Search Results

Search found 2659 results on 107 pages for 'vector drawings'.

Page 78/107 | < Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • Const-correctness semantics in C++

    - by thirtythreeforty
    For fun and profit™, I'm writing a trie class in C++ (using the C++11 standard.) My trie<T> has an iterator, trie<T>::iterator. (They're all actually functionally const_iterators, because you cannot modify a trie's value_type.) The iterator's class declaration looks partially like this: template<typename T> class trie<T>::iterator : public std::iterator<std::bidirectional_iterator_tag, T> { friend class trie<T>; struct state { state(const trie<T>* const node, const typename std::vector<std::pair<typename T::value_type, std::unique_ptr<trie<T>>>>::const_iterator& node_map_it ) : node{node}, node_map_it{node_map_it} {} // This pointer is to const data: const trie<T>* node; typename std::vector<std::pair<typename T::value_type, std::unique_ptr<trie<T>>>>::const_iterator node_map_it; }; public: typedef const T value_type; iterator() =default; iterator(const trie<T>* node) { parents.emplace(node, node->children.cbegin()); // ... } // ... private: std::stack<state> parents; // ... }; Notice that the node pointer is declared const. This is because (in my mind) the iterator should not be modifying the node that it points to; it is just an iterator. Now, elsewhere in my main trie<T> class, I have an erase function that has a common STL signature--it takes an iterator to data to erase (and returns an iterator to the next object). template<typename T> typename trie<T>::iterator trie<T>::erase(const_iterator it) { // ... // Cannot modify a const object! it.parents.top().node->is_leaf = false; // ... } The compiler complains because the node pointer is read-only! The erase function definitely should modify the trie that the iterator points to, even though the iterator shouldn't. So, I have two questions: Should iterator's constructors be public? trie<T> has the necessary begin() and end() members, and of course trie<T>::iterator and trie<T> are mutual friends, but I don't know what the convention is. Making them private would solve a lot of the angst I'm having about removing the const "promise" from the iterator's constructor. What are the correct const semantics/conventions regarding the iterator and its node pointer here? Nobody has ever explained this to me, and I can't find any tutorials or articles on the Web. This is probably the more important question, but it does require a good deal of planning and proper implementation. I suppose it could be circumvented by just implementing 1, but it's the principle of the thing!

    Read the article

  • DirectX11 CreateWICTextureFromMemory Using PNG

    - by seethru
    I've currently got textures loading using CreateWICTextureFromFile however I'd like a little more control over it, and I'd like to store images in their byte form in a resource loader. Below is just two sets of test code that return two separate results and I'm looking for any insight into a possible solution. ID3D11ShaderResourceView* srv; std::basic_ifstream<unsigned char> file("image.png", std::ios::binary); file.seekg(0,std::ios::end); int length = file.tellg(); file.seekg(0,std::ios::beg); unsigned char* buffer = new unsigned char[length]; file.read(&buffer[0],length); file.close(); HRESULT hr; hr = DirectX::CreateWICTextureFromMemory(_D3D->GetDevice(), _D3D->GetDeviceContext(), &buffer[0], sizeof(buffer), nullptr, &srv, NULL); As a return for the above code I get Component not found. std::ifstream file; ID3D11ShaderResourceView* srv; file.open("../Assets/Textures/osg.png", std::ios::binary); file.seekg(0,std::ios::end); int length = file.tellg(); file.seekg(0,std::ios::beg); std::vector<char> buffer(length); file.read(&buffer[0],length); file.close(); HRESULT hr; hr = DirectX::CreateWICTextureFromMemory(_D3D->GetDevice(), _D3D->GetDeviceContext(), (const uint8_t*)&buffer[0], sizeof(buffer), nullptr, &srv, NULL); The above code returns that the image format is unknown. I'm clearly doing something wrong here, any help is greatly appreciated. Tried finding anything even similar on stackoverflow, and google to no avail.

    Read the article

  • error X3501: 'main': entrypoint not found

    - by Pasha
    I am trying to learn DX10 by following this tutorial. However, my shader won't compile. Below is the detailed error message. Build started 9/10/2012 10:22:46 PM. 1>Project "D:\code\dx\Engine\Engine\Engine.vcxproj" on node 2 (Build target(s)). C:\Program Files (x86)\Windows Kits\8.0\bin\x86\fxc.exe /nologo /E"main" /Fo "D:\code\dx\Engine\Debug\color.cso" /Od /Zi color.fx 1>FXC : error X3501: 'main': entrypoint not found compilation failed; no code produced 1>Done Building Project "D:\code\dx\Engine\Engine\Engine.vcxproj" (Build target(s)) -- FAILED. Build FAILED. Time Elapsed 00:00:00.05 I can easily compile the downloaded code, but I want to know how to fix this error myself. My color.fx looks like this //////////////////////////////////////////////////////////////////////////////// // Filename: color.fx //////////////////////////////////////////////////////////////////////////////// ///////////// // GLOBALS // ///////////// matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; ////////////// // TYPEDEFS // ////////////// struct VertexInputType { float4 position : POSITION; float4 color : COLOR; }; struct PixelInputType { float4 position : SV_POSITION; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Vertex Shader //////////////////////////////////////////////////////////////////////////////// PixelInputType ColorVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the input color for the pixel shader to use. output.color = input.color; return output; } //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 ColorPixelShader(PixelInputType input) : SV_Target { return input.color; } //////////////////////////////////////////////////////////////////////////////// // Technique //////////////////////////////////////////////////////////////////////////////// technique10 ColorTechnique { pass pass0 { SetVertexShader(CompileShader(vs_4_0, ColorVertexShader())); SetPixelShader(CompileShader(ps_4_0, ColorPixelShader())); SetGeometryShader(NULL); } }

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

  • Pluralsight Meet the Author Podcast on HTML5 Canvas Programming

    - by dwahlin
      In the latest installment of Pluralsight’s Meet the Author podcast series, Fritz Onion and I talk about my new course, HTML5 Canvas Fundamentals.  In the interview I describe different canvas technologies covered throughout the course and a sample application at the end of the course that covers how to build a custom business chart from start to finish. Meet the Author:  Dan Wahlin on HTML5 Canvas Fundamentals   Transcript [Fritz] Hi. This is Fritz Onion. I’m here today with Dan Wahlin to talk about his new course HTML5 Canvas Fundamentals. Dan founded the Wahlin Group, which you can find at thewahlingroup.com, which specializes in ASP.NET, jQuery, Silverlight, and SharePoint consulting. He’s a Microsoft Regional Director and has been awarded Microsoft’s MVP for ASP.NET, Connected Systems, and Silverlight. Dan is on the INETA Bureau’s — Speaker’s Bureau, speaks at conferences and user groups around the world, and has written several books on .NET. Thanks for talking to me today, Dan. [Dan] Always good to talk with you, Fritz. [Fritz] So this new course of yours, HTML5 Canvas Fundamentals, I have to say that most of the really snazzy demos I’ve seen with HTML5 have involved Canvas, so I thought it would be a good starting point to chat with you about why we decided to create a course dedicated just to Canvas. If you want to kind of give us that perspective. [Dan] Sure. So, you know, there’s quite a bit of material out there on HTML5 in general, and as people that have done a lot with HTML5 are probably aware, a lot of HTML5 is actually JavaScript centric. You know, a lot of people when they first learn it, think it’s tags, but most of it’s actually JavaScript, and it just so happens that the HTML5 Canvas is one of those things. And so it’s not just, you know, a tag you add and it just magically draws all these things. You mentioned there’s a lot of cool things you can do from games to there’s some really cool multimedia applications out there where they integrate video and audio and all kinds of things into the Canvas, to more business scenarios such as charting and things along those lines. So the reason we made a course specifically on it is, a lot of the material out there touches on it but the Canvas is actually a pretty deep topic. You can do some pretty advanced stuff or easy stuff depending on what your application requirements are, and the API itself, you know, there’s over 30 functions just in the Canvas API and then a whole set of properties that actually go with that as well. So it’s a pretty big topic, and that’s why we created a course specifically tailored towards just the Canvas. [Fritz] Right. And let’s — let me just review the outline briefly here for everyone. So you start off with an introduction to getting started with Canvas, drawing with the HTML5 Canvas, then you talk about manipulating pixels, and you finish up with building a custom data chart. So I really like your example flow here. I think it will appeal to even business developers, right. Even if you’re not into HTML5 for the games or the media capabilities, there’s still something here for everyone I think working with the Canvas. Which leads me to another question, which is, where do you see the Canvas fitting in to kind of your day-to-day developer, people that are working business applications and maybe vanilla websites that aren’t doing kind of cutting edge stuff with interactivity with users? Is there a still a place for the Canvas in those scenarios? [Dan] Yeah, definitely. I think a lot of us — and I include myself here — over the last few years, the focus has generally been, especially if you’re, let’s say, a PHP or ASP.NET or Java type of developer, we’re kind of accustomed to working on the server side, and, you know, we kind of relied on Flash or Silverlight or these other plug-ins for the client side stuff when it was kind of fancy, like charts and graphs and things along those lines. With the what I call massive shift of applications, you know, mainly because of mobile, to more of client side, one of the big benefits I think from a maybe corporate standard way of thinking of things, since we do a lot of work with different corporations, is that, number one, rather than having to have the plug-in, which of course isn’t going to work on iPad and some of these other devices out there that are pretty popular, you can now use a built-in technology that all the modern browsers support, and that includes things like Safari on the iPad and iPhone and the Android tablets and things like that with their browsers, and actually render some really sophisticated charts. Whether you do it by scratch or from scratch or, you know, get a third party type of library involved, it’s just JavaScript. So it downloads fast so it’s good from a performance perspective; and when it comes to what you can render, it’s extremely robust. You can do everything from, you know, your basic circles to polygons or polylines to really advanced gradients as well and even provide some interactivity and animations, and that’s some of the stuff I touch upon in the class. In fact, you mentioned the last part of the outline there is building a custom data chart and that’s kind of gears towards more of the, what I’d call enterprise or corporate type developer. [Fritz] Yeah, that makes sense. And it’s, you know, a lot of the demos I’ve seen with HTML5 focus on more the interactivity and kind of game side of things, but the Canvas is such a diverse element within HTML5 that I can see it being applicable pretty much anywhere. So why don’t we talk a little bit about some of the specifics of what you cover? You talk about drawing and then manipulating pixels. You want to kind of give us the different ways of working with the Canvas and what some of those APIs provide for you? [Dan] Sure. So going all the way back to the start of the outline, we actually started off by showing different demonstrations of the Canvas in action, and we show some fun stuff — multimedia apps and games and things like that — and then also some more business scenarios; and then once you see that, hopefully it kinds of piques your interest and you go, oh, wow, this is actually pretty phenomenal what you can do. So then we start you off with, so how to you actually draw things. Now, there are some libraries out there that will draw things like graphs, but if you want to customize those or just build something you have from scratch, you need to know the basics, such as, you know, how do you draw circles and lines and arcs and Bezier curves and all those fancy types of shapes that a given chart may have on it or that a game may have in it for that matter. So we start off by covering what I call the core API functions; how do you, for instance, fill a rectangle or convert that to a square by setting the height and the width; how do you draw arcs or different types of curves and there’s different types supported such as I mentioned Bezier curves or quadratic curves; and then we also talk about how do you integrate text into it. You might have some images already that are just regular bitmap type images that you want to integrate, you can do that with a Canvas. And you can even sync video into the Canvas, which actually opens up some pretty interesting possibilities for both business and I think just general multimedia apps. Once you kind of get those core functions down for the basic shapes that you need to be able to draw on any type of Canvas, then we go a little deeper into what are the pixels that are there to manipulate. And that’s one of the important things to understand about the HTML5 Canvas, scalable vector graphics is another thing you can use now in the modern browsers; it’s vector based. Canvas is pixel based. And so we talk about how to do gradients, how can you do transforms, you know, how do you scale things or rotate things, which is extremely useful for charts ’cause you might have text that, you know, flips up on its side for a y-axis or something like that. And you can even do direct pixel manipulation. So it’s really, really powerful. If you want to get down to the RGBA level, you can do that, and I show how to do that in the course, and then kind of wrap that section up with some animation fundamentals. [Fritz] Great. Yeah, that’s really powerful stuff for programmatically rendering data to clients and responding to user inputs. Look forward to seeing what everyone’s going to come up with building this stuff. So great. That’s — that’s HTML5 Canvas Fundamentals with Dan Wahlin. Thanks very much, Dan. [Dan] Thanks again. I appreciate it.

    Read the article

  • New Release: ImageGlue 7.0 .NET

    When it comes to manipulating images dynamically there are few toolkits that can compete with ImageGlue 6 in terms of versatility and performance. With extensive support for a huge range of graphic formats including JPEG2000, Very Large TIFF Support™, and fully multi-threaded processing, ImageGlue has proved a popular choice for use in ASP and ASP.NET server environments. Now ImageGlue 7 has arrived, introducing support for 64-bit systems, improved PostScript handling, and many other enhancements. We've also used the opportunity to revise the API, to make it more friendly and familiar to .NET coders. But don't worry about rewriting legacy code - you'll find the 'string parameter' interface is still available through the WebSupergoo.ImageGlue6 namespace. So what's new in ImageGlue 7.0? Support for 64-bit systems. ImageGlue now incorporates the PostScript rendering engine as used by ABCpdf, our PDF component, which has proven to be fast, robust and accurate. This greatly improves support for importing and exporting PS, EPS, and PDF files, and also enables you to make use of powerful PostScript drawing operations for drawing to canvas. Leveraging ABCpdf's powerful vector graphics import and export functionality also makes it possible to interoperate with XPS and MS Office documents. An improved API with new classes, methods and properties, more in keeping with normal .NET development. Plus of course the usual range of bug fixes and minor enhancements. span.fullpost {display:none;}

    Read the article

  • Cocos2d-x v3 invalid conversion from 'cocos2d::Layer* [on hold]

    - by Hammerh5
    Hello guys I'm learning cocos2d-x v3 right but most of the code that I can find is to the version 2. My specific error is this one, when I try to compile my cocos2s-x 3 project this error shows. invalid conversion from 'cocos2d::Layer to Game* [-fpermisive]* What I want to do is create a new game scene in the following code: //Game.cpp #include "Game.h" Scene* Game::scene() { scene *sc = CCScene::create(); sc->setTag(TAG_GAME_SCENE); const Game *g = Game::create(); //Here is where the conversions fails. sc->addChild(g, 0, TAG_GAME_LAYER); return sc; } Of course this is my header file //Game.h #include "cocos2d.h" #include "Mole.h" #include "AppDelegate.h" using namespace cocos2d; class Game: public cocos2d::Layer { cocos2d::CCArray *moles; float timeBetweenMoles, timeElapsed, increaseMolesAtTime, increaseElapsed, lastMoleHiTime; int molesAtOnce; cocos2d::CCSize s; bool isPaused; public: CCString *missSound, *hitSound; static cocos2d::Scene* scene(); virtual bool init(); void showMole(); void initializeGame(); void onEnterTransitionDidFinish(); void onExit(); void onTouchesBegan(const std::vector<cocos2d::Touch *> &touches, cocos2d::Event *event); void tick(float dt); cocos2d::CCArray* getMoles(bool isUp); //LAYER_CREATE_FUNC(Game); }; #endif /* GAME_H_ */ I don't know what's wrong I suppose this code works fine in Cocos2d-x v2. It's maybe some changes in the C++ version ?

    Read the article

  • Residual packages Ubuntu 12.04

    - by hydroxide
    I have an Asus Q500A with win8 and Ubuntu 12.04 64 bit; Linux kernel 3.8.0-32-generic. I have been having residual package issues which have been giving me trouble trying to reconfigure xserver-xorg-lts-raring. I tried removing all residual packages from synaptic but the following were not removed. Output of sudo dpkg -l | grep "^rc" rc gstreamer0.10-plugins-good:i386 0.10.31-1ubuntu1.2 GStreamer plugins from the "good" set rc libaa1:i386 1.4p5-39ubuntu1 ASCII art library rc libaio1:i386 0.3.109-2ubuntu1 Linux kernel AIO access library - shared library rc libao4:i386 1.1.0-1ubuntu2 Cross Platform Audio Output Library rc libasn1-8-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - ASN.1 library rc libasound2:i386 1.0.25-1ubuntu10.2 shared library for ALSA applications rc libasyncns0:i386 0.8-4 Asynchronous name service query library rc libatk1.0-0:i386 2.4.0-0ubuntu1 ATK accessibility toolkit rc libavahi-client3:i386 0.6.30-5ubuntu2 Avahi client library rc libavahi-common3:i386 0.6.30-5ubuntu2 Avahi common library rc libavc1394-0:i386 0.5.3-1ubuntu2 control IEEE 1394 audio/video devices rc libcaca0:i386 0.99.beta17-2.1ubuntu2 colour ASCII art library rc libcairo-gobject2:i386 1.10.2-6.1ubuntu3 The Cairo 2D vector graphics library (GObject library) rc libcairo2:i386 1.10.2-6.1ubuntu3 The Cairo 2D vector graphics library rc libcanberra-gtk0:i386 0.28-3ubuntu3 GTK+ helper for playing widget event sounds with libcanberra rc libcanberra0:i386 0.28-3ubuntu3 simple abstract interface for playing event sounds rc libcap2:i386 1:2.22-1ubuntu3 support for getting/setting POSIX.1e capabilities rc libcdparanoia0:i386 3.10.2+debian-10ubuntu1 audio extraction tool for sampling CDs (library) rc libcroco3:i386 0.6.5-1ubuntu0.1 Cascading Style Sheet (CSS) parsing and manipulation toolkit rc libcups2:i386 1.5.3-0ubuntu8 Common UNIX Printing System(tm) - Core library rc libcupsimage2:i386 1.5.3-0ubuntu8 Common UNIX Printing System(tm) - Raster image library rc libcurl3:i386 7.22.0-3ubuntu4.3 Multi-protocol file transfer library (OpenSSL) rc libdatrie1:i386 0.2.5-3 Double-array trie library rc libdbus-glib-1-2:i386 0.98-1ubuntu1.1 simple interprocess messaging system (GLib-based shared library) rc libdbusmenu-qt2:i386 0.9.2-0ubuntu1 Qt implementation of the DBusMenu protocol rc libdrm-nouveau2:i386 2.4.43-0ubuntu0.0.3 Userspace interface to nouveau-specific kernel DRM services -- runtime rc libdv4:i386 1.0.0-3ubuntu1 software library for DV format digital video (runtime lib) rc libesd0:i386 0.2.41-10build3 Enlightened Sound Daemon - Shared libraries rc libexif12:i386 0.6.20-2ubuntu0.1 library to parse EXIF files rc libexpat1:i386 2.0.1-7.2ubuntu1.1 XML parsing C library - runtime library rc libflac8:i386 1.2.1-6 Free Lossless Audio Codec - runtime C library rc libfontconfig1:i386 2.8.0-3ubuntu9.1 generic font configuration library - runtime rc libfreetype6:i386 2.4.8-1ubuntu2.1 FreeType 2 font engine, shared library files rc libgail18:i386 2.24.10-0ubuntu6 GNOME Accessibility Implementation Library -- shared libraries rc libgconf-2-4:i386 3.2.5-0ubuntu2 GNOME configuration database system (shared libraries) rc libgcrypt11:i386 1.5.0-3ubuntu0.2 LGPL Crypto library - runtime library rc libgd2-xpm:i386 2.0.36~rc1~dfsg-6ubuntu2 GD Graphics Library version 2 rc libgdbm3:i386 1.8.3-10 GNU dbm database routines (runtime version) rc libgdk-pixbuf2.0-0:i386 2.26.1-1 GDK Pixbuf library rc libgif4:i386 4.1.6-9ubuntu1 library for GIF images (library) rc libgl1-mesa-dri-lts-quantal:i386 9.0.3-0ubuntu0.4~precise1 free implementation of the OpenGL API -- DRI modules rc libgl1-mesa-dri-lts-raring:i386 9.1.4-0ubuntu0.1~precise2 free implementation of the OpenGL API -- DRI modules rc libgl1-mesa-glx:i386 8.0.4-0ubuntu0.6 free implementation of the OpenGL API -- GLX runtime rc libgl1-mesa-glx-lts-quantal:i386 9.0.3-0ubuntu0.4~precise1 free implementation of the OpenGL API -- GLX runtime rc libgl1-mesa-glx-lts-raring:i386 9.1.4-0ubuntu0.1~precise2 free implementation of the OpenGL API -- GLX runtime rc libglapi-mesa:i386 8.0.4-0ubuntu0.6 free implementation of the GL API -- shared library rc libglapi-mesa-lts-quantal:i386 9.0.3-0ubuntu0.4~precise1 free implementation of the GL API -- shared library rc libglapi-mesa-lts-raring:i386 9.1.4-0ubuntu0.1~precise2 free implementation of the GL API -- shared library rc libglu1-mesa:i386 8.0.4-0ubuntu0.6 Mesa OpenGL utility library (GLU) rc libgnome-keyring0:i386 3.2.2-2 GNOME keyring services library rc libgnutls26:i386 2.12.14-5ubuntu3.5 GNU TLS library - runtime library rc libgomp1:i386 4.6.3-1ubuntu5 GCC OpenMP (GOMP) support library rc libgpg-error0:i386 1.10-2ubuntu1 library for common error values and messages in GnuPG components rc libgphoto2-2:i386 2.4.13-1ubuntu1.2 gphoto2 digital camera library rc libgphoto2-port0:i386 2.4.13-1ubuntu1.2 gphoto2 digital camera port library rc libgssapi-krb5-2:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries - krb5 GSS-API Mechanism rc libgssapi3-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - GSSAPI support library rc libgstreamer-plugins-base0.10-0:i386 0.10.36-1ubuntu0.1 GStreamer libraries from the "base" set rc libgstreamer0.10-0:i386 0.10.36-1ubuntu1 Core GStreamer libraries and elements rc libgtk2.0-0:i386 2.24.10-0ubuntu6 GTK+ graphical user interface library rc libgudev-1.0-0:i386 1:175-0ubuntu9.4 GObject-based wrapper library for libudev rc libhcrypto4-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - crypto library rc libheimbase1-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - Base library rc libheimntlm0-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - NTLM support library rc libhx509-5-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - X509 support library rc libibus-1.0-0:i386 1.4.1-3ubuntu1 Intelligent Input Bus - shared library rc libice6:i386 2:1.0.7-2build1 X11 Inter-Client Exchange library rc libidn11:i386 1.23-2 GNU Libidn library, implementation of IETF IDN specifications rc libiec61883-0:i386 1.2.0-0.1ubuntu1 an partial implementation of IEC 61883 rc libieee1284-3:i386 0.2.11-10build1 cross-platform library for parallel port access rc libjack-jackd2-0:i386 1.9.8~dfsg.1-1ubuntu2 JACK Audio Connection Kit (libraries) rc libjasper1:i386 1.900.1-13 JasPer JPEG-2000 runtime library rc libjpeg-turbo8:i386 1.1.90+svn733-0ubuntu4.2 IJG JPEG compliant runtime library. rc libjson0:i386 0.9-1ubuntu1 JSON manipulation library - shared library rc libk5crypto3:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries - Crypto Library rc libkeyutils1:i386 1.5.2-2 Linux Key Management Utilities (library) rc libkrb5-26-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - libraries rc libkrb5-3:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries rc libkrb5support0:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries - Support library rc liblcms1:i386 1.19.dfsg-1ubuntu3 Little CMS color management library rc libldap-2.4-2:i386 2.4.28-1.1ubuntu4.4 OpenLDAP libraries rc libllvm3.0:i386 3.0-4ubuntu1 Low-Level Virtual Machine (LLVM), runtime library rc libllvm3.1:i386 3.1-2ubuntu1~12.04.1 Low-Level Virtual Machine (LLVM), runtime library rc libllvm3.2:i386 3.2-2ubuntu5~precise1 Low-Level Virtual Machine (LLVM), runtime library rc libltdl7:i386 2.4.2-1ubuntu1 A system independent dlopen wrapper for GNU libtool rc libmad0:i386 0.15.1b-7ubuntu1 MPEG audio decoder library rc libmikmod2:i386 3.1.12-2 Portable sound library rc libmng1:i386 1.0.10-3 Multiple-image Network Graphics library rc libmpg123-0:i386 1.12.1-3.2ubuntu1 MPEG layer 1/2/3 audio decoder -- runtime library rc libmysqlclient18:i386 5.5.32-0ubuntu0.12.04.1 MySQL database client library rc libnspr4:i386 4.9.5-0ubuntu0.12.04.1 NetScape Portable Runtime Library rc libnss3:i386 3.14.3-0ubuntu0.12.04.1 Network Security Service libraries rc libodbc1:i386 2.2.14p2-5ubuntu3 ODBC library for Unix rc libogg0:i386 1.2.2~dfsg-1ubuntu1 Ogg bitstream library rc libopenal1:i386 1:1.13-4ubuntu3 Software implementation of the OpenAL API (shared library) rc liborc-0.4-0:i386 1:0.4.16-1ubuntu2 Library of Optimized Inner Loops Runtime Compiler rc libosmesa6:i386 8.0.4-0ubuntu0.6 Mesa Off-screen rendering extension rc libp11-kit0:i386 0.12-2ubuntu1 Library for loading and coordinating access to PKCS#11 modules - runtime rc libpango1.0-0:i386 1.30.0-0ubuntu3.1 Layout and rendering of internationalized text rc libpixman-1-0:i386 0.24.4-1 pixel-manipulation library for X and cairo rc libproxy1:i386 0.4.7-0ubuntu4.1 automatic proxy configuration management library (shared) rc libpulse-mainloop-glib0:i386 1:1.1-0ubuntu15.4 PulseAudio client libraries (glib support) rc libpulse0:i386 1:1.1-0ubuntu15.4 PulseAudio client libraries rc libqt4-dbus:i386 4:4.8.1-0ubuntu4.4 Qt 4 D-Bus module rc libqt4-declarative:i386 4:4.8.1-0ubuntu4.4 Qt 4 Declarative module rc libqt4-designer:i386 4:4.8.1-0ubuntu4.4 Qt 4 designer module rc libqt4-network:i386 4:4.8.1-0ubuntu4.4 Qt 4 network module rc libqt4-opengl:i386 4:4.8.1-0ubuntu4.4 Qt 4 OpenGL module rc libqt4-qt3support:i386 4:4.8.1-0ubuntu4.4 Qt 3 compatibility library for Qt 4 rc libqt4-script:i386 4:4.8.1-0ubuntu4.4 Qt 4 script module rc libqt4-scripttools:i386 4:4.8.1-0ubuntu4.4 Qt 4 script tools module rc libqt4-sql:i386 4:4.8.1-0ubuntu4.4 Qt 4 SQL module rc libqt4-svg:i386 4:4.8.1-0ubuntu4.4 Qt 4 SVG module rc libqt4-test:i386 4:4.8.1-0ubuntu4.4 Qt 4 test module rc libqt4-xml:i386 4:4.8.1-0ubuntu4.4 Qt 4 XML module rc libqt4-xmlpatterns:i386 4:4.8.1-0ubuntu4.4 Qt 4 XML patterns module rc libqtcore4:i386 4:4.8.1-0ubuntu4.4 Qt 4 core module rc libqtgui4:i386 4:4.8.1-0ubuntu4.4 Qt 4 GUI module rc libqtwebkit4:i386 2.2.1-1ubuntu4 Web content engine library for Qt rc libraw1394-11:i386 2.0.7-1ubuntu1 library for direct access to IEEE 1394 bus (aka FireWire) rc libroken18-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - roken support library rc librsvg2-2:i386 2.36.1-0ubuntu1 SAX-based renderer library for SVG files (runtime) rc librtmp0:i386 2.4~20110711.gitc28f1bab-1 toolkit for RTMP streams (shared library) rc libsamplerate0:i386 0.1.8-4 Audio sample rate conversion library rc libsane:i386 1.0.22-7ubuntu1 API library for scanners rc libsasl2-2:i386 2.1.25.dfsg1-3ubuntu0.1 Cyrus SASL - authentication abstraction library rc libsdl-image1.2:i386 1.2.10-3 image loading library for Simple DirectMedia Layer 1.2 rc libsdl-mixer1.2:i386 1.2.11-7 Mixer library for Simple DirectMedia Layer 1.2, libraries rc libsdl-net1.2:i386 1.2.7-5 Network library for Simple DirectMedia Layer 1.2, libraries rc libsdl-ttf2.0-0:i386 2.0.9-1.1ubuntu1 ttf library for Simple DirectMedia Layer with FreeType 2 support rc libsdl1.2debian:i386 1.2.14-6.4ubuntu3 Simple DirectMedia Layer rc libshout3:i386 2.2.2-7ubuntu1 MP3/Ogg Vorbis broadcast streaming library rc libsm6:i386 2:1.2.0-2build1 X11 Session Management library rc libsndfile1:i386 1.0.25-4 Library for reading/writing audio files rc libsoup-gnome2.4-1:i386 2.38.1-1 HTTP library implementation in C -- GNOME support library rc libsoup2.4-1:i386 2.38.1-1 HTTP library implementation in C -- Shared library rc libspeex1:i386 1.2~rc1-3ubuntu2 The Speex codec runtime library rc libspeexdsp1:i386 1.2~rc1-3ubuntu2 The Speex extended runtime library rc libsqlite3-0:i386 3.7.9-2ubuntu1.1 SQLite 3 shared library rc libssl0.9.8:i386 0.9.8o-7ubuntu3.1 SSL shared libraries rc libstdc++5:i386 1:3.3.6-25ubuntu1 The GNU Standard C++ Library v3 rc libstdc++6:i386 4.6.3-1ubuntu5 GNU Standard C++ Library v3 rc libtag1-vanilla:i386 1.7-1ubuntu5 audio meta-data library - vanilla flavour rc libtasn1-3:i386 2.10-1ubuntu1.1 Manage ASN.1 structures (runtime) rc libtdb1:i386 1.2.9-4 Trivial Database - shared library rc libthai0:i386 0.1.16-3 Thai language support library rc libtheora0:i386 1.1.1+dfsg.1-3ubuntu2 The Theora Video Compression Codec rc libtiff4:i386 3.9.5-2ubuntu1.5 Tag Image File Format (TIFF) library rc libtxc-dxtn-s2tc0:i386 0~git20110809-2.1 Texture compression library for Mesa rc libunistring0:i386 0.9.3-5 Unicode string library for C rc libusb-0.1-4:i386 2:0.1.12-20 userspace USB programming library rc libv4l-0:i386 0.8.6-1ubuntu2 Collection of video4linux support libraries rc libv4lconvert0:i386 0.8.6-1ubuntu2 Video4linux frame format conversion library rc libvisual-0.4-0:i386 0.4.0-4 Audio visualization framework rc libvorbis0a:i386 1.3.2-1ubuntu3 The Vorbis General Audio Compression Codec (Decoder library) rc libvorbisenc2:i386 1.3.2-1ubuntu3 The Vorbis General Audio Compression Codec (Encoder library) rc libvorbisfile3:i386 1.3.2-1ubuntu3 The Vorbis General Audio Compression Codec (High Level API) rc libwavpack1:i386 4.60.1-2 audio codec (lossy and lossless) - library rc libwind0-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - stringprep implementation rc libwrap0:i386 7.6.q-21 Wietse Venema's TCP wrappers library rc libx11-6:i386 2:1.4.99.1-0ubuntu2.2 X11 client-side library rc libx11-xcb1:i386 2:1.4.99.1-0ubuntu2.2 Xlib/XCB interface library rc libxau6:i386 1:1.0.6-4 X11 authorisation library rc libxaw7:i386 2:1.0.9-3ubuntu1 X11 Athena Widget library rc libxcb-dri2-0:i386 1.8.1-1ubuntu0.2 X C Binding, dri2 extension rc libxcb-glx0:i386 1.8.1-1ubuntu0.2 X C Binding, glx extension rc libxcb-render0:i386 1.8.1-1ubuntu0.2 X C Binding, render extension rc libxcb-shm0:i386 1.8.1-1ubuntu0.2 X C Binding, shm extension rc libxcb1:i386 1.8.1-1ubuntu0.2 X C Binding rc libxcomposite1:i386 1:0.4.3-2build1 X11 Composite extension library rc libxcursor1:i386 1:1.1.12-1ubuntu0.1 X cursor management library rc libxdamage1:i386 1:1.1.3-2build1 X11 damaged region extension library rc libxdmcp6:i386 1:1.1.0-4 X11 Display Manager Control Protocol library rc libxext6:i386 2:1.3.0-3ubuntu0.1 X11 miscellaneous extension library rc libxfixes3:i386 1:5.0-4ubuntu4.1 X11 miscellaneous 'fixes' extension library rc libxft2:i386 2.2.0-3ubuntu2 FreeType-based font drawing library for X rc libxi6:i386 2:1.6.0-0ubuntu2.1 X11 Input extension library rc libxinerama1:i386 2:1.1.1-3ubuntu0.1 X11 Xinerama extension library rc libxml2:i386 2.7.8.dfsg-5.1ubuntu4.6 GNOME XML library rc libxmu6:i386 2:1.1.0-3 X11 miscellaneous utility library rc libxp6:i386 1:1.0.1-2ubuntu0.12.04.1 X Printing Extension (Xprint) client library rc libxpm4:i386 1:3.5.9-4 X11 pixmap library rc libxrandr2:i386 2:1.3.2-2ubuntu0.2 X11 RandR extension library rc libxrender1:i386 1:0.9.6-2ubuntu0.1 X Rendering Extension client library rc libxslt1.1:i386 1.1.26-8ubuntu1.3 XSLT 1.0 processing library - runtime library rc libxss1:i386 1:1.2.1-2 X11 Screen Saver extension library rc libxt6:i386 1:1.1.1-2ubuntu0.1 X11 toolkit intrinsics library rc libxtst6:i386 2:1.2.0-4ubuntu0.1 X11 Testing -- Record extension library rc libxv1:i386 2:1.0.6-2ubuntu0.1 X11 Video extension library rc libxxf86vm1:i386 1:1.1.1-2ubuntu0.1 X11 XFree86 video mode extension library rc odbcinst1debian2:i386 2.2.14p2-5ubuntu3 Support library for accessing odbc ini files rc skype-bin:i386 4.2.0.11-0ubuntu0.12.04.2 client for Skype VOIP and instant messaging service - binary files rc sni-qt:i386 0.2.5-0ubuntu3 indicator support for Qt rc wine-compholio:i386 1.7.4~ubuntu12.04.1 The Compholio Edition is a special build of the popular Wine software rc xaw3dg:i386 1.5+E-18.1ubuntu1 Xaw3d widget set

    Read the article

  • How to implement curved movement while tracking the appropriate angle?

    - by Vexille
    I'm currently coding a 2D top-down car game which will be turn-based. And since it's turn-based, the cars won't be controlled directly (i.e. with a simple velocity vector that adjusts its angle when the player wants to turn), but instead it's movement path has to be planned beforehand, and then the car needs to follow the path when the turn ends (think Steambirds). This question has some interesting information, but its focus is on homing-missile behaviour, which I kinda had figured out, but doesn't really apply to my case, I think, since I need to show a preview of the path when the player is planning his turn, then have the car follow that path. In that same question, there's an excellent answer by Andrew Russel which mentions Equations of Motion and Bézier's Curve. Some of his other suggestions of implementation are specific to XNA though, so they don't help much (I'm using Marmalade SDK). If I assume Bézier's Curve as the solution of choice, I'm left with one specific problem: I'll have the car's position (the first endpoint) and the target/final position (the last endpoint), but what should I use as the control point (assuming a square/quadratic curve)? And whether I use Bézier's Curve or another parametric equation, I'd still be left with another issue: the car can't just follow the curve, it must turn (i.e. adjust its angle) accordingly. So how can I figure out which way the car should be pointing to at any given point in the curve?

    Read the article

  • Render rivers in a grid.

    - by Gabriel A. Zorrilla
    I have created a random height map and now i want to create rivers. I've made an algorithm based on a* to make rivers flow from peaks to sea and now i'm in the quest of figuring out an elegant algorithm to render them. It's a 2D, square, mapgrid. The cells which the river pases has a simple integer value with this form :rivernumber && pointOrder. Ie: 10, 11, 12, 13, 14, 15, 16...1+N for the first river, 20,21,22,23...2+N for the second, etc. This is created in the map grid generation time and it's executed just once, when the world is generated. I wanted to treat each river as a vector, but there is a problem, if the same river has branches (because i put some noise to generate branches), i can not just connect the points in order. The second alternative is to generate a complex algorithm where analizes each point, checks if the next is not a branch, if so trigger another algorithm that take care of the branch then returns to the main river, etc. Very complex and inelegant. Perhaps there is a solution in the world generation algorithm or in the river rendering algorithm that is commonly used in these cases and i'm not aware of. Any tips? Thanks!!

    Read the article

  • Achieving forward compatibility with C++11

    - by mcmcc
    I work on a large software application that must run on several platforms. Some of these platforms support some features of C++11 (e.g. MSVS 2010) and some don't support any (e.g. GCC 4.3.x). I see this situation continuing on for several years (my best guess: 3-5 years). Given that, I would like set up a compatibility interface such that (to whatever degree possible) people can write C++11 code that will still compile with older compilers with a minimum of maintenance. Overall, the goal is to minimize #ifdef's as much as reasonably possible while still enabling basic C++11 syntax/features on the platforms that support them, and provide emulation on the platforms that don't. Let's start with std::move(). The most obvious way to achieve compatibility would be to put something like this in a common header file: #if !defined(HAS_STD_MOVE) namespace std { // C++11 emulation template <typename T> inline T& move(T& v) { return v; } template <typename T> inline const T& move(const T& v) { return v; } } #endif // !defined(HAS_STD_MOVE) This allow people to write things like std::vector<Thing> x = std::move(y); ... with impugnity. It does what they want in C++11 and it does the best it can in C++03. When we finally drop the last of the C++03 compilers, this code can remain as is. However, according to the standard, it is illegal to inject new symbols into the std namespace. That's the theory. My question is, practically speaking, is there any harm in doing this as a way of achieving forward compatibility?

    Read the article

  • Stage3D Camera problem

    - by Thomas Versteeg
    I am trying to create a 2D Stage3D game where you can move the camera around the level in an RTS style. I thought about using Orthographic Matrix3D functions for this but when I try to scroll the whole "stage" also scrolls. This is the Camera code: public function Camera2D(width:int, height:int, zoom:Number = 1) { resize(width, height); _zoom = zoom; } public function resize(width:Number, height:Number):void { _width = width; _height = height; _projectionMatrix = makeMatrix(0, width, 0, height); _recalculate = true; } protected function makeMatrix(left:Number, right:Number, top:Number, bottom:Number, zNear:Number = 0, zFar:Number = 1):Matrix3D { return new Matrix3D(Vector.<Number>([ 2 / (right - left), 0, 0, 0, 0, 2 / (top - bottom), 0, 0, 0, 0, 1 / (zFar - zNear), 0, 0, 0, zNear / (zNear - zFar), 1 ])); } public function get viewMatrix():Matrix3D { if (_recalculate) { _recalculate = false; _viewMatrix.identity(); _viewMatrix.appendTranslation( -_width / 2 - _x, -_height / 2 - y, 0); _viewMatrix.appendScale(_zoom, _zoom, 1); _renderMatrix.identity(); _renderMatrix.append(_viewMatrix); _renderMatrix.append(_projectionMatrix); } return _renderMatrix; } Here are two screenshots to show what I mean: How do I only let the inside of the stage3D scroll and not the whole stage?

    Read the article

  • A Kingdom To Conquer: Character Sketches

    - by George Clingerman
    Still not 100% sold on my title so it remains a working title for now, but here’s a series of character sketches I’ve done for a turn based strategy game I’m playing at making. I’ve been sketching these on various pieces of paper throughout the last two weeks and just finished the last of them today (my plan was for 16 different types of units and well, now I have them, so I consider that done!).                    Pretty rough sketches for now, but I’m pretty happy with the art style overall. I was wrestling for quite a while just HOW I wanted the game to look and then I finally stumbled across Art Baltazar and I was like, THAT’S IT! There’s a few characters I need to re-do a bit more, I feel they’re a bit TOO much like some of the characters that inspired them but I’m happy that the ideas are finally sketched out. I’ve also been playing a bit in InkScape working on making these guys digital. A pretty new experience for me since I’m not used to working with vector images but I think I’ll get the hang of it. Here’s the Knight all vectorized. Now if I could just start making some progress on the actual game itself…

    Read the article

  • How do I classify using GLCM and SVM Classifier in Matlab?

    - by Gomathi
    I'm on a project of liver tumor segmentation and classification. I used Region Growing and FCM for liver and tumor segmentation respectively. Then, I used Gray Level Co-occurence matrix for texture feature extraction. I have to use Support Vector Machine for Classification. But I don't know how to normalize the feature vectors. Can anyone tell how to program it in Matlab? To the GLCM program, I gave the tumor segmented image as input. Was I correct? If so, I think, then, my output will also be correct. My glcm coding, as far as I have tried is, I = imread('fzliver3.jpg'); GLCM = graycomatrix(I,'Offset',[2 0;0 2]); stats = graycoprops(GLCM,'all') t1= struct2array(stats) I2 = imread('fzliver4.jpg'); GLCM2 = graycomatrix(I2,'Offset',[2 0;0 2]); stats2 = graycoprops(GLCM2,'all') t2= struct2array(stats2) I3 = imread('fzliver5.jpg'); GLCM3 = graycomatrix(I3,'Offset',[2 0;0 2]); stats3 = graycoprops(GLCM3,'all') t3= struct2array(stats3) t=[t1;t2;t3] xmin = min(t); xmax = max(t); scale = xmax-xmin; tf=(x-xmin)/scale Was this a correct implementation? Also, I get an error at the last line. My output is: stats = Contrast: [0.0510 0.0503] Correlation: [0.9513 0.9519] Energy: [0.8988 0.8988] Homogeneity: [0.9930 0.9935] t1 = Columns 1 through 6 0.0510 0.0503 0.9513 0.9519 0.8988 0.8988 Columns 7 through 8 0.9930 0.9935 stats2 = Contrast: [0.0345 0.0339] Correlation: [0.8223 0.8255] Energy: [0.9616 0.9617] Homogeneity: [0.9957 0.9957] t2 = Columns 1 through 6 0.0345 0.0339 0.8223 0.8255 0.9616 0.9617 Columns 7 through 8 0.9957 0.9957 stats3 = Contrast: [0.0230 0.0246] Correlation: [0.7450 0.7270] Energy: [0.9815 0.9813] Homogeneity: [0.9971 0.9970] t3 = Columns 1 through 6 0.0230 0.0246 0.7450 0.7270 0.9815 0.9813 Columns 7 through 8 0.9971 0.9970 t = Columns 1 through 6 0.0510 0.0503 0.9513 0.9519 0.8988 0.8988 0.0345 0.0339 0.8223 0.8255 0.9616 0.9617 0.0230 0.0246 0.7450 0.7270 0.9815 0.9813 Columns 7 through 8 0.9930 0.9935 0.9957 0.9957 0.9971 0.9970 ??? Error using ==> minus Matrix dimensions must agree. The images are:

    Read the article

  • Converting to and from local and world 3D coordinate spaces?

    - by James Bedford
    Hey guys, I've been following a guide I found here (http://knol.google.com/k/matrices-for-3d-applications-view-transformation) on constructing a matrix that will allow me to 3D coordinates to an object's local coordinate space, and back again. I've tried to implement these two matrices using my object's look, side, up and location vectors and it seems to be working for the first three coordinates. I'm a little confused as to what I should expect for the w coordinate. Here are couple of examples from the print outs I've made of the matricies that are constructed. I'm passing a test vector of [9, 8, 14, 1] each time to see if I can convert both ways: Basic example: localize matrix: Matrix: 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 5.237297 -45.530716 11.021271 1.000000 globalize matrix: Matrix: 0.000000 0.000000 1.000000 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 -11.021271 -45.530716 -5.237297 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(14.000000, 8.000000, 9.000000, -161.812256) worldTest: Vector4f(9.000000, 8.000000, 14.000000, -727.491455) More complicated example: localize matrix: Matrix: 0.052504 -0.000689 -0.998258 0.000000 0.052431 0.998260 0.002068 0.000000 0.997241 -0.052486 0.052486 0.000000 58.806095 2.979346 -39.396252 1.000000 globalize matrix: Matrix: 0.052504 0.052431 0.997241 0.000000 -0.000689 0.998260 -0.052486 0.000000 -0.998258 0.002068 0.052486 0.000000 -42.413120 5.975957 -56.419727 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(-13.508600, 8.486917, 9.290090, 2.542114) worldTest: Vector4f(9.000190, 7.993863, 13.990230, 102.057129) As you can see in the more complicated example, the coordinates after converting both ways loose some precision, but this isn't a problem. I'm just wondering how I should deal with the last (w) coordinate? Should I just set it to 1 after performing the matrix multiplication, or does it look like I've done something wrong? Thanks in advance for your help!

    Read the article

  • Extreme Optimization Numerical Libraries for .NET – Part 1 of n

    - by JoshReuben
    While many of my colleagues are fascinated in constructing the ultimate ViewModel or ServiceBus, I feel that this kind of plumbing code is re-invented far too many times – at some point in the near future, it will be out of the box standard infra. How many times have you been to a customer site and built a different variation of the same kind of code frameworks? How many times can you abstract Prism or reliable and discoverable WCF communication? As the bar is raised for whats bundled with the framework and more tasks become declarative, automated and configurable, Information Systems will expose a higher level of abstraction, forcing software engineers to focus on more advanced computer science and algorithmic tasks. I've spent the better half of the past decade building skills in .NET and expanding my mathematical horizons by working through the Schaums guides. In this series I am going to examine how these skillsets come together in the implementation provided by ExtremeOptimization. Download the trial version here: http://www.extremeoptimization.com/downloads.aspx Overview The library implements a set of algorithms for: linear algebra, complex numbers, numerical integration and differentiation, solving equations, optimization, random numbers, regression, ANOVA, statistical distributions, hypothesis tests. EONumLib combines three libraries in one - organized in a consistent namespace hierarchy. Mathematics Library - Extreme.Mathematics namespace Vector and Matrix Library - Extreme.Mathematics.LinearAlgebra namespace Statistics Library - Extreme.Statistics namespace System Requirements -.NET framework 4.0  Mathematics Library The classes are organized into the following namespace hierarchy: Extreme.Mathematics – common data types, exception types, and delegates. Extreme.Mathematics.Calculus - numerical integration and differentiation of functions. Extreme.Mathematics.Curves - points, lines and curves, including polynomials and Chebyshev approximations. curve fitting and interpolation. Extreme.Mathematics.Generic - generic arithmetic & linear algebra. Extreme.Mathematics.EquationSolvers - root finding algorithms. Extreme.Mathematics.LinearAlgebra - vectors , matrices , matrix decompositions, solvers for simultaneous linear equations and least squares. Extreme.Mathematics.Optimization – multi-d function optimization + linear programming. Extreme.Mathematics.SignalProcessing - one and two-dimensional discrete Fourier transforms. Extreme.Mathematics.SpecialFunctions

    Read the article

  • Finding the normals of an oriented bounding box?

    - by Milo
    Here is my problem. I'm working on the physics for my 2D game. All objects are oriented bounding boxes (OBB) based on the separate axis theorem. In order to do collision resolution, I need to be able to get an object out out of the object it is penetrating. To do this I need to find the normal of the face(s) that the other OBB is touching. Example: The small red OBB is a car lets say, and the big OBB is a static building. I need to determine the unit vector that is the normal of the building edge(s) the car is penetrating to get the car out of there. Here are my questions: How do I determine which edges the car is penetrating. I know how to determine the normal of an edge, but how do I know if I need (-dy, dx) or (dy, -dx)? In the case I'm demonstrating the car is penetrating 2 edges, which edge(s) do I use to get it out? Answers or help with any or all of these is greatly appreciated. Thank you

    Read the article

  • Phishing attack stuck with jsp loginAction.do page?

    - by user970533
    I'm testing a phishing website on a staged replica of an jsp web-application. I'm doing the usual attack which involves changing the post and action field of source code to divert to my own written jsp script capture the logins and redirect the victim to the original website. It looks easy, but trust me, it's has been me more then 2 weeks and I cannot write the logins to the text file. I have tested the jsp page on my local wamp server it works fine. In staged, when I click on the ok button for user/password field I'm taken to loginAction.do script. I checked this using the tamper data add-on on Firefox. The only way I was able to make my script run was to use burp proxy intercept the request and change action parameter to refer my uploaded script. I want to know what does an loginAction.do? I have googled it - it's quite common to see it in jsp application. I have checked the code; there is nothing that tells me why the page always points to the .do script instead of mine. Is there some kind of redirection in Tomcat? I like to know. I'm unable to exploit this attack vector? I need the community's help.

    Read the article

  • Java Spotlight Episode 87: Nandini Ramani on Java FX and Embedded Java

    - by Roger Brinkley
    Interview with Nandini Ramani on JavaFX and Embedded Java. Joining us this week on the Java All Star Developer Panel is Arun Gupta, Java EE Guy. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes News JFXtras Project: There’s an app for that! JavaOne 2012 content catalog is online Native packaging for JavaFX in 2.2 EL 3.0 Public Review (JSR 341) el-spec.java.net Events June 18-20, QCon, New York City June 19, CJUG, Chicago June 20, 1871, Chicago June 26-28, Jazoon, Zurich, Switzerland Jun 27, Houston JUG July 5, Java Forum, Stuttgart, Germany Jul 13-14, IndicThreads, Delhi July 30-August 1, JVM Language Summit, Santa Clara Feature InterviewNandini Ramani is Vice President of Development at Oracle in the Fusion Middleware Group. She is responsible for the Java Client Platform and has a long history of creating innovation and futures at Sun Microsystems.Nandini launched the JavaFX Platform and tools and had been actively involved in JavaFX since its inception in May 2007. Prior to joining the client group, Nandini was in the Software CTO Office driving the emerging technologies group for incubation projects. She has a background in both hardware and software, having worked in hardware architecture and simulation team in the Accelerated Graphics group and the graphics and media team in the JavaME group. She was involved in the development of XML standards, as Co-Chair of the W3C Scalable Vector Graphics working group and as a member of the W3C Compound Document Formats working group. She was also a member of several graphics and UI related expert groups in the JCP. Mail Bag What’s Cool "OpenJDK is now the heart of a vital piece of technology that runs large parts of our entire civilization.” Java Magazine PetStore using Java EE 6 - Antonio Goncalves

    Read the article

  • Is there ever a reason to use C++ in a Mac-only application?

    - by Emil Eriksson
    Is there ever a reason to use C++ in a Mac-only application? I not talking about integrating external libraries which are C++, what I mean is using C++ because of any advantages in a particular application. While the UI code must be written in Obj-C, what about logic code? Because of the dynamic nature of Objective-C, C++ method calls tend to be ever so slightly faster but does this have any effect in any imaginable real life scenario? For example, would it make sense to use C++ over Objective-C for simulating large particle systems where some methods would need to be called over and over in short time? I can also see some cases where C++ has a more appropriate "feel". For example when doing graphics, it's nice to have vector and matrix types with appropriate operator overloads and methods. This, to me, seems like it would be a bit clunkier to implement in Objective-C. Also, Objective-C objects can never be treated plain old data structures in the same manner as C++ types since Objective-C objects always have an isa-pointer. Wouldn't it make sense to use C++ instead in something like this? Does anyone have a real life example of a situation where C++ was chosen for some parts of an application? Does Apple use any C++ except for the kernel? (I don't want to start a flame war here, both languages have their merits and I use both equally though in different applications.)

    Read the article

  • CodePlex Daily Summary for Tuesday, August 28, 2012

    CodePlex Daily Summary for Tuesday, August 28, 2012Popular ReleasesImageServer: v1.1: This is the first version releasedChristoc's DotNetNuke Module Development Template: DotNetNuke Project Templates V1.1 for VS2012: This release is specifically for Visual Studio 2012 Support, distributed through the Visual Studio Extensions gallery at http://visualstudiogallery.msdn.microsoft.com/ Check out the blog post for all of the details about this release. http://www.dotnetnuke.com/Resources/Blogs/EntryId/3471/New-Visual-Studio-2012-Project-Templates-for-DotNetNuke.aspx If you need a project template for older versions of Visual Studio check out our previous releases.Home Access Plus+: v8.0: v8.0828.1800 RELEASE CHANGED TO BETA Any issues, please log them on http://www.edugeek.net/forums/home-access-plus/ This is full release, NO upgrade ZIP will be provided as most files require replacing. To upgrade from a previous version, delete everything but your AppData folder, extract all but the AppData folder and run your HAP+ install Documentation is supplied in the Web Zip The Quota Services require executing a script to register the service, this can be found in there install di...Math.NET Numerics: Math.NET Numerics v2.2.0: Major linear algebra rework since v2.1, now available on Codeplex as well (previous versions were only available via NuGet). Also available as NuGet packages: PM> Install-Package MathNet.Numerics PM> Install-Package MathNet.Numerics.FSharp New: instead of the special Silverlight build we now provide a portable version supporting .Net 4, Silverlight 5 and .Net Core (WinRT) 4.5: PM> Install-Package MathNet.Numerics.PortablePhalanger - The PHP Language Compiler for the .NET Framework: 3.0.0.3391 (September 2012): New features: Extended ReflectionClass libxml error handling, constants TreatWarningsAsErrors MSBuild option OnlyPrecompiledCode configuration option; allows to use only compiled code Fixes: ArgsAware exception fix accessing .NET properties bug fix ASP.NET session handler fix for OutOfProc mode Phalanger Tools for Visual Studio: Visual Studio 2010 & 2012 New debugger engine, PHP-like debugging Lot of fixes of project files, formatting, smart indent, colorization etc. Improved ...WatchersNET CKEditor™ Provider for DotNetNuke®: CKEditor Provider 1.14.06: Whats New Added CKEditor 3.6.4 oEmbed Plugin can now handle short urls changes The Template File can now parsed from an xml file instead of js (More Info...) Style Sets can now parsed from an xml file instead of js (More Info...) Fixed Showing wrong Pages in Child Portal in the Link Dialog Fixed Urls in dnnpages Plugin Fixed Issue #6969 WordCount Plugin Fixed Issue #6973 File-Browser: Fixed Deleting of Files File-Browser: Improved loading time File-Browser: Improved the loa...MabiCommerce: MabiCommerce 1.0.1: What's NewSetup now creates shortcuts Fix spelling errors Minor enhancement to the Map window.ScintillaNET: ScintillaNET 2.5.2: This release has been built from the 2.5 branch. Version 2.5.2 is functionally identical to the 2.5.1 release but also includes the XML documentation comments file generated by Visual Studio. It is not 100% comprehensive but it will give you Visual Studio IntelliSense for a large part of the API. Just make sure the ScintillaNET.xml file is in the same folder as the ScintillaNET.dll reference you're using in your projects. (The XML file does not need to be distributed with your application)....WinRT XAML Toolkit: WinRT XAML Toolkit - 1.2.0: WinRT XAML Toolkit based on the Windows 8 RTM SDK. Download the latest source from the SOURCE CODE page. For compiled version use NuGet. You can add it to your project in Visual Studio by going to View/Other Windows/Package Manager Console and entering: PM> Install-Package winrtxamltoolkit Features AsyncUI extensions Controls and control extensions Converters Debugging helpers Imaging IO helpers VisualTree helpers Samples Recent changes NOTE: Namespace changes DebugConsol...BlackJumboDog: Ver5.7.1: 2012.08.25 Ver5.7.1 (1)?????·?????LING?????????????? (2)SMTP???(????)????、?????\?????????????????????Visual Studio Team Foundation Server Branching and Merging Guide: v2 - Visual Studio 2012: Welcome to the Branching and Merging Guide Quality-Bar Details Documentation has been reviewed by Visual Studio ALM Rangers Documentation has been through an independent technical review Documentation has been reviewed by the quality and recording team All critical bugs have been resolved Known Issues / Bugs Spelling, grammar and content revisions are in progress. Hotfix will be published.Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.62: Fix for issue #18525 - escaped characters in CSS identifiers get double-escaped if the character immediately after the backslash is not normally allowed in an identifier. fixed symbol problem with nuget package. 4.62 should have nuget symbols available again. Also want to highlight again the breaking change introduced in 4.61 regarding the renaming of the DLL from AjaxMin.dll to AjaxMinLibrary.dll to fix strong-name collisions between the DLL and the EXE. Please be aware of this change and...nopCommerce. Open source shopping cart (ASP.NET MVC): nopcommerce 2.65: As some of you may know we were planning to release version 2.70 much later (the end of September). But today we have to release this intermediate version (2.65). It fixes a critical issue caused by a third-party assembly when running nopCommerce on a server with .NET 4.5 installed. No major features have been introduced with this release as our development efforts were focused on further enhancements and fixing bugs. To see the full list of fixes and changes please visit the release notes p...MyRouter (Virtual WiFi Router): MyRouter 1.2.9: . Fix: Some missing changes for fixing the window subclassing crash. · Fix: fixed bug when Run MyRouter at the first Time. · Fix: Log File · Fix: improve performance speed application · fix: solve some Exception.Private cloud DMS: Essential server-client full package: Requirements: - SQL server >= 2008 (minimal Express - for Essential recommended) - .NET 4.0 (Server) - .NET 4.0 Client profile (Client) This version allow: - full file system functionality Restrictions: - Maximum 2 parallel users - No share spaces - No hosted business groups - No digital sign functionality - No ActiveDirectory connector - No Performance cache - No workflow - No messagingJavaScript Prototype Extensions: Release 1.1.0.0: Release 1.1.0.0 Add prototype extension for object. Add prototype extension for array.Glyphx: Version 1.2: This release includes the SdlDotNet.dll dependency in the setup, which you will need.TFS Project Test Migrator: TestPlanMigration v1.0.0: Release 1.0.0 This first version do not create the test cases in the target project because the goal was to restore a Test Plan + Test Suite hierarchy after a manual user deletion without restoring all the Project Collection Database. As I discovered, deleting a Test Plan will do the following : - Delete all TestSuiteEntry (the link between a Test Suite node and a Test Case) - Delete all TestSuite (the nodes in the test hierarchy), including root TestSuite - Delete the TestPlan Test c...ERPStore eCommerce FrontOffice: ERPStore.Core V4.0.0.2 MVC4 RTM: ERPStore.Core V4.0.0.2 MVC4 RTM (Code Source)ZXing.Net: ZXing.Net 0.8.0.0: sync with rev. 2393 of the java version improved API, direct support for multiple barcode decoding, wrapper for barcode generating many other improvements and fixes encoder and decoder command line clients demo client for emguCV dev documentation startedNew ProjectsA Constraint Propogation Solver in F#: An experimental implementation of the Variable Consistency "Bucket Elimination" algorithm for constraint propogationAirline Pilot Academy: Taller de Sistemas de Información - UCB ArchiveManageSys: Something about archive managementCriteria Workflow Engine: A C++ Workflow Engine: Desing and execute business process.DnnDash Service: The DnnDash project enables administrators of DotNetNuke websites to view any installed DotNetNuke Dashboard components via other devices.Dynamics NAV UniWPF Addin: This project is Addin control for Microsoft Dynamics NAV 2009, allowing developers to put WPF controls directly to NAV page.Essai Salon de Chat: petit projet de communication basé sur une structure server / client(multi)High performance C# byte array to hex string to byte array: The performance key point for each to/from conversion is the (perpetual) repetition of the same if blocks and calculations...ImageCloudLock Backup Solution: ImageCloudLock 2012 is designed to backup your important items, like photos, financial documents, PDFs, excel documents and personal items to the Cloud service.Login with Facebook in ASP.Net MVC3 & Get data from Facebook User: This project is useful for ASP.Net MVC developer. For login with Facebook in ASP.Net MVC3 & Get data from user's facebook account.Lucy2D: Projet for developing 2D Games based on WPF and XNA. The point is to minimize effort for developers and fast prototyping.Main Street: Human Resources software for small business. Using C# and SQL Server Express.ManagedZFS: A managed implementation of the ZFS filesystem. Reliability, performance, and manageability. Also, *block-pointer rewrite* !!!Metro English Persian Dictionary: This is an English - Persian (Farsi) dictionary designed and developed for Windows 8 Metro User Interface which contains over 50000 words. My Personal Site: My Personal SiteNeverball Framework: Neverball FrameworkSample code: This project is simple a common location for me to store project skeletons and snippets for help bootstrapping other projects.Smart Card Fuzzer: SCFuzz is a smart card middleware fuzz testing tool (fuzzer). Using API hooking, SCFuzz modifies data returned by the card in order to find bugs in the host.Test Activation: Start looking into it.Vector, a .net generic collection to use instead of a List - in niche cases.: The Vector can be used as a replacement for a List if a large number of elements must be stored, and element inserts and deletes are frequent.WCF duplex Message: This is test project uses WCF to implement message broadcast.WCF! WTF?: Getting to know WCFZune to Lync Now Playing: Zune to Lync Now Playing is a simple application that let you display on your Lync Personal Note, the current song playing in Zune Player.

    Read the article

  • Constant game speed independent of variable FPS in OpenGL with GLUT?

    - by Nazgulled
    I've been reading Koen Witters detailed article about different game loop solutions but I'm having some problems implementing the last one with GLUT, which is the recommended one. After reading a couple of articles, tutorials and code from other people on how to achieve a constant game speed, I think that what I currently have implemented (I'll post the code below) is what Koen Witters called Game Speed dependent on Variable FPS, the second on his article. First, through my searching experience, there's a couple of people that probably have the knowledge to help out on this but don't know what GLUT is and I'm going to try and explain (feel free to correct me) the relevant functions for my problem of this OpenGL toolkit. Skip this section if you know what GLUT is and how to play with it. GLUT Toolkit: GLUT is an OpenGL toolkit and helps with common tasks in OpenGL. The glutDisplayFunc(renderScene) takes a pointer to a renderScene() function callback, which will be responsible for rendering everything. The renderScene() function will only be called once after the callback registration. The glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0) takes the number of milliseconds to pass before calling the callback processAnimationTimer(). The last argument is just a value to pass to the timer callback. The processAnimationTimer() will not be called each TIMER_MILLISECONDS but just once. The glutPostRedisplay() function requests GLUT to render a new frame so we need call this every time we change something in the scene. The glutIdleFunc(renderScene) could be used to register a callback to renderScene() (this does not make glutDisplayFunc() irrelevant) but this function should be avoided because the idle callback is continuously called when events are not being received, increasing the CPU load. The glutGet(GLUT_ELAPSED_TIME) function returns the number of milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). That's the timer we have with GLUT. I know there are better alternatives for high resolution timers, but let's keep with this one for now. I think this is enough information on how GLUT renders frames so people that didn't know about it could also pitch in this question to try and help if they fell like it. Current Implementation: Now, I'm not sure I have correctly implemented the second solution proposed by Koen, Game Speed dependent on Variable FPS. The relevant code for that goes like this: #define TICKS_PER_SECOND 30 #define MOVEMENT_SPEED 2.0f const int TIMER_MILLISECONDS = 1000 / TICKS_PER_SECOND; int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void processAnimationTimer(int value) { // setups the timer to be called again glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Requests to render a new frame (this will call my renderScene() once) glutPostRedisplay(); } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) // Setup the timer to be called one first time glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Read the current time since glutInit was called currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } This implementation doesn't fell right. It works in the sense that helps the game speed to be constant dependent on the FPS. So that moving from point A to point B takes the same time no matter the high/low framerate. However, I believe I'm limiting the game framerate with this approach. Each frame will only be rendered when the time callback is called, that means the framerate will be roughly around TICKS_PER_SECOND frames per second. This doesn't feel right, you shouldn't limit your powerful hardware, it's wrong. It's my understanding though, that I still need to calculate the elapsedTime. Just because I'm telling GLUT to call the timer callback every TIMER_MILLISECONDS, it doesn't mean it will always do that on time. I'm not sure how can I fix this and to be completely honest, I have no idea what is the game loop in GLUT, you know, the while( game_is_running ) loop in Koen's article. But it's my understanding that GLUT is event-driven and that game loop starts when I call glutMainLoop() (which never returns), yes? I thought I could register an idle callback with glutIdleFunc() and use that as replacement of glutTimerFunc(), only rendering when necessary (instead of all the time as usual) but when I tested this with an empty callback (like void gameLoop() {}) and it was basically doing nothing, only a black screen, the CPU spiked to 25% and remained there until I killed the game and it went back to normal. So I don't think that's the path to follow. Using glutTimerFunc() is definitely not a good approach to perform all movements/animations based on that, as I'm limiting my game to a constant FPS, not cool. Or maybe I'm using it wrong and my implementation is not right? How exactly can I have a constant game speed with variable FPS? More exactly, how do I correctly implement Koen's Constant Game Speed with Maximum FPS solution (the fourth one on his article) with GLUT? Maybe this is not possible at all with GLUT? If not, what are my alternatives? What is the best approach to this problem (constant game speed) with GLUT? I originally posted this question on Stack Overflow before being pointed out about this site. The following is a different approach I tried after creating the question in SO, so I'm posting it here too. Another Approach: I've been experimenting and here's what I was able to achieve now. Instead of calculating the elapsed time on a timed function (which limits my game's framerate) I'm now doing it in renderScene(). Whenever changes to the scene happen I call glutPostRedisplay() (ie: camera moving, some object animation, etc...) which will make a call to renderScene(). I can use the elapsed time in this function to move my camera for instance. My code has now turned into this: int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void renderScene(void) { (...) // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Setup the camera position and looking point SceneCamera.LookAt(); // All drawing code goes inside this function drawCompleteScene(); glutSwapBuffers(); /* Redraw the frame ONLY if the user is moving the camera (similar code will be needed to redraw the frame for other events) */ if(!IsTupleEmpty(cameraDirection)) { glutPostRedisplay(); } } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } Conclusion, it's working, or so it seems. If I don't move the camera, the CPU usage is low, nothing is being rendered (for testing purposes I only have a grid extending for 4000.0f, while zFar is set to 1000.0f). When I start moving the camera the scene starts redrawing itself. If I keep pressing the move keys, the CPU usage will increase; this is normal behavior. It drops back when I stop moving. Unless I'm missing something, it seems like a good approach for now. I did find this interesting article on iDevGames and this implementation is probably affected by the problem described on that article. What's your thoughts on that? Please note that I'm just doing this for fun, I have no intentions of creating some game to distribute or something like that, not in the near future at least. If I did, I would probably go with something else besides GLUT. But since I'm using GLUT, and other than the problem described on iDevGames, do you think this latest implementation is sufficient for GLUT? The only real issue I can think of right now is that I'll need to keep calling glutPostRedisplay() every time the scene changes something and keep calling it until there's nothing new to redraw. A little complexity added to the code for a better cause, I think. What do you think?

    Read the article

  • Stage3D: Camera pans the whole screen

    - by Thomas Versteeg
    I am trying to create a 2D Stage3D game where you can move the camera around the level in an RTS style. I thought about using Orthographic Matrix3D functions for this but when I try to scroll the whole "stage" also scrolls. This is the Camera code: public function Camera2D(width:int, height:int, zoom:Number = 1) { resize(width, height); _zoom = zoom; } public function resize(width:Number, height:Number):void { _width = width; _height = height; _projectionMatrix = makeMatrix(0, width, 0, height); _recalculate = true; } protected function makeMatrix(left:Number, right:Number, top:Number, bottom:Number, zNear:Number = 0, zFar:Number = 1):Matrix3D { return new Matrix3D(Vector.<Number>([ 2 / (right - left), 0, 0, 0, 0, 2 / (top - bottom), 0, 0, 0, 0, 1 / (zFar - zNear), 0, 0, 0, zNear / (zNear - zFar), 1 ])); } public function get viewMatrix():Matrix3D { if (_recalculate) { _recalculate = false; _viewMatrix.identity(); _viewMatrix.appendTranslation( -_width / 2 - _x, -_height / 2 - y, 0); _viewMatrix.appendScale(_zoom, _zoom, 1); _renderMatrix.identity(); _renderMatrix.append(_viewMatrix); _renderMatrix.append(_projectionMatrix); } return _renderMatrix; } And the camera is send directly to the GPU with: c3d.setProgramConstantsFromMatrix(Context3DProgramType.VERTEX, 0, cameraMatrix, true); And these are the shaders: ------Vertex Shader------ m44 op, va0, vc0 mov v0, va1.xy mov v0.z, va0.z ------Fragment Shader------ tex ft0, v0, fs0 <2d,linear,nomip> mov oc, ft1 Here is a example and here are two screenshots to show what I mean: How do I only let the inside of the stage3D scroll and not the whole stage?

    Read the article

  • converting a mouse click to a ray

    - by Will
    I have a perspective projection. When the user clicks on the screen, I want to compute the ray between the near and far planes that projects from the mouse point, so I can do some ray intersection code with my world. I am using my own matrix and vector and ray classes and they all work as expected. However, when I try and convert the ray to world coordinates my far always ends up as 0,0,0 and so my ray goes from the mouse click to the centre of the object space, rather than through it. (The x and y coordinates of near and far are identical, they differ only in the z coordinates where they are negatives of each other) GLint vp[4]; glGetIntegerv(GL_VIEWPORT,vp); matrix_t mv, p; glGetFloatv(GL_MODELVIEW_MATRIX,mv.f); glGetFloatv(GL_PROJECTION_MATRIX,p.f); const matrix_t inv = (mv*p).inverse(); const float unit_x = (2.0f*((float)(x-vp[0])/(vp[2]-vp[0])))-1.0f, unit_y = 1.0f-(2.0f*((float)(y-vp[1])/(vp[3]-vp[1]))); const vec_t near(vec_t(unit_x,unit_y,-1)*inv); const vec_t far(vec_t(unit_x,unit_y,1)*inv); ray = ray_t(near,far-near); What have I got wrong? (How do you unproject the mouse-point?)

    Read the article

  • How-To Backup, Swap, and Update Your Wii Game Saves

    - by Jason Fitzpatrick
    Whether you want to backup your game saves because you’ve worked so hard on them or you want to import game saves precisely so you don’t have to work so hard, we’ve got you covered. Image adapted from icon set by GasClown. There are a multitude of reasons you might want to export and import game saves from your Wii including: saving the progress on your favorite games before sending in your Wii for service, copying the progress to a friend’s or your secondary Wii, and importing saved games from the web or your friend’s Wii so that you don’t have to bust your ass to unlock all the specialty items yourself. (Here’s looking at you Mario Kart and House of the Dead: Overkill.) Latest Features How-To Geek ETC How To Create Your Own Custom ASCII Art from Any Image How To Process Camera Raw Without Paying for Adobe Photoshop How Do You Block Annoying Text Message (SMS) Spam? How to Use and Master the Notoriously Difficult Pen Tool in Photoshop HTG Explains: What Are the Differences Between All Those Audio Formats? How To Use Layer Masks and Vector Masks to Remove Complex Backgrounds in Photoshop Bring Summer Back to Your Desktop with the LandscapeTheme for Chrome and Iron The Prospector – Home Dash Extension Creates a Whole New Browsing Experience in Firefox KinEmote Links Kinect to Windows Why Nobody Reads Web Site Privacy Policies [Infographic] Asian Temple in the Snow Wallpaper 10 Weird Gaming Records from the Guinness Book

    Read the article

< Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >