Search Results

Search found 7213 results on 289 pages for 'multi processor'.

Page 78/289 | < Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • suggest AMD machine for software developement [closed]

    - by superb1
    I need a AMD machine (Processor, Motherboard, Ram, HDD ) for software developement .. I will mainly use microsoft visual studio 2010. Operating system would be windows 7 . Suggest decent machine but i dont want to overspend....i guess the rating system of ecommerce websites may help you to suggest !? I want you to suggest from this list : http://www.flipkart.com/computers/components/processor-20246?ref=bae2643a-2cc8-4710-942f-79e7fbc1b416 plz note basic criteria for vs 2010 is 1.6GHz or faster processor 1 GB (32 Bit) Ram 5400 RPM hard disk DirectX 9 capable video card running at 1024 x 768 or higher-resolution

    Read the article

  • Fastest Memory (within reason) for a MotherBoard [on hold]

    - by sampson
    I was wondering if it would be OK to use DDR3 3000 memory with Asus Maximus VI Impact MotherBoard, Intel® Core™ i3-4130T Processor and Steamcom's FC8 case The purpose of this machine is for a HTPC (Home Theater Personal Computer) system, only, no gaming. The case is fan less as is the CPU cooling system. Also, would it be worth it, heat wise, to go past the 1600 memory type? I mean, would DDR 3000 make the box that much faster to make it worthwhile? The Processor has a TDP rating of 35 W. The memory specifications for the processor are: Memory Specifications Max Memory Size (dependent on memory type) 32 GB Memory Types DDR3-1333/1600 # of Memory Channels 2 Max Memory Bandwidth 25.6 GB/s ECC Memory Supported ‡ Yes The FC8 case's heat displacement system is rated at 95 W TDP

    Read the article

  • Enable compiz on intel core i5 (Nvidia GT330M) based laptop

    - by Eshwar
    Hi, I am trying to enable compiz on my laptop via Desktop Effects but it does not allow it. I modified the xorg.conf file as on the compiz wiki but still no luck. So can someone just tell me how to enable compiz desktop on an Intel i5 based system. This is an Arrandale processor so its got the graphics bit on the processor itself. My system also has a discrete graphics card (Nvidia GT330M - yup its those hybrid graphics combos n- not Optimus). As far as i know the nvidia gpu is not being used since the intel one is enabled and there is no bios route to disable it. The laptop is a Dell Vostro 3700 with bios version A10 I did lotsa google searches about intel compiz, etc but not a single conclusive guide as to how to enable it. so my guess is it should work out of the box. but it doesn't. glxinfo gives me: name of display: :0.0 Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Error: couldn't find RGB GLX visual or fbconfig Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". Xlib: extension "GLX" missing on display ":0.0". 3 GLXFBConfigs: visual x bf lv rg d st colorbuffer ax dp st accumbuffer ms cav id dep cl sp sz l ci b ro r g b a bf th cl r g b a ns b eat ---------------------------------------------------------------------- Segmentation fault lsbusb gives me: 00:02.0 VGA compatible controller [0300]: Intel Corporation Core Processor Integrated Graphics Controller [8086:0046] (rev 18) 01:00.0 VGA compatible controller [0300]: nVidia Corporation GT216 [GeForce GT 330M] [10de:0a29] (rev a2)

    Read the article

  • How to tell if SPARC T4 crypto is being used?

    - by danx
    A question that often comes up when running applications on SPARC T4 systems is "How can I tell if hardware crypto accleration is being used?" To review, the SPARC T4 processor includes a crypto unit that supports several crypto instructions. For hardware crypto these include 11 AES instructions, 4 xmul* instructions (for AES GCM carryless multiply), mont for Montgomery multiply (optimizes RSA and DSA), and 5 des_* instructions (for DES3). For hardware hash algorithm optimization, the T4 has the md5, sha1, sha256, and sha512 instructions (the last two are used for SHA-224 an SHA-384). First off, it's easy to tell if the processor T4 crypto instructions—use the isainfo -v command and look for "sparcv9" and "aes" (and other hash and crypto algorithms) in the output: $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc These instructions are not-privileged, so are available for direct use in user-level applications and libraries (such as OpenSSL). Here is the "openssl speed -evp" command shown with the built-in t4 engine and with the pkcs11 engine. Both run the T4 AES instructions, but the t4 engine is faster than the pkcs11 engine because it has less overhead (especially for smaller packet sizes): t-4 $ /usr/bin/openssl version OpenSSL 1.0.0j 10 May 2012 t-4 $ /usr/bin/openssl engine (t4) SPARC T4 engine support (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support t-4 $ /usr/bin/openssl speed -evp aes-128-cbc # t4 engine used by default . . . The 'numbers' are in 1000s of bytes per second processed. type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 487777.10k 816822.21k 986012.59k 1017029.97k 1053543.08k t-4 $ /usr/bin/openssl speed -engine pkcs11 -evp aes-128-cbc engine "pkcs11" set. . . . The 'numbers' are in 1000s of bytes per second processed. type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 31703.58k 116636.39k 350672.81k 696170.50k 993599.49k Note: The "-evp" flag indicates use the OpenSSL "EnVeloPe" API, which gives more accurate results. That's because it tells OpenSSL to use the same API that external programs use when calling OpenSSL libcrypto functions, evp(3openssl). DTrace Shows if T4 Crypto Functions Are Used OK, good enough, the isainfo(1) command shows the instructions are present, but how does one know if they are being used? Chi-Chang Lin, who works on Oracle Solaris performance, wrote a Dtrace script to show if T4 instructions are being executed. To show the T4 instructions are being used, run the following Dtrace script. Look for functions named "t4" and "yf" in the output. The OpenSSL T4 engine uses functions named "t4" and the PKCS#11 engine uses functions named "yf". To demonstrate, I'll first run "openssl speed" with the built-in t4 engine then with the pkcs11 engine. The performance numbers are not valid due to dtrace probes slowing things down. t-4 # dtrace -Z -n ' pid$target::*yf*:entry,pid$target::*t4_*:entry{ @[probemod, probefunc] = count();}' \ -c "/usr/bin/openssl speed -evp aes-128-cbc" dtrace: description 'pid$target::*yf*:entry' matched 101 probes . . . dtrace: pid 2029 has exited libcrypto.so.1.0.0 ENGINE_load_t4 1 libcrypto.so.1.0.0 t4_DH 1 libcrypto.so.1.0.0 t4_DSA 1 libcrypto.so.1.0.0 t4_RSA 1 libcrypto.so.1.0.0 t4_destroy 1 libcrypto.so.1.0.0 t4_free_aes_ctr_NIDs 1 libcrypto.so.1.0.0 t4_init 1 libcrypto.so.1.0.0 t4_add_NID 3 libcrypto.so.1.0.0 t4_aes_expand128 5 libcrypto.so.1.0.0 t4_cipher_init_aes 5 libcrypto.so.1.0.0 t4_get_all_ciphers 6 libcrypto.so.1.0.0 t4_get_all_digests 59 libcrypto.so.1.0.0 t4_digest_final_sha1 65 libcrypto.so.1.0.0 t4_digest_init_sha1 65 libcrypto.so.1.0.0 t4_sha1_multiblock 126 libcrypto.so.1.0.0 t4_digest_update_sha1 261 libcrypto.so.1.0.0 t4_aes128_cbc_encrypt 1432979 libcrypto.so.1.0.0 t4_aes128_load_keys_for_encrypt 1432979 libcrypto.so.1.0.0 t4_cipher_do_aes_128_cbc 1432979 t-4 # dtrace -Z -n 'pid$target::*yf*:entry{ @[probemod, probefunc] = count();}   pid$target::*yf*:entry,pid$target::*t4_*:entry{ @[probemod, probefunc] = count();}' \ -c "/usr/bin/openssl speed -engine pkcs11 -evp aes-128-cbc" dtrace: description 'pid$target::*yf*:entry' matched 101 probes engine "pkcs11" set. . . . dtrace: pid 2033 has exited libcrypto.so.1.0.0 ENGINE_load_t4 1 libcrypto.so.1.0.0 t4_DH 1 libcrypto.so.1.0.0 t4_DSA 1 libcrypto.so.1.0.0 t4_RSA 1 libcrypto.so.1.0.0 t4_destroy 1 libcrypto.so.1.0.0 t4_free_aes_ctr_NIDs 1 libcrypto.so.1.0.0 t4_get_all_ciphers 1 libcrypto.so.1.0.0 t4_get_all_digests 1 libsoftcrypto.so.1 rijndael_key_setup_enc_yf 1 libsoftcrypto.so.1 yf_aes_expand128 1 libcrypto.so.1.0.0 t4_add_NID 3 libsoftcrypto.so.1 yf_aes128_cbc_encrypt 1542330 libsoftcrypto.so.1 yf_aes128_load_keys_for_encrypt 1542330 So, as shown above the OpenSSL built-in t4 engine executes t4_* functions (which are hand-coded assembly executing the T4 AES instructions) and the OpenSSL pkcs11 engine executes *yf* functions. Programmatic Use of OpenSSL T4 engine The OpenSSL t4 engine is used automatically with the /usr/bin/openssl command line. Chi-Chang Lin also points out that if you're calling the OpenSSL API (libcrypto.so) from a program, you must call ENGINE_load_built_engines(), otherwise the built-in t4 engine will not be loaded. You do not call ENGINE_set_default(). That's because "openssl speed -evp" test calls ENGINE_load_built_engines() even though the "-engine" option wasn't specified. OpenSSL T4 engine Availability The OpenSSL t4 engine is available with Solaris 11 and 11.1. For Solaris 10 08/11 (U10), you need to use the OpenSSL pkcs311 engine. The OpenSSL t4 engine is distributed only with the version of OpenSSL distributed with Solaris (and not third-party or self-compiled versions of OpenSSL). The OpenSSL engine implements the AES cipher for Solaris 11, released 11/2011. For Solaris 11.1, released 11/2012, the OpenSSL engine adds optimization for the MD5, SHA-1, and SHA-2 hash algorithms, and DES-3. Although the T4 processor has Camillia and Kasumi block cipher instructions, these are not implemented in the OpenSSL T4 engine. The following charts may help view availability of optimizations. The first chart shows what's available with Solaris CLIs and APIs, the second chart shows what's available in Solaris OpenSSL. Native Solaris Optimization for SPARC T4 This table is shows Solaris native CLI and API support. As such, they are all available with the OpenSSL pkcs11 engine. CLIs: "openssl -engine pkcs11", encrypt(1), decrypt(1), mac(1), digest(1), MD5sum(1), SHA1sum(1), SHA224sum(1), SHA256sum(1), SHA384sum(1), SHA512sum(1) APIs: PKCS#11 library libpkcs11(3LIB) (incluDES Openssl pkcs11 engine), libMD(3LIB), and Solaris kernel modules AlgorithmSolaris 1008/11 (U10)Solaris 11Solaris 11.1 AES-ECB, AES-CBC, AES-CTR, AES-CBC AES-CFB128 XXX DES3-ECB, DES3-CBC, DES2-ECB, DES2-CBC, DES-ECB, DES-CBC XXX bignum Montgomery multiply (RSA, DSA) XXX MD5, SHA-1, SHA-256, SHA-384, SHA-512 XXX SHA-224 X ARCFOUR (RC4) X Solaris OpenSSL T4 Engine Optimization This table is for the Solaris OpenSSL built-in t4 engine. Algorithms listed above are also available through the OpenSSL pkcs11 engine. CLI: openssl(1openssl) APIs: openssl(5), engine(3openssl), evp(3openssl), libcrypto crypto(3openssl) AlgorithmSolaris 11Solaris 11SRU2Solaris 11.1 AES-ECB, AES-CBC, AES-CTR, AES-CBC AES-CFB128 XXX DES3-ECB, DES3-CBC, DES-ECB, DES-CBC X bignum Montgomery multiply (RSA, DSA) X MD5, SHA-1, SHA-256, SHA-384, SHA-512 XX SHA-224 X Source Code Availability Solaris Most of the T4 assembly code that called the new T4 crypto instructions was written by Ferenc Rákóczi of the Solaris Security group, with assistance from others. You can download the Solaris source for this and other parts of Solaris as a few zip files at the Oracle Download website. The relevant source files are generally under directories usr/src/common/crypto/{aes,arcfour,des,md5,modes,sha1,sha2}}/sun4v/. and usr/src/common/bignum/sun4v/. Solaris 11 binary is available from the Oracle Solaris 11 download website. OpenSSL t4 engine The source for the OpenSSL t4 engine, which is based on the Solaris source above, is viewable through the OpenGrok source code browser in directory src/components/openssl/openssl-1.0.0/engines/t4 . You can download the source from the same website or through Mercurial source code management, hg(1). Conclusion Oracle Solaris with SPARC T4 provides a rich set of accelerated cryptographic and hash algorithms. Using the latest update, Solaris 11.1, provides the best set of optimized algorithms, but alternatives are often available, sometimes slightly slower, for releases back to Solaris 10 08/11 (U10). Reference See also these earlier blogs. SPARC T4 OpenSSL Engine by myself, Dan Anderson (2011), discusses the Openssl T4 engine and reviews the SPARC T4 processor for the Solaris 11 release. Exciting Crypto Advances with the T4 processor and Oracle Solaris 11 by Valerie Fenwick (2011) discusses crypto algorithms that were optimized for the T4 processor with the Solaris 11 FCS (11/11) and Solaris 10 08/11 (U10) release. T4 Crypto Cheat Sheet by Stefan Hinker (2012) discusses how to make T4 crypto optimization available to various consumers (such as SSH, Java, OpenSSL, Apache, etc.) High Performance Security For Oracle Database and Fusion Middleware Applications using SPARC T4 (PDF, 2012) discusses SPARC T4 and its usage to optimize application security. Configuring Oracle iPlanet WebServer / Oracle Traffic Director to use crypto accelerators on T4-1 servers by Meena Vyas (2012)

    Read the article

  • No WIFI or LAN on Ubuntu 12.04 or 12.10 Live CD/USB using Toshiba qosmio x870

    - by Mighty
    I recently had issues with secure boot and couldn't boot the Live CD/USB but after disabling secure boot, I was able to 'TRY UBUNTU'. My currently problem is that I can't access WIFI or LAN from either Ubuntu 12.04 or 12.10 Live CD/USB which I do from Windows 8. Also, the wireless button is able to turn on and off the wireless LED but doesn't find available WIFI. Please, what should I do to get both WIFI and LAN working on Ubuntu using Toshiba qosmio x870? UPDATED: Here's the output of lspci: ubuntu@ubuntu:~$ lspci 00:00.0 Host bridge: Intel Corporation 3rd Gen Core processor DRAM Controller (rev 09) 00:01.0 PCI bridge: Intel Corporation Xeon E3-1200 v2/3rd Gen Core processor PCI Express Root Port (rev 09) 00:02.0 VGA compatible controller: Intel Corporation 3rd Gen Core processor Graphics Controller (rev 09) 00:14.0 USB controller: Intel Corporation 7 Series/C210 Series Chipset Family USB xHCI Host Controller (rev 04) 00:16.0 Communication controller: Intel Corporation 7 Series/C210 Series Chipset Family MEI Controller #1 (rev 04) 00:1a.0 USB controller: Intel Corporation 7 Series/C210 Series Chipset Family USB Enhanced Host Controller #2 (rev 04) 00:1b.0 Audio device: Intel Corporation 7 Series/C210 Series Chipset Family High Definition Audio Controller (rev 04) 00:1c.0 PCI bridge: Intel Corporation 7 Series/C210 Series Chipset Family PCI Express Root Port 1 (rev c4) 00:1c.1 PCI bridge: Intel Corporation 7 Series/C210 Series Chipset Family PCI Express Root Port 2 (rev c4) 00:1c.4 PCI bridge: Intel Corporation 7 Series/C210 Series Chipset Family PCI Express Root Port 5 (rev c4) 00:1d.0 USB controller: Intel Corporation 7 Series/C210 Series Chipset Family USB Enhanced Host Controller #1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation HM76 Express Chipset LPC Controller (rev 04) 00:1f.2 SATA controller: Intel Corporation 7 Series Chipset Family 6-port SATA Controller [AHCI mode] (rev 04) 00:1f.3 SMBus: Intel Corporation 7 Series/C210 Series Chipset Family SMBus Controller (rev 04) 01:00.0 VGA compatible controller: NVIDIA Corporation Device 1213 (rev a1) 07:00.0 Ethernet controller: Atheros Communications Inc. AR8161 Gigabit Ethernet (rev 10) 08:00.0 Network controller: Realtek Semiconductor Co., Ltd. Device 8723 09:00.0 Unassigned class [ff00]: Realtek Semiconductor Co., Ltd. RTS5229 PCI Express Card Reader (rev 01)

    Read the article

  • Problems with Ubuntu and AMD A10-4655M APU

    - by Robert Hanks
    I have a new HP Sleekbook 6z with AMD A10-4655M APU. I tried installing Ubuntu with wubi--the first attempt ended up with a 'AMD unsupported hardware' watermark that I wasn't able to remove (the appeared when I tried to update the drivers as Ubuntu suggested) On the second attempted install Ubuntu installed (I stayed away from the suggested drivers) but the performance was extremely poor----as in Windows Vista poor. I am not sure what the solution is--if I need to wait until there is a kernel update with Ubuntu or if there are other solutions--I realise this is a new APU for the market. I would love to have Ubuntu 12.04 up and running--Windows 7 does very well with this new processor so Ubuntu should, well, be lightening speed. The trial on the Sleekbook with Ubuntu 12.10 Alpha 2 release was a complete failure. I created a bootable USB. By using either the 'Try Ubuntu' or 'Install Ubuntu' options resulted in the usual purple Ubuntu splash screen, followed by nothing...as in a black screen without any hint of life. Interestingly one can hear the Ubuntu intro sound. In case you are wondering, this same USB was trialed subsequently on another computer with and Intel Atom Processor. Worked flawlessly. Lastly the second trial on the Sleekbook resulted in the same results as the first paragraph. Perhaps 12.10 Beta will overcome this issue, or the finalised 12.10 release in October. I don't have the expertise to know what the cause of the behaviour is-the issue could be something else entirely. Sadly, the Windows 7 performance is very good with this processor-very similar and in some instances better to the 2nd generation Intel i5 based computer I use at my workplace. Whatever the cause is for the performance with Ubuntu 12.04 or 12.10 Alpha 2, the situation doesn't bode well for Ubuntu. Ubuntu aside, the HP Sleekbook is a good performer for the price. I am certain once the Ubuntu issue is worked on and solutions arise, the Ubuntu performance will probably be better than ever.

    Read the article

  • Saxon XSLT-Transformation: How to change serialization of an empty tag from <x/> to <x></x>?

    - by Ben
    Hello folks! I do some XSLT-Transformation using Saxon HE 9.2 with the output later being unmarshalled by Castor 1.3.1. The whole thing runs with Java at the JDK 6. My XSLT-Transformation looks like this: <xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ns="http://my/own/custom/namespace/for/the/target/document"> <xsl:output method="xml" encoding="UTF-8" indent="no" /> <xsl:template match="/"> <ns:item> <ns:property name="id"> <xsl:value-of select="/some/complicated/xpath" /> </ns:property> <!-- ... more ... --> </xsl:template> So the thing is: if the XPath-expression /some/complicated/xpath evaluates to an empty sequence, the Saxon serializer writes <ns:property/> instead of <ns:property></ns:property>. This, however, confuses the Castor unmarshaller, which is next in the pipeline and which unmarshals the output of the transformation to instances of XSD-generated Java-code. So my question is: How can I tell the Saxon-serializer to output empty tags not as standalone tags? Here is what I am proximately currently doing to execute the transformation: import net.sf.saxon.s9api.*; import javax.xml.transform.*; import javax.xml.transform.sax.SAXSource; // ... // read data XMLReader xmlReader = XMLReaderFactory.createXMLReader(); // ... there is some more setting up the xmlReader here ... InputStream xsltStream = new FileInputStream(xsltFile); InputStream inputStream = new FileInputStream(inputFile); Source xsltSource = new SAXSource(xmlReader, new InputSource(xsltStream)); Source inputSource = new SAXSource(xmlReader, new InputSource(inputStream)); XdmNode input = processor.newDocumentBuilder().build(inputSource); // initialize transformation configuration Processor processor = new Processor(false); XsltCompiler compiler = processor.newXsltCompiler(); compiler.setErrorListener(this); XsltExecutable executable = compiler.compile(xsltSource); Serializer serializer = new Serializer(); serializer.setOutputProperty(Serializer.Property.METHOD, "xml"); serializer.setOutputProperty(Serializer.Property.INDENT, "no"); serializer.setOutputStream(output); // execute transformation XsltTransformer transformer = executable.load(); transformer.setInitialContextNode(input); transformer.setErrorListener(this); transformer.setDestination(serializer); transformer.setSchemaValidationMode(ValidationMode.STRIP); transformer.transform(); I'd appreciate any hint pointing in the direction of a solution. :-) In case of any unclarity I'd be happy to give more details. Nightly greetings from Germany, Benjamin

    Read the article

  • MySQL Cluster 7.2: Over 8x Higher Performance than Cluster 7.1

    - by Mat Keep
    0 0 1 893 5092 Homework 42 11 5974 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary The scalability enhancements delivered by extensions to multi-threaded data nodes enables MySQL Cluster 7.2 to deliver over 8x higher performance than the previous MySQL Cluster 7.1 release on a recent benchmark What’s New in MySQL Cluster 7.2 MySQL Cluster 7.2 was released as GA (Generally Available) in February 2012, delivering many enhancements to performance on complex queries, new NoSQL Key / Value API, cross-data center replication and ease-of-use. These enhancements are summarized in the Figure below, and detailed in the MySQL Cluster New Features whitepaper Figure 1: Next Generation Web Services, Cross Data Center Replication and Ease-of-Use Once of the key enhancements delivered in MySQL Cluster 7.2 is extensions made to the multi-threading processes of the data nodes. Multi-Threaded Data Node Extensions The MySQL Cluster 7.2 data node is now functionally divided into seven thread types: 1) Local Data Manager threads (ldm). Note – these are sometimes also called LQH threads. 2) Transaction Coordinator threads (tc) 3) Asynchronous Replication threads (rep) 4) Schema Management threads (main) 5) Network receiver threads (recv) 6) Network send threads (send) 7) IO threads Each of these thread types are discussed in more detail below. MySQL Cluster 7.2 increases the maximum number of LDM threads from 4 to 16. The LDM contains the actual data, which means that when using 16 threads the data is more heavily partitioned (this is automatic in MySQL Cluster). Each LDM thread maintains its own set of data partitions, index partitions and REDO log. The number of LDM partitions per data node is not dynamically configurable, but it is possible, however, to map more than one partition onto each LDM thread, providing flexibility in modifying the number of LDM threads. The TC domain stores the state of in-flight transactions. This means that every new transaction can easily be assigned to a new TC thread. Testing has shown that in most cases 1 TC thread per 2 LDM threads is sufficient, and in many cases even 1 TC thread per 4 LDM threads is also acceptable. Testing also demonstrated that in some instances where the workload needed to sustain very high update loads it is necessary to configure 3 to 4 TC threads per 4 LDM threads. In the previous MySQL Cluster 7.1 release, only one TC thread was available. This limit has been increased to 16 TC threads in MySQL Cluster 7.2. The TC domain also manages the Adaptive Query Localization functionality introduced in MySQL Cluster 7.2 that significantly enhanced complex query performance by pushing JOIN operations down to the data nodes. Asynchronous Replication was separated into its own thread with the release of MySQL Cluster 7.1, and has not been modified in the latest 7.2 release. To scale the number of TC threads, it was necessary to separate the Schema Management domain from the TC domain. The schema management thread has little load, so is implemented with a single thread. The Network receiver domain was bound to 1 thread in MySQL Cluster 7.1. With the increase of threads in MySQL Cluster 7.2 it is also necessary to increase the number of recv threads to 8. This enables each receive thread to service one or more sockets used to communicate with other nodes the Cluster. The Network send thread is a new thread type introduced in MySQL Cluster 7.2. Previously other threads handled the sending operations themselves, which can provide for lower latency. To achieve highest throughput however, it has been necessary to create dedicated send threads, of which 8 can be configured. It is still possible to configure MySQL Cluster 7.2 to a legacy mode that does not use any of the send threads – useful for those workloads that are most sensitive to latency. The IO Thread is the final thread type and there have been no changes to this domain in MySQL Cluster 7.2. Multiple IO threads were already available, which could be configured to either one thread per open file, or to a fixed number of IO threads that handle the IO traffic. Except when using compression on disk, the IO threads typically have a very light load. Benchmarking the Scalability Enhancements The scalability enhancements discussed above have made it possible to scale CPU usage of each data node to more than 5x of that possible in MySQL Cluster 7.1. In addition, a number of bottlenecks have been removed, making it possible to scale data node performance by even more than 5x. Figure 2: MySQL Cluster 7.2 Delivers 8.4x Higher Performance than 7.1 The flexAsynch benchmark was used to compare MySQL Cluster 7.2 performance to 7.1 across an 8-node Intel Xeon x5670-based cluster of dual socket commodity servers (6 cores each). As the results demonstrate, MySQL Cluster 7.2 delivers over 8x higher performance per data nodes than MySQL Cluster 7.1. More details of this and other benchmarks will be published in a new whitepaper – coming soon, so stay tuned! In a following blog post, I’ll provide recommendations on optimum thread configurations for different types of server processor. You can also learn more from the Best Practices Guide to Optimizing Performance of MySQL Cluster Conclusion MySQL Cluster has achieved a range of impressive benchmark results, and set in context with the previous 7.1 release, is able to deliver over 8x higher performance per node. As a result, the multi-threaded data node extensions not only serve to increase performance of MySQL Cluster, they also enable users to achieve significantly improved levels of utilization from current and future generations of massively multi-core, multi-thread processor designs.

    Read the article

  • BI Applications overview

    - by sv744
    Welcome to Oracle BI applications blog! This blog will talk about various features, general roadmap, description of functionality and implementation steps related to Oracle BI applications. In the first post we start with an overview of the BI apps and will delve deeper into some of the topics below in the upcoming weeks and months. If there are other topics you would like us to talk about, pl feel free to provide feedback on that. The Oracle BI applications are a set of pre-built applications that enable pervasive BI by providing role-based insight for each functional area, including sales, service, marketing, contact center, finance, supplier/supply chain, HR/workforce, and executive management. For example, Sales Analytics includes role-based applications for sales executives, sales management, as well as front-line sales reps, each of whom have different needs. The applications integrate and transform data from a range of enterprise sources—including Siebel, Oracle, PeopleSoft, SAP, and others—into actionable intelligence for each business function and user role. This blog  starts with the key benefits and characteristics of Oracle BI applications. In a series of subsequent blogs, each of these points will be explained in detail. Why BI apps? Demonstrate the value of BI to a business user, show reports / dashboards / model that can answer their business questions as part of the sales cycle. Demonstrate technical feasibility of BI project and significantly lower risk and improve success Build Vs Buy benefit Don’t have to start with a blank sheet of paper. Help consolidate disparate systems Data integration in M&A situations Insulate BI consumers from changes in the OLTP Present OLTP data and highlight issues of poor data / missing data – and improve data quality and accuracy Prebuilt Integrations BI apps support prebuilt integrations against leading ERP sources: Fusion Applications, E- Business Suite, Peoplesoft, JD Edwards, Siebel, SAP Co-developed with inputs from functional experts in BI and Applications teams. Out of the box dimensional model to source model mappings Multi source and Multi Instance support Rich Data Model    BI apps have a very rich dimensionsal data model built over 10 years that incorporates best practises from BI modeling perspective as well as reflect the source system complexities  Thanks for reading a long post, and be on the lookout for future posts.  We will look forward to your valuable feedback on these topics as well as suggestions on what other topics would you like us to cover. I Conformed dimensional model across all business subject areas allows cross functional reporting, e.g. customer / supplier 360 Over 360 fact tables across 7 product areas CRM – 145, SCM – 47, Financials – 28, Procurement – 20, HCM – 27, Projects – 18, Campus Solutions – 21, PLM - 56 Supported by 300 physical dimensions Support for extensive calendars; Gregorian, enterprise and ledger based Conformed data model and metrics for real time vs warehouse based reporting  Multi-tenant enabled Extensive BI related transformations BI apps ETL and data integration support various transformations required for dimensional models and reporting requirements. All these have been distilled into common patterns and abstracted logic which can be readily reused across different modules Slowly Changing Dimension support Hierarchy flattening support Row / Column Hybrid Hierarchy Flattening As Is vs. As Was hierarchy support Currency Conversion :-  Support for 3 corporate, CRM, ledger and transaction currencies UOM conversion Internationalization / Localization Dynamic Data translations Code standardization (Domains) Historical Snapshots Cycle and process lifecycle computations Balance Facts Equalization of GL accounting chartfields/segments Standardized values for categorizing GL accounts Reconciliation between GL and subledgers to track accounted/transferred/posted transactions to GL Materialization of data only available through costly and complex APIs e.g. Fusion Payroll, EBS / Fusion Accruals Complex event Interpretation of source data – E.g. o    What constitutes a transfer o    Deriving supervisors via position hierarchy o    Deriving primary assignment in PSFT o    Categorizing and transposition to measures of Payroll Balances to specific metrics to support side by side comparison of measures of for example Fixed Salary, Variable Salary, Tax, Bonus, Overtime Payments. o    Counting of Events – E.g. converting events to fact counters so that for example the number of hires can easily be added up and compared alongside the total transfers and terminations. Multi pass processing of multiple sources e.g. headcount, salary, promotion, performance to allow side to side comparison. Adding value to data to aid analysis through banding, additional domain classifications and groupings to allow higher level analytical reporting and data discovery Calculation of complex measures examples: o    COGs, DSO, DPO, Inventory turns  etc o    Transfers within a Hierarchy or out of / into a hierarchy relative to view point in hierarchy. Configurability and Extensibility support  BI apps offer support for extensibility for various entities as automated extensibility or part of extension methodology Key Flex fields and Descriptive Flex support  Extensible attribute support (JDE)  Conformed Domains ETL Architecture BI apps offer a modular adapter architecture which allows support of multiple product lines into a single conformed model Multi Source Multi Technology Orchestration – creates load plan taking into account task dependencies and customers deployment to generate a plan based on a customers of multiple complex etl tasks Plan optimization allowing parallel ETL tasks Oracle: Bit map indexes and partition management High availability support    Follow the sun support. TCO BI apps support several utilities / capabilities that help with overall total cost of ownership and ensure a rapid implementation Improved cost of ownership – lower cost to deploy On-going support for new versions of the source application Task based setups flows Data Lineage Functional setup performed in Web UI by Functional person Configuration Test to Production support Security BI apps support both data and object security enabling implementations to quickly configure the application as per the reporting security needs Fine grain object security at report / dashboard and presentation catalog level Data Security integration with source systems  Extensible to support external data security rules Extensive Set of KPIs Over 7000 base and derived metrics across all modules Time series calculations (YoY, % growth etc) Common Currency and UOM reporting Cross subject area KPIs (analyzing HR vs GL data, drill from GL to AP/AR, etc) Prebuilt reports and dashboards 3000+ prebuilt reports supporting a large number of industries Hundreds of role based dashboards Dynamic currency conversion at dashboard level Highly tuned Performance The BI apps have been tuned over the years for both a very performant ETL and dashboard performance. The applications use best practises and advanced database features to enable the best possible performance. Optimized data model for BI and analytic queries Prebuilt aggregates& the ability for customers to create their own aggregates easily on warehouse facts allows for scalable end user performance Incremental extracts and loads Incremental Aggregate build Automatic table index and statistics management Parallel ETL loads Source system deletes handling Low latency extract with Golden Gate Micro ETL support Bitmap Indexes Partitioning support Modularized deployment, start small and add other subject areas seamlessly Source Specfic Staging and Real Time Schema Support for source specific operational reporting schema for EBS, PSFT, Siebel and JDE Application Integrations The BI apps also allow for integration with source systems as well as other applications that provide value add through BI and enable BI consumption during operational decision making Embedded dashboards for Fusion, EBS and Siebel applications Action Link support Marketing Segmentation Sales Predictor Dashboard Territory Management External Integrations The BI apps data integration choices include support for loading extenral data External data enrichment choices : UNSPSC, Item class etc. Extensible Spend Classification Broad Deployment Choices Exalytics support Databases :  Oracle, Exadata, Teradata, DB2, MSSQL ETL tool of choice : ODI (coming), Informatica Extensible and Customizable Extensible architecture and Methodology to add custom and external content Upgradable across releases

    Read the article

  • B2B Commerce Best Practice Round Table

    - by Jeri Kelley
    Are you struggling with delivering customers a consistent B2B multi-channel commerce experience? If yes, then you will want to join us for a panel discussion featuring Oracle customers and B2B commerce experts on Thursday, September 27th to learn how leading B2B companies are succeeding in the new age of commerce. Topics of discussion will include: Moving B2B data and content online Multiple site management Mobile platforms Merchandising and personalization Don’t miss this opportunity to learn more about the latest trends, challenges and successes in B2B multi-channel commerce. Learn more and register!

    Read the article

  • B2B Commerce Best Practice Round Table

    - by Jeri Kelley
    Are you struggling with delivering customers a consistent B2B multi-channel commerce experience? If yes, then you will want to join us for a panel discussion featuring Oracle customers and B2B commerce experts on Thursday, September 27th to learn how leading B2B companies are succeeding in the new age of commerce. Topics of discussion will include: Moving B2B data and content online Multiple site management Mobile platforms Merchandising and personalization Don’t miss this opportunity to learn more about the latest trends, challenges and successes in B2B multi-channel commerce. Learn more and register!

    Read the article

  • Significance of SEO Submissions

    Search Engine Optimization is an important strategy for making the web occurrence and existence of your company cost effective and fruitful for you. To elevate the interest of your target audience in your website, to pull them towards your online identity and making them browse through your products and services is a very important step in making your business successful in all fields. This multi-faceted multi-beneficial task can bear the sweet fruit of success when it is applied in the best way.

    Read the article

  • Codeway 5 : Embarcadero présente les nouveautés de RAD Studio XE2, sa suite de développement rapide, évènement gratuit en ligne

    Codeway 5 : Embarcadero présente les nouveautés de RAD Studio XE2 Sa suite de développement rapide et multiplateforme, lors d'un évènement gratuit en ligne Durant la semaine du 21 au 25 novembre, Embarcadero organise Codeway 5, un évènement en ligne et en français pour présenter les nouveautés de RAD Studio XE2, la nouvelle évolution de sa suite de développement rapide, multi-langages et multi plateformes. Après avoir fait escale dans les principales villes françaises avec le CodeWay Tour 2011, Embarcadero veut manifestement se faire entendre par un plus grand nombre d'intéressés sans qu'ils aient à se déplacer. « Une connexion internet suffit » pour prendre pleinement par...

    Read the article

  • Why C++ people loves multithreading when it comes to performances?

    - by user1849534
    I have a question, it's about why programmers seems to love concurrency and multi-threaded programs in general. I'm considering 2 main approach here: an async approach basically based on signals, or just an async approach as called by many papers and languages like the new C# 5.0 for example, and a "companion thread" that maanges the policy of your pipeline a concurrent approach or multi-threading approach I will just say that I'm thinking about the hardware here and the worst case scenario, and I have tested this 2 paradigms myself, the async paradigm is a winner at the point that I don't get why people 90% of the time talk about concurrency when they wont to speed up things or make a good use of their resources. I have tested multi-threaded programs and async program on an old machine with an Intel quad-core that doesn't offer a memory controller inside the CPU, the memory is managed entirely by the motherboard, well in this case performances are horrible with a multi-threaded application, even a relatively low number of threads like 3-4-5 can be a problem, the application is unresponsive and is just slow and unpleasant. A good async approach is, on the other hand, probably not faster but it's not worst either, my application just waits for the result and doesn't hangs, it's responsive and there is a much better scaling going on. I have also discovered that a context change in the threading world it's not that cheap in real world scenario, it's infact quite expensive especially when you have more than 2 threads that need to cycle and swap among each other to be computed. On modern CPUs the situation it's not really that different, the memory controller it's integrated but my point is that an x86 CPUs is basically a serial machine and the memory controller works the same way as with the old machine with an external memory controller on the motherboard. The context switch is still a relevant cost in my application and the fact that the memory controller it's integrated or that the newer CPU have more than 2 core it's not bargain for me. For what i have experienced the concurrent approach is good in theory but not that good in practice, with the memory model imposed by the hardware, it's hard to make a good use of this paradigm, also it introduces a lot of issues ranging from the use of my data structures to the join of multiple threads. Also both paradigms do not offer any security abut when the task or the job will be done in a certain point in time, making them really similar from a functional point of view. According to the X86 memory model, why the majority of people suggest to use concurrency with C++ and not just an async aproach ? Also why not considering the worst case scenario of a computer where the context switch is probably more expensive than the computation itself ?

    Read the article

  • Guessing Excel Data Types

    - by AjarnMark
    Note to Self HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel: TypeGuessRows = 0 means scan everything. Note to Others About 10 years ago I stumbled across this bit of information just when I needed it and it saved my project.  Then for some reason, a few years later when it would have been nice, but not critical, for some reason I could not find it again anywhere.  Well, now I have stumbled across it again, and to preserve my future self from nightmares and sudden baldness due to pulling my hair out, I have decided to blog it in the hopes that I can find it again this way. Here’s the story…  When you query data from an Excel spreadsheet, such as with old-fashioned DTS packages in SQL 2000 (my first reference) or simply with an OLEDB Data Adapter from ASP.NET (recent task) and if you are using the Microsoft Jet 4.0 driver (newer ones may deal with this differently) then you can get funny results where the query reports back that a cell value is null even when you know it contains data. What happens is that Excel doesn’t really have data types.  While you can format information in cells to appear like certain data types (e.g. Date, Time, Decimal, Text, etc.) that is not really defining the cell as being of a certain type like we think of when working with databases.  But, presumably, to make things more convenient for the user (programmer) when you issue a query against Excel, the query processor tries to guess what type of data is contained in each column and returns it in an appropriate manner.  This is all well and good IF your data is consistent in every row and matches what the processor guessed.  And, for efficiency’s sake, when the query processor is trying to figure out each column’s data type, it does so by analyzing only the first 8 rows of data (default setting). Now here’s the problem, suppose that your spreadsheet contains information about clothing, and one of the columns is Size.  Now suppose that in the first 8 rows, all of your sizes look like 32, 34, 18, 10, and so on, using numbers, but then, somewhere after the 8th row, you have some rows with sizes like S, M, L, XL.  What happens is that by examining only the first 8 rows, the query processor inferred that the column contained numerical data, and then when it hits the non-numerical data in later rows, it comes back blank.  Major bummer, and a real pain to track down if you don’t know that Excel is doing this, because you study the spreadsheet and say, “the data is RIGHT THERE!  WHY doesn’t the query see it?!?!”  And the hair-pulling begins. So, what’s a developer to do?  One option is to go to the registry setting noted above and change the DWORD value of TypeGuessRows from the default of 8 to 0 (zero).  Setting this value to zero will force Jet to scan every row in the spreadsheet before making its determination as to what type of data the column contains.  And that means that in the example above, it would have treated the column as a string rather than as numeric, and presto! your query now returns all of the values that you know are in there. Of course, there is a caveat… if you are querying large spreadsheets, making Jet scan every row can be quite a performance hit.  You could enter a different number (more than 8) that you believe is a better sampling of rows to make the guess, but you still have the possibility that every row scanned looks alike, but that later rows are different, and that you might get blanks when there really is data there.  That’s the type of gamble, I really don’t like to take with my data. Anyone with a better approach, or with experience with more recent drivers that have a better way of handling data types, please chime in!

    Read the article

  • Eclipse Indigo very slow on Kubuntu 12.04

    - by herom
    hello fellow ubuntu users! I have a really big problem with my Eclipse Indigo running on Kubuntu 12.04 32bit, Dell Vostro 3500, Intel(R) Core(TM) i5 CPU M480 @ 2.67 (as cat /proc/cpuinfo said). It has 4GB RAM. cat /proc/cpuinfo brings up the following: processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.85 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 2 cpu cores : 2 apicid : 4 initial apicid : 4 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.88 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 2 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 1 initial apicid : 1 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.88 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 3 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 2 cpu cores : 2 apicid : 5 initial apicid : 5 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.88 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: java -version brings the following: java version "1.7.0_04" Java(TM) SE Runtime Environment (build 1.7.0_04-b20) Java HotSpot(TM) Server VM (build 23.0-b21, mixed mode) it's the Oracle Java, not OpenJDK. I try to develop an Android application for GoogleTV and Eclipse is this slow, that it can't follow my typing (extreme lagging!!), but this issue makes it almost impossible! here is my eclipse.ini file: -startup plugins/org.eclipse.equinox.launcher_1.2.0.v20110502.jar --launcher.library plugins/org.eclipse.equinox.launcher.gtk.linux.x86_1.1.100.v20110505 -product org.eclipse.epp.package.java.product --launcher.defaultAction openFile -showsplash org.eclipse.platform --launcher.XXMaxPermSize 512m --launcher.defaultAction openFile -vmargs -Dosgi.requiredJavaVersion=1.5 -Declipse.p2.unsignedPolicy=allow -Xms256m -Xmx512m -Xss4m -XX:PermSize=128m -XX:MaxPermSize=384m -XX:CompileThreshold=5 -XX:MaxGCPauseMillis=10 -XX:MaxHeapFreeRatio=70 -XX:+CMSIncrementalPacing -XX:+UnlockExperimentalVMOptions -XX:+UseG1GC -XX:+UseFastAccessorMethods -XX:ReservedCodeCacheSize=64m -Dcom.sun.management.jmxremote has anybody faced the same problems? can anybody help me on this problem? it's really urgent as I'm sitting here at my company and am not able to do anything productive...

    Read the article

  • How to get JSF2 working with Seam2

    - by Walter White
    Hi all, Is it possible to get JSF2 working on the latest production Seam release (2.2.1.GA)? I get this error on startup: javax.faces.view.facelets.FaceletException: Must have a Constructor that takes in a ComponentConfig at com.sun.faces.facelets.tag.AbstractTagLibrary$UserComponentHandlerFactory.<init>(AbstractTagLibrary.java:289) at com.sun.faces.facelets.tag.AbstractTagLibrary.addComponent(AbstractTagLibrary.java:519) at com.sun.faces.facelets.tag.TagLibraryImpl.putComponent(TagLibraryImpl.java:111) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.processComponent(FaceletTaglibConfigProcessor.java:569) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.processTags(FaceletTaglibConfigProcessor.java:361) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.processTagLibrary(FaceletTaglibConfigProcessor.java:314) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.process(FaceletTaglibConfigProcessor.java:263) at com.sun.faces.config.ConfigManager.initialize(ConfigManager.java:337) at com.sun.faces.config.ConfigureListener.contextInitialized(ConfigureListener.java:223) at org.apache.catalina.core.StandardContext.contextListenerStart(StandardContext.java:4591) at com.sun.enterprise.web.WebModule.contextListenerStart(WebModule.java:535) at org.apache.catalina.core.StandardContext.start(StandardContext.java:5193) at com.sun.enterprise.web.WebModule.start(WebModule.java:499) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:928) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:912) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:694) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1933) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1605) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:90) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:214) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:144) at org.glassfish.maven.RunMojo.execute(RunMojo.java:105) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPluginManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandaloneGoal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(DefaultLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHandleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegments(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLifecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: java.lang.NoSuchMethodException: org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) at java.lang.Class.getConstructor0(Class.java:2723) at java.lang.Class.getConstructor(Class.java:1674) at com.sun.faces.facelets.tag.AbstractTagLibrary$UserComponentHandlerFactory.<init>(AbstractTagLibrary.java:287) ... 44 more May 23, 2010 9:35:41 AM org.apache.catalina.core.StandardContext start SEVERE: PWC1306: Startup of context /WalterJWhite-1.0.2-SNAPSHOT-Development failed due to previous errors May 23, 2010 9:35:41 AM org.apache.catalina.core.StandardContext start SEVERE: PWC1305: Exception during cleanup after start failed org.apache.catalina.LifecycleException: PWC2769: Manager has not yet been started at org.apache.catalina.session.StandardManager.stop(StandardManager.java:892) at org.apache.catalina.core.StandardContext.stop(StandardContext.java:5383) at com.sun.enterprise.web.WebModule.stop(WebModule.java:530) at org.apache.catalina.core.StandardContext.start(StandardContext.java:5211) at com.sun.enterprise.web.WebModule.start(WebModule.java:499) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:928) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:912) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:694) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1933) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1605) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:90) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:214) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:144) at org.glassfish.maven.RunMojo.execute(RunMojo.java:105) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPluginManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandaloneGoal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(DefaultLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHandleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegments(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLifecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) May 23, 2010 9:35:41 AM org.apache.catalina.core.ContainerBase addChildInternal SEVERE: ContainerBase.addChild: start: org.apache.catalina.LifecycleException: com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED! org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) at org.apache.catalina.core.StandardContext.start(StandardContext.java:5216) at com.sun.enterprise.web.WebModule.start(WebModule.java:499) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:928) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:912) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:694) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1933) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1605) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:90) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:214) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:144) at org.glassfish.maven.RunMojo.execute(RunMojo.java:105) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPluginManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandaloneGoal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(DefaultLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHandleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegments(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLifecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED! org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) at com.sun.faces.config.ConfigManager.initialize(ConfigManager.java:354) at com.sun.faces.config.ConfigureListener.contextInitialized(ConfigureListener.java:223) at org.apache.catalina.core.StandardContext.contextListenerStart(StandardContext.java:4591) at com.sun.enterprise.web.WebModule.contextListenerStart(WebModule.java:535) at org.apache.catalina.core.StandardContext.start(StandardContext.java:5193) ... 33 more Caused by: java.lang.NoSuchMethodException: org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) at java.lang.Class.getConstructor0(Class.java:2723) at java.lang.Class.getConstructor(Class.java:1674) at com.sun.faces.facelets.tag.AbstractTagLibrary$UserComponentHandlerFactory.<init>(AbstractTagLibrary.java:287) at com.sun.faces.facelets.tag.AbstractTagLibrary.addComponent(AbstractTagLibrary.java:519) at com.sun.faces.facelets.tag.TagLibraryImpl.putComponent(TagLibraryImpl.java:111) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.processComponent(FaceletTaglibConfigProcessor.java:569) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.processTags(FaceletTaglibConfigProcessor.java:361) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.processTagLibrary(FaceletTaglibConfigProcessor.java:314) at com.sun.faces.config.processor.FaceletTaglibConfigProcessor.process(FaceletTaglibConfigProcessor.java:263) at com.sun.faces.config.ConfigManager.initialize(ConfigManager.java:337) ... 37 more May 23, 2010 9:35:41 AM com.sun.enterprise.web.WebApplication start WARNING: java.lang.IllegalStateException: ContainerBase.addChild: start: org.apache.catalina.LifecycleException: com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED! org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) java.lang.IllegalStateException: ContainerBase.addChild: start: org.apache.catalina.LifecycleException: com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED! org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:932) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:912) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:694) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1933) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1605) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:90) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:214) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:144) at org.glassfish.maven.RunMojo.execute(RunMojo.java:105) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPluginManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandaloneGoal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(DefaultLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHandleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegments(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLifecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) May 23, 2010 9:35:41 AM org.glassfish.api.ActionReport failure SEVERE: Exception while invoking class com.sun.enterprise.web.WebApplication start method java.lang.Exception: java.lang.IllegalStateException: ContainerBase.addChild: start: org.apache.catalina.LifecycleException: com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED! org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:117) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:214) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:144) at org.glassfish.maven.RunMojo.execute(RunMojo.java:105) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPluginManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandaloneGoal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(DefaultLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHandleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegments(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLifecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) May 23, 2010 9:35:41 AM org.glassfish.api.ActionReport failure SEVERE: Exception while loading the app java.lang.Exception: java.lang.IllegalStateException: ContainerBase.addChild: start: org.apache.catalina.LifecycleException: com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED! org.jboss.seam.ui.handler.CommandButtonParameterComponentHandler.<init>(javax.faces.view.facelets.ComponentConfig) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:117) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:214) at org.glassfish.kernel.embedded.EmbeddedDeployerImpl.deploy(EmbeddedDeployerImpl.java:144) at org.glassfish.maven.RunMojo.execute(RunMojo.java:105) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPluginManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandaloneGoal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(DefaultLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHandleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegments(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLifecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) classLoader = WebappClassLoader (delegate=true; repositories=WEB-INF/classes/) SharedSecrets.getJavaNetAccess()=java.net.URLClassLoader$7@61b1acc3 Walter

    Read the article

  • How to force two process to run on the same CPU?

    - by kovan
    Context: I'm programming a software system that consists of multiple processes. It is programmed in C++ under Linux. and they communicate among them using Linux shared memory. Usually, in software development, is in the final stage when the performance optimization is made. Here I came to a big problem. The software has high performance requirements, but in machines with 4 or 8 CPU cores (usually with more than one CPU), it was only able to use 3 cores, thus wasting 25% of the CPU power in the first ones, and more than 60% in the second ones. After many research, and having discarded mutex and lock contention, I found out that the time was being wasted on shmdt/shmat calls (detach and attach to shared memory segments). After some more research, I found out that these CPUs, which usually are AMD Opteron and Intel Xeon, use a memory system called NUMA, which basically means that each processor has its fast, "local memory", and accessing memory from other CPUs is expensive. After doing some tests, the problem seems to be that the software is designed so that, basically, any process can pass shared memory segments to any other process, and to any thread in them. This seems to kill performance, as process are constantly accessing memory from other processes. Question: Now, the question is, is there any way to force pairs of processes to execute in the same CPU?. I don't mean to force them to execute always in the same processor, as I don't care in which one they are executed, altough that would do the job. Ideally, there would be a way to tell the kernel: If you schedule this process in one processor, you must also schedule this "brother" process (which is the process with which it communicates through shared memory) in that same processor, so that performance is not penalized.

    Read the article

  • Creating A Single Generic Handler For Agatha?

    - by David
    I'm using the Agatha request/response library (and StructureMap, as utilized by Agatha 1.0.5.0) for a service layer that I'm prototyping, and one thing I've noticed is the large number of handlers that need to be created. It generally makes sense that any request/response type pair would need their own handler. However, as this scales to a large enterprise environment that's going to be A LOT of handlers. What I've started doing is dividing up the enterprise domain into logical processor classes (dozens of processors instead of many hundreds or possibly eventually thousands handlers). The convention is that each request/response type (all of which inherit from a domain base request/response pair, which inherit from Agatha's) gets exactly one function in a processor somewhere. The generic handler (which inherits from Agatha's RequestHandler) then uses reflection in the Handle method to find the method for the given TREQUEST/TRESPONSE and invoke it. If it can't find one or if it finds more than one, it returns a TRESPONSE containing an error message (messages are standardized in the domain's base response class). The goal here is to allow developers across the enterprise to just concern themselves with writing their request/response types and processor functions in the domain and not have to spend additional overhead creating handler classes which would all do exactly the same thing (pass control to a processor function). However, it seems that I still need to have defined a handler class (albeit empty, since the base handler takes care of everything) for each request/response type pair. Otherwise, the following exception is thrown when dispatching a request to the service: StructureMap Exception Code: 202 No Default Instance defined for PluginFamily Agatha.ServiceLayer.IRequestHandler`1[[TSFG.Domain.DTO.Actions.HelloWorldRequest, TSFG.Domain.DTO, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]], Agatha.ServiceLayer, Version=1.0.5.0, Culture=neutral, PublicKeyToken=6f21cf452a4ffa13 Is there a way that I'm not seeing to tell StructureMap and/or Agatha to always use the base handler class for all request/response type pairs? Or maybe to use Reflection.Emit to generate empty handlers in memory at application start just to satisfy the requirement? I'm not 100% familiar with these libraries and am learning as I go along, but so far my attempts at both those possible approaches have been unsuccessful. Can anybody offer some advice on solving this, or perhaps offer another approach entirely?

    Read the article

  • Cache consistency & spawning a thread

    - by Dave Keck
    Background I've been reading through various books and articles to learn about processor caches, cache consistency, and memory barriers in the context of concurrent execution. So far though, I have been unable to determine whether a common coding practice of mine is safe in the strictest sense. Assumptions The following pseudo-code is executed on a two-processor machine: int sharedVar = 0; myThread() { print(sharedVar); } main() { sharedVar = 1; spawnThread(myThread); sleep(-1); } main() executes on processor 1 (P1), while myThread() executes on P2. Initially, sharedVar exists in the caches of both P1 and P2 with the initial value of 0 (due to some "warm-up code" that isn't shown above.) Question Strictly speaking – preferably without assuming any particular CPU – is myThread() guaranteed to print 1? With my newfound knowledge of processor caches, it seems entirely possible that at the time of the print() statement, P2 may not have received the invalidation request for sharedVar caused by P1's assignment in main(). Therefore, it seems possible that myThread() could print 0. References These are the related articles and books I've been reading. (It wouldn't allow me to format these as links because I'm a new user - sorry.) Shared Memory Consistency Models: A Tutorial hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf Memory Barriers: a Hardware View for Software Hackers rdrop.com/users/paulmck/scalability/paper/whymb.2009.04.05a.pdf Linux Kernel Memory Barriers kernel.org/doc/Documentation/memory-barriers.txt Computer Architecture: A Quantitative Approach amazon.com/Computer-Architecture-Quantitative-Approach-4th/dp/0123704901/ref=dp_ob_title_bk

    Read the article

  • Determine target architecture of binary file in Linux (library or executable)

    - by Fernando Miguélez
    We have an issue related to a Java application running under a (rather old) FC3 on a Advantech POS board with a Via C3 processor. The java application has several compiled shared libs that are accessed via JNI. Via C3 processor is suppossed to be i686 compatible. Some time ago after installing Ubuntu 6.10 on a MiniItx board with the same processor I found out that the previous statement is not 100% true. The Ubuntu kernel hanged on startup due to the lack of some specific and optional instructions of the i686 set in the C3 processor. These instructions missing in C3 implementation of i686 set are used by default by GCC compiler when using i686 optimizations. The solution in this case was to go with a i386 compiled version of Ubuntu distribution. The base problem with the Java application is that the FC3 distribution was installed on the HD by cloning from an image of the HD of another PC, this time an Intel P4. Afterwards the distribution needed some hacking to have it running such as replacing some packages (such as the kernel one) with the i383 compiled version. The problem is that after working for a while the system completely hangs without a trace. I am afraid that some i686 code is left somewhere in the system and could be executed randomly at any time (for example after recovering from suspend mode or something like that). My question is: Is there any tool or way to find out at what specific architecture is an binary file (executable or library) aimed provided that "file" does not give so much information?

    Read the article

  • C++. How to define template parameter of type T for class A when class T needs a type A template parameter?

    - by jaybny
    Executor class has template of type P and it takes a P object in constructor. Algo class has a template E and also has a static variable of type E. Processor class has template T and a collection of Ts. Question how can I define Executor< Processor<Algo> > and Algo<Executor> ? Is this possible? I see no way to defining this, its kind of an "infinite recursive template argument" See code. template <class T> class Processor { map<string,T> ts; void Process(string str, int i) { ts[str].Do(i); } } template <class P> class Executor { Proc &p; Executor(P &p) : Proc(p) {} void Foo(string str, int i) { p.Process(str,i); } Execute(string str) { } } template <class E> class Algo { static E e; void Do(int i) {} void Foo() { e.Execute("xxx"); } } main () { typedef Processor<Algo> PALGO; // invalid typedef Executor<PALGO> EPALGO; typedef Algo<EPALGO> AEPALGO; Executor<PALGO> executor(PALGO()); AEPALGO::E = executor; }

    Read the article

  • Fedora error log file

    - by user111196
    I am running a java application using this wrapper service yajsw. The problem it just stopped without any error in its logs file. So I was wondering will there be any system log file which will indicate the cause of it going down? Partial of the log file. Apr 6 00:12:20 localhost kernel: imklog 3.22.1, log source = /proc/kmsg started. Apr 6 00:12:20 localhost rsyslogd: [origin software="rsyslogd" swVersion="3.22.1" x-pid="2234" x-info="http://www.rsyslog.com"] (re)start Apr 6 00:12:20 localhost kernel: Initializing cgroup subsys cpuset Apr 6 00:12:20 localhost kernel: Initializing cgroup subsys cpu Apr 6 00:12:20 localhost kernel: Linux version 2.6.27.41-170.2.117.fc10.x86_64 ([email protected]) (gcc version 4.3.2 20081105 (Red Hat 4.3.2-7) (GCC) ) #1 SMP Thu Dec 10 10:36:29 EST 2009 Apr 6 00:12:20 localhost kernel: Command line: ro root=UUID=722ebf87-437f-4634-9c68-a82d157fa948 rhgb quiet Apr 6 00:12:20 localhost kernel: KERNEL supported cpus: Apr 6 00:12:20 localhost kernel: Intel GenuineIntel Apr 6 00:12:20 localhost kernel: AMD AuthenticAMD Apr 6 00:12:20 localhost kernel: Centaur CentaurHauls Apr 6 00:12:20 localhost kernel: BIOS-provided physical RAM map: Apr 6 00:12:20 localhost kernel: BIOS-e820: 0000000000000000 - 00000000000a0000 (usable) Apr 6 00:12:20 localhost kernel: BIOS-e820: 0000000000100000 - 00000000cfb50000 (usable) Apr 6 00:12:20 localhost kernel: BIOS-e820: 00000000cfb50000 - 00000000cfb66000 (reserved) Apr 6 00:12:20 localhost kernel: BIOS-e820: 00000000cfb66000 - 00000000cfb85c00 (ACPI data) Apr 6 00:12:20 localhost kernel: BIOS-e820: 00000000cfb85c00 - 00000000d0000000 (reserved) Apr 6 00:12:20 localhost kernel: BIOS-e820: 00000000e0000000 - 00000000f0000000 (reserved) Apr 6 00:12:20 localhost kernel: BIOS-e820: 00000000fe000000 - 0000000100000000 (reserved) Apr 6 00:12:20 localhost kernel: BIOS-e820: 0000000100000000 - 0000000330000000 (usable) Apr 6 00:12:20 localhost kernel: DMI 2.5 present. Apr 6 00:12:20 localhost kernel: last_pfn = 0x330000 max_arch_pfn = 0x3ffffffff Apr 6 00:12:20 localhost kernel: x86 PAT enabled: cpu 0, old 0x7040600070406, new 0x7010600070106 Apr 6 00:12:20 localhost kernel: last_pfn = 0xcfb50 max_arch_pfn = 0x3ffffffff Apr 6 00:12:20 localhost kernel: init_memory_mapping Apr 6 00:12:20 localhost kernel: last_map_addr: cfb50000 end: cfb50000 Apr 6 00:12:20 localhost kernel: init_memory_mapping Apr 6 00:12:20 localhost kernel: last_map_addr: 330000000 end: 330000000 Apr 6 00:12:20 localhost kernel: RAMDISK: 37bfc000 - 37fef6c8 Apr 6 00:12:20 localhost kernel: ACPI: RSDP 000F21B0, 0024 (r2 DELL ) Apr 6 00:12:20 localhost kernel: ACPI: XSDT 000F224C, 0084 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: FACP CFB83524, 00F4 (r3 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: DSDT CFB66000, 4974 (r1 DELL PE_SC3 1 INTL 20050624) Apr 6 00:12:20 localhost kernel: ACPI: FACS CFB85C00, 0040 Apr 6 00:12:20 localhost kernel: ACPI: APIC CFB83078, 00B6 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: SPCR CFB83130, 0050 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: HPET CFB83184, 0038 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: MCFG CFB831C0, 003C (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: WD__ CFB83200, 0134 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: SLIC CFB83338, 0176 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: ERST CFB6AAF4, 0210 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: HEST CFB6AD04, 027C (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: BERT CFB6A974, 0030 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: EINJ CFB6A9A4, 0150 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: ACPI: TCPA CFB834BC, 0064 (r1 DELL PE_SC3 1 DELL 1) Apr 6 00:12:20 localhost kernel: No NUMA configuration found Apr 6 00:12:20 localhost kernel: Faking a node at 0000000000000000-0000000330000000 Apr 6 00:12:20 localhost kernel: Bootmem setup node 0 0000000000000000-0000000330000000 Apr 6 00:12:20 localhost kernel: NODE_DATA [0000000000015000 - 0000000000029fff] Apr 6 00:12:20 localhost kernel: bootmap [000000000002a000 - 000000000008ffff] pages 66 Apr 6 00:12:20 localhost kernel: (7 early reservations) ==> bootmem [0000000000 - 0330000000] Apr 6 00:12:20 localhost kernel: #0 [0000000000 - 0000001000] BIOS data page ==> [0000000000 - 0000001000] Apr 6 00:12:20 localhost kernel: #1 [0000006000 - 0000008000] TRAMPOLINE ==> [0000006000 - 0000008000] Apr 6 00:12:20 localhost kernel: #2 [0000200000 - 0000a310cc] TEXT DATA BSS ==> [0000200000 - 0000a310cc] Apr 6 00:12:20 localhost kernel: #3 [0037bfc000 - 0037fef6c8] RAMDISK ==> [0037bfc000 - 0037fef6c8] Apr 6 00:12:20 localhost kernel: #4 [000009f000 - 0000100000] BIOS reserved ==> [000009f000 - 0000100000] Apr 6 00:12:20 localhost kernel: #5 [0000008000 - 000000c000] PGTABLE ==> [0000008000 - 000000c000] Apr 6 00:12:20 localhost kernel: #6 [000000c000 - 0000015000] PGTABLE ==> [000000c000 - 0000015000] Apr 6 00:12:20 localhost kernel: found SMP MP-table at [ffff8800000fe710] 000fe710 Apr 6 00:12:20 localhost kernel: Zone PFN ranges: Apr 6 00:12:20 localhost kernel: DMA 0x00000000 -> 0x00001000 Apr 6 00:12:20 localhost kernel: DMA32 0x00001000 -> 0x00100000 Apr 6 00:12:20 localhost kernel: Normal 0x00100000 -> 0x00330000 Apr 6 00:12:20 localhost kernel: Movable zone start PFN for each node Apr 6 00:12:20 localhost kernel: early_node_map[3] active PFN ranges Apr 6 00:12:20 localhost kernel: 0: 0x00000000 -> 0x000000a0 Apr 6 00:12:20 localhost kernel: 0: 0x00000100 -> 0x000cfb50 Apr 6 00:12:20 localhost kernel: 0: 0x00100000 -> 0x00330000 Apr 6 00:12:20 localhost kernel: ACPI: PM-Timer IO Port: 0x808 Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x02] lapic_id[0x04] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x03] lapic_id[0x02] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x04] lapic_id[0x06] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x05] lapic_id[0x01] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x06] lapic_id[0x05] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x07] lapic_id[0x03] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC (acpi_id[0x08] lapic_id[0x07] enabled) Apr 6 00:12:20 localhost kernel: ACPI: LAPIC_NMI (acpi_id[0xff] high edge lint[0x1]) Apr 6 00:12:20 localhost kernel: ACPI: IOAPIC (id[0x08] address[0xfec00000] gsi_base[0]) Apr 6 00:12:20 localhost kernel: IOAPIC[0]: apic_id 8, version 0, address 0xfec00000, GSI 0-23 Apr 6 00:12:20 localhost kernel: ACPI: IOAPIC (id[0x09] address[0xfec81000] gsi_base[64]) Apr 6 00:12:20 localhost kernel: IOAPIC[1]: apic_id 9, version 0, address 0xfec81000, GSI 64-87 Apr 6 00:12:20 localhost kernel: ACPI: IOAPIC (id[0x0a] address[0xfec84000] gsi_base[160]) Apr 6 00:12:20 localhost kernel: IOAPIC[2]: apic_id 10, version 0, address 0xfec84000, GSI 160-183 Apr 6 00:12:20 localhost kernel: ACPI: IOAPIC (id[0x0b] address[0xfec84800] gsi_base[224]) Apr 6 00:12:20 localhost kernel: IOAPIC[3]: apic_id 11, version 0, address 0xfec84800, GSI 224-247 Apr 6 00:12:20 localhost kernel: ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) Apr 6 00:12:20 localhost kernel: ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) Apr 6 00:12:20 localhost kernel: Setting APIC routing to flat Apr 6 00:12:20 localhost kernel: ACPI: HPET id: 0x8086a201 base: 0xfed00000 Apr 6 00:12:20 localhost kernel: Using ACPI (MADT) for SMP configuration information Apr 6 00:12:20 localhost kernel: SMP: Allowing 8 CPUs, 0 hotplug CPUs Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000000a0000 - 0000000000100000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000cfb50000 - 00000000cfb66000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000cfb66000 - 00000000cfb85000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000cfb85000 - 00000000cfb86000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000cfb86000 - 00000000d0000000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000d0000000 - 00000000e0000000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000e0000000 - 00000000f0000000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000f0000000 - 00000000fe000000 Apr 6 00:12:20 localhost kernel: PM: Registered nosave memory: 00000000fe000000 - 0000000100000000 Apr 6 00:12:20 localhost kernel: Allocating PCI resources starting at d1000000 (gap: d0000000:10000000) Apr 6 00:12:20 localhost kernel: PERCPU: Allocating 65184 bytes of per cpu data Apr 6 00:12:20 localhost kernel: Built 1 zonelists in Zone order, mobility grouping on. Total pages: 3096524 Apr 6 00:12:20 localhost kernel: Policy zone: Normal Apr 6 00:12:20 localhost kernel: Kernel command line: ro root=UUID=722ebf87-437f-4634-9c68-a82d157fa948 rhgb quiet Apr 6 00:12:20 localhost kernel: Initializing CPU#0 Apr 6 00:12:20 localhost kernel: PID hash table entries: 4096 (order: 12, 32768 bytes) Apr 6 00:12:20 localhost kernel: Extended CMOS year: 2000 Apr 6 00:12:20 localhost kernel: TSC: PIT calibration confirmed by PMTIMER. Apr 6 00:12:20 localhost kernel: TSC: using PMTIMER calibration value Apr 6 00:12:20 localhost kernel: Detected 1994.992 MHz processor. Apr 6 00:12:20 localhost kernel: Console: colour VGA+ 80x25 Apr 6 00:12:20 localhost kernel: console [tty0] enabled Apr 6 00:12:20 localhost kernel: Checking aperture... Apr 6 00:12:20 localhost kernel: No AGP bridge found Apr 6 00:12:20 localhost kernel: PCI-DMA: Using software bounce buffering for IO (SWIOTLB) Apr 6 00:12:20 localhost kernel: Placing software IO TLB between 0x20000000 - 0x24000000 Apr 6 00:12:20 localhost kernel: Memory: 12324244k/13369344k available (3311k kernel code, 253484k reserved, 1844k data, 1296k init) Apr 6 00:12:20 localhost kernel: SLUB: Genslabs=13, HWalign=64, Order=0-3, MinObjects=0, CPUs=8, Nodes=1 Apr 6 00:12:20 localhost kernel: Calibrating delay loop (skipped), value calculated using timer frequency.. 3989.98 BogoMIPS (lpj=1994992) Apr 6 00:12:20 localhost kernel: Security Framework initialized Apr 6 00:12:20 localhost kernel: SELinux: Initializing. Apr 6 00:12:20 localhost kernel: Dentry cache hash table entries: 2097152 (order: 12, 16777216 bytes) Apr 6 00:12:20 localhost kernel: Inode-cache hash table entries: 1048576 (order: 11, 8388608 bytes) Apr 6 00:12:20 localhost kernel: Mount-cache hash table entries: 256 Apr 6 00:12:20 localhost kernel: Initializing cgroup subsys ns Apr 6 00:12:20 localhost kernel: Initializing cgroup subsys cpuacct Apr 6 00:12:20 localhost kernel: Initializing cgroup subsys devices Apr 6 00:12:20 localhost kernel: CPU: L1 I cache: 32K, L1 D cache: 32K Apr 6 00:12:20 localhost kernel: CPU: L2 cache: 4096K Apr 6 00:12:20 localhost kernel: CPU 0/0 -> Node 0 Apr 6 00:12:20 localhost kernel: CPU: Physical Processor ID: 0 Apr 6 00:12:20 localhost kernel: CPU: Processor Core ID: 0 Apr 6 00:12:20 localhost kernel: CPU0: Thermal monitoring enabled (TM1) Apr 6 00:12:20 localhost kernel: using mwait in idle threads. Apr 6 00:12:20 localhost kernel: ACPI: Core revision 20080609 Apr 6 00:12:20 localhost kernel: ..TIMER: vector=0x30 apic1=0 pin1=2 apic2=-1 pin2=-1 Apr 6 00:12:20 localhost kernel: CPU0: Intel(R) Xeon(R) CPU E5335 @ 2.00GHz stepping 07 Apr 6 00:12:20 localhost kernel: Using local APIC timer interrupts. Apr 6 00:12:20 localhost kernel: Detected 20.781 MHz APIC timer. Apr 6 00:12:20 localhost kernel: Booting processor 1/4 ip 6000 Apr 6 00:12:20 localhost kernel: Initializing CPU#1 Apr 6 00:12:20 localhost kernel: Calibrating delay using timer specific routine.. 3990.05 BogoMIPS (lpj=1995026) Apr 6 00:12:20 localhost kernel: CPU: L1 I cache: 32K, L1 D cache: 32K Apr 6 00:12:20 localhost kernel: CPU: L2 cache: 4096K Apr 6 00:12:20 localhost kernel: CPU 1/4 -> Node 0 Apr 6 00:12:20 localhost kernel: CPU: Physical Processor ID: 1 Apr 6 00:12:20 localhost kernel: CPU: Processor Core ID: 0 Apr 6 00:12:20 localhost kernel: CPU1: Thermal monitoring enabled (TM2) Apr 6 00:12:20 localhost kernel: x86 PAT enabled: cpu 1, old 0x7040600070406, new 0x7010600070106 Apr 6 00:12:20 localhost kernel: CPU1: Intel(R) Xeon(R) CPU E5335 @ 2.00GHz stepping 07 Apr 6 00:12:20 localhost kernel: checking TSC synchronization [CPU#0 -> CPU#1]: passed. Apr 6 00:12:20 localhost kernel: Booting processor 2/2 ip 6000 Apr 6 00:12:20 localhost kernel: Initializing CPU#2 Apr 6 00:12:20 localhost kernel: Calibrating delay using timer specific routine.. 3990.05 BogoMIPS (lpj=1995029)

    Read the article

  • MySQL Master-Master w/ multiple read slave cost effective setup in AWS

    - by Ross
    I've been evaluating Amazon Web Services RDS for MySQL and costing out potential scenarios involving a simple multi-AZ deployment read/write setup vs. a multi-AZ deployment mysql master (hot-standby) with additional read-only slaves. the issue I'm trying to cost-optimize includes their reserved instance vs on-demand instances. Situation 1: purchase reserved multi-az setup for Extra-large-hi-mem(17GB RAM) instance for $5200/yr and have my application query the master all the time. the problem is, if I don't need all the resources of the (17GB RAM) all the time and therefore, especially not a hot-standby, what alternatives for savings can a better topology create, like potentially situation 2 below: Situation 2: purchase reserved multi-az setup using smaller master instances than above for the master-master hot-standby to receive the writes only. Then create and load balance several read-only slaves off the master and add/remove and/or scale up/down the read slaves based on demand. This might only cost $1000 + the on-demand usage of the read slaves. My thinking is, if I have a variable read-intensive application load, with low write load, the single level topology in situation 1 means I'm paying for a lot of resources at the write level of topology when I don't need them there. My hope is that situation 2 can yield cost savings from smaller reserved instances on the master-master resource level allowing me to scale up and down and/or out on the read-level according to demand as needed. Does anyone see a downside to doing this or know of some reason this isn't possible with RDS? Any other thoughts or advice always welcome of course. Thanks in advance, R

    Read the article

< Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >