Search Results

Search found 22161 results on 887 pages for 'idl programming language'.

Page 79/887 | < Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >

  • In which language the KIS application might have been developed??

    - by Jeba
    Hello all, I just went through this link http://www.pcauthority.com.au/Feature/91093,the-tsar-of-antivirus.aspx and found that it's developed using c/c++ and visual studio with a little assembly language support. As a programmer i just want to know in what programming language the kaspersky internet security User Interface(UI) has been developed? Might be using QT(coz. of c++)? or using MFC(coz. of visual studio)?? With side tab like thing the UI looks good. Expecting the answers from expert analysts.

    Read the article

  • Is it wise to rely on default features of a programming language?

    - by George Edison
    Should I frequently rely on default values? For example, in PHP, if you have the following: <?php $var .= "Value"; ?> This is perfectly fine - it works. But what if assignment like this to a previously unused variable is later eliminated from the language? (I'm not referring to just general assignment to an unused variable.) There are countless examples of where the default value of something has changed and so much existing code was then useless. On the other hand, without default values, there is a lot of code redundancy. What is the proper way of dealing with this?

    Read the article

  • Can a programming language without arrays be turing-complete?

    - by Ring
    My question is simple: There are no arrays possible. That means you can address variables only "statically" by directly using their unique name. (This already throws out the default array syntax variable[ index ] and variable variables) "Emulated arrays" are counted as arrays and excluded too. Examples: You could basically simulate arrays using strings (quite easily actually) or use variable variables as in PHP. Can such a language be turing-complete? Brainf*ck for example has arrays, in fact it is one big array, isn't it?

    Read the article

  • Is Learning C++ Through The Qt Framework Really Learning C++

    - by user866190
    The problem I have, is that most of the C++ books I read spend almost forever on syntax and the basics of the language, e.g. for and loops while, arrays, lists, pointers, etc. But they never seem to build anything that is simple enough to use for learning, yet practical enough to get you to understand the philosophy and power of the language. Then I stumbled upon QT which is an amazing library! But working through the demos they have, it seems like I am now in the reverse dilemma. I feel like the rich man's son driving round in a sports car subsidized by the father. Like I could build fantastic software, but have no clue what's going on under the hood. As an example of my dilemma take the task of building a simple web browser. In pure C++, I wouldn't even know where to start, yet with the Qt library it can be done within a few lines on code. I am not complaining about this. I am just wondering how to fill the knowledge void between the basic structure of the language and the high level interface that the Qt framework provides?

    Read the article

  • Python productivity VS Java Productivity

    - by toc777
    Over on SO I came across a question regarding which platform, Java or Python is best for developing on Google AppEngine. Many people were boasting of the increased productivity gained from using Python over Java. One thing I would say about the Python vs Java productivity argument, is Java has excellent IDE's to speed up development where as Python is really lacking in this area because of its dynamic nature. So even though I prefer to use Python as a language, I don't believe it gives quite the productivity boost compared to Java especially when using a new framework. Obviously if it were Java vs Python and the only editor you could use was VIM then Python would give you a huge productivity boost but when IDE's are brought into the equation its not as clear cut. I think Java's merits are often solely evaluated on a language level and often on out dated assumptions but Java has many benefits external to the language itself, e.g the JVM (often criticized but offers huge potential), excellent IDE's and tools, huge numbers of third party libraries, platforms etc.. Question, Does Python/related dynamic languages really give the huge productivity boosts often talked about? (with consideration given to using new frameworks and working with medium to large applications).

    Read the article

  • Why is C++ backward compatibility important / necessary?

    - by Giorgio
    As far as understand it is a well-established opinion within the C++ community that C is an obsolete language that was useful 20 years ago but cannot support many modern good programming practices, or even encourages bad practices; certain features that were typical of C++ (C with classes) during the nineties are also obsolete and considered bad practice in modern C++ (e.g., new and delete should be replaced by smart pointer primitives). In view of this, I often wonder why backward compatibility with C and obsolete C++ features is still considered important: to my knowledge there is no 100% compatibility, but most of C and C++ are contained in C++11 as a subset. Of course, there is a lot of legacy code and libraries (possibly containing templates) that are written using a previous standard of the language and which still need to be maintained or used in connection with new code. Nevertheless, maybe it would still be possible to drop obsolete C and C++ features (e.g. the mentioned new / delete) from a future C++ standard so that it is impossible to use them in new code. In this way, old and dangerous programming practices would be quickly banned from new code, and modern, better programming practices would be enforced by the compiler. Legacy code could still be maintained using separate compilation (having C alongside C++ source files is already a common practice). Developers would have to choose between one compiler supporting the old-style C++ that was common during the nineties and a compiler supporting the modern C++? style (the question mark indicates a future, hypothetical revision). Only mixing the two styles would be forbidden. Would this be a viable strategy for encouraging the adoption of modern C++ practices? Are there conceptual reasons or technical problems (e.g. compiling existing templates) that make such a change undesirable or even impossible? Has such a development been proposed in the C++ community. If there has been some extended discussion on the topic, is there any material on-line?

    Read the article

  • Python productivity VS Java Productivity

    - by toc777
    Over on SO I came across a question regarding which platform, Java or Python is best for developing on Google AppEngine. Many people were boasting of the increased productivity gained from using Python over Java. One thing I would say about the Python vs Java productivity argument, is Java has excellent IDE's to speed up development where as Python is really lacking in this area because of its dynamic nature. So even though I prefer to use Python as a language, I don't believe it gives quite the productivity boost compared to Java especially when using a new framework. Obviously if it were Java vs Python and the only editor you could use was VIM then Python would give you a huge productivity boost but when IDE's are brought into the equation its not as clear cut. I think Java's merits are often solely evaluated on a language level and often on out dated assumptions but Java has many benefits external to the language itself, e.g the JVM (often criticized but offers huge potential), excellent IDE's and tools, huge numbers of third party libraries, platforms etc.. Question, Does Python/related dynamic languages really give the huge productivity boosts often talked about? (with consideration given to using new frameworks and working with medium to large applications).

    Read the article

  • Learning frameworks without learning languages

    - by Tom Morris
    I've been reading up on GUI frameworks including WPF, GTK and Cocoa (UIKit). I don't really do anything related to Windows (I'm a Mac and Linux guy) or .NET, but I'd like to be able to throw together GUIs for various operating systems. We are in the enviable position now of having high level scripting languages that work with all of the major GUI toolkits. If you are doing Linux GUI programming, you could use GTK in C, but why not just use PyGTK (or PyQt). Similarly, for Java, one can use JRuby. For Mac, there's MacRuby. And on .NET, there's IronRuby. This is all fine and good, and if you are building a serious project, there are tradeoffs that you might encounter when deciding whether to, say, build a WPF app in C# or in IronRuby, or whether you are going to use PyGTK or not. The subjective question I have is: what about learning those frameworks? Are there strong reasons why one should or should not learn something like WPF or Cocoa in a language one is familiar with rather than having to learn a new language as well? I'm not saying you should never learn the language. If you are building Windows applications and you don't know C#, that might be a bit of a problem. But do you think it is okay to learn the framework first? This is both a general question and a specific question. I've used some Cocoa classes from Ruby and Python using things like PyObjC and there always seems to be an impedance mismatch because of the way Objective C libraries get built. Experiences and strong opinions welcome!

    Read the article

  • Why do programmers seem to be such bad spellers?

    - by Joel Etherton
    Programming languages are very precise tools based on explicit grammars. They're very picky, and when being used they require an exacting amount of detail. C#, for instance, is case sensitive so even getting the case of an argument wrong will cause an error. Questions asked all over the StackExchange are replete with misspellings, grammatical errors, and other problems that seem to indicate a lack of attention to detail when it comes to the language itself. Now, I understand there are a lot of programmers out there whose native language is not English, and I am not directing this question (rant one might say) at them. I'm referring to the individuals who are clearly from an English speaking background who refuse to pay attention to these simple details. I am not perfect by any means, but I try to use the language correctly so that my meaning will be understood correctly. I find programmers misspelling variable names, classes, and all manner of words in any kind of technical documentation they might write. I have had to withstand code where I am repeatedly referring to the subit[sic] button or HttpWebResponse reponse. The general complaint about bad spelling is one thing, and it will always be there. I accept that. But my question/comment is about the proclivity of bad spelling within the programming community. I would think that people who deal with such exacting tools to be more naturally predisposed towards proper spelling. Yet this doesn't seem to be the case.

    Read the article

  • Unit testing statically typed functional code

    - by back2dos
    I wanted to ask you people, in which cases it makes sense to unit test statically typed functional code, as written in haskell, scala, ocaml, nemerle, f# or haXe (the last is what I am really interested in, but I wanted to tap into the knowledge of the bigger communities). I ask this because from my understanding: One aspect of unit tests is to have the specs in runnable form. However when employing a declarative style, that directly maps the formalized specs to language semantics, is it even actually possible to express the specs in runnable form in a separate way, that adds value? The more obvious aspect of unit tests is to track down errors that cannot be revealed through static analysis. Given that type safe functional code is a good tool to code extremely close to what your static analyzer understands. However a simple mistake like using x instead of y (both being coordinates) in your code cannot be covered. However such a mistake could also arise while writing the test code, so I am not sure whether its worth the effort. Unit tests do introduce redundancy, which means that when requirements change, the code implementing them and the tests covering this code must both be changed. This overhead of course is about constant, so one could argue, that it doesn't really matter. In fact, in languages like Ruby it really doesn't compared to the benefits, but given how statically typed functional programming covers a lot of the ground unit tests are intended for, it feels like it's a constant overhead one can simply reduce without penalty. From this I'd deduce that unit tests are somewhat obsolete in this programming style. Of course such a claim can only lead to religious wars, so let me boil this down to a simple question: When you use such a programming style, to which extents do you use unit tests and why (what quality is it you hope to gain for your code)? Or the other way round: do you have criteria by which you can qualify a unit of statically typed functional code as covered by the static analyzer and hence needs no unit test coverage?

    Read the article

  • python/django problem with sessions and language

    - by freakish
    Hello everyone! I have the following problem: on the main page I can change language. New language is saved in request.session['django_language']. I also have SESSION_COOKIE_DOMAIN set to my site, so session should be inherited by subdomains. And it is, because after changing language I check request.session['django_language'] in subdomains and it's fine. Then I use django.middleware.locale.LocaleMiddleware to translate my pages. And it works perfectly... only on main site! If I change language and refresh main site - it is ok. However, if I change language and go to a subpage (for example /LogIn), then the page is NOT translated at all. It stays on default language. This is really strange, because if I use {% load i18n %} {% get_current_language as lang %} in this subpage, then lang is good language. There is no mistake. What kind of problem can it be? Some suggestions?

    Read the article

  • I don't know C. And why should I learn it?

    - by Stephen
    My first programming language was PHP (gasp). After that I started working with JavaScript. I've recently done work in C#. I've never once looked at low or mid level languages like C. The general consensus in the programming-community-at-large is that "a programmer who hasn't learned something like C, frankly, just can't handle programming concepts like pointers, data types, passing values by reference, etc." I do not agree. I argue that: Because high level languages are easily accessible, more "non-programmers" dive in and make a mess, and In order to really get anything done in a high level language, one needs to understand the same similar concepts that most proponents of "learn-low-level-first" evangelize about. Some people need to know C. Those people have jobs that require them to write low to mid-level code. I'm sure C is awesome. I'm sure there are a few bad programmers who know C. My question is, why the bias? As a good, honest, hungry programmer, if I had to learn C (for some unforeseen reason), I would learn C. Considering the multitude of languages out there, shouldn't good programmers focus on learning what advances us? Shouldn't we learn what interests us? Should we not utilize our finite time moving forward? Why do some programmers disagree with this? I believe that striving for excellence in what you do is the fundamental deterministic trait between good programmers and bad ones. Does anyone have any real world examples of how something written in a high level language--say Java, Pascal, PHP, or Javascript--truely benefitted from a prior knowledge of C? Examples would be most appreciated. (revised to better coincide with the six guidelines.)

    Read the article

  • How can I make sense of the word "Functor" from a semantic standpoint?

    - by guillaume31
    When facing new programming jargon words, I first try to reason about them from an semantic and etymological standpoint when possible (that is, when they aren't obscure acronyms). For instance, you can get the beginning of a hint of what things like Polymorphism or even Monad are about with the help of a little Greek/Latin. At the very least, once you've learned the concept, the word itself appears to go along with it well. I guess that's part of why we name things names, to make mental representations and associations more fluent. I found Functor to be a tougher nut to crack. Not so much the C++ meaning -- an object that acts (-or) as a function (funct-), but the various functional meanings (in ML, Haskell) definitely left me puzzled. From the (mathematics) Functor Wikipedia article, it seems the word was borrowed from linguistics. I think I get what a "function word" or "functor" means in that context - a word that "makes function" as opposed to a word that "makes sense". But I can't really relate that to the notion of Functor in category theory, let alone functional programming. I imagined a Functor to be something that creates functions, or behaves like a function, or short for "functional constructor", but none of those seems to fit... How do experienced functional programmers reason about this ? Do they just need any label to put in front of a concept and be fine with it ? Generally speaking, isn't it partly why advanced functional programming is hard to grasp for mere mortals compared to, say, OO -- very abstract in that you can't relate it to anything familiar ? Note that I don't need a definition of Functor, only an explanation that would allow me to relate it to something more tangible, if there is any.

    Read the article

  • I don't know C. And why should I learn it?

    - by Stephen
    My first programming language was PHP (gasp). After that I started working with JavaScript. I've recently done work in C#. I've never once looked at low or mid level languages like C. The general consensus in the programming-community-at-large is that "a programmer who hasn't learned something like C, frankly, just can't handle programming concepts like pointers, data types, passing values by reference, etc." I do not agree. I argue that: Because high level languages are easily accessible, more "non-programmers" dive in and make a mess In order to really get anything done in a high level language, one needs to understand the same similar concepts that most proponents of "learn-low-level-first" evangelize about. Some people need to know C; those people have jobs that require them to write low to mid-level code. I'm sure C is awesome, and I'm sure there are a few bad programmers who know C. Why the bias? As a good, honest, hungry programmer, if I had to learn C (for some unforeseen reason), I would learn C. Considering the multitude of languages out there, shouldn't good programmers focus on learning what advances us? Shouldn't we learn what interests us? Should we not utilize our finite time moving forward? Why do some programmers disagree with this? I believe that striving for excellence in what you do is the fundamental deterministic trait between good programmers and bad ones. Does anyone have any real world examples of how something written in a high level language—say Java, Pascal, PHP, or Javascript—truely benefitted from a prior knowledge of C? Examples would be most appreciated.

    Read the article

  • Generalist Languages: Dying or Alive and Well?

    - by dsimcha
    Around here, it seems like there's somewhat of a consensus that generalist programming languages (that try to be good at everything, support multiple paradigms, support both very high- and very low-level programming), etc. are a bad idea, and that it's better to pick the right tool for the job and use lots of different languages. I see three major areas where this is flawed: Interfacing multiple languages is always at least a source of friction and is sometimes practically impossible. How severe a problem this is depends on how fine-grained the interfacing is. Near the boundary between the two languages, though, you're basically limited to the intersection of their features, and you have to care about things like binary interfaces that you usually wouldn't. Passing complex data structures (i.e. not just primitives and arrays of primitives) between languages is almost always a hassle. Furthermore, shifting between different syntaxes, different conventions, etc. can be confusing and annoying, though this is a fairly minor complaint. Requirements are never set in stone. I hate picking a language thinking it's the right tool for the job, then realizing that, when some new requirement surfaces, it's actually a terrible choice for that requirement. This has happened to me several times before, usually when working with languages that are very slow, very domain specific and/or has very poor concurrency/parallelism support. When you program in a language for a while, you start to build up a personal toolbox of small utility functions/classes/programs. The value of these goes drastically down if you're forced to use a different language than the one you've accumulated all this code in. What am I missing here? Why shouldn't more focus be placed on generalist languages? Are generalist languages as a category dying or alive and well?

    Read the article

  • How to write constructors which might fail to properly instantiate an object

    - by whitman
    Sometimes you need to write a constructor which can fail. For instance, say I want to instantiate an object with a file path, something like obj = new Object("/home/user/foo_file") As long as the path points to an appropriate file everything's fine. But if the string is not a valid path things should break. But how? You could: 1. throw an exception 2. return null object (if your programming language allows constructors to return values) 3. return a valid object but with a flag indicating that its path wasn't set properly (ugh) 4. others? I assume that the "best practices" of various programming languages would implement this differently. For instance I think ObjC prefers (2). But (2) would be impossible to implement in C++ where constructors must have void as a return type. In that case I take it that (1) is used. In your programming language of choice can you show how you'd handle this problem and explain why?

    Read the article

  • Misconceptions about purely functional languages?

    - by Giorgio
    I often encounter the following statements / arguments: Pure functional programming languages do not allow side effects (and are therefore of little use in practice because any useful program does have side effects, e.g. when it interacts with the external world). Pure functional programming languages do not allow to write a program that maintains state (which makes programming very awkward because in many application you do need state). I am not an expert in functional languages but here is what I have understood about these topics until now. Regarding point 1, you can interact with the environment in purely functional languages but you have to explicitly mark the code (functions) that introduces them (e.g. in Haskell by means of monadic types). Also, AFAIK computing by side effects (destructively updating data) should also be possible (using monadic types?) but is not the preferred way of working. Regarding point 2, AFAIK you can represent state by threading values through several computation steps (in Haskell, again, using monadic types) but I have no practical experience doing this and my understanding is rather vague. So, are the two statements above correct in any sense or are they just misconceptions about purely functional languages? If they are misconceptions, how did they come about? Could you write a (possibly small) code snippet illustrating the Haskell idiomatic way to (1) implement side effects and (2) implement a computation with state?

    Read the article

  • Can higher-order functions in FP be interpreted as some kind of dependency injection?

    - by Giorgio
    According to this article, in object-oriented programming / design dependency injection involves a dependent consumer, a declaration of a component's dependencies, defined as interface contracts, an injector that creates instances of classes that implement a given dependency interface on request. Let us now consider a higher-order function in a functional programming language, e.g. the Haskell function filter :: (a -> Bool) -> [a] -> [a] from Data.List. This function transforms a list into another list and, in order to perform its job, it uses (consumes) an external predicate function that must be provided by its caller, e.g. the expression filter (\x -> (mod x 2) == 0) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] selects all even numbers from the input list. But isn't this construction very similar to the pattern illustrated above, where the filter function is the dependent consumer, the signature (a -> Bool) of the function argument is the interface contract, the expression that uses the higher-order is the injector that, in this particular case, injects the implementation (\x -> (mod x 2) == 0) of the contract. More in general, can one relate higher-order functions and their usage pattern in functional programming to the dependency injection pattern in object-oriented languages? Or in the inverse direction, can dependency injection be compared to using some kind of higher-order function?

    Read the article

  • Hobbyist transitioning to earn money on paid work?

    - by Chelonian
    I got into hobbyist Python programming some years ago on a whim, having never programmed before other than BASIC way back when, and little by little have cobbled together a, in my opinion, nice little desktop application that I might try to get out there in some fashion someday. It's roughly 15,000 logical lines of code, and includes use of Python, wxPython, SQLite, and a number of other libraries, works on Win and Linux (maybe Mac, untested) and I've gotten some good feedback about the application's virtues from non-programmer friends. I've also done a small application for data collection for animal behavior experiments, and an ad hoc tool to help generate a web page...and I've authored some tutorials. I consider my Python skills to be appreciably limited, my SQL skills to be very limited, but I'm not totally out to sea, either (e.g. I did FizzBuzz in a few minutes, did a "Monty Hall Dilemma" simulator in some minutes, etc.). I also put a strong premium on quality user experience; that is, the look and feel matters much to me and the software looks quite good, I feel. I know no other programming languages yet. I also know the basics of HTML/CSS (not considering them programming languages) and have created an artist's web page (that was described by a friend as "incredibly slick"...it's really not, though), and have a scientific background. I'm curious: Aside from directly selling my software, what's roughly possible--if anything--in terms of earning either side money on gigs, or actually getting hired at some level in the software industry, for someone with this general skill set?

    Read the article

  • Do we ethically have the right to use the MAC Address for verification purposes?

    - by Matt Ridge
    I am writing a program, or starting at the very beginning of it, and I am thinking of purchase verification systems as a final step. I will be catering to Macs, PCs, and possibly Linux if all is said and done. I will also be programming this for smartphones as well using C++ and Objective-C. (I am writing a blueprint before going head first into it) That being said, I am not asking for help on doing it yet, but what I’m looking for is a realistic measurement for what could be expected as a viable and ethical option for purchase verification systems. Apple through the Apple Store, and some other stores out there have their own "You bought it" check. I am looking to use a three prong verification system. Email/password 16 to 32 character serial number using alpha/numeric and symbols with Upper and lowercase variants. MAC Address. The first two are in my mind ok, but I have to ask on an ethical standpoint, is a MAC Address to lock the software to said hardware unethical, or is it smart? I understand if an Ethernet card changes if not part of the logic board, or if the logic board changes so does the MAC address, so if that changes it will have to be re-verified, but I have to ask with how everything is today... Is it ethical to actually use the MAC address as a validation key or no? Should I be forward with this kind of verification system or should I keep it hidden as a secret? Yes I know hackers and others will find ways of knowing what I am doing, but in reality this is why I am asking. I know no verification is foolproof, but making it so that its harder to break is something I've always been interested in, and learning how to program is bringing up these questions, because I don't want to assume one thing and find out it's not really accepted in the programming world as a "you shouldn't do that" maneuver... Thanks in advance... I know this is my first programming question, but I am just learning how to program, and I am just making sure I'm not breaking some ethical programmer credo I shouldn't...

    Read the article

  • How often do you review fundamentals?

    - by mlnyc
    So I've been out of school for a year and a half now. In school, of course we covered all the fundamentals: OS, databases, programming languages (i.e. syntax, binding rules, exception handling, recursion, etc), and fundamental algorithms. the rest were more in-depth topics on things like NLP, data mining, etc. Now, a year ago if you would have told me to write a quicksort, or reverse a singly-linked list, analyze the time complexity of this 'naive' algorithm vs it's dynamic programming counterpart, etc I would have been able to give you a decent and hopefully satisfying answer. But if you would have asked me more real world questions I might have been stumped (things like how would handle logging for an application, or security difference between GET and POST, differences between SQL Server and Oracle SQL, anything I list on my resume as currently working with [jQuery questions, ColdFusion questions, ...] etc) Now, I feel things are the opposite. I haven't wrote my own sort since graduating, and I don't really have to worry much about theoretical things that do not naturally fall into problems I am trying to solve. For example, I might give you some great SQL solutions using an analytical function that I would have otherwise been stumped on or write a cool web application using angular or something but ask me to write an algo for insertAfter(Element* elem) and I might not be able to do it in a reasonable time frame. I guess my question here to the experienced programmers is how do you balance the need to both learn and experiment with new technologies (fun!), working on personal projects (also fun!) working and solving real world problems in a timeboxed environment (so I might reach out to a library that does what I want rather than re-invent the wheel so that I can focus on the problem I am trying to solve) (work, basically), and refreshing on old theoretical material which is still valid for interviews and such (can be a drag)? Do you review older material (such as famous algorithms, dynamic programming, Big-O analysis, locking implementations) regularly or just when you need it? How much time do you dedicate to both in your 'deliberate practice' and do you have a certain to-do list of topics that you want to work on?

    Read the article

< Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >