceans using only the energy of ocean waves to propel them, and a single actuated rudder to steer. "We have to accomplish all guidance just by wiggling the rudder," Gosling said. The devices offer applications from self-installing weather buoy, to pollution monitoring station, to marine mammal monitoring device, to climate change data gathering, to even ocean life genomic sampling. The early versions of the vehicle used C code on very tiny industrial micro controllers, where they had to "count the bytes one at a time."  But the latest generation vehicles, which just hit the water a week or so ago, employ an ARM processor running Linux and the ARM version of JDK 7. Gosling explained that vehicle communication from remote locations is achieved via the Iridium satellite network. But because of the costs of this communication path, the data must be sent in very small bursts--using SBD short burst data. "It costs $1/kb, so that rules everything in the software design,” said Gosling. “If you were trying to stream a Netflix video over this, it would cost a million dollars a movie. …We don't have a 'big data' problem," he quipped. There are currently about 150 Liquid Robotics vehicles out traversing the oceans. Gosling demonstrated real time satellite tracking of several vehicles currently at sea, noting that Java is actually particularly good at AI applications--due to the language having garbage collection, which facilitates complex data structures. To close-out his time onstage, Gosling of course participated in the ceremonial Java tee-shirt toss out to the audience…In parting, Chander passed the JavaOne Community Chairperson baton to Stephen Chin, Java Technology Evangelist, Oracle. Onstage in full motorcycle gear, Chin noted that he'll soon be touring Europe by motorcycle, meeting Java Community Members and streaming live via UStream--the ultimate manifestation of community and technology!  He also reminded attendees of the upcoming JavaOne Latin America 2012, São Paulo, Brazil (December 4-6, 2012), and stated that the CFP (call for papers) at the conference has been extended for one more week. "Remember, December is summer in Brazil!" Chin said.

    Read the article

  • Redirect network logs from syslog to another file

    - by w0rldart
    I keep logging way to much info (not needed, for now) in my syslog, and not daily or hourly... but instant. If I want to watch for something in my syslog I just can't because the network log keeps interfering. So, how can I redirect network logs to another file and/or stop logging it? Dec 10 17:01:33 user kernel: [ 8716.000587] MediaState is connected Dec 10 17:01:33 user kernel: [ 8716.000599] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:01:33 user kernel: [ 8716.000601] ==>rt_ioctl_giwfreq 11 Dec 10 17:01:33 user kernel: [ 8716.000612] rt28xx_get_wireless_stats ---> Dec 10 17:01:33 user kernel: [ 8716.000615] <--- rt28xx_get_wireless_stats Dec 10 17:01:39 user kernel: [ 8722.000714] MediaState is connected Dec 10 17:01:39 user kernel: [ 8722.000729] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:01:39 user kernel: [ 8722.000732] ==>rt_ioctl_giwfreq 11 Dec 10 17:01:39 user kernel: [ 8722.000747] rt28xx_get_wireless_stats ---> Dec 10 17:01:39 user kernel: [ 8722.000751] <--- rt28xx_get_wireless_stats Dec 10 17:01:44 user kernel: [ 8726.904025] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:01:45 user kernel: [ 8728.003138] MediaState is connected Dec 10 17:01:45 user kernel: [ 8728.003153] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:01:45 user kernel: [ 8728.003157] ==>rt_ioctl_giwfreq 11 Dec 10 17:01:45 user kernel: [ 8728.003171] rt28xx_get_wireless_stats ---> Dec 10 17:01:45 user kernel: [ 8728.003175] <--- rt28xx_get_wireless_stats Dec 10 17:01:51 user kernel: [ 8734.004066] MediaState is connected Dec 10 17:01:51 user kernel: [ 8734.004079] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:01:51 user kernel: [ 8734.004082] ==>rt_ioctl_giwfreq 11 Dec 10 17:01:51 user kernel: [ 8734.004096] rt28xx_get_wireless_stats ---> Dec 10 17:01:51 user kernel: [ 8734.004099] <--- rt28xx_get_wireless_stats Dec 10 17:01:57 user kernel: [ 8740.004108] MediaState is connected Dec 10 17:01:57 user kernel: [ 8740.004119] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:01:57 user kernel: [ 8740.004121] ==>rt_ioctl_giwfreq 11 Dec 10 17:01:57 user kernel: [ 8740.004132] rt28xx_get_wireless_stats ---> Dec 10 17:01:57 user kernel: [ 8740.004135] <--- rt28xx_get_wireless_stats Dec 10 17:01:57 user kernel: [ 8740.436021] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:02:03 user kernel: [ 8746.005280] MediaState is connected Dec 10 17:02:03 user kernel: [ 8746.005294] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:02:03 user kernel: [ 8746.005298] ==>rt_ioctl_giwfreq 11 Dec 10 17:02:03 user kernel: [ 8746.005312] rt28xx_get_wireless_stats ---> Dec 10 17:02:03 user kernel: [ 8746.005315] <--- rt28xx_get_wireless_stats Dec 10 17:02:09 user kernel: [ 8752.004790] MediaState is connected Dec 10 17:02:09 user kernel: [ 8752.004804] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:02:09 user kernel: [ 8752.004808] ==>rt_ioctl_giwfreq 11 Dec 10 17:02:09 user kernel: [ 8752.004821] rt28xx_get_wireless_stats ---> Dec 10 17:02:09 user kernel: [ 8752.004825] <--- rt28xx_get_wireless_stats Dec 10 17:02:15 user kernel: [ 8757.984031] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:02:15 user kernel: [ 8758.004078] MediaState is connected Dec 10 17:02:15 user kernel: [ 8758.004094] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:02:15 user kernel: [ 8758.004097] ==>rt_ioctl_giwfreq 11 Dec 10 17:02:15 user kernel: [ 8758.004112] rt28xx_get_wireless_stats ---> Dec 10 17:02:15 user kernel: [ 8758.004116] <--- rt28xx_get_wireless_stats Dec 10 17:02:16 user kernel: [ 8759.492017] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:02:19 user kernel: [ 8762.002179] SCANNING, suspend MSDU transmission ... Dec 10 17:02:19 user kernel: [ 8762.004291] MlmeScanReqAction -- Send PSM Data frame for off channel RM, SCAN_IN_PROGRESS=1! Dec 10 17:02:19 user kernel: [ 8762.025055] SYNC - BBP R4 to 20MHz.l Dec 10 17:02:19 user kernel: [ 8762.027249] RT35xx: SwitchChannel#1(RF=8, Pwr0=30, Pwr1=25, 2T), N=0xF1, K=0x02, R=0x02 Dec 10 17:02:19 user kernel: [ 8762.170206] RT35xx: SwitchChannel#2(RF=8, Pwr0=30, Pwr1=25, 2T), N=0xF1, K=0x07, R=0x02 Dec 10 17:02:19 user kernel: [ 8762.318211] RT35xx: SwitchChannel#3(RF=8, Pwr0=30, Pwr1=25, 2T), N=0xF2, K=0x02, R=0x02 Dec 10 17:02:19 user kernel: [ 8762.462269] RT35xx: SwitchChannel#4(RF=8, Pwr0=30, Pwr1=25, 2T), N=0xF2, K=0x07, R=0x02 Dec 10 17:02:19 user kernel: [ 8762.606229] RT35xx: SwitchChannel#5(RF=8, Pwr0=30, Pwr1=25, 2T), N=0xF3, K=0x02, R=0x02 Dec 10 17:02:19 user kernel: [ 8762.750202] RT35xx: SwitchChannel#6(RF=8, Pwr0=30, Pwr1=25, 2T), N=0xF3, K=0x07, R=0x02 Dec 10 17:02:20 user kernel: [ 8762.894217] RT35xx: SwitchChannel#7(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF4, K=0x02, R=0x02 Dec 10 17:02:20 user kernel: [ 8763.038202] RT35xx: SwitchChannel#11(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF6, K=0x02, R=0x02 Dec 10 17:02:20 user kernel: [ 8763.040194] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:20 user kernel: [ 8763.040199] BAR(1) : Tid (0) - 03a3:037e Dec 10 17:02:20 user kernel: [ 8763.040387] SYNC - End of SCAN, restore to channel 11, Total BSS[03] Dec 10 17:02:20 user kernel: [ 8763.040400] ScanNextChannel -- Send PSM Data frame Dec 10 17:02:20 user kernel: [ 8763.040402] bFastRoamingScan ~~~~~~~~~~~~~ Get back to send data ~~~~~~~~~~~~~ Dec 10 17:02:20 user kernel: [ 8763.040405] SCAN done, resume MSDU transmission ... Dec 10 17:02:20 user kernel: [ 8763.047022] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:20 user kernel: [ 8763.047026] BAR(1) : Tid (0) - 03a3:03a5 Dec 10 17:02:21 user kernel: [ 8763.898130] bImprovedScan ............. Resume for bImprovedScan, SCAN_PENDING .............. Dec 10 17:02:21 user kernel: [ 8763.898143] SCANNING, suspend MSDU transmission ... Dec 10 17:02:21 user kernel: [ 8763.900245] MlmeScanReqAction -- Send PSM Data frame for off channel RM, SCAN_IN_PROGRESS=1! Dec 10 17:02:21 user kernel: [ 8763.921144] SYNC - BBP R4 to 20MHz.l Dec 10 17:02:21 user kernel: [ 8763.923339] RT35xx: SwitchChannel#8(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF4, K=0x07, R=0x02 Dec 10 17:02:21 user kernel: [ 8763.996019] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:02:21 user kernel: [ 8764.066221] RT35xx: SwitchChannel#9(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF5, K=0x02, R=0x02 Dec 10 17:02:21 user kernel: [ 8764.210212] RT35xx: SwitchChannel#10(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF5, K=0x07, R=0x02 Dec 10 17:02:21 user kernel: [ 8764.215536] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:21 user kernel: [ 8764.215542] BAR(1) : Tid (0) - 0457:0452 Dec 10 17:02:21 user kernel: [ 8764.244000] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:21 user kernel: [ 8764.244004] BAR(1) : Tid (0) - 0459:0456 Dec 10 17:02:21 user kernel: [ 8764.253019] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:21 user kernel: [ 8764.253023] BAR(1) : Tid (0) - 045c:0458 Dec 10 17:02:21 user kernel: [ 8764.256677] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:21 user kernel: [ 8764.256681] BAR(1) : Tid (0) - 045c:045b Dec 10 17:02:21 user kernel: [ 8764.259785] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:21 user kernel: [ 8764.259788] BAR(1) : Tid (0) - 045d:045b Dec 10 17:02:21 user kernel: [ 8764.280467] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:21 user kernel: [ 8764.280471] BAR(1) : Tid (0) - 045f:045c Dec 10 17:02:21 user kernel: [ 8764.282189] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:21 user kernel: [ 8764.282192] BAR(1) : Tid (0) - 045f:045e Dec 10 17:02:21 user kernel: [ 8764.354204] RT35xx: SwitchChannel#11(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF6, K=0x02, R=0x02 Dec 10 17:02:21 user kernel: [ 8764.356408] ScanNextChannel():Send PWA NullData frame to notify the associated AP! Dec 10 17:02:21 user kernel: [ 8764.498202] RT35xx: SwitchChannel#12(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF6, K=0x07, R=0x02 Dec 10 17:02:21 user kernel: [ 8764.642210] RT35xx: SwitchChannel#13(RF=8, Pwr0=30, Pwr1=28, 2T), N=0xF7, K=0x02, R=0x02 Dec 10 17:02:22 user kernel: [ 8764.790229] RT35xx: SwitchChannel#14(RF=8, Pwr0=30, Pwr1=28, 2T), N=0xF8, K=0x04, R=0x02 Dec 10 17:02:22 user kernel: [ 8764.934238] RT35xx: SwitchChannel#11(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF6, K=0x02, R=0x02 Dec 10 17:02:22 user kernel: [ 8764.935243] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:22 user kernel: [ 8764.935249] BAR(1) : Tid (0) - 048e:0485 Dec 10 17:02:22 user kernel: [ 8764.936423] SYNC - End of SCAN, restore to channel 11, Total BSS[05] Dec 10 17:02:22 user kernel: [ 8764.936436] ScanNextChannel -- Send PSM Data frame Dec 10 17:02:22 user kernel: [ 8764.936440] SCAN done, resume MSDU transmission ... Dec 10 17:02:22 user kernel: [ 8764.940529] RT35xx: SwitchChannel#11(RF=8, Pwr0=29, Pwr1=26, 2T), N=0xF6, K=0x02, R=0x02 Dec 10 17:02:22 user kernel: [ 8764.942178] CntlEnqueueForRecv(): BAR-Wcid(1), Tid (0) Dec 10 17:02:22 user kernel: [ 8764.942182] BAR(1) : Tid (0) - 0493:048e Dec 10 17:02:22 user kernel: [ 8764.942715] CNTL - All roaming failed, restore to channel 11, Total BSS[05] Dec 10 17:02:22 user kernel: [ 8764.948016] MMCHK - No BEACON. restore R66 to the low bound(56) Dec 10 17:02:22 user kernel: [ 8764.948307] ===>rt_ioctl_giwscan. 5(5) BSS returned, data->length = 1111 Dec 10 17:02:23 user kernel: [ 8766.048073] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:02:23 user kernel: [ 8766.552034] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:02:27 user kernel: [ 8770.001180] MediaState is connected Dec 10 17:02:27 user kernel: [ 8770.001197] ==>rt_ioctl_giwmode(mode=2) Dec 10 17:02:27 user kernel: [ 8770.001201] ==>rt_ioctl_giwfreq 11 Dec 10 17:02:27 user kernel: [ 8770.001219] rt28xx_get_wireless_stats ---> Dec 10 17:02:27 user kernel: [ 8770.001223] <--- rt28xx_get_wireless_stats Dec 10 17:02:28 user kernel: [ 8771.564020] QuickDRS: TxTotalCnt <= 15, train back to original rate Dec 10 17:02:29 user kernel: [ 8772.064031] QuickDRS: TxTotalCnt <= 15, train back to original rate

    Read the article

  • Interface contracts – forcing code contracts through interfaces

    - by DigiMortal
    Sometimes we need a way to make different implementations of same interface follow same rules. One option is to duplicate contracts to all implementation but this is not good option because we have duplicated code then. The other option is to force contracts to all implementations at interface level. In this posting I will show you how to do it using interface contracts and contracts class. Using code from previous example about unit testing code with code contracts I will go further and force contracts at interface level. Here is the code from previous example. Take a careful look at it because I will talk about some modifications to this code soon. public interface IRandomGenerator {     int Next(int min, int max); }   public class RandomGenerator : IRandomGenerator {     private Random _random = new Random();       public int Next(int min, int max)     {         return _random.Next(min, max);     } }    public class Randomizer {     private IRandomGenerator _generator;       private Randomizer()     {         _generator = new RandomGenerator();     }       public Randomizer(IRandomGenerator generator)     {         _generator = generator;     }       public int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(             min < max,             "Min must be less than max"         );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return _generator.Next(min, max);     } } If we look at the GetRandomFromRangeContracted() method we can see that contracts set in this method are applicable to all implementations of IRandomGenerator interface. Although we can write new implementations as we want these implementations need exactly the same contracts. If we are using generators somewhere else then code contracts are not with them anymore. To solve the problem we will force code contracts at interface level. NB! To make the following code work you must enable Contract Reference Assembly building from project settings. Interface contracts and contracts class Interface contains no code – only definitions of members that implementing type must have. But code contracts must be defined in body of member they are part of. To get over this limitation, code contracts are defined in separate contracts class. Interface is bound to this class by special attribute and contracts class refers to interface through special attribute. Here is the IRandomGenerator with contracts and contracts class. Also I write simple fake so we can test contracts easily based only on interface mock. [ContractClass(typeof(RandomGeneratorContracts))] public interface IRandomGenerator {     int Next(int min, int max); }   [ContractClassFor(typeof(IRandomGenerator))] internal sealed class RandomGeneratorContracts : IRandomGenerator {     int IRandomGenerator.Next(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(                 min < max,                 "Min must be less than max"             );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return default(int);     } }   public class RandomFake : IRandomGenerator {     private int _testValue;       public RandomGen(int testValue)     {         _testValue = testValue;     }       public int Next(int min, int max)     {         return _testValue;     } } To try out these changes use the following code. var gen = new RandomFake(3);   try {     gen.Next(10, 1); } catch(Exception ex) {     Debug.WriteLine(ex.Message); }   try {     gen.Next(5, 10); } catch(Exception ex) {     Debug.WriteLine(ex.Message); } Now we can force code contracts to all types that implement our IRandomGenerator interface and we must test only the interface to make sure that contracts are defined correctly.

    Read the article

  • Software Architecture: Quality Attributes

    Quality is what all software engineers should strive for when building a new system or adding new functionality. Dictonary.com ambiguously defines quality as a grade of excellence. Unfortunately, quality must be defined within the context of a situation in that each engineer must extract quality attributes from a project’s requirements. Because quality is defined by project requirements the meaning of quality is constantly changing base on the project. Software architecture factors that indicate the relevance and effectiveness The relevance and effectiveness of architecture can vary based on the context in which it was conceived and the quality attributes that are required to meet. Typically when evaluating architecture for a specific system regarding relevance and effectiveness the following questions should be asked.   Architectural relevance and effectiveness questions: Does the architectural concept meet the needs of the system for which it was designed? Out of the competing architectures for a system, which one is the most suitable? If we look at the first question regarding meeting the needs of a system for which it was designed. A system that answers yes to this question must meet all of its quality goals. This means that it consistently meets or exceeds performance goals for the system. In addition, the system meets all the other required system attributers based on the systems requirements. The suitability of a system is based on several factors. In order for a project to be suitable the necessary resources must be available to complete the task. Standard Project Resources: Money Trained Staff Time Life cycle factors that affect the system and design The development life cycle used on a project can drastically affect how a system’s architecture is created as well as influence its design. In the case of using the software development life cycle (SDLC) each phase must be completed before the next can begin.  This waterfall approach does not allow for changes in a system’s architecture after that phase is completed. This can lead to major system issues when the architecture for the system is not as optimal because of missed quality attributes. This can occur when a project has poor requirements and makes misguided architectural decisions to name a few examples. Once the architectural phase is complete the concepts established in this phase must move on to the design phase that is bound to use the concepts and guidelines defined in the previous phase regardless of any missing quality attributes needed for the project. If any issues arise during this phase regarding the selected architectural concepts they cannot be corrected during the current project. This directly has an effect on the design of a system because the proper qualities required for the project where not used when the architectural concepts were approved. When this is identified nothing can be done to fix the architectural issues and system design must use the existing architectural concepts regardless of its missing quality properties because the architectural concepts for the project cannot be altered. The decisions made in the design phase then preceded to fall down to the implementation phase where the actual system is coded based on the approved architectural concepts established in the architecture phase regardless of its architectural quality. Conversely projects using more of an iterative or agile methodology to implement a system has more flexibility to correct architectural decisions based on missing quality attributes. This is due to each phase of the SDLC is executed more than once so any issues identified in architecture of a system can be corrected in the next architectural phase. Subsequently the corresponding changes will then be adjusted in the following design phase so that when the project is completed the optimal architectural and design decision are applied to the solution. Architecture factors that indicate functional suitability Systems that have function shortcomings do not have the proper functionality based on the project’s driving quality attributes. What this means in English is that the system does not live up to what is required of it by the stakeholders as identified by the missing quality attributes and requirements. One way to prevent functional shortcomings is to test the project’s architecture, design, and implementation against the project’s driving quality attributes to ensure that none of the attributes were missed in any of the phases. Another way to ensure a system has functional suitability is to certify that all its requirements are fully articulated so that there is no chance for misconceptions or misinterpretations by all stakeholders. This will help prevent any issues regarding interpreting the system requirements during the initial architectural concept phase, design phase and implementation phase. Consider the applicability of other architectural models When considering an architectural model for a project is also important to consider other alternative architectural models to ensure that the model that is selected will meet the systems required functionality and high quality attributes. Recently I can remember talking about a project that I was working on and a coworker suggested a different architectural approach that I had never considered. This new model will allow for the same functionally that is offered by the existing model but will allow for a higher quality project because it fulfills more quality attributes. It is always important to seek alternatives prior to committing to an architectural model. Factors used to identify high-risk components A high risk component can be defined as a component that fulfills 2 or more quality attributes for a system. An example of this can be seen in a web application that utilizes a remote database. One high-risk component in this system is the TCIP component because it allows for HTTP connections to handle by a web server and as well as allows for the server to also connect to a remote database server so that it can import data into the system. This component allows for the assurance of data quality attribute and the accessibility quality attribute because the system is available on the network. If for some reason the TCIP component was to fail the web application would fail on two quality attributes accessibility and data assurance in that the web site is not accessible and data cannot be update as needed. Summary As stated previously, quality is what all software engineers should strive for when building a new system or adding new functionality. The quality of a system can be directly determined by how closely it is implemented when compared to its desired quality attributes. One way to insure a higher quality system is to enforce that all project requirements are fully articulated so that no assumptions or misunderstandings can be made by any of the stakeholders. By doing this a system has a better chance of becoming a high quality system based on its quality attributes

    Read the article

  • The APEX of Business Value...or...the Business Value of APEX? Oracle Cloud Takes Oracle APEX to New Heights!

    - by Gene Eun
    The attraction of Oracle Application Express (APEX) has increased tremendously with the recent launch of the Oracle Cloud. APEX already supported departmental development and deployment of business applications with minimal involvement from the IT department. Positioned as the ideal replacement for MS Access, APEX probably has managed better to capture the eye of developers and was used for enterprise application development at least as much as for the kind of tactical applications that Oracle strategically positioned it for. With APEX as PaaS from the Oracle Cloud, a leap is made to a much higher level of business value. Now the IT department is not even needed to make infrastructure available with a database running  on it. All the business needs is a credit card. And the business application that is developed, managed and used from the cloud through a standard browser can now just as easily be accessed by users from around the world as by users from the business department itself. As a bonus – the development of the APEX application is also done in the cloud – with no special demands on the location or the enterprise access privileges of the developers. To sum it up: APEX from Oracle Cloud Database Service get the development environment up and running in minutes no involvement from the internal IT department required (not for infrastructure, platform, or development) superior availability and scalability is offered by Oracle users from anywhere in the world can be invited to access the application developers from anywhere in the world can participate in creating and maintaining the application In addition: because the Oracle Cloud platform is the same as the on-premise platform, you can still decide to move the APEX application between the cloud and the local environment – and back again. The REST-ful services that are available through APEX allow programmatic interaction with the database under the APEX application. That means that this database can be synchronized with on premise databases or data stores in (other) clouds. Through the Oracle Cloud Messaging Service, the APEX application can easily enter into asynchronous conversations with other APEX applications, Fusion Middleware applications (ADF, SOA, BPM) and any other type of REST-enabled application. In my opinion, now, for the first time perhaps, APEX offers the attraction to the business that has been suggested before: because of the cloud, all the business needs is  a credit card (a budget of $175 per month), an internet-connection and a browser. Not like before, with a PC hidden under a desk or a database running somewhere in the data center. No matter how unattended: equipment is needed, power is consumed, the database needs to be kept running and if Oracle Database XE does not suffice, software licenses are required as well. And this set up always has a security challenge associated with it. The cloud fee for the Oracle Cloud Database Service includes infrastructure, power, licenses, availability, platform upgrades, a collection of reusable application components and the development and runtime environments containing the APEX platform. Of course this not only means that business departments can move quickly without having to convince their IT colleagues to move along – it also means that small organizations that do not even have IT colleagues can do the same. Getting tailored applications or applications up and running to get in touch with users and customers all over the world is now within easy reach for small outfits – without any investment. My misunderstanding For a long time, I was under the impression that the essence of APEX was that the business could create applications themselves – meaning that business ‘people’ would actually go into APEX to create the application. To me APEX was too much of a developers’ tool to see that happen – apart from the odd business analyst who missed his or her calling as an IT developer. Having looked at various other cloud based development offerings – including Force.com, Mendix, WaveMaker, WorkXpress, OrangeScape, Caspio and Cordys- I have come to realize my mistake. All these platforms are positioned for 'the business' but require a fair amount of coding and technical expertise. However, they make the business happy nevertheless, because they allow the  business to completely circumvent the IT department. That is the essence. Not having to go through the red tape, not having to wait for IT staff who (justifiably) need weeks or months to provide an environment, not having to deal with administrators (again, justifiably) refusing to take on that 'strange environment'. Being able to think of an initiative and turn into action right away. The business does not have to build the application - it can easily hire some external developers or even that nerdy boy next door. They can get started, get an application up and running and invite users in – especially external users such as customers. They will worry later about upgrades and life cycle management and integration. To get applications up and running quickly and start turning ideas into action and results rightaway. That is the key selling point for all these cloud offerings, including APEX from the Cloud. And it is a compelling story. For APEX probably even more so than for the others. While I consider APEX a somewhat proprietary framework compared with ‘regular’ Java/JEE web development (or even .NET and PHP  development), it is still far more open than most cloud environments. APEX is SQL and PL/SQL based – nothing special about those languages – and can run just as easily on site as in the cloud. It has been around since 2004 (that is not including several predecessors that fed straight into APEX) so it can be considered pretty mature. Oracle as a company seems pretty stable – so investments in its technology are bound to last for some time to come. By the way: neither APEX nor the other Cloud DevaaS offerings are targeted at creating applications with enormous life times. They fit into a trend of agile development and rapid life cycle management, with fairly light weight user interfaces that quickly adapt to taste, technology trends and functional requirements and that are easily replaced. APEX and ADF – a match made in heaven?! (or at least in the sky) Note that using APEX only for cloud based database with REST-ful Services is also a perfectly viable scenario: any UI – mobile or browser based – capable of consuming REST-ful services can be created against such a business tier. Creating an ADF Mobile application for example that runs aginst REST-ful services is a best practice for mobile development. Such REST-ful services can be consumed from any service provider – including the Cloud based APEX powered REST-ful services running against the Oracle Cloud Database Service! The ADF Mobile architecture overview can easily be morphed to fit the APEX services in – allowing for a cloud based mobile app: Want to learn more about Oracle Database Cloud Service or Oracle Cloud, just visit cloud.oracle.com  or oracle.com/cloud. Repost of a blog entry by Rick Greenwald, Director of Product Management, Oracle Database Cloud Service.

    Read the article

  • MySQL Cluster 7.2: Over 8x Higher Performance than Cluster 7.1

    - by Mat Keep
    0 0 1 893 5092 Homework 42 11 5974 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary The scalability enhancements delivered by extensions to multi-threaded data nodes enables MySQL Cluster 7.2 to deliver over 8x higher performance than the previous MySQL Cluster 7.1 release on a recent benchmark What’s New in MySQL Cluster 7.2 MySQL Cluster 7.2 was released as GA (Generally Available) in February 2012, delivering many enhancements to performance on complex queries, new NoSQL Key / Value API, cross-data center replication and ease-of-use. These enhancements are summarized in the Figure below, and detailed in the MySQL Cluster New Features whitepaper Figure 1: Next Generation Web Services, Cross Data Center Replication and Ease-of-Use Once of the key enhancements delivered in MySQL Cluster 7.2 is extensions made to the multi-threading processes of the data nodes. Multi-Threaded Data Node Extensions The MySQL Cluster 7.2 data node is now functionally divided into seven thread types: 1) Local Data Manager threads (ldm). Note – these are sometimes also called LQH threads. 2) Transaction Coordinator threads (tc) 3) Asynchronous Replication threads (rep) 4) Schema Management threads (main) 5) Network receiver threads (recv) 6) Network send threads (send) 7) IO threads Each of these thread types are discussed in more detail below. MySQL Cluster 7.2 increases the maximum number of LDM threads from 4 to 16. The LDM contains the actual data, which means that when using 16 threads the data is more heavily partitioned (this is automatic in MySQL Cluster). Each LDM thread maintains its own set of data partitions, index partitions and REDO log. The number of LDM partitions per data node is not dynamically configurable, but it is possible, however, to map more than one partition onto each LDM thread, providing flexibility in modifying the number of LDM threads. The TC domain stores the state of in-flight transactions. This means that every new transaction can easily be assigned to a new TC thread. Testing has shown that in most cases 1 TC thread per 2 LDM threads is sufficient, and in many cases even 1 TC thread per 4 LDM threads is also acceptable. Testing also demonstrated that in some instances where the workload needed to sustain very high update loads it is necessary to configure 3 to 4 TC threads per 4 LDM threads. In the previous MySQL Cluster 7.1 release, only one TC thread was available. This limit has been increased to 16 TC threads in MySQL Cluster 7.2. The TC domain also manages the Adaptive Query Localization functionality introduced in MySQL Cluster 7.2 that significantly enhanced complex query performance by pushing JOIN operations down to the data nodes. Asynchronous Replication was separated into its own thread with the release of MySQL Cluster 7.1, and has not been modified in the latest 7.2 release. To scale the number of TC threads, it was necessary to separate the Schema Management domain from the TC domain. The schema management thread has little load, so is implemented with a single thread. The Network receiver domain was bound to 1 thread in MySQL Cluster 7.1. With the increase of threads in MySQL Cluster 7.2 it is also necessary to increase the number of recv threads to 8. This enables each receive thread to service one or more sockets used to communicate with other nodes the Cluster. The Network send thread is a new thread type introduced in MySQL Cluster 7.2. Previously other threads handled the sending operations themselves, which can provide for lower latency. To achieve highest throughput however, it has been necessary to create dedicated send threads, of which 8 can be configured. It is still possible to configure MySQL Cluster 7.2 to a legacy mode that does not use any of the send threads – useful for those workloads that are most sensitive to latency. The IO Thread is the final thread type and there have been no changes to this domain in MySQL Cluster 7.2. Multiple IO threads were already available, which could be configured to either one thread per open file, or to a fixed number of IO threads that handle the IO traffic. Except when using compression on disk, the IO threads typically have a very light load. Benchmarking the Scalability Enhancements The scalability enhancements discussed above have made it possible to scale CPU usage of each data node to more than 5x of that possible in MySQL Cluster 7.1. In addition, a number of bottlenecks have been removed, making it possible to scale data node performance by even more than 5x. Figure 2: MySQL Cluster 7.2 Delivers 8.4x Higher Performance than 7.1 The flexAsynch benchmark was used to compare MySQL Cluster 7.2 performance to 7.1 across an 8-node Intel Xeon x5670-based cluster of dual socket commodity servers (6 cores each). As the results demonstrate, MySQL Cluster 7.2 delivers over 8x higher performance per data nodes than MySQL Cluster 7.1. More details of this and other benchmarks will be published in a new whitepaper – coming soon, so stay tuned! In a following blog post, I’ll provide recommendations on optimum thread configurations for different types of server processor. You can also learn more from the Best Practices Guide to Optimizing Performance of MySQL Cluster Conclusion MySQL Cluster has achieved a range of impressive benchmark results, and set in context with the previous 7.1 release, is able to deliver over 8x higher performance per node. As a result, the multi-threaded data node extensions not only serve to increase performance of MySQL Cluster, they also enable users to achieve significantly improved levels of utilization from current and future generations of massively multi-core, multi-thread processor designs.

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • What's up with LDoms: Part 2 - Creating a first, simple guest

    - by Stefan Hinker
    Welcome back! In the first part, we discussed the basic concepts of LDoms and how to configure a simple control domain.  We saw how resources were put aside for guest systems and what infrastructure we need for them.  With that, we are now ready to create a first, very simple guest domain.  In this first example, we'll keep things very simple.  Later on, we'll have a detailed look at things like sizing, IO redundancy, other types of IO as well as security. For now,let's start with this very simple guest.  It'll have one core's worth of CPU, one crypto unit, 8GB of RAM, a single boot disk and one network port.  CPU and RAM are easy.  The network port we'll create by attaching a virtual network port to the vswitch we created in the primary domain.  This is very much like plugging a cable into a computer system on one end and a network switch on the other.  For the boot disk, we'll need two things: A physical piece of storage to hold the data - this is called the backend device in LDoms speak.  And then a mapping between that storage and the guest domain, giving it access to that virtual disk.  For this example, we'll use a ZFS volume for the backend.  We'll discuss what other options there are for this and how to chose the right one in a later article.  Here we go: root@sun # ldm create mars root@sun # ldm set-vcpu 8 mars root@sun # ldm set-mau 1 mars root@sun # ldm set-memory 8g mars root@sun # zfs create rpool/guests root@sun # zfs create -V 32g rpool/guests/mars.bootdisk root@sun # ldm add-vdsdev /dev/zvol/dsk/rpool/guests/mars.bootdisk \ mars.root@primary-vds root@sun # ldm add-vdisk root mars.root@primary-vds mars root@sun # ldm add-vnet net0 switch-primary mars That's all, mars is now ready to power on.  There are just three commands between us and the OK prompt of mars:  We have to "bind" the domain, start it and connect to its console.  Binding is the process where the hypervisor actually puts all the pieces that we've configured together.  If we made a mistake, binding is where we'll be told (starting in version 2.1, a lot of sanity checking has been put into the config commands themselves, but binding will catch everything else).  Once bound, we can start (and of course later stop) the domain, which will trigger the boot process of OBP.  By default, the domain will then try to boot right away.  If we don't want that, we can set "auto-boot?" to false.  Finally, we'll use telnet to connect to the console of our newly created guest.  The output of "ldm list" shows us what port has been assigned to mars.  By default, the console service only listens on the loopback interface, so using telnet is not a large security concern here. root@sun # ldm set-variable auto-boot\?=false mars root@sun # ldm bind mars root@sun # ldm start mars root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 8 7680M 0.5% 1d 4h 30m mars active -t---- 5000 8 8G 12% 1s root@sun # telnet localhost 5000 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. ~Connecting to console "mars" in group "mars" .... Press ~? for control options .. {0} ok banner SPARC T3-4, No Keyboard Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. OpenBoot 4.33.1, 8192 MB memory available, Serial # 87203131. Ethernet address 0:21:28:24:1b:50, Host ID: 85241b50. {0} ok We're done, mars is ready to install Solaris, preferably using AI, of course ;-)  But before we do that, let's have a little look at the OBP environment to see how our virtual devices show up here: {0} ok printenv auto-boot? auto-boot? = false {0} ok printenv boot-device boot-device = disk net {0} ok devalias root /virtual-devices@100/channel-devices@200/disk@0 net0 /virtual-devices@100/channel-devices@200/network@0 net /virtual-devices@100/channel-devices@200/network@0 disk /virtual-devices@100/channel-devices@200/disk@0 virtual-console /virtual-devices/console@1 name aliases We can see that setting the OBP variable "auto-boot?" to false with the ldm command worked.  Of course, we'd normally set this to "true" to allow Solaris to boot right away once the LDom guest is started.  The setting for "boot-device" is the default "disk net", which means OBP would try to boot off the devices pointed to by the aliases "disk" and "net" in that order, which usually means "disk" once Solaris is installed on the disk image.  The actual devices these aliases point to are shown with the command "devalias".  Here, we have one line for both "disk" and "net".  The device paths speak for themselves.  Note that each of these devices has a second alias: "net0" for the network device and "root" for the disk device.  These are the very same names we've given these devices in the control domain with the commands "ldm add-vnet" and "ldm add-vdisk".  Remember this, as it is very useful once you have several dozen disk devices... To wrap this up, in this part we've created a simple guest domain, complete with CPU, memory, boot disk and network connectivity.  This should be enough to get you going.  I will cover all the more advanced features and a little more theoretical background in several follow-on articles.  For some background reading, I'd recommend the following links: LDoms 2.2 Admin Guide: Setting up Guest Domains Virtual Console Server: vntsd manpage - This includes the control sequences and commands available to control the console session. OpenBoot 4.x command reference - All the things you can do at the ok prompt

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • Security in Software

    The term security has many meanings based on the context and perspective in which it is used. Security from the perspective of software/system development is the continuous process of maintaining confidentiality, integrity, and availability of a system, sub-system, and system data. This definition at a very high level can be restated as the following: Computer security is a continuous process dealing with confidentiality, integrity, and availability on multiple layers of a system. Key Aspects of Software Security Integrity Confidentiality Availability Integrity within a system is the concept of ensuring only authorized users can only manipulate information through authorized methods and procedures. An example of this can be seen in a simple lead management application.  If the business decided to allow each sales member to only update their own leads in the system and sales managers can update all leads in the system then an integrity violation would occur if a sales member attempted to update someone else’s leads. An integrity violation occurs when a team member attempts to update someone else’s lead because it was not entered by the sales member.  This violates the business rule that leads can only be update by the originating sales member. Confidentiality within a system is the concept of preventing unauthorized access to specific information or tools.  In a perfect world the knowledge of the existence of confidential information/tools would be unknown to all those who do not have access. When this this concept is applied within the context of an application only the authorized information/tools will be available. If we look at the sales lead management system again, leads can only be updated by originating sales members. If we look at this rule then we can say that all sales leads are confidential between the system and the sales person who entered the lead in to the system. The other sales team members would not need to know about the leads let alone need to access it. Availability within a system is the concept of authorized users being able to access the system. A real world example can be seen again from the lead management system. If that system was hosted on a web server then IP restriction can be put in place to limit access to the system based on the requesting IP address. If in this example all of the sales members where accessing the system from the 192.168.1.23 IP address then removing access from all other IPs would be need to ensure that improper access to the system is prevented while approved users can access the system from an authorized location. In essence if the requesting user is not coming from an authorized IP address then the system will appear unavailable to them. This is one way of controlling where a system is accessed. Through the years several design principles have been identified as being beneficial when integrating security aspects into a system. These principles in various combinations allow for a system to achieve the previously defined aspects of security based on generic architectural models. Security Design Principles Least Privilege Fail-Safe Defaults Economy of Mechanism Complete Mediation Open Design Separation Privilege Least Common Mechanism Psychological Acceptability Defense in Depth Least Privilege Design PrincipleThe Least Privilege design principle requires a minimalistic approach to granting user access rights to specific information and tools. Additionally, access rights should be time based as to limit resources access bound to the time needed to complete necessary tasks. The implications of granting access beyond this scope will allow for unnecessary access and the potential for data to be updated out of the approved context. The assigning of access rights will limit system damaging attacks from users whether they are intentional or not. This principle attempts to limit data changes and prevents potential damage from occurring by accident or error by reducing the amount of potential interactions with a resource. Fail-Safe Defaults Design PrincipleThe Fail-Safe Defaults design principle pertains to allowing access to resources based on granted access over access exclusion. This principle is a methodology for allowing resources to be accessed only if explicit access is granted to a user. By default users do not have access to any resources until access has been granted. This approach prevents unauthorized users from gaining access to resource until access is given. Economy of Mechanism Design PrincipleThe Economy of mechanism design principle requires that systems should be designed as simple and small as possible. Design and implementation errors result in unauthorized access to resources that would not be noticed during normal use. Complete Mediation Design PrincipleThe Complete Mediation design principle states that every access to every resource must be validated for authorization. Open Design Design PrincipleThe Open Design Design Principle is a concept that the security of a system and its algorithms should not be dependent on secrecy of its design or implementation Separation Privilege Design PrincipleThe separation privilege design principle requires that all resource approved resource access attempts be granted based on more than a single condition. For example a user should be validated for active status and has access to the specific resource. Least Common Mechanism Design PrincipleThe Least Common Mechanism design principle declares that mechanisms used to access resources should not be shared. Psychological Acceptability Design PrincipleThe Psychological Acceptability design principle refers to security mechanisms not make resources more difficult to access than if the security mechanisms were not present Defense in Depth Design PrincipleThe Defense in Depth design principle is a concept of layering resource access authorization verification in a system reduces the chance of a successful attack. This layered approach to resource authorization requires unauthorized users to circumvent each authorization attempt to gain access to a resource. When designing a system that requires meeting a security quality attribute architects need consider the scope of security needs and the minimum required security qualities. Not every system will need to use all of the basic security design principles but will use one or more in combination based on a company’s and architect’s threshold for system security because the existence of security in an application adds an additional layer to the overall system and can affect performance. That is why the definition of minimum security acceptably is need when a system is design because this quality attributes needs to be factored in with the other system quality attributes so that the system in question adheres to all qualities based on the priorities of the qualities. Resources: Barnum, Sean. Gegick, Michael. (2005). Least Privilege. Retrieved on August 28, 2011 from https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/351-BSI.html Saltzer, Jerry. (2011). BASIC PRINCIPLES OF INFORMATION PROTECTION. Retrieved on August 28, 2011 from  http://web.mit.edu/Saltzer/www/publications/protection/Basic.html Barnum, Sean. Gegick, Michael. (2005). Defense in Depth. Retrieved on August 28, 2011 from  https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/347-BSI.html Bertino, Elisa. (2005). Design Principles for Security. Retrieved on August 28, 2011 from  http://homes.cerias.purdue.edu/~bhargav/cs526/security-9.pdf

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • Improved Performance on PeopleSoft Combined Benchmark using SPARC T4-4

    - by Brian
    Oracle's SPARC T4-4 server running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved a world record 18,000 concurrent users experiencing subsecond response time while executing a PeopleSoft Payroll batch job of 500,000 employees in 32.4 minutes. This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier. The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment. The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 47% (online and batch) leaving significant headroom for additional processing across the three tiers. The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices. Performance Landscape Results are presented for the PeopleSoft HRMS Self-Service and Payroll combined benchmark. The new result with 128 streams shows significant improvement in the payroll batch processing time with little impact on the self-service component response time. PeopleSoft HRMS Self-Service and Payroll Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-4 (db) 18,000 0.988 0.539 32.4 128 SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-4 (db) 18,000 0.944 0.503 43.3 64 The following results are for the PeopleSoft HRMS Self-Service benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the payroll component. PeopleSoft HRMS Self-Service 9.1 Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) 2x SPARC T4-2 (db) 18,000 1.048 0.742 N/A N/A The following results are for the PeopleSoft Payroll benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the self-service component. PeopleSoft Payroll (N.A.) 9.1 - 500K Employees (7 Million SQL PayCalc, Unicode) Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-4 (db) N/A N/A N/A 30.84 96 Configuration Summary Application Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 512 GB memory Oracle Solaris 11 11/11 PeopleTools 8.52 PeopleSoft HCM 9.1 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Java Platform, Standard Edition Development Kit 6 Update 32 Database Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 256 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 PeopleTools 8.52 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Micro Focus Server Express (COBOL v 5.1.00) Web Tier Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory Oracle Solaris 11 11/11 PeopleTools 8.52 Oracle WebLogic Server 10.3.4 Java Platform, Standard Edition Development Kit 6 Update 32 Storage Configuration: 1 x Sun Server X2-4 as a COMSTAR head for data 4 x Intel Xeon X7550, 2.0 GHz 128 GB memory 1 x Sun Storage F5100 Flash Array (80 flash modules) 1 x Sun Storage F5100 Flash Array (40 flash modules) 1 x Sun Fire X4275 as a COMSTAR head for redo logs 12 x 2 TB SAS disks with Niwot Raid controller Benchmark Description This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2. The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published. PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions. All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions. The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes. The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state. Key Points and Best Practices Two PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning. Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads. A total of 128 PeopleSoft streams server processes where used on the database node to complete payroll batch job of 500,000 employees in 32.4 minutes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN SPARC T4-4 Server oracle.com OTN PeopleSoft Enterprise Human Capital Managementoracle.com OTN PeopleSoft Enterprise Human Capital Management (Payroll) oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 8 November 2012.

    Read the article

  • The Application Architecture Domain

    - by Michael Glas
    I have been spending a lot of time thinking about Application Architecture in the context of EA. More specifically, as an Enterprise Architect, what do I need to consider when looking at/defining/designing the Application Architecture Domain?There are several definitions of Application Architecture. TOGAF says “The objective here [in Application Architecture] is to define the major kinds of application system necessary to process the data and support the business”. FEA says the Application Architecture “Defines the applications needed to manage the data and support the business functions”.I agree with these definitions. They reflect what the Application Architecture domain does. However, they need to be decomposed to be practical.I find it useful to define a set of views into the Application Architecture domain. These views reflect what an EA needs to consider when working with/in the Applications Architecture domain. These viewpoints are, at a high level:Capability View: This view reflects how applications alignment with business capabilities. It is a super set of the following views when viewed in aggregate. By looking at the Application Architecture domain in terms of the business capabilities it supports, you get a good perspective on how those applications are directly supporting the business.Technology View: The technology view reflects the underlying technology that makes up the applications. Based on the number of rationalization activities I have seen (more specifically application rationalization), the phrase “complexity equals cost” drives the importance of the technology view, especially when attempting to reduce that complexity through standardization type activities. Some of the technology components to be considered are: Software: The application itself as well as the software the application relies on to function (web servers, application servers). Infrastructure: The underlying hardware and network components required by the application and supporting application software. Development: How the application is created and maintained. This encompasses development components that are part of the application itself (i.e. customizable functions), as well as bolt on development through web services, API’s, etc. The maintenance process itself also falls under this view. Integration: The interfaces that the application provides for integration as well as the integrations to other applications and data sources the application requires to function. Type: Reflects the kind of application (mash-up, 3 tiered, etc). (Note: functional type [CRM, HCM, etc.] are reflected under the capability view). Organization View: Organizations are comprised of people and those people use applications to do their jobs. Trying to define the application architecture domain without taking the organization that will use/fund/change it into consideration is like trying to design a car without thinking about who will drive it (i.e. you may end up building a formula 1 car for a family of 5 that is really looking for a minivan). This view reflects the people aspect of the application. It includes: Ownership: Who ‘owns’ the application? This will usually reflect primary funding and utilization but not always. Funding: Who funds both the acquisition/creation as well as the on-going maintenance (funding to create/change/operate)? Change: Who can/does request changes to the application and what process to the follow? Utilization: Who uses the application, how often do they use it, and how do they use it? Support: Which organization is responsible for the on-going support of the application? Information View: Whether or not you subscribe to the view that “information drives the enterprise”, it is a fact that information is critical. The management, creation, and organization of that information are primary functions of enterprise applications. This view reflects how the applications are tied to information (or at a higher level – how the Application Architecture domain relates to the Information Architecture domain). It includes: Access: The application is the mechanism by which end users access information. This could be through a primary application (i.e. CRM application), or through an information access type application (a BI application as an example). Creation: Applications create data in order to provide information to end-users. (I.e. an application creates an order to be used by an end-user as part of the fulfillment process). Consumption: Describes the data required by applications to function (i.e. a product id is required by a purchasing application to create an order. Application Service View: Organizations today are striving to be more agile. As an EA, I need to provide an architecture that supports this agility. One of the primary ways to achieve the required agility in the application architecture domain is through the use of ‘services’ (think SOA, web services, etc.). Whether it is through building applications from the ground up utilizing services, service enabling an existing application, or buying applications that are already ‘service enabled’, compartmentalizing application functions for re-use helps enable flexibility in the use of those applications in support of the required business agility. The applications service view consists of: Services: Here, I refer to the generic definition of a service “a set of related software functionalities that can be reused for different purposes, together with the policies that should control its usage”. Functions: The activities within an application that are not available / applicable for re-use. This view is helpful when identifying duplication functions between applications that are not service enabled. Delivery Model View: It is hard to talk about EA today without hearing the terms ‘cloud’ or shared services.  Organizations are looking at the ways their applications are delivered for several reasons, to reduce cost (both CAPEX and OPEX), to improve agility (time to market as an example), etc.  From an EA perspective, where/how an application is deployed has impacts on the overall enterprise architecture. From integration concerns to SLA requirements to security and compliance issues, the Enterprise Architect needs to factor in how applications are delivered when designing the Enterprise Architecture. This view reflects how applications are delivered to end-users. The delivery model view consists of different types of delivery mechanisms/deployment options for applications: Traditional: Reflects non-cloud type delivery options. The most prevalent consists of an application running on dedicated hardware (usually specific to an environment) for a single consumer. Private Cloud: The application runs on infrastructure provisioned for exclusive use by a single organization comprising multiple consumers. Public Cloud: The application runs on infrastructure provisioned for open use by the general public. Hybrid: The application is deployed on two or more distinct cloud infrastructures (private, community, or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability. While by no means comprehensive, I find that applying these views to the application domain gives a good understanding of what an EA needs to consider when effecting changes to the Application Architecture domain.Finally, the application architecture domain is one of several architecture domains that an EA must consider when developing an overall Enterprise Architecture. The Oracle Enterprise Architecture Framework defines four Primary domains: Business Architecture, Application Architecture, Information Architecture, and Technology Architecture. Each domain links to the others either directly or indirectly at some point. Oracle links them at a high level as follows:Business Capabilities and/or Business Processes (Business Architecture), links to the Applications that enable the capability/process (Applications Architecture – COTS, Custom), links to the Information Assets managed/maintained by the Applications (Information Architecture), links to the technology infrastructure upon which all this runs (Technology Architecture - integration, security, BI/DW, DB infrastructure, deployment model). There are however, times when the EA needs to narrow focus to a particular domain for some period of time. These views help me to do just that.

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • T4 Performance Counters explained

    - by user13346607
    Now that T4 is out for a few month some people might have wondered what details of the new pipeline you can monitor. A "cpustat -h" lists a lot of events that can be monitored, and only very few are self-explanatory. I will try to give some insight on all of them, some of these "PIC events" require an in-depth knowledge of T4 pipeline. Over time I will try to explain these, for the time being these events should simply be ignored. (Side note: some counters changed from tape-out 1.1 (*only* used in the T4 beta program) to tape-out 1.2 (used in the systems shipping today) The table only lists the tape-out 1.2 counters) 0 0 1 1058 6033 Oracle Microelectronics 50 14 7077 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} pic name (cpustat) Prose Comment Sel-pipe-drain-cycles, Sel-0-[wait|ready], Sel-[1,2] Sel-0-wait counts cycles a strand waits to be selected. Some reasons can be counted in detail; these are: Sel-0-ready: Cycles a strand was ready but not selected, that can signal pipeline oversubscription Sel-1: Cycles only one instruction or µop was selected Sel-2: Cycles two instructions or µops were selected Sel-pipe-drain-cycles: cf. PRM footnote 8 to table 10.2 Pick-any, Pick-[0|1|2|3] Cycles one, two, three, no or at least one instruction or µop is picked Instr_FGU_crypto Number of FGU or crypto instructions executed on that vcpu Instr_ld dto. for load Instr_st dto. for store SPR_ring_ops dto. for SPR ring ops Instr_other dto. for all other instructions not listed above, PRM footnote 7 to table 10.2 lists the instructions Instr_all total number of instructions executed on that vcpu Sw_count_intr Nr of S/W count instructions on that vcpu (sethi %hi(fc000),%g0 (whatever that is))  Atomics nr of atomic ops, which are LDSTUB/a, CASA/XA, and SWAP/A SW_prefetch Nr of PREFETCH or PREFETCHA instructions Block_ld_st Block loads or store on that vcpu IC_miss_nospec, IC_miss_[L2_or_L3|local|remote]\ _hit_nospec Various I$ misses, distinguished by where they hit. All of these count per thread, but only primary events: T4 counts only the first occurence of an I$ miss on a core for a certain instruction. If one strand misses in I$ this miss is counted, but if a second strand on the same core misses while the first miss is being resolved, that second miss is not counted This flavour of I$ misses counts only misses that are caused by instruction that really commit (note the "_nospec") BTC_miss Branch target cache miss ITLB_miss ITLB misses (synchronously counted) ITLB_miss_asynch dto. but asynchronously [I|D]TLB_fill_\ [8KB|64KB|4MB|256MB|2GB|trap] H/W tablewalk events that fill ITLB or DTLB with translation for the corresponding page size. The “_trap” event occurs if the HWTW was not able to fill the corresponding TLB IC_mtag_miss, IC_mtag_miss_\ [ptag_hit|ptag_miss|\ ptag_hit_way_mismatch] I$ micro tag misses, with some options for drill down Fetch-0, Fetch-0-all fetch-0 counts nr of cycles nothing was fetched for this particular strand, fetch-0-all counts cycles nothing was fetched for all strands on a core Instr_buffer_full Cycles the instruction buffer for a strand was full, thereby preventing any fetch BTC_targ_incorrect Counts all occurences of wrongly predicted branch targets from the BTC [PQ|ROB|LB|ROB_LB|SB|\ ROB_SB|LB_SB|RB_LB_SB|\ DTLB_miss]\ _tag_wait ST_q_tag_wait is listed under sl=20. These counters monitor pipeline behaviour therefore they are not strand specific: PQ_...: cycles Rename stage waits for a Pick Queue tag (might signal memory bound workload for single thread mode, cf. Mail from Richard Smith) ROB_...: cycles Select stage waits for a ROB (ReOrderBuffer) tag LB_...: cycles Select stage waits for a Load Buffer tag SB_...: cycles Select stage waits for Store Buffer tag combinations of the above are allowed, although some of these events can overlap, the counter will only be incremented once per cycle if any of these occur DTLB_...: cycles load or store instructions wait at Pick stage for a DTLB miss tag [ID]TLB_HWTW_\ [L2_hit|L3_hit|L3_miss|all] Counters for HWTW accesses caused by either DTLB or ITLB misses. Canbe further detailed by where they hit IC_miss_L2_L3_hit, IC_miss_local_remote_remL3_hit, IC_miss I$ prefetches that were dropped because they either miss in L2$ or L3$ This variant counts misses regardless if the causing instruction commits or not DC_miss_nospec, DC_miss_[L2_L3|local|remote_L3]\ _hit_nospec D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters DTLB_miss_asynch counts all DTLB misses asynchronously, there is no way to count them synchronously DC_pref_drop_DC_hit, SW_pref_drop_[DC_hit|buffer_full] L1-D$ h/w prefetches that were dropped because of a D$ hit, counted per core. The others count software prefetches per strand [Full|Partial]_RAW_hit_st_[buf|q] Count events where a load wants to get data that has not yet been stored, i. e. it is still inside the pipeline. The data might be either still in the store buffer or in the store queue. If the load's data matches in the SB and in the store queue the data in buffer takes precedence of course since it is younger [IC|DC]_evict_invalid, [IC|DC|L1]_snoop_invalid, [IC|DC|L1]_invalid_all Counter for invalidated cache evictions per core St_q_tag_wait Number of cycles pipeline waits for a store queue tag, of course counted per core Data_pref_[drop_L2|drop_L3|\ hit_L2|hit_L3|\ hit_local|hit_remote] Data prefetches that can be further detailed by either why they were dropped or where they did hit St_hit_[L2|L3], St_L2_[local|remote]_C2C, St_local, St_remote Store events distinguished by where they hit or where they cause a L2 cache-to-cache transfer, i.e. either a transfer from another L2$ on the same die or from a different die DC_miss, DC_miss_\ [L2_L3|local|remote]_hit D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters L2_[clean|dirty]_evict Per core clean or dirty L2$ evictions L2_fill_buf_full, L2_wb_buf_full, L2_miss_buf_full Per core L2$ buffer events, all count number of cycles that this state was present L2_pipe_stall Per core cycles pipeline stalled because of L2$ Branches Count branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_taken Counts taken branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_mispred, Br_dir_mispred, Br_trg_mispred, Br_trg_mispred_\ [far_tbl|indir_tbl|ret_stk] Counter for various branch misprediction events.  Cycles_user counts cycles, attribute setting hpriv, nouser, sys controls addess space to count in Commit-[0|1|2], Commit-0-all, Commit-1-or-2 Number of times either no, one, or two µops commit for a strand. Commit-0-all counts number of times no µop commits for the whole core, cf. footnote 11 to table 10.2 in PRM for a more detailed explanation on how this counters interacts with the privilege levels

    Read the article

  • How can unrealscript halt event handler execution after an arbitrary number of lines with no return or error?

    - by Dan Cowell
    I have created a class that extends TcpLink and is instantiated in a custom Kismet Sequence Action. It is being instantiated correctly and is making the GET HTTP request that I need it to (I have checked my access log in apache) and Apache is responding to the request with the appropriate content. The problem I have is that I'm using the event receive mode and it appears that somehow the handler for the Opened event is halted after a specific number of lines of code have executed. Here is my code for the Opened event: event Opened() { // A connection was established WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); //The HTTP GET request //char(13) and char(10) are carrage returns and new lines requesttext = "userId="$userId$"&apartmentId="$apartmentId; SendText("GET /"$path$"?"$requesttext$" HTTP/1.0"); SendText(chr(13)$chr(10)); SendText("Host: "$TargetHost); SendText(chr(13)$chr(10)); SendText("Connection: Close"); SendText(chr(13)$chr(10)$chr(13)$chr(10)); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sent request: "$requesttext); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] end HTTP query"); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkState: "$LinkState); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkMode: "$LinkMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] ReceiveMode: "$ReceiveMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Error: "$string(GetLastError())); } As you can see, a number of the Broadcast calls have been commented out. Initially, only the lines up to the Broadcast containing "[DNomad_TcpLinkClient] Sent request: " were being executed and none of the Broadcasts were commented out. After commenting out that line, the next Broadcast was successful and so on and so forth. As a test, I commented out the very first Broadcast to see if the connection closing had any effect: // A connection was established //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); Upon doing that, an additional Broadcast at the end of the function executed. Thus the inference that there is an upper limit to the number of lines executed. Additionally, my ReceivedText handler is never called, despite Apache returning the correct HTTP 200 response with a body. My working hypothesis is that somehow after the Sequence Action finishes executing the garbage collector cleans up the TcpLinkClient instance. My biggest source of confusion with that is how on earth it does it during the execution of an event handler. Has anyone ever seen anything like this before? My full TcpLinkClient class is below: /* * TcpLinkClient based on an example usage of the TcpLink class by Michiel 'elmuerte' Hendriks for Epic Games, Inc. * */ class DNomad_TcpLinkClient extends TcpLink; var PlayerController PC; var string TargetHost; var int TargetPort; var string path; var string requesttext; var string userId; var string apartmentId; var string statusCode; var string responseData; event PostBeginPlay() { super.PostBeginPlay(); } function DoTcpLinkRequest(string uid, string id) //removes having to send a host { userId = uid; apartmentId = id; Resolve(targethost); } function string GetStatus() { return statusCode; } event Resolved( IpAddr Addr ) { // The hostname was resolved succefully WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] "$TargetHost$" resolved to "$ IpAddrToString(Addr)); // Make sure the correct remote port is set, resolving doesn't set // the port value of the IpAddr structure Addr.Port = TargetPort; //dont comment out this log because it rungs the function bindport WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Bound to port: "$ BindPort() ); if (!Open(Addr)) { WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Open failed"); } } event ResolveFailed() { WorldInfo.Game.Broadcast(self, "[TcpLinkClient] Unable to resolve "$TargetHost); // You could retry resolving here if you have an alternative // remote host. //send failed message to scaleform UI //JunHud(JunPlayerController(PC).myHUD).JunMovie.CallSetHTML("Failed"); } event Opened() { // A connection was established //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); //The HTTP GET request //char(13) and char(10) are carrage returns and new lines requesttext = "userId="$userId$"&apartmentId="$apartmentId; SendText("GET /"$path$"?"$requesttext$" HTTP/1.0"); SendText(chr(13)$chr(10)); SendText("Host: "$TargetHost); SendText(chr(13)$chr(10)); SendText("Connection: Close"); SendText(chr(13)$chr(10)$chr(13)$chr(10)); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sent request: "$requesttext); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] end HTTP query"); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkState: "$LinkState); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkMode: "$LinkMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] ReceiveMode: "$ReceiveMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Error: "$string(GetLastError())); } event Closed() { // In this case the remote client should have automatically closed // the connection, because we requested it in the HTTP request. WorldInfo.Game.Broadcast(self, "Connection closed."); // After the connection was closed we could establish a new // connection using the same TcpLink instance. } event ReceivedText( string Text ) { WorldInfo.Game.Broadcast(self, "Received Text: "$Text); //we dont want the header info, so we split the string after two new lines Text = Split(Text, chr(13)$chr(10)$chr(13)$chr(10), true); WorldInfo.Game.Broadcast(self, "Split Text: "$Text); statusCode = Text; } event ReceivedLine( string Line ) { WorldInfo.Game.Broadcast(self, "Received Line: "$Line); } event ReceivedBinary( int Count, byte B[255] ) { WorldInfo.Game.Broadcast(self, "Received Binary of length: "$Count); } defaultproperties { TargetHost="127.0.0.1" TargetPort=80 //default for HTTP LinkMode=MODE_Text ReceiveMode=RMODE_Event path = "dnomad/datafeed.php" userId = "0"; apartmentId = "0"; statusCode = ""; send = false; }

    Read the article

  • 10 tape technology features that make you go hmm.

    - by Karoly Vegh
    A week ago an Oracle/StorageTek Tape Specialist, Christian Vanden Balck, visited Vienna, and agreed to visit customers to do techtalks and update them about the technology boom going around tape. I had the privilege to attend some of his sessions and noted the information and features that took the customers by surprise and made them think. Allow me to share the top 10: I. StorageTek as a brand: StorageTek is one of he strongest names in the Tape field. The brand itself was valued so much by customers that even after Sun Microsystems acquiring StorageTek and the Oracle acquiring Sun the brand lives on with all the Oracle tapelibraries are officially branded StorageTek.See http://www.oracle.com/us/products/servers-storage/storage/tape-storage/overview/index.html II. Disk information density limitations: Disk technology struggles with information density. You haven't seen the disk sizes exploding lately, have you? That's partly because there are physical limits on a disk platter. The size is given, the number of platters is limited, they just can't grow, and are running out of physical area to write to. Now, in a T10000C tape cartridge we have over 1000m long tape. There you go, you have got your physical space and don't need to stuff all that data crammed together. You can write in a reliable pattern, and have space to grow too. III. Oracle has a market share of 62% worldwide in recording head manufacturing. That's right. If you are running LTO drives, with a good chance you rely on StorageTek production. That's two out of three LTO recording heads produced worldwide.  IV. You can store 1 Exabyte data in a single tape library. Yes, an Exabyte. That is 1000 Petabytes. Or, a million Terabytes. A thousand million GigaBytes. You can store that in a stacked StorageTek SL8500 tapelibrary. In one SL8500 you can put 10.000 T10000C cartridges, that store 10TB data (compressed). You can stack 10 of these SL8500s together. Boom. 1000.000 TB.(n.b.: stacking means interconnecting the libraries. Yes, cartridges are moved between the stacked libraries automatically.)  V. EMC: 'Tape doesn't suck after all. We moved on.': Do you remember the infamous 'Tape sucks, move on' Datadomain slogan? Of course they had to put it that way, having only had disk products. But here's a fun fact: on the EMCWorld 2012 there was a major presence of a Tape-tech company - EMC, in a sudden burst of sanity is embracing tape again. VI. The miraculous T10000C: Oracle StorageTek has developed an enterprise-grade tapedrive and cartridge, the T10000C. With awesome numbers: The Cartridge: Native 5TB capacity, 10TB with compression Over a kilometer long tape within the cartridge. And it's locked when unmounted, no rattling of your data.  Replaced the metalparticles datalayer with BaFe (bariumferrite) - metalparticles lose around 7% of magnetism within 30 days. BaFe does not. Yes we employ solid-state physicists doing R&D on demagnetisation in our labs. Can be partitioned, storage tiering within the cartridge!  The Drive: 2GB Cache Encryption implemented in HW - no performance hit 252 MB/s native sustained data rate, beats disk technology by far. Not to mention peak throughput.  Leading the tape while never touching the data side of it, protecting your data physically too Data integritiy checking (CRC recalculation) on tape within the drive without having to read it back to the server reordering data from tape-order, delivering it back in application-order  writing 32 tracks at once, reading them back for CRC check at once VII. You only use 20% of your data on a regular basis. The rest 80% is just lying around for years. On continuously spinning disks. Doubly consuming energy (power+cooling), blocking diskstorage capacity. There is a solution called SAM (Storage Archive Manager) that provides you a filesystem unifying disk and tape, moving data on-demand and for clients transparently between the different storage tiers. You can share these filesystems with NFS or CIFS for clients, and enjoy the low TCO of tape. Tapes don't spin. They sit quietly in their slots, storing 10TB data, using no energy, producing no heat, automounted when a client accesses their data.See: http://www.oracle.com/us/products/servers-storage/storage/storage-software/storage-archive-manager/overview/index.html VIII. HW supported for three decades: Did you know that the original PowderHorn library was released in '87 and has been only discontinued in 2010? That is over two decades of supported operation. Tape libraries are - just like the data carrying on tapecartridges - built for longevity. Oh, and the T10000C cartridge has 30-year archival life for long-term retention.  IX. Tape is easy to manage: Have you heard of Tape Storage Analytics? It is a central graphical tool to summarize, monitor, analyze dataflow, health and performance of drives and libraries, see: http://www.oracle.com/us/products/servers-storage/storage/tape-storage/tape-analytics/overview/index.html X. The next generation: The T10000B drives were able to reuse the T10000A cartridges and write on them even more data. On the same cartridges. We call this investment protection, and this is very important for Oracle for the future too. We usually support two generations of cartridges together. The current drive is a T10000C. (...I know I promised to enlist 10, but I got still two more I really want to mention. Allow me to work around the problem: ) X++. The TallBots, the robots moving around the cartridges in the StorageTek library from tapeslots to the drives are cableless. Cables, belts, chains running to moving parts in a library cause maintenance downtimes. So StorageTek eliminated them. The TallBots get power, commands, even firmwareupgrades through the rails they are running on. Also, the TallBots don't just hook'n'pull the tapes out of their slots, they actually grip'n'lift them out. No friction, no scratches, no zillion little plastic particles floating around in the library, in the drives, on your data. (X++)++: Tape beats SSDs and Disks. In terms of throughput (252 MB/s), in terms of TCO: disks cause around 290x more power and cooling, in terms of capacity: 10TB on a single media and soon more.  So... do you need to store large amounts of data? Are you legally bound to archive it for dozens of years? Would you benefit from automatic storage tiering? Have you got large mediachunks to be streamed at times? Have you got power and cooling issues in the growing datacenters? Do you find EMC's 180° turn of tape attitude interesting, but appreciate it at the same time? With all that, you aren't alone. The most data on this planet is stored on tape. Tape is coming. Big time.

    Read the article

  • CodePlex Daily Summary for Monday, August 11, 2014

    CodePlex Daily Summary for Monday, August 11, 2014Popular ReleasesSpace Engineers Server Manager: SESM V1.15: V1.15 - Updated Quartz library - Correct a bug in the new mod managment - Added a warning if you have backup enabled on a server but no static map configuredAspose for Apache POI: Missing Features of Apache POI SS - v 1.2: Release contain the Missing Features in Apache POI SS SDK in comparison with Aspose.Cells What's New ? Following Examples: Create Pivot Charts Detect Merged Cells Sort Data Printing Workbooks Feedback and Suggestions Many more examples are available at Aspose Docs. Raise your queries and suggest more examples via Aspose Forums or via this social coding site.AngularGo (SPA Project Template): AngularGo.VS2013.vsix: First ReleaseTouchmote: Touchmote 1.0 beta 13: Changes Less GPU usage Works together with other Xbox 360 controls Bug fixesPublic Key Infrastructure PowerShell module: PowerShell PKI Module v3.0: Important: I would like to hear more about what you are thinking about the project? I appreciate that you like it (2000 downloads over past 6 months), but may be you have to say something? What do you dislike in the module? Maybe you would love to see some new functionality? Tell, what you think! Installation guide:Use default installation path to install this module for current user only. To install this module for all users — enable "Install for all users" check-box in installation UI ...Modern UI for WPF: Modern UI 1.0.6: The ModernUI assembly including a demo app demonstrating the various features of Modern UI for WPF. BREAKING CHANGE LinkGroup.GroupName renamed to GroupKey NEW FEATURES Improved rendering on high DPI screens, including support for per-monitor DPI awareness available in Windows 8.1 (see also Per-monitor DPI awareness) New ModernProgressRing control with 8 builtin styles New LinkCommands.NavigateLink routed command New Visual Studio project templates 'Modern UI WPF App' and 'Modern UI W...ClosedXML - The easy way to OpenXML: ClosedXML 0.74.0: Multiple thread safe improvements including AdjustToContents XLHelper XLColor_Static IntergerExtensions.ToStringLookup Exception now thrown when saving a workbook with no sheets, instead of creating a corrupt workbook Fix for hyperlinks with non-ASCII Characters Added basic workbook protection Fix for error thrown, when a spreadsheet contained comments and images Fix to Trim function Fix Invalid operation Exception thrown when the formula functions MAX, MIN, and AVG referenc...SEToolbox: SEToolbox 01.042.019 Release 1: Added RadioAntenna broadcast name to ship name detail. Added two additional columns for Asteroid material generation for Asteroid Fields. Added Mass and Block number columns to main display. Added Ellipsis to some columns on main display to reduce name confusion. Added correct SE version number in file when saving. Re-added in reattaching Motor when drag/dropping or importing ships (KeenSH have added RotorEntityId back in after removing it months ago). Added option to export and r...jQuery List DragSort: jQuery List DragSort 0.5.2: Fixed scrollContainer removing deprecated use of $.browser so should now work with latest version of jQuery. Added the ability to return false in dragEnd to revert sort order Project changes Added nuget package for dragsort https://www.nuget.org/packages/dragsort Converted repository from SVN to MercurialBraintree Client Library: Braintree 2.32.0: Allow credit card verification options to be passed outside of the nonce for PaymentMethod.create Allow billingaddress parameters and billingaddress_id to be passed outside of the nonce for PaymentMethod.create Add Subscriptions to paypal accounts Add PaymentMethod.update Add failonduplicatepaymentmethod option to PaymentMethod.create Add support for dispute webhooksThe Mario Kart 8 App: V1.0.2.1: First Codeplex release. WINDOWS INSTALLER ONLYAspose Java for Docx4j: Aspose.Words vs Docx4j - v 1.0: Release contain the Code Comparison for Features in Docx4j SDK and Aspose.Words What's New ?Following Examples: Accessing Document Properties Add Bookmarks Convert to Formats Delete Bookmarks Working with Comments Feedback and Suggestions Many more examples are available at Aspose Docs. Raise your queries and suggest more examples via Aspose Forums or via this social coding site.File System Security PowerShell Module: NTFSSecurity 2.4.1: Add-Access and Remove-Access now take multiple accoutsYourSqlDba: YourSqlDba 5.2.1.: This version improves alert message that comes a while after you install the script. First it says to get it from YourSqlDba.CodePlex.com If you don't want to update now, just-rerun the script from your installed version. To get actual version running just execute install.PrintVersionInfo. . You can go to source code / history and click on change set 72957 to see changes in the script.Manipulator: Manipulator: manipulatorXNB filetype plugin for Paint.NET: Paint.NET XNB plugin v0.4.0.0: CHANGELOG Reverted old incomplete changes. Updated library for compatibility with Paint .NET 4. Updated project to NET 4.5. Updated version to 0.4.0.0. INSTALLATION INSTRUCTIONS Extract the ZIP file to your Paint.NET\FileTypes folder.EdiFabric: Release 4.1: Changed MessageContextWix# (WixSharp) - managed interface for WiX: Release 1.0.0.0: Release 1.0.0.0 Custom UI Custom MSI Dialog Custom CLR Dialog External UIMath.NET Numerics: Math.NET Numerics v3.2.0: Linear Algebra: Vector.Map2 (map2 in F#), storage-optimized Linear Algebra: fix RemoveColumn/Row early index bound check (was not strict enough) Statistics: Entropy ~Jeff Mastry Interpolation: use Array.BinarySearch instead of local implementation ~Candy Chiu Resources: fix a corrupted exception message string Portable Build: support .Net 4.0 as well by using profile 328 instead of 344. .Net 3.5: F# extensions now support .Net 3.5 as well .Net 3.5: NuGet package now contains pro...babelua: 1.6.5.1: V1.6.5.1 - 2014.8.7New feature: Formatting code; Stability improvement: fix a bug that pop up error "System.Net.WebResponse EndGetResponse";New ProjectsDouDou: a little project.Dynamic MVC: Dynamically generate views from your model objects for a data centric MVC application.EasyDb - Simple Data Access: EasyDb is a simple library for data access that allows you to write less code.ExpressToAbroad: just go!!!!!Full Silverlight Web Video/Voice Conferencing: The Goal of this project is to provide complete Open Source (Voice/Video Chatting Client/Server) Modules Using SilverlightGaia: Gaia is an app for Windows plataform, Gaia is like Siri and Google Now or Betty but Gaia use only text commands.pxctest: pxctestSTACS: Career Management System for MIT by Team "STACS"StrongWorld: StrongWorld.WebSuiteXevas Tools: Xevas is a professional coders group of 'Nimbuzz'. We make all tools for worldwide users of nimbuzz at free of cost.????????: ????????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ????????????????: ????????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ????????????????: ????????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ???????????????: ????????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ????????????????: ????????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ????????????????: ?????????

    Read the article

  • General Purpose ASP.NET Data Source Control

    - by Ricardo Peres
    OK, you already know about the ObjectDataSource control, so what’s wrong with it? Well, for once, it doesn’t pass any context to the SelectMethod, you only get the parameters supplied on the SelectParameters plus the desired ordering, starting page and maximum number of rows to display. Also, you must have two separate methods, one for actually retrieving the data, and the other for getting the total number of records (SelectCountMethod). Finally, you don’t get a chance to alter the supplied data before you bind it to the target control. I wanted something simple to use, and more similar to ASP.NET 4.5, where you can have the select method on the page itself, so I came up with CustomDataSource. Here’s how to use it (I chose a GridView, but it works equally well with any regular data-bound control): 1: <web:CustomDataSourceControl runat="server" ID="datasource" PageSize="10" OnData="OnData" /> 2: <asp:GridView runat="server" ID="grid" DataSourceID="datasource" DataKeyNames="Id" PageSize="10" AllowPaging="true" AllowSorting="true" /> The OnData event handler receives a DataEventArgs instance, which contains some properties that describe the desired paging location and size, and it’s where you return the data plus the total record count. Here’s a quick example: 1: protected void OnData(object sender, DataEventArgs e) 2: { 3: //just return some data 4: var data = Enumerable.Range(e.StartRowIndex, e.PageSize).Select(x => new { Id = x, Value = x.ToString(), IsPair = ((x % 2) == 0) }); 5: e.Data = data; 6: //the total number of records 7: e.TotalRowCount = 100; 8: } Here’s the code for the DataEventArgs: 1: [Serializable] 2: public class DataEventArgs : EventArgs 3: { 4: public DataEventArgs(Int32 pageSize, Int32 startRowIndex, String sortExpression, IOrderedDictionary parameters) 5: { 6: this.PageSize = pageSize; 7: this.StartRowIndex = startRowIndex; 8: this.SortExpression = sortExpression; 9: this.Parameters = parameters; 10: } 11:  12: public IEnumerable Data 13: { 14: get; 15: set; 16: } 17:  18: public IOrderedDictionary Parameters 19: { 20: get; 21: private set; 22: } 23:  24: public String SortExpression 25: { 26: get; 27: private set; 28: } 29:  30: public Int32 StartRowIndex 31: { 32: get; 33: private set; 34: } 35:  36: public Int32 PageSize 37: { 38: get; 39: private set; 40: } 41:  42: public Int32 TotalRowCount 43: { 44: get; 45: set; 46: } 47: } As you can guess, the StartRowIndex and PageSize receive the starting row and the desired page size, where the page size comes from the PageSize property on the markup. There’s also a SortExpression, which gets passed the sorted-by column and direction (if descending) and a dictionary containing all the values coming from the SelectParameters collection, if any. All of these are read only, and it is your responsibility to fill in the Data and TotalRowCount. The code for the CustomDataSource is very simple: 1: [NonVisualControl] 2: public class CustomDataSourceControl : DataSourceControl 3: { 4: public CustomDataSourceControl() 5: { 6: this.SelectParameters = new ParameterCollection(); 7: } 8:  9: protected override DataSourceView GetView(String viewName) 10: { 11: return (new CustomDataSourceView(this, viewName)); 12: } 13:  14: internal void GetData(DataEventArgs args) 15: { 16: this.OnData(args); 17: } 18:  19: protected virtual void OnData(DataEventArgs args) 20: { 21: EventHandler<DataEventArgs> data = this.Data; 22:  23: if (data != null) 24: { 25: data(this, args); 26: } 27: } 28:  29: [Browsable(false)] 30: [DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)] 31: [PersistenceMode(PersistenceMode.InnerProperty)] 32: public ParameterCollection SelectParameters 33: { 34: get; 35: private set; 36: } 37:  38: public event EventHandler<DataEventArgs> Data; 39:  40: public Int32 PageSize 41: { 42: get; 43: set; 44: } 45: } Also, the code for the accompanying internal – as there is no need to use it from outside of its declaring assembly - data source view: 1: sealed class CustomDataSourceView : DataSourceView 2: { 3: private readonly CustomDataSourceControl dataSourceControl = null; 4:  5: public CustomDataSourceView(CustomDataSourceControl dataSourceControl, String viewName) : base(dataSourceControl, viewName) 6: { 7: this.dataSourceControl = dataSourceControl; 8: } 9:  10: public override Boolean CanPage 11: { 12: get 13: { 14: return (true); 15: } 16: } 17:  18: public override Boolean CanRetrieveTotalRowCount 19: { 20: get 21: { 22: return (true); 23: } 24: } 25:  26: public override Boolean CanSort 27: { 28: get 29: { 30: return (true); 31: } 32: } 33:  34: protected override IEnumerable ExecuteSelect(DataSourceSelectArguments arguments) 35: { 36: IOrderedDictionary parameters = this.dataSourceControl.SelectParameters.GetValues(HttpContext.Current, this.dataSourceControl); 37: DataEventArgs args = new DataEventArgs(this.dataSourceControl.PageSize, arguments.StartRowIndex, arguments.SortExpression, parameters); 38:  39: this.dataSourceControl.GetData(args); 40:  41: arguments.TotalRowCount = args.TotalRowCount; 42: arguments.MaximumRows = this.dataSourceControl.PageSize; 43: arguments.AddSupportedCapabilities(DataSourceCapabilities.Page | DataSourceCapabilities.Sort | DataSourceCapabilities.RetrieveTotalRowCount); 44: arguments.RetrieveTotalRowCount = true; 45:  46: if (!(args.Data is ICollection)) 47: { 48: return (args.Data.OfType<Object>().ToList()); 49: } 50: else 51: { 52: return (args.Data); 53: } 54: } 55: } As always, looking forward to hearing from you!

    Read the article

  • Making Those PanelBoxes Behave

    - by Duncan Mills
    I have a little problem to solve earlier this week - misbehaving <af:panelBox> components... What do I mean by that? Well here's the scenario, I have a page fragment containing a set of panelBoxes arranged vertically. As it happens, they are stamped out in a loop but that does not really matter. What I want to be able to do is to provide the user with a simple UI to close and open all of the panelBoxes in concert. This could also apply to showDetailHeader and similar items with a disclosed attrubute, but in this case it's good old panelBoxes.  Ok, so the basic solution to this should be self evident. I can set up a suitable scoped managed bean that the panelBoxes all refer to for their disclosed attribute state. Then the open all / close commandButtons in the UI can simply set the state of that bean for all the panelBoxes to pick up via EL on their disclosed attribute. Sound OK? Well that works basically without a hitch, but turns out that there is a slight problem and this is where the framework is attempting to be a little too helpful. The issue is that is the user manually discloses or hides a panelBox then that will override the value that the EL is setting. So for example. I start the page with all panelBoxes collapsed, all set by the EL state I'm storing on the session I manually disclose panelBox no 1. I press the Expand All button - all works as you would hope and all the panelBoxes are now disclosed, including of course panelBox 1 which I just expanded manually. Finally I press the Collapse All button and everything collapses except that first panelBox that I manually disclosed.  The problem is that the component remembers this manual disclosure and that overrides the value provided by the expression. If I change the viewId (navigate away and back) then the panelBox will start to behave again, until of course I touch it again! Now, the more astute amoungst you would think (as I did) Ah, sound like the MDS personalizaton stuff is getting in the way and the solution should simply be to set the dontPersist attribute to disclosed | ALL. Alas this does not fix the issue.  After a little noodling on the best way to approach this I came up with a solution that works well, although if you think of an alternative way do let me know. The principle is simple. In the disclosureListener for the panelBox I take a note of the clientID of the panelBox component that has been touched by the user along with the state. This all gets stored in a Map of Booleans in ViewScope which is keyed by clientID and stores the current disclosed state in the Boolean value.  The listener looks like this (it's held in a request scope backing bean for the page): public void handlePBDisclosureEvent(DisclosureEvent disclosureEvent) { String clientId = disclosureEvent.getComponent().getClientId(FacesContext.getCurrentInstance()); boolean state = disclosureEvent.isExpanded(); pbState.addTouchedPanelBox(clientId, state); } The pbState variable referenced here is a reference to the bean which will hold the state of the panelBoxes that lives in viewScope (recall that everything is re-set when the viewid is changed so keeping this in viewScope is just fine and cleans things up automatically). The addTouchedPanelBox() method looks like this: public void addTouchedPanelBox(String clientId, boolean state) { //create the cache if needed this is just a Map<String,Boolean> if (_touchedPanelBoxState == null) { _touchedPanelBoxState = new HashMap<String, Boolean>(); } // Simply put / replace _touchedPanelBoxState.put(clientId, state); } So that's the first part, we now have a record of every panelBox that the user has touched. So what do we do when the Collapse All or Expand All buttons are pressed? Here we do some JavaScript magic. Basically for each clientID that we have stored away, we issue a client side disclosure event from JavaScript - just as if the user had gone back and changed it manually. So here's the Collapse All button action: public String CloseAllAction() { submitDiscloseOverride(pbState.getTouchedClientIds(true), false); _uiManager.closeAllBoxes(); return null; }  The _uiManager.closeAllBoxes() method is just manipulating the master-state that all of the panelBoxes are bound to using EL. The interesting bit though is the line:  submitDiscloseOverride(pbState.getTouchedClientIds(true), false); To break that down, the first part is a call to that viewScoped state holder to ask for a list of clientIDs that need to be "tweaked": public String getTouchedClientIds(boolean targetState) { StringBuilder sb = new StringBuilder(); if (_touchedPanelBoxState != null && _touchedPanelBoxState.size() > 0) { for (Map.Entry<String, Boolean> entry : _touchedPanelBoxState.entrySet()) { if (entry.getValue() == targetState) { if (sb.length() > 0) { sb.append(','); } sb.append(entry.getKey()); } } } return sb.toString(); } You'll notice that this method only processes those panelBoxes that will be in the wrong state and returns those as a comma separated list. This is then processed by the submitDiscloseOverride() method: private void submitDiscloseOverride(String clientIdList, boolean targetDisclosureState) { if (clientIdList != null && clientIdList.length() > 0) { FacesContext fctx = FacesContext.getCurrentInstance(); StringBuilder script = new StringBuilder(); script.append("overrideDiscloseHandler('"); script.append(clientIdList); script.append("',"); script.append(targetDisclosureState); script.append(");"); Service.getRenderKitService(fctx, ExtendedRenderKitService.class).addScript(fctx, script.toString()); } } This method constructs a JavaScript command to call a routine called overrideDiscloseHandler() in a script attached to the page (using the standard <af:resource> tag). That method parses out the list of clientIDs and sends the correct message to each one: function overrideDiscloseHandler(clientIdList, newState) { AdfLogger.LOGGER.logMessage(AdfLogger.INFO, "Disclosure Hander newState " + newState + " Called with: " + clientIdList); //Parse out the list of clientIds var clientIdArray = clientIdList.split(','); for (var i = 0; i < clientIdArray.length; i++){ var panelBox = flipPanel = AdfPage.PAGE.findComponentByAbsoluteId(clientIdArray[i]); if (panelBox.getComponentType() == "oracle.adf.RichPanelBox"){ panelBox.broadcast(new AdfDisclosureEvent(panelBox, newState)); } }  }  So there you go. You can see how, with a few tweaks the same code could be used for other components with disclosure that might suffer from the same problem, although I'd point out that the behavior I'm working around here us usually desirable. You can download the running example (11.1.2.2) from here. 

    Read the article

  • Different Not Automatically Implies Better

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/11/05/154556.aspxRecently I was digging deeper why some WCF hosted workflow application did consume quite a lot of memory although it did basically only load a xaml workflow. The first tool of choice is Process Explorer or even better Process Hacker (has more options and the best feature copy&paste does work). The three most important numbers of a process with regards to memory are Working Set, Private Working Set and Private Bytes. Working set is the currently consumed physical memory (parts can be shared between processes e.g. loaded dlls which are read only) Private Working Set is the physical memory needed by this process which is not shareable Private Bytes is the number of non shareable which is only visible in the current process (e.g. all new, malloc, VirtualAlloc calls do create private bytes) When you have a bigger workflow it can consume under 64 bit easily 500MB for a 1-2 MB xaml file. This does not look very scalable. Under 64 bit the issue is excessive private bytes consumption and not the managed heap. The picture is quite different for 32 bit which looks a bit strange but it seems that the hosted VB compiler is a lot less memory hungry under 32 bit. I did try to repro the issue with a medium sized xaml file (400KB) which does contain 1000 variables and 1000 if which can be represented by C# code like this: string Var1; string Var2; ... string Var1000; if (!String.IsNullOrEmpty(Var1) ) { Console.WriteLine(“Var1”); } if (!String.IsNullOrEmpty(Var2) ) { Console.WriteLine(“Var2”); } ....   Since WF is based on VB.NET expressions you are bound to the hosted VB.NET compiler which does result in (x64) 140 MB of private bytes which is ca. 140 KB for each if clause which is quite a lot if you think about the actually present functionality. But there is hope. .NET 4.5 does allow now C# expressions for WF which is a major step forward for all C# lovers. I did create some simple patcher to “cross compile” my xaml to C# expressions. Lets look at the result: C# Expressions VB Expressions x86 x86 On my home machine I have only 32 bit which gives you quite exactly half of the memory consumption under 64 bit. C# expressions are 10 times more memory hungry than VB.NET expressions! I wanted to do more with less memory but instead it did consume a magnitude more memory. That is surprising to say the least. The workflow does initialize in about the same time under x64 and x86 where the VB code does it in 2s whereas the C# version needs 18s. Also nearly ten times slower. That is a too high price to pay for any bigger sized xaml workflow to convert from VB.NET to C# expressions. If I do reduce the number of expressions to 500 then it does need 400MB which is about half of the memory. It seems that the cost per if does rise linear with the number of total expressions in a xaml workflow.  Expression Language Cost per IF Startup Time C# 1000 Ifs x64 1,5 MB 18s C# 500 Ifs x64 750 KB 9s VB 1000 Ifs x64 140 KB 2s VB 500 Ifs x64 70 KB 1s Now we can directly compare two MS implementations. It is clear that the VB.NET compiler uses the same underlying structure but it has much higher offset compared to the highly inefficient C# expression compiler. I have filed a connect bug here with a harsher wording about recent advances in memory consumption. The funniest thing is that one MS employee did give an Azure AppFabric demo around early 2011 which was so slow that he needed to investigate with xperf. He was after startup time and the call stacks with regards to VB.NET expression compilation were remarkably similar. In fact I only found this post by googling for parts of my call stacks. … “C# expressions will be coming soon to WF, and that will have different performance characteristics than VB” … What did he know Jan 2011 what I did no know until today? ;-). He knew that C# expression will come but that they will not be automatically have better footprint. It is about time to fix that. In its current state C# expressions are not usable for bigger workflows. That also explains the headline for today. You can cheat startup time by prestarting workflows so that the demo looks nice and snappy but it does hurt scalability a lot since you do need much more memory than necessary. I did find the stacks by enabling virtual allocation tracking within XPerf which is still the best tool out there. But first you need to look at your process to check where the memory is hiding: For the C# Expression compiler you do not need xperf. You can directly dump the managed heap and check with a profiler of your choice. But if the allocations are happening on the Private Data ( VirtualAlloc ) you can find it with xperf. There is a nice video on channel 9 explaining VirtualAlloc tracking it in greater detail. If your data allocations are on the Heap it does mean that the C/C++ runtime did create a heap for you where all malloc, new calls do allocate from it. You can enable heap tracing with xperf and full call stack support as well which is doable via xperf like it is shown also on channel 9. Or you can use WPRUI directly: To make “Heap Usage” it work you need to set for your executable the tracing flags (before you start it). For example devenv.exe HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\devenv.exe DWORD TracingFlags 1 Do not forget to disable it after you did complete profiling the process or it will impact the startup time quite a lot. You can with xperf attach directly to a running process and collect heap allocation information from a gone wild process. Very handy if you need to find out what a process was doing which has arrived in a funny state. “VirtualAlloc usage” does work without explicitly enabling stuff for a specific process and is always on machine wide. I had issues on my Windows 7 machines with the call stack collection and the latest Windows 8.1 Performance Toolkit. I was told that WPA from Windows 8.0 should work fine but I do not want to downgrade.

    Read the article

  • Building an ASP.Net 4.5 Web forms application - part 3

    - by nikolaosk
    ?his is the third post in a series of posts on how to design and implement an ASP.Net 4.5 Web Forms store that sells posters on line.Make sure you read the first and second post in the series.In this new post I will keep making some minor changes in the Markup,CSS and Master page but there is no point in presenting them here. They are just minor changes to reflect the content and layout I want my site to have. What I need to do now is to add some more pages and start displaying properly data from my database.Having said that I will show you how to add more pages to the web application and present data.1) Launch Visual Studio and open your solution where your project lives2) Add a new web form item on the project.Make sure you include the Master Page.Name it PosterList.aspxHave a look at the picture below 3) In Site.Master add the following link to the master page so the user can navigate to it.You should only add the line in bold     <nav>                    <ul id="menu">                        <li><a runat="server" href="~/">Home</a></li>                        <li><a runat="server" href="~/About.aspx">About</a></li>                        <li><a runat="server" href="~/Contact.aspx">Contact</a></li>                          <li><a href="http://weblogs.asp.net/PosterList.aspx">Posters</a></li>                    </ul>                </nav> 4) Now we need to display categories from the database. We will use a ListView web server control.Inside the <div id="body"> add the following code. <section id="postercat">       <asp:ListView ID="categoryList"                          ItemType="PostersOnLine.DAL.PosterCategory"                         runat="server"                        SelectMethod="GetPosterCategories" >                        <ItemTemplate>                                                    <a href="http://weblogs.asp.net/PosterList.aspx?id=<%#: Item.PosterCategoryID %>">                            <%#: Item.PosterCategoryName %>                            </a>                            </b>                        </ItemTemplate>                        <ItemSeparatorTemplate> ----- </ItemSeparatorTemplate>                    </asp:ListView>             </section>        Let me explain what the code does.We have the ListView control that displays each poster category's name.It also includes a link to the PosterList.aspx page with a query-string value containing the ID of the category. We set the ItemType property in the ListView to the PosterCategory entity .We set the SelectMethod property to a method GetPosterCategories. Now we can use the data-binding expression Item (<%#: %>) that is available within the ItemTemplate . 5) Now we must write the GetPosterCategories method. In the Site.Master.cs file add the following code.This is just a simple function that returns the poster categories.        public IQueryable<PosterCategory> GetPosterCategories()        {            PosterContext ctx = new PosterContext();            IQueryable<PosterCategory> query = ctx.PosterCategories;            return query;        } 6) I just changed a few things in the Site.css file to style the new <section> HTML element that includes the ListView control.#postercat {  text-align: center; background-color: #85C465;}     7) Build and run your application. Everything should compile now. Have a look at the picture below.The links (poster categories) appear.?he ListView control when is called during the page lifecycle calls the GetPosterCategories() method.The method is executed and returns the poster categories that are bound to the control.  When I click on any of the poster category links, the PosterList.aspx page will show up with the appropriate Id that is the PosterCategoryID.Have a look at the picture below  We will add more data-enabled controls in the next post in the PosterList.aspx page. Some people are complaining the posts are too long so I will keep them short. Hope it helps!!!

    Read the article

  • Cisco ASA 5505 - L2TP over IPsec

    - by xraminx
    I have followed this document on cisco site to set up the L2TP over IPsec connection. When I try to establish a VPN to ASA 5505 from my Windows XP, after I click on "connect" button, the "Connecting ...." dialog box appears and after a while I get this error message: Error 800: Unable to establish VPN connection. The VPN server may be unreachable, or security parameters may not be configured properly for this connection. ASA version 7.2(4) ASDM version 5.2(4) Windows XP SP3 Windows XP and ASA 5505 are on the same LAN for test purposes. Edit 1: There are two VLANs defined on the cisco device (the standard setup on cisco ASA5505). - port 0 is on VLAN2, outside; - and ports 1 to 7 on VLAN1, inside. I run a cable from my linksys home router (10.50.10.1) to the cisco ASA5505 router on port 0 (outside). Port 0 have IP 192.168.1.1 used internally by cisco and I have also assigned the external IP 10.50.10.206 to port 0 (outside). I run a cable from Windows XP to Cisco router on port 1 (inside). Port 1 is assigned an IP from Cisco router 192.168.1.2. The Windows XP is also connected to my linksys home router via wireless (10.50.10.141). Edit 2: When I try to establish vpn, the Cisco device real time Log viewer shows 7 entries like this: Severity:5 Date:Sep 15 2009 Time: 14:51:29 SyslogID: 713904 Destination IP = 10.50.10.141, Decription: No crypto map bound to interface... dropping pkt Edit 3: This is the setup on the router right now. Result of the command: "show run" : Saved : ASA Version 7.2(4) ! hostname ciscoasa domain-name default.domain.invalid enable password HGFHGFGHFHGHGFHGF encrypted passwd NMMNMNMNMNMNMN encrypted names name 192.168.1.200 WebServer1 name 10.50.10.206 external-ip-address ! interface Vlan1 nameif inside security-level 100 ip address 192.168.1.1 255.255.255.0 ! interface Vlan2 nameif outside security-level 0 ip address external-ip-address 255.0.0.0 ! interface Vlan3 no nameif security-level 50 no ip address ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 ! interface Ethernet0/2 ! interface Ethernet0/3 ! interface Ethernet0/4 ! interface Ethernet0/5 ! interface Ethernet0/6 ! interface Ethernet0/7 ! ftp mode passive dns server-group DefaultDNS domain-name default.domain.invalid object-group service l2tp udp port-object eq 1701 access-list outside_access_in remark Allow incoming tcp/http access-list outside_access_in extended permit tcp any host WebServer1 eq www access-list outside_access_in extended permit udp any any eq 1701 access-list inside_nat0_outbound extended permit ip any 192.168.1.208 255.255.255.240 access-list inside_cryptomap_1 extended permit ip interface outside interface inside pager lines 24 logging enable logging asdm informational mtu inside 1500 mtu outside 1500 ip local pool PPTP-VPN 192.168.1.210-192.168.1.220 mask 255.255.255.0 icmp unreachable rate-limit 1 burst-size 1 asdm image disk0:/asdm-524.bin no asdm history enable arp timeout 14400 global (outside) 1 interface nat (inside) 0 access-list inside_nat0_outbound nat (inside) 1 0.0.0.0 0.0.0.0 static (inside,outside) tcp interface www WebServer1 www netmask 255.255.255.255 access-group outside_access_in in interface outside timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute http server enable http 192.168.1.0 255.255.255.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec transform-set TRANS_ESP_3DES_SHA esp-3des esp-sha-hmac crypto ipsec transform-set TRANS_ESP_3DES_SHA mode transport crypto ipsec transform-set TRANS_ESP_3DES_MD5 esp-3des esp-md5-hmac crypto ipsec transform-set TRANS_ESP_3DES_MD5 mode transport crypto map outside_map 1 match address inside_cryptomap_1 crypto map outside_map 1 set transform-set TRANS_ESP_3DES_MD5 crypto map outside_map interface inside crypto isakmp enable outside crypto isakmp policy 10 authentication pre-share encryption 3des hash md5 group 2 lifetime 86400 telnet timeout 5 ssh timeout 5 console timeout 0 dhcpd auto_config outside ! dhcpd address 192.168.1.2-192.168.1.33 inside dhcpd enable inside ! group-policy DefaultRAGroup internal group-policy DefaultRAGroup attributes dns-server value 192.168.1.1 vpn-tunnel-protocol IPSec l2tp-ipsec username myusername password FGHFGHFHGFHGFGFHF nt-encrypted tunnel-group DefaultRAGroup general-attributes address-pool PPTP-VPN default-group-policy DefaultRAGroup tunnel-group DefaultRAGroup ipsec-attributes pre-shared-key * tunnel-group DefaultRAGroup ppp-attributes no authentication chap authentication ms-chap-v2 ! ! prompt hostname context Cryptochecksum:a9331e84064f27e6220a8667bf5076c1 : end

    Read the article

  • ISA 2006 refuses VPN DHCP requests as spoofing

    - by Daniel
    I'm running ISA 2006 with PPTP VPN for my AD-controlled network. DHCP is located on the ISA server itself and authentication is done by RADIUS (NPS) located on the DC. Right now my VPN clients can connect, access local DNS, and can ping ISA, the DC, and other clients. Here's where it gets weird. I noticed that despite all this, ipconfig shows the following: PPP adapter North Horizon VPN: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : North Horizon VPN Physical Address. . . . . . . . . : DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 10.42.4.7(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.255 Default Gateway . . . . . . . . . : 0.0.0.0 DNS Servers . . . . . . . . . . . : 10.42.1.10 NetBIOS over Tcpip. . . . . . . . : Enabled So I went over and checked my ISA logs for both DHCP requests and replies, only to find out that my VPN clients are being denied because ISA thinks its a spoof. Here's some relevant information from the log (the VPN subnet is 10.42.4.0/24): Client IP: 10.42.4.6 Destination: 255.255.255.255:67 Client Username: (blank) Protocol: DHCP (request) Action: Denied Connection Rule: (blank) Source Network: VPN Clients Destination Network: Local Host Result Code: 0xc0040014 FWX_E_FWE_SPOOFING_PACKET_DROPPED Network Interface: 10.42.4.11 --------------------------------------------------------- Original Client IP: 10.42.4.6 Destination: 10.42.1.1 Client Username: (valid user) Protocol: PING Action: Initiated Connection Rule: Allow PING to ISA Source Network: VPN Clients Destination Network: Local Host Result Code: 0x0 ERROR_SUCCESS Network Interface: (blank) I wasn't sure what this 10.42.4.11 network interface was - it certainly wasn't something I had setup - untill I saw it in Routing and Remote Access under IP Routing General as an interface called "Internal" bound to the same IP address. I also noticed that since ISA takes blocks of 10 IP addresses from DHCP for VPN, it had reserved 10.42.4.2-11. I'm not sure if it means anything, though. Thanks for your help.

    Read the article

< Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >