Search Results

Search found 20321 results on 813 pages for 'mobile applications'.

Page 79/813 | < Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >

  • Blend for Visual Studio 2013 Prototyping Applications with SketchFlow

    - by T
    Originally posted on: http://geekswithblogs.net/tburger/archive/2014/08/10/blend-for-visual-studio-2013-prototyping-applications-with-sketchflow.aspxSketchFlow enables rapid creating of dynamic interface mockups very quickly. The SketchFlow workspace is the same as the standard Blend workspace with the inclusion of three panels: the SketchFlow Feedback panel, the SketchFlow Animation panel and the SketchFlow Map panel. By using SketchFlow to prototype, you can get feedback early in the process. It helps to surface possible issues, lower development iterations, and increase stakeholder buy in. SketchFlow prototypes not only provide an initial look but also provide a way to add additional ideas and input and make sure the team is on track prior to investing in complete development. When you have completed the prototyping, you can discard the prototype and just use the lessons learned to design the application from or extract individual elements from your prototype and include them in the application. I don’t recommend trying to transition the entire project into a development project. Objects that you add with the SketchFlow style have a hand-sketched look. The sketch style is used to remind stakeholders that this is a prototype. This encourages them to focus on the flow and functionality without getting distracted by design details. The sketchflow assets are under sketchflow in the asset panel and are identifiable by the postfix “–Sketch”. For example “Button-Sketch”. You can mix sketch and standard controls in your interface, if required. Be creative, if there is a missing control or your interface has a different look and feel than the out of the box one, reuse other sketch controls to mimic the functionality or look and feel. Only use standard controls if it doesn’t distract from the idea that this is a prototype and not a standard application. The SketchFlow Map panel provides information about the structure of your application. To create a new screen in your prototype: Right-click the map surface and choose “Create a Connected Screen”. Name the screens with names that are meaningful to the stakeholders. The start screen is the one that has the green arrow. To change the start screen, right click on any other screen and set to start screen. Only one screen can be the start screen at a time. Rounded screen are component screens to mimic reusable custom controls that will be built into the final application. You can change the colors of all of the boxes and should use colors to create functional groupings. The groupings can be identified in the SketchFlow Project Settings. To add connections between screens in the SketchFlow Map panel. Move the mouse over a screen in the SketchFlow and a menu will appear at the bottom of the screen node. In the menu, click Connect to an existing screen. Drag the arrow to another screen on the Map. You add navigation to your prototype by adding connections on the SketchFlow map or by adding navigation directly to items on your interface. To add navigation from objects on the artboard, right click the item then from the menu, choose “Navigate to”. This will expose a sub-menu with available screens, backward, or forward. When the map has connected screens, the SketchFlow Player displays the connected screens on the Navigate sidebar. All screens show in the SketchFlow Player Map. To see the SketchFlow Player, run your SketchFlow prototype. The Navigation sidebar is meant to show the desired user work flow. The map can be used to view the different screens regardless of suggested navigation in the navigation bar. The map is able to be hidden and shown. As mentioned, a component screen is a shared screen that is used in more than one screen and generally represents what will be a custom object in the application. To create a component screen, you can create a screen, right click on it in the SketchFlow Map and choose “Make into component screen”. You can mouse over a screen and from the menu that appears underneath, choose create and insert component screen. To use an existing screen, select if from the Asset panel under SketchFlow, Components. You can use Storyboards and Visual State animations in your SketchFlow project. However, SketchFlow also offers its own animation technique that is simpler and better suited for prototyping. The SketchFlow Animation panel is above your artboard by default. In SketchFlow animation, you create frames and then position the elements on your interface for each frame. You then specify elapsed time and any effects you want to apply to the transition. The + at the top is what creates new frames. Once you have a new Frame, select it and change the property you want to animate. In the example above, I changed the Text of the result box. You can adjust the time between frames in the lower area between the frames. The easing and effects functions are changed in the center between each frame. You edit the hold time for frames by clicking the clock icon in the lower left and the hold time will appear on each frame and can be edited. The FluidLayout icon (also located in the lower left) will create smooth transitions. Next to the FluidLayout icon is the name of that Animation. You can rename the animation by clicking on it and editing the name. The down arrow chevrons next to the name allow you to view the list of all animations in this prototype and select them for editing. To add the animation to the interface object (such as a button to start the animation), select the PlaySketchFlowAnimationAction from the SketchFlow behaviors in the Assets menu and drag it to an object on your interface. With the PlaySketchFlowAnimationAction that you just added selected in the Objects and Timeline, edit the properties to change the EventName to the event you want and choose the SketchFlowAnimation you want from the drop down list. You may want to add additional information to your screens that isn’t really part of the prototype but is relevant information or a request for clarification or feedback from the reviewer. You do this with annotations or notes. Both appear on the user interface, however, annotations can be switched on or off at design and review time. Notes cannot be switched off. To add an Annotation, chose the Create Annotation from the Tools menu. The annotation appears on the UI where you will add the notes. To display or Hide annotations, click the annotation toggle at the bottom right on the artboard . After to toggle annotations on, the identifier of the person who created them appears on the artboard and you must click that to expand the notes. To add a note to the artboard, simply select the Note-Sketch from Assets ->SketchFlow ->Styles ->Sketch Styles. Drag and drop it to the artboard and place where you want it. When you are ready for users to review the prototype, you have a few options available. Click File -> Export and choose one of the options from the list: Publish to Sharepoint, Package SketchFlowProject, Export to Microsoft Word, or Export as Images. I suggest you play with as many of the options as you can to see what they do. Both the Sharepoint and Packaged SketchFlowProject allow you to collect feedback from one or more users that you can import into the project. The user can make notes on the UI and in the Feedback area in the bottom left corner of the player. When the user is done adding feedback, it is exported from the right most folder icon in the My Feedback panel. Feeback is imported on a panel named SketchFlow Feedback. To get that panel to show up, select Window -> SketchFlow Feedback. Once you have the panel showing, click the + in the upper right of the panel and find the notes you exported. When imported, they will show up in a list and on the artboard. To document your prototype, use the Export to Microsoft Word option from the File menu. That should get you started with prototyping.

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • Securing WebSocket applications on Glassfish

    - by Pavel Bucek
    Today we are going to cover deploying secured WebSocket applications on Glassfish and access to these services using WebSocket Client API. WebSocket server application setup Our server endpoint might look as simple as this: @ServerEndpoint("/echo") public class EchoEndpoint { @OnMessage   public String echo(String message) {     return message + " (from your server)";   } } Everything else must be configured on container level. We can start with enabling SSL, which will require web.xml to be added to your project. For starters, it might look as following: <web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee">   <security-constraint>     <web-resource-collection>       <web-resource-name>Protected resource</web-resource-name>       <url-pattern>/*</url-pattern>       <http-method>GET</http-method>     </web-resource-collection>     <!-- https -->     <user-data-constraint>       <transport-guarantee>CONFIDENTIAL</transport-guarantee>     </user-data-constraint>   </security-constraint> </web-app> This is minimal web.xml for this task - web-resource-collection just defines URL pattern and HTTP method(s) we want to put a constraint on and user-data-constraint defines that constraint, which is in our case transport-guarantee. More information about these properties and security settings for web application can be found in Oracle Java EE 7 Tutorial. I have some simple webpage attached as well, so I can test my endpoint right away. You can find it (along with complete project) in Tyrus workspace: [webpage] [whole project]. After deploying this application to Glassfish Application Server, you should be able to hit it using your favorite browser. URL where my application resides is https://localhost:8181/sample-echo-https/ (may be different, depends on other configuration). My browser warns me about untrusted certificate (I use what freshly built Glassfish provides - self signed certificates) and after adding an exception for this site, I can see my webpage and I am able to securely connect to wss://localhost:8181/sample-echo-https/echo. WebSocket client Already mentioned demo application also contains test client, but execution of this is skipped for normal build. Reason for this is that Glassfish uses these self-signed "random" untrusted certificates and you are (in most cases) not able to connect to these services without any additional settings. Creating test WebSocket client is actually quite similar to server side, only difference is that you have to somewhere create client container and invoke connect with some additional info. Java API for WebSocket allows you to use annotated and programmatic way to construct endpoints. Server side shows the annotated case, so let's see how the programmatic approach will look. final WebSocketContainer client = ContainerProvider.getWebSocketContainer(); client.connectToServer(new Endpoint() {   @Override   public void onOpen(Session session, EndpointConfig EndpointConfig) {     try {       // register message handler - will just print out the       // received message on standard output.       session.addMessageHandler(new MessageHandler.Whole<String>() {       @Override         public void onMessage(String message) {          System.out.println("### Received: " + message);         }       });       // send a message       session.getBasicRemote().sendText("Do or do not, there is no try.");     } catch (IOException e) {       // do nothing     }   } }, ClientEndpointConfig.Builder.create().build(),    URI.create("wss://localhost:8181/sample-echo-https/echo")); This client should work with some secured endpoint with valid certificated signed by some trusted certificate authority (you can try that with wss://echo.websocket.org). Accessing our Glassfish instance will require some additional settings. You can tell Java which certificated you trust by adding -Djavax.net.ssl.trustStore property (and few others in case you are using linked sample). Complete command line when you are testing your service might need to look somewhat like: mvn clean test -Djavax.net.ssl.trustStore=$AS_MAIN/domains/domain1/config/cacerts.jks\ -Djavax.net.ssl.trustStorePassword=changeit -Dtyrus.test.host=localhost\ -DskipTests=false Where AS_MAIN points to your Glassfish instance. Note: you might need to setup keyStore and trustStore per client instead of per JVM; there is a way how to do it, but it is Tyrus proprietary feature: http://tyrus.java.net/documentation/1.2.1/user-guide.html#d0e1128. And that's it! Now nobody is able to "hear" what you are sending to or receiving from your WebSocket endpoint. There is always room for improvement, so the next step you might want to take is introduce some authentication mechanism (like HTTP Basic or Digest). This topic is more about container configuration so I'm not going to go into details, but there is one thing worth mentioning: to access services which require authorization, you might need to put this additional information to HTTP headers of first (Upgrade) request (there is not (yet) any direct support even for these fundamental mechanisms, user need to register Configurator and add headers in beforeRequest method invocation). I filed related feature request as TYRUS-228; feel free to comment/vote if you need this functionality.

    Read the article

  • Isis Finally Rolls Out

    - by David Dorf
    Google has rolled their wallet out for several chains; I see the NFC readers in Walgreen's when I'm sent their for milk.  But Isis has been relatively quiet until now.  As of last week they have finally launched in their two test cities: Austin, and Salt Lake City.  Below are the supported carriers and phones as of now, but more phones will be added later. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} AT&T supports: HTC One™ X, LG Escape™, Samsung Galaxy Exhilarate™, Samsung Galaxy S® III, Samsung Galaxy Rugby Pro™ T-Mobile supports: Samsung Galaxy S® II, Samsung Galaxy S® III, Samsung Galaxy S® Relay 4G Verizon supports: Droid Incredible 4G LTE. Of course iPhone owners have no wallet since Apple didn't included an NFC chip. To start using Isis, you have to take your NFC-capable phone to your carrier's store to get the SIM replaced with a more sophisticated one that has a secure element configured for Isis.  The "secure element" is the cryptographic logic that secures mobile payments.  Carriers like the secure element in the SIM while non-carriers (like Google) prefer the secure element in the phone's electronics. (I'm not entirely sure if you could support both Isis and Google Wallet on the same phone.  Anybody know?) Then you can download the Isis app from Google Play and load your cards.  Most credit cards are supported, and there's a process to verify the credit cards are valid.  Then you can select from the list of participating retailers to "follow."  Selecting a retailer allows that retailer to give you offers via the app. The app is well done and easy to use.  You can select a default payment type and also switch between them easily.  When the phone is tapped on the reader, there are two exchanges of information.  The payment information is transferred, and then the Isis "SmartTap" information which includes optional loyalty number and digital coupons.  Of course the value of mobile wallets comes from the ease of handling all three data types (i.e. payment, loyalty, offers). There are several advertisements for Isis running now, and my favorite is below.

    Read the article

  • Navigation in Win8 Metro Style applications

    - by Dennis Vroegop
    In Windows 8, Touch is, as they say, a first class citizen. Now, to be honest: they also said that in Windows 7. However in Win8 this is actually true. Applications are meant to be used by touch. Yes, you can still use mouse, keyboard and pen and your apps should take that into account but touch is where you should focus on initially. Will all users have touch enabled devices? No, not in the first place. I don’t think touchscreens will be on every device sold next year. But in 5 years? Who knows? Don’t forget: if your app is successful it will be around for a long time and by that time touchscreens will be everywhere. Another reason to embrace touch is that it’s easier to develop a touch-oriented app and then to make sure that keyboard, nouse and pen work as doing it the other way around. Porting a mouse-based application to a touch based application almost never works. The reverse gives you much more chances for success. That being said, there are some things that you need to think about. Most people have more than one finger, while most users only use one mouse at the time. Still, most touch-developers translate their mouse-knowledge to the touch and think they did a good job. Martin Tirion from Microsoft said that since Touch is a new language people face the same challenges they do when learning a new real spoken language. The first thing people try when learning a new language is simply replace the words in their native language to the newly learned words. At first they don’t care about grammar. To a native speaker of that other language this sounds all wrong but they still will be able to understand what the intention was. If you don’t believe me: try Google translate to translate something for you from your language to another and then back and see what happens. The same thing happens with Touch. Most developers translate a mouse-click into a tap-event and think they’re done. Well matey, you’re not done. Not by far. There are things you can do with a mouse that you cannot do with touch. Think hover. A mouse has the ability to ‘slide’ over UI elements. Touch doesn’t (I know: with Pen you can do this but I’m talking about actual fingers here). A touch is either there or it isn’t. And right-click? Forget about it. A click is a click.  Yes, you have more than one finger but the machine doesn’t know which finger you use… The other way around is also true. Like I said: most users only have one mouse but they are likely to have more than one finger. So how do we take that into account? Thinking about this is really worth the time: you might come up with some surprisingly good ideas! Still: don’t forget that not every user has touch-enabled hardware so make sure your app is useable for both groups. Keep this in mind: we’re going to need it later on! Now. Apps should be easy to use. You don’t want your user to read through pages and pages of documentation before they can use the app. Imagine that spotter next to an airfield suddenly seeing a prototype of a Concorde 2 landing on the nearby runway. He probably wants to enter that information in our app NOW and not after he’s taken a 3 day course. Even if he still has to download the app, install it for the first time and then run it he should be on his way immediately. At least, fast enough to note down the details of that unique, rare and possibly exciting sighting he just did. So.. How do we do this? Well, I am not talking about games here. Games are in a league of their own. They fall outside the scope of the apps I am describing. But all the others can roughly be characterized as being one of two flavors: the navigation is either flat or hierarchical. That’s it. And if it’s hierarchical it’s no more than three levels deep. Not more. Your users will get lost otherwise and we don’t want that. Flat is simple. Just imagine we have one screen that is as high as our physical screen is and as wide as you need it to be. Don’t worry if it doesn’t fit on the screen: people can scroll to the right and left. Don’t combine up/down and left/right scrolling: it’s confusing. Next to that, since most users will hold their device in landscape mode it’s very natural to scroll horizontal. So let’s use that when we have a flat model. The same applies to the hierarchical model. Try to have at most three levels. If you need more space, find a way to group the items in such a way that you can fit it in three, very wide lanes. At the highest level we have the so called hub level. This is the entry point of the app and as such it should give the user an immediate feeling of what the app is all about. If your app has categories if items then you might show these categories here. And while you’re at it: also show 2 or 3 of the items itself here to give the user a taste of what lies beneath. If the user selects a category you go to the section part. Here you show several sections (again, go as wide as you need) with again some detail examples. After that: the details layer shows each item. By giving some samples of the underlaying layer you achieve several things: you make the layer attractive by showing several different things, you show some highlights so the user sees actual content and you provide a shortcut to the layers underneath. The image below is borrowed from the http://design.windows.com website which has tons and tons of examples: For our app we’ll use this layout. So what will we show? Well, let’s see what sorts of features our app has to offer. I’ll repeat them here: Note planes Add pictures of that plane Notify friends of new spots Share new spots on social media Write down arrival times Write down departure times Write down the runway they take I am sure you can think of some more items but for now we'll use these. In the hub we’ll show something that represents “Spots”, “Friends”, “Social”. Apparently we have an inner list of spotter-friends that are in the app, while we also have to whole world in social. In the layer below we show something else, depending on what the user choose. When they choose “Spots” we’ll display the last spots, last spots by our friends (so we can actually jump from this category to the one next to it) and so on. When they choose a “spot” (or press the + icon in the App bar, which I’ll talk about next time) they go to the lowest and final level that shows details about that spot, including a picture, date and time and the notes belonging to that entry. You’d be amazed at how easy it is to organize your app this way. If you don’t have enough room in these three layers you probably could easily get away with grouping items. Take a look at our hub: we have three completely different things in one place. If you still can’t fit it all in in a logical and consistent way, chances are you are trying to do too much in this app. Go back to your mission statement, determine if it is specific enough and if your feature list helps that statement or makes it unclear. Go ahead. Give it a go! Next time we’ll talk about the look and feel, the charms and the app-bar….

    Read the article

  • Web Service Example - Part 3: Asynchronous

    - by Denis T
    In this edition of the ADF Mobile blog we'll tackle part 3 of our Web Service examples.  In this posting we'll take a look at firing the web service asynchronously and then filling in the UI when it completes.  This can be useful when you have data on the device in a local store and want to show that to the user while the application uses lazy loading from a web service to load more data. Getting the sample code: Just click here to download a zip of the entire project.  You can unzip it and load it into JDeveloper and deploy it either to iOS or Android.  Please follow the previous blog posts if you need help getting JDeveloper or ADF Mobile installed.  Note: This is a different workspace than WS-Part2 What's different? In this example, when you click the Search button on the Forecast By Zip option, now it takes you directly to the results page, which is initially blank.  When the web service returns a second or two later the data pops into the UI.  If you go back to the search page and hit Search it will again clear the results and invoke the web service asynchronously.  This isn't really that useful for this particular example but it shows an important technique that can be used for other use cases. How it was done 1)  First we created a new class, ForecastWorker, that implements the Runnable interface.  This is used as our worker class that we create an instance of and pass to a new thread that we create when the Search button is pressed inside the retrieveForecast actionListener handler.  Once the thread is started, the retrieveForecast returns immediately.  2)  The rest of the code that we had previously in the retrieveForecast method has now been moved to the retrieveForecastAsync.  Note that we've also added synchronized specifiers on both these methods so they are protected from re-entrancy. 3)  The run method of the ForecastWorker class then calls the retrieveForecastAsync method.  This executes the web service code that we had previously, but now on a separate thread so the UI is not locked.  If we had already shown data on the screen it would have appeared before this was invoked.  Note that you do not see a loading indicator either because this is on a separate thread and nothing is blocked. 4)  The last but very important aspect of this method is that once we update data in the collections from the data we retrieve from the web service, we call AdfmfJavaUtilities.flushDataChangeEvents().   We need this because as data is updated in the background thread, those data change events are not propagated to the main thread until you explicitly flush them.  As soon as you do this, the UI will get updated if any changes have been queued. Summary of Fundamental Changes In This Application The most fundamental change is that we are invoking and handling our web services in a background thread and updating the UI when the data returns.  This allows an application to provide a better user experience in many cases because data that is already available locally is displayed while lengthy queries or web service calls can be done in the background and the UI updated when they return.  There are many different use cases for background threads and this is just one example of optimizing the user experience and generating a better mobile application. 

    Read the article

  • A Communication System for XAML Applications

    - by psheriff
    In any application, you want to keep the coupling between any two or more objects as loose as possible. Coupling happens when one class contains a property that is used in another class, or uses another class in one of its methods. If you have this situation, then this is called strong or tight coupling. One popular design pattern to help with keeping objects loosely coupled is called the Mediator design pattern. The basics of this pattern are very simple; avoid one object directly talking to another object, and instead use another class to mediate between the two. As with most of my blog posts, the purpose is to introduce you to a simple approach to using a message broker, not all of the fine details. IPDSAMessageBroker Interface As with most implementations of a design pattern, you typically start with an interface or an abstract base class. In this particular instance, an Interface will work just fine. The interface for our Message Broker class just contains a single method “SendMessage” and one event “MessageReceived”. public delegate void MessageReceivedEventHandler( object sender, PDSAMessageBrokerEventArgs e); public interface IPDSAMessageBroker{  void SendMessage(PDSAMessageBrokerMessage msg);   event MessageReceivedEventHandler MessageReceived;} PDSAMessageBrokerMessage Class As you can see in the interface, the SendMessage method requires a type of PDSAMessageBrokerMessage to be passed to it. This class simply has a MessageName which is a ‘string’ type and a MessageBody property which is of the type ‘object’ so you can pass whatever you want in the body. You might pass a string in the body, or a complete Customer object. The MessageName property will help the receiver of the message know what is in the MessageBody property. public class PDSAMessageBrokerMessage{  public PDSAMessageBrokerMessage()  {  }   public PDSAMessageBrokerMessage(string name, object body)  {    MessageName = name;    MessageBody = body;  }   public string MessageName { get; set; }   public object MessageBody { get; set; }} PDSAMessageBrokerEventArgs Class As our message broker class will be raising an event that others can respond to, it is a good idea to create your own event argument class. This class will inherit from the System.EventArgs class and add a couple of additional properties. The properties are the MessageName and Message. The MessageName property is simply a string value. The Message property is a type of a PDSAMessageBrokerMessage class. public class PDSAMessageBrokerEventArgs : EventArgs{  public PDSAMessageBrokerEventArgs()  {  }   public PDSAMessageBrokerEventArgs(string name,     PDSAMessageBrokerMessage msg)  {    MessageName = name;    Message = msg;  }   public string MessageName { get; set; }   public PDSAMessageBrokerMessage Message { get; set; }} PDSAMessageBroker Class Now that you have an interface class and a class to pass a message through an event, it is time to create your actual PDSAMessageBroker class. This class implements the SendMessage method and will also create the event handler for the delegate created in your Interface. public class PDSAMessageBroker : IPDSAMessageBroker{  public void SendMessage(PDSAMessageBrokerMessage msg)  {    PDSAMessageBrokerEventArgs args;     args = new PDSAMessageBrokerEventArgs(      msg.MessageName, msg);     RaiseMessageReceived(args);  }   public event MessageReceivedEventHandler MessageReceived;   protected void RaiseMessageReceived(    PDSAMessageBrokerEventArgs e)  {    if (null != MessageReceived)      MessageReceived(this, e);  }} The SendMessage method will take a PDSAMessageBrokerMessage object as an argument. It then creates an instance of a PDSAMessageBrokerEventArgs class, passing to the constructor two items: the MessageName from the PDSAMessageBrokerMessage object and also the object itself. It may seem a little redundant to pass in the message name when that same message name is part of the message, but it does make consuming the event and checking for the message name a little cleaner – as you will see in the next section. Create a Global Message Broker In your WPF application, create an instance of this message broker class in the App class located in the App.xaml file. Create a public property in the App class and create a new instance of that class in the OnStartUp event procedure as shown in the following code: public partial class App : Application{  public PDSAMessageBroker MessageBroker { get; set; }   protected override void OnStartup(StartupEventArgs e)  {    base.OnStartup(e);     MessageBroker = new PDSAMessageBroker();  }} Sending and Receiving Messages Let’s assume you have a user control that you load into a control on your main window and you want to send a message from that user control to the main window. You might have the main window display a message box, or put a string into a status bar as shown in Figure 1. Figure 1: The main window can receive and send messages The first thing you do in the main window is to hook up an event procedure to the MessageReceived event of the global message broker. This is done in the constructor of the main window: public MainWindow(){  InitializeComponent();   (Application.Current as App).MessageBroker.     MessageReceived += new MessageReceivedEventHandler(       MessageBroker_MessageReceived);} One piece of code you might not be familiar with is accessing a property defined in the App class of your XAML application. Within the App.Xaml file is a class named App that inherits from the Application object. You access the global instance of this App class by using Application.Current. You cast Application.Current to ‘App’ prior to accessing any of the public properties or methods you defined in the App class. Thus, the code (Application.Current as App).MessageBroker, allows you to get at the MessageBroker property defined in the App class. In the MessageReceived event procedure in the main window (shown below) you can now check to see if the MessageName property of the PDSAMessageBrokerEventArgs is equal to “StatusBar” and if it is, then display the message body into the status bar text block control. void MessageBroker_MessageReceived(object sender,   PDSAMessageBrokerEventArgs e){  switch (e.MessageName)  {    case "StatusBar":      tbStatus.Text = e.Message.MessageBody.ToString();      break;  }} In the Page 1 user control’s Loaded event procedure you will send the message “StatusBar” through the global message broker to any listener using the following code: private void UserControl_Loaded(object sender,  RoutedEventArgs e){  // Send Status Message  (Application.Current as App).MessageBroker.    SendMessage(new PDSAMessageBrokerMessage("StatusBar",      "This is Page 1"));} Since the main window is listening for the message ‘StatusBar’, it will display the value “This is Page 1” in the status bar at the bottom of the main window. Sending a Message to a User Control The previous example sent a message from the user control to the main window. You can also send messages from the main window to any listener as well. Remember that the global message broker is really just a broadcaster to anyone who has hooked into the MessageReceived event. In the constructor of the user control named ucPage1 you can hook into the global message broker’s MessageReceived event. You can then listen for any messages that are sent to this control by using a similar switch-case structure like that in the main window. public ucPage1(){  InitializeComponent();   // Hook to the Global Message Broker  (Application.Current as App).MessageBroker.    MessageReceived += new MessageReceivedEventHandler(      MessageBroker_MessageReceived);} void MessageBroker_MessageReceived(object sender,  PDSAMessageBrokerEventArgs e){  // Look for messages intended for Page 1  switch (e.MessageName)  {    case "ForPage1":      MessageBox.Show(e.Message.MessageBody.ToString());      break;  }} Once the ucPage1 user control has been loaded into the main window you can then send a message using the following code: private void btnSendToPage1_Click(object sender,  RoutedEventArgs e){  PDSAMessageBrokerMessage arg =     new PDSAMessageBrokerMessage();   arg.MessageName = "ForPage1";  arg.MessageBody = "Message For Page 1";   // Send a message to Page 1  (Application.Current as App).MessageBroker.SendMessage(arg);} Since the MessageName matches what is in the ucPage1 MessageReceived event procedure, ucPage1 can do anything in response to that event. It is important to note that when the message gets sent it is sent to all MessageReceived event procedures, not just the one that is looking for a message called “ForPage1”. If the user control ucPage1 is not loaded and this message is broadcast, but no other code is listening for it, then it is simply ignored. Remove Event Handler In each class where you add an event handler to the MessageReceived event you need to make sure to remove those event handlers when you are done. Failure to do so can cause a strong reference to the class and thus not allow that object to be garbage collected. In each of your user control’s make sure in the Unloaded event to remove the event handler. private void UserControl_Unloaded(object sender, RoutedEventArgs e){  if (_MessageBroker != null)    _MessageBroker.MessageReceived -=         _MessageBroker_MessageReceived;} Problems with Message Brokering As with most “global” classes or classes that hook up events to other classes, garbage collection is something you need to consider. Just the simple act of hooking up an event procedure to a global event handler creates a reference between your user control and the message broker in the App class. This means that even when your user control is removed from your UI, the class will still be in memory because of the reference to the message broker. This can cause messages to still being handled even though the UI is not being displayed. It is up to you to make sure you remove those event handlers as discussed in the previous section. If you don’t, then the garbage collector cannot release those objects. Instead of using events to send messages from one object to another you might consider registering your objects with a central message broker. This message broker now becomes a collection class into which you pass an object and what messages that object wishes to receive. You do end up with the same problem however. You have to un-register your objects; otherwise they still stay in memory. To alleviate this problem you can look into using the WeakReference class as a method to store your objects so they can be garbage collected if need be. Discussing Weak References is beyond the scope of this post, but you can look this up on the web. Summary In this blog post you learned how to create a simple message broker system that will allow you to send messages from one object to another without having to reference objects directly. This does reduce the coupling between objects in your application. You do need to remember to get rid of any event handlers prior to your objects going out of scope or you run the risk of having memory leaks and events being called even though you can no longer access the object that is responding to that event. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “A Communication System for XAML Applications” from the drop down list.

    Read the article

  • Developing custom MBeans to manage J2EE Applications (Part III)

    - by philippe Le Mouel
    This is the third and final part in a series of blogs, that demonstrate how to add management capability to your own application using JMX MBeans. In Part I we saw: How to implement a custom MBean to manage configuration associated with an application. How to package the resulting code and configuration as part of the application's ear file. How to register MBeans upon application startup, and unregistered them upon application stop (or undeployment). How to use generic JMX clients such as JConsole to browse and edit our application's MBean. In Part II we saw: How to add localized descriptions to our MBean, MBean attributes, MBean operations and MBean operation parameters. How to specify meaningful name to our MBean operation parameters. We also touched on future enhancements that will simplify how we can implement localized MBeans. In this third and last part, we will re-write our MBean to simplify how we added localized descriptions. To do so we will take advantage of the functionality we already described in part II and that is now part of WebLogic 10.3.3.0. We will show how to take advantage of WebLogic's localization support to localize our MBeans based on the client's Locale independently of the server's Locale. Each client will see MBean descriptions localized based on his/her own Locale. We will show how to achieve this using JConsole, and also using a sample programmatic JMX Java client. The complete code sample and associated build files for part III are available as a zip file. The code has been tested against WebLogic Server 10.3.3.0 and JDK6. To build and deploy our sample application, please follow the instruction provided in Part I, as they also apply to part III's code and associated zip file. Providing custom descriptions take II In part II we localized our MBean descriptions by extending the StandardMBean class and overriding its many getDescription methods. WebLogic 10.3.3.0 similarly to JDK 7 can automatically localize MBean descriptions as long as those are specified according to the following conventions: Descriptions resource bundle keys are named according to: MBean description: <MBeanInterfaceClass>.mbean MBean attribute description: <MBeanInterfaceClass>.attribute.<AttributeName> MBean operation description: <MBeanInterfaceClass>.operation.<OperationName> MBean operation parameter description: <MBeanInterfaceClass>.operation.<OperationName>.<ParameterName> MBean constructor description: <MBeanInterfaceClass>.constructor.<ConstructorName> MBean constructor parameter description: <MBeanInterfaceClass>.constructor.<ConstructorName>.<ParameterName> We also purposely named our resource bundle class MBeanDescriptions and included it as part of the same package as our MBean. We already followed the above conventions when creating our resource bundle in part II, and our default resource bundle class with English descriptions looks like: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "MBean used to manage persistent application properties"}, {"PropertyConfigMXBean.attribute.Properties", "Properties associated with the running application"}, {"PropertyConfigMXBean.operation.setProperty", "Create a new property, or change the value of an existing property"}, {"PropertyConfigMXBean.operation.setProperty.key", "Name that identify the property to set."}, {"PropertyConfigMXBean.operation.setProperty.value", "Value for the property being set"}, {"PropertyConfigMXBean.operation.getProperty", "Get the value for an existing property"}, {"PropertyConfigMXBean.operation.getProperty.key", "Name that identify the property to be retrieved"} }; } } We have now also added a resource bundle with French localized descriptions: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions_fr extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "Manage proprietes sauvegarde dans un fichier disque."}, {"PropertyConfigMXBean.attribute.Properties", "Proprietes associee avec l'application en cour d'execution"}, {"PropertyConfigMXBean.operation.setProperty", "Construit une nouvelle proprietee, ou change la valeur d'une proprietee existante."}, {"PropertyConfigMXBean.operation.setProperty.key", "Nom de la propriete dont la valeur est change."}, {"PropertyConfigMXBean.operation.setProperty.value", "Nouvelle valeur"}, {"PropertyConfigMXBean.operation.getProperty", "Retourne la valeur d'une propriete existante."}, {"PropertyConfigMXBean.operation.getProperty.key", "Nom de la propriete a retrouver."} }; } } So now we can just remove the many getDescriptions methods from our MBean code, and have a much cleaner: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Map; import java.util.HashMap; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig extends StandardMBean implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; private static Map operationsParamNames_ = null; static { operationsParamNames_ = new HashMap(); operationsParamNames_.put("setProperty", new String[] {"key", "value"}); operationsParamNames_.put("getProperty", new String[] {"key"}); } public PropertyConfig(String relativePath) throws Exception { super(PropertyConfigMXBean.class , true); props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} protected String getParameterName(MBeanOperationInfo op, MBeanParameterInfo param, int sequence) { return operationsParamNames_.get(op.getName())[sequence]; } } The only reason we are still extending the StandardMBean class, is to override the default values for our operations parameters name. If this isn't a concern, then one could just write the following code: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; public PropertyConfig(String relativePath) throws Exception { props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} } Note: The above would also require changing the operations parameters name in the resource bundle classes. For instance: PropertyConfigMXBean.operation.setProperty.key would become: PropertyConfigMXBean.operation.setProperty.p0 Client based localization When accessing our MBean using JConsole started with the following command line: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -debug We see that our MBean descriptions are localized according to the WebLogic's server Locale. English in this case: Note: Consult Part I for information on how to use JConsole to browse/edit our MBean. Now if we specify the client's Locale as part of the JConsole command line as follow: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -J-Dweblogic.management.remote.locale=fr-FR -debug We see that our MBean descriptions are now localized according to the specified client's Locale. French in this case: We use the weblogic.management.remote.locale system property to specify the Locale that should be associated with the cient's JMX connections. The value is composed of the client's language code and its country code separated by the - character. The country code is not required, and can be omitted. For instance: -Dweblogic.management.remote.locale=fr We can also specify the client's Locale using a programmatic client as demonstrated below: package blog.wls.jmx.appmbean.client; import javax.management.MBeanServerConnection; import javax.management.ObjectName; import javax.management.MBeanInfo; import javax.management.remote.JMXConnector; import javax.management.remote.JMXServiceURL; import javax.management.remote.JMXConnectorFactory; import java.util.Hashtable; import java.util.Set; import java.util.Locale; public class JMXClient { public static void main(String[] args) throws Exception { JMXConnector jmxCon = null; try { JMXServiceURL serviceUrl = new JMXServiceURL( "service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime"); System.out.println("Connecting to: " + serviceUrl); // properties associated with the connection Hashtable env = new Hashtable(); env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); String[] credentials = new String[2]; credentials[0] = "weblogic"; credentials[1] = "weblogic"; env.put(JMXConnector.CREDENTIALS, credentials); // specifies the client's Locale env.put("weblogic.management.remote.locale", Locale.FRENCH); jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env); jmxCon.connect(); MBeanServerConnection con = jmxCon.getMBeanServerConnection(); Set mbeans = con.queryNames( new ObjectName( "blog.wls.jmx.appmbean:name=myAppProperties,type=PropertyConfig,*"), null); for (ObjectName mbeanName : mbeans) { System.out.println("\n\nMBEAN: " + mbeanName); MBeanInfo minfo = con.getMBeanInfo(mbeanName); System.out.println("MBean Description: "+minfo.getDescription()); System.out.println("\n"); } } finally { // release the connection if (jmxCon != null) jmxCon.close(); } } } The above client code is part of the zip file associated with this blog, and can be run using the provided client.sh script. The resulting output is shown below: $ ./client.sh Connecting to: service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime MBEAN: blog.wls.jmx.appmbean:type=PropertyConfig,name=myAppProperties MBean Description: Manage proprietes sauvegarde dans un fichier disque. $ Miscellaneous Using Description annotation to specify MBean descriptions Earlier we have seen how to name our MBean descriptions resource keys, so that WebLogic 10.3.3.0 automatically uses them to localize our MBean. In some cases we might want to implicitly specify the resource key, and resource bundle. For instance when operations are overloaded, and the operation name is no longer sufficient to uniquely identify a single operation. In this case we can use the Description annotation provided by WebLogic as follow: import weblogic.management.utils.Description; @Description(resourceKey="myapp.resources.TestMXBean.description", resourceBundleBaseName="myapp.resources.MBeanResources") public interface TestMXBean { @Description(resourceKey="myapp.resources.TestMXBean.threshold.description", resourceBundleBaseName="myapp.resources.MBeanResources" ) public int getthreshold(); @Description(resourceKey="myapp.resources.TestMXBean.reset.description", resourceBundleBaseName="myapp.resources.MBeanResources") public int reset( @Description(resourceKey="myapp.resources.TestMXBean.reset.id.description", resourceBundleBaseName="myapp.resources.MBeanResources", displayNameKey= "myapp.resources.TestMXBean.reset.id.displayName.description") int id); } The Description annotation should be applied to the MBean interface. It can be used to specify MBean, MBean attributes, MBean operations, and MBean operation parameters descriptions as demonstrated above. Retrieving the Locale associated with a JMX operation from the MBean code There are several cases where it is necessary to retrieve the Locale associated with a JMX call from the MBean implementation. For instance this can be useful when localizing exception messages. This can be done as follow: import weblogic.management.mbeanservers.JMXContextUtil; ...... // some MBean method implementation public String setProperty(String key, String value) throws IOException { Locale callersLocale = JMXContextUtil.getLocale(); // use callersLocale to localize Exception messages or // potentially some return values such a Date .... } Conclusion With this last part we conclude our three part series on how to write MBeans to manage J2EE applications. We are far from having exhausted this particular topic, but we have gone a long way and are now capable to take advantage of the latest functionality provided by WebLogic's application server to write user friendly MBeans.

    Read the article

  • Testing Entity Framework applications, pt. 3: NDbUnit

    - by Thomas Weller
    This is the third of a three part series that deals with the issue of faking test data in the context of a legacy app that was built with Microsoft's Entity Framework (EF) on top of an MS SQL Server database – a scenario that can be found very often. Please read the first part for a description of the sample application, a discussion of some general aspects of unit testing in a database context, and of some more specific aspects of the here discussed EF/MSSQL combination. Lately, I wondered how you would ‘mock’ the data layer of a legacy application, when this data layer is made up of an MS Entity Framework (EF) model in combination with a MS SQL Server database. Originally, this question came up in the context of how you could enable higher-level integration tests (automated UI tests, to be exact) for a legacy application that uses this EF/MSSQL combo as its data store mechanism – a not so uncommon scenario. The question sparked my interest, and I decided to dive into it somewhat deeper. What I've found out is, in short, that it's not very easy and straightforward to do it – but it can be done. The two strategies that are best suited to fit the bill involve using either the (commercial) Typemock Isolator tool or the (free) NDbUnit framework. The use of Typemock was discussed in the previous post, this post now will present the NDbUnit approach... NDbUnit is an Apache 2.0-licensed open-source project, and like so many other Nxxx tools and frameworks, it is basically a C#/.NET port of the corresponding Java version (DbUnit namely). In short, it helps you in flexibly managing the state of a database in that it lets you easily perform basic operations (like e.g. Insert, Delete, Refresh, DeleteAll)  against your database and, most notably, lets you feed it with data from external xml files. Let's have a look at how things can be done with the help of this framework. Preparing the test data Compared to Typemock, using NDbUnit implies a totally different approach to meet our testing needs.  So the here described testing scenario requires an instance of an SQL Server database in operation, and it also means that the Entity Framework model that sits on top of this database is completely unaffected. First things first: For its interactions with the database, NDbUnit relies on a .NET Dataset xsd file. See Step 1 of their Quick Start Guide for a description of how to create one. With this prerequisite in place then, the test fixture's setup code could look something like this: [TestFixture, TestsOn(typeof(PersonRepository))] [Metadata("NDbUnit Quickstart URL",           "http://code.google.com/p/ndbunit/wiki/QuickStartGuide")] [Description("Uses the NDbUnit library to provide test data to a local database.")] public class PersonRepositoryFixture {     #region Constants     private const string XmlSchema = @"..\..\TestData\School.xsd";     #endregion // Constants     #region Fields     private SchoolEntities _schoolContext;     private PersonRepository _personRepository;     private INDbUnitTest _database;     #endregion // Fields     #region Setup/TearDown     [FixtureSetUp]     public void FixtureSetUp()     {         var connectionString = ConfigurationManager.ConnectionStrings["School_Test"].ConnectionString;         _database = new SqlDbUnitTest(connectionString);         _database.ReadXmlSchema(XmlSchema);         var entityConnectionStringBuilder = new EntityConnectionStringBuilder         {             Metadata = "res://*/School.csdl|res://*/School.ssdl|res://*/School.msl",             Provider = "System.Data.SqlClient",             ProviderConnectionString = connectionString         };         _schoolContext = new SchoolEntities(entityConnectionStringBuilder.ConnectionString);         _personRepository = new PersonRepository(this._schoolContext);     }     [FixtureTearDown]     public void FixtureTearDown()     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         _schoolContext.Dispose();     }     ...  As you can see, there is slightly more fixture setup code involved if your tests are using NDbUnit to provide the test data: Because we're dealing with a physical database instance here, we first need to pick up the test-specific connection string from the test assemblies' App.config, then initialize an NDbUnit helper object with this connection along with the provided xsd file, and also set up the SchoolEntities and the PersonRepository instances accordingly. The _database field (an instance of the INdUnitTest interface) will be our single access point to the underlying database: We use it to perform all the required operations against the data store. To have a flexible mechanism to easily insert data into the database, we can write a helper method like this: private void InsertTestData(params string[] dataFileNames) {     _database.PerformDbOperation(DbOperationFlag.DeleteAll);     if (dataFileNames == null)     {         return;     }     try     {         foreach (string fileName in dataFileNames)         {             if (!File.Exists(fileName))             {                 throw new FileNotFoundException(Path.GetFullPath(fileName));             }             _database.ReadXml(fileName);             _database.PerformDbOperation(DbOperationFlag.InsertIdentity);         }     }     catch     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         throw;     } } This lets us easily insert test data from xml files, in any number and in a  controlled order (which is important because we eventually must fulfill referential constraints, or we must account for some other stuff that imposes a specific ordering on data insertion). Again, as with Typemock, I won't go into API details here. - Unfortunately, there isn't too much documentation for NDbUnit anyway, other than the already mentioned Quick Start Guide (and the source code itself, of course) - a not so uncommon problem with smaller Open Source Projects. Last not least, we need to provide the required test data in xml form. A snippet for data from the People table might look like this, for example: <?xml version="1.0" encoding="utf-8" ?> <School xmlns="http://tempuri.org/School.xsd">   <Person>     <PersonID>1</PersonID>     <LastName>Abercrombie</LastName>     <FirstName>Kim</FirstName>     <HireDate>1995-03-11T00:00:00</HireDate>   </Person>   <Person>     <PersonID>2</PersonID>     <LastName>Barzdukas</LastName>     <FirstName>Gytis</FirstName>     <EnrollmentDate>2005-09-01T00:00:00</EnrollmentDate>   </Person>   <Person>     ... You can also have data from various tables in one single xml file, if that's appropriate for you (but beware of the already mentioned ordering issues). It's true that your test assembly may end up with dozens of such xml files, each containing quite a big amount of text data. But because the files are of very low complexity, and with the help of a little bit of Copy/Paste and Excel magic, this appears to be well manageable. Executing some basic tests Here are some of the possible tests that can be written with the above preparations in place: private const string People = @"..\..\TestData\School.People.xml"; ... [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] public void GetNameList_ListOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.List);     Assert.Count(34, names);     Assert.AreEqual("Abercrombie, Kim", names.First());     Assert.AreEqual("Zheng, Roger", names.Last()); } [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] [DependsOn("RemovePerson_CalledOnce_DecreasesCountByOne")] public void GetNameList_NormalOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.Normal);     Assert.Count(34, names);     Assert.AreEqual("Alexandra Walker", names.First());     Assert.AreEqual("Yan Li", names.Last()); } [Test, TestsOn("PersonRepository.AddPerson")] public void AddPerson_CalledOnce_IncreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.AddPerson(new Person { FirstName = "Thomas", LastName = "Weller" });     Assert.AreEqual(count + 1, _personRepository.Count); } [Test, TestsOn("PersonRepository.RemovePerson")] public void RemovePerson_CalledOnce_DecreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.RemovePerson(new Person { PersonID = 33 });     Assert.AreEqual(count - 1, _personRepository.Count); } Not much difference here compared to the corresponding Typemock versions, except that we had to do a bit more preparational work (and also it was harder to get the required knowledge). But this picture changes quite dramatically if we look at some more demanding test cases: Ok, and what if things are becoming somewhat more complex? Tests like the above ones represent the 'easy' scenarios. They may account for the biggest portion of real-world use cases of the application, and they are important to make sure that it is generally sound. But usually, all these nasty little bugs originate from the more complex parts of our code, or they occur when something goes wrong. So, for a testing strategy to be of real practical use, it is especially important to see how easy or difficult it is to mimick a scenario which represents a more complex or exceptional case. The following test, for example, deals with the case that there is some sort of invalid input from the caller: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] [Row(null, typeof(ArgumentNullException))] [Row("", typeof(ArgumentException))] [Row("NotExistingCourse", typeof(ArgumentException))] public void GetCourseMembers_WithGivenVariousInvalidValues_Throws(string courseTitle, Type expectedInnerExceptionType) {     var exception = Assert.Throws<RepositoryException>(() =>                                 _personRepository.GetCourseMembers(courseTitle));     Assert.IsInstanceOfType(expectedInnerExceptionType, exception.InnerException); } Apparently, this test doesn't need an 'Arrange' part at all (see here for the same test with the Typemock tool). It acts just like any other client code, and all the required business logic comes from the database itself. This doesn't always necessarily mean that there is less complexity, but only that the complexity happens in a different part of your test resources (in the xml files namely, where you sometimes have to spend a lot of effort for carefully preparing the required test data). Another example, which relies on an underlying 1-n relationship, might be this: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] public void GetCourseMembers_WhenGivenAnExistingCourse_ReturnsListOfStudents() {     InsertTestData(People, Course, Department, StudentGrade);     List<Person> persons = _personRepository.GetCourseMembers("Macroeconomics");     Assert.Count(4, persons);     Assert.ForAll(         persons,         @p => new[] { 10, 11, 12, 14 }.Contains(@p.PersonID),         "Person has none of the expected IDs."); } If you compare this test to its corresponding Typemock version, you immediately see that the test itself is much simpler, easier to read, and thus much more intention-revealing. The complexity here lies hidden behind the call to the InsertTestData() helper method and the content of the used xml files with the test data. And also note that you might have to provide additional data which are not even directly relevant to your test, but are required only to fulfill some integrity needs of the underlying database. Conclusion The first thing to notice when comparing the NDbUnit approach to its Typemock counterpart obviously deals with performance: Of course, NDbUnit is much slower than Typemock. Technically,  it doesn't even make sense to compare the two tools. But practically, it may well play a role and could or could not be an issue, depending on how much tests you have of this kind, how often you run them, and what role they play in your development cycle. Also, because the dataset from the required xsd file must fully match the database schema (even in parts that otherwise wouldn't be relevant to you), it can be quite cumbersome to be in a team where different people are working with the database in parallel. My personal experience is – as already said in the first part – that Typemock gives you a better development experience in a 'dynamic' scenario (when you're working in some kind of TDD-style, you're oftentimes executing the tests from your dev box, and your database schema changes frequently), whereas the NDbUnit approach is a good and solid solution in more 'static' development scenarios (when you need to execute the tests less frequently or only on a separate build server, and/or the underlying database schema can be kept relatively stable), for example some variations of higher-level integration or User-Acceptance tests. But in any case, opening Entity Framework based applications for testing requires a fair amount of resources, planning, and preparational work – it's definitely not the kind of stuff that you would call 'easy to test'. Hopefully, future versions of EF will take testing concerns into account. Otherwise, I don't see too much of a future for the framework in the long run, even though it's quite popular at the moment... The sample solution A sample solution (VS 2010) with the code from this article series is available via my Bitbucket account from here (Bitbucket is a hosting site for Mercurial repositories. The repositories may also be accessed with the Git and Subversion SCMs - consult the documentation for details. In addition, it is possible to download the solution simply as a zipped archive – via the 'get source' button on the very right.). The solution contains some more tests against the PersonRepository class, which are not shown here. Also, it contains database scripts to create and fill the School sample database. To compile and run, the solution expects the Gallio/MbUnit framework to be installed (which is free and can be downloaded from here), the NDbUnit framework (which is also free and can be downloaded from here), and the Typemock Isolator tool (a fully functional 30day-trial is available here). Moreover, you will need an instance of the Microsoft SQL Server DBMS, and you will have to adapt the connection strings in the test projects App.config files accordingly.

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Any tips for designing the invoicing/payment system of a SaaS?

    - by Alexandru Trandafir Catalin
    The SaaS is for real estate companies, and they can pay a monthly fee that will offer them 1000 publications but they can also consume additional publications or other services that will appear on their bill as extras. On registration the user can choose one of the 5 available plans that the only difference will be the quantity of publications their plan allows them to make. But they can pass that limit if they wish, and additional payment will be required on the next bill. A publication means: Publishing a property during one day, for 1 whole month would be: 30 publications. And 5 properties during one day would be 5 publications. So basically the user can: Make publications (already paid in the monthly fee, extra payment only if it passes the limit) Highlight that publication (extra payment) Publish on other websites or printed catalogues (extra payment) Doubts: How to handle modifications in pricing plans? Let's say quantities change, or you want to offer some free stuff. How to handle unpaid invoices? I mean, freeze the service until the payment has been done and then resume it. When to make the invoices? The idea is to make one invoice for the monthly fee and a second invoice for the extra services that were consumed. What payment methods to use? The choosen now is by bank account, and mobile phone validation with a SMS. If user doesn't pay we call that phone and ask for payment. Any examples on billing online services will be welcome! Thanks!

    Read the article

  • What should be the architecture of an urban game system?

    - by pmichna
    I'm going to develop an urban game using a telco API for phone geolocation and sending/receiving messages. A player would pick up one of the scenarios, move around the city and when he hits a given location, he gets a message and possibly has to answer it. I'm wondering, what approach would be the best in my case. I came up with this general idea: Web application as a user interface (user registration, players ranking, scenarios editing) written in Ruby on Rails. Game server (hosting games, game logic like checking players location, sending and receiving messages) written in Ruby. Database (users, scores, scenarios etc.), probably MySQL or someother open source DB. I want to learn Ruby and RoR, that's why I chose these language and framework. Do you think it's a good choice for a game server? Another question: is this project division good? I mean, I have little experience with Ruby and Rails - that's why I'm asking. Maybe it's better to have web application merged with game server and somehow have the server hosting RoR application do the tasks like mobile phone pinging and message sending? How would that be performed? Maybe this is worth mentioning: the API is RESTful, most results are JSON, few are XML.

    Read the article

  • Oracle at HR Tech: What a Difference a Year Makes

    - by Natalia Rachelson
    Last week, I had the privilege of attending the famous HR Technology Conference (HR Tech) in my new hometown of Chicago. This annual event, which draws the who of who in the world of HR technology, was by far the biggest.  It wasn't just the highest level of attendance that was mind blowing, but also the amazing quality of attendees. Kudos go to the organizers, especially Bill Kutik for pulling together such a phenomenal conference. Conference highlights included Naomi Bloom's (http://infullbloom.us) Masters Panel and Mark Hurd's General Session on the last day of the conference. Naomi managed to do the seemingly impossible -- get all of the industry heavyweights and fierce competitors to travel to Chicago for her panel. Here are the executives she hosted: Our own Steve Miranda Sanjay Poonen, President Global Solutions, SAP Stan Swete, CTO, Workday Mike Capone, VP for Product Development and CIO, ADP John Wookey, EVP, Social Applications, Salesforce.com Adam Rogers, CTO, Ultimate Software       I bet you think "WOW" when you look at these names. Just this panel by itself would have been enough of a draw for any tech conference, so Naomi and Bill really scored. TechTarget published a great review of the conference here.  And here are a few highlights from Steve. "Steve Miranda, EVP Apps Dev Oracle, said delivering software in the cloud helps vendors shape their products to customer needs more efficiently. "As vendors, we're able to improve the software faster," he said. "We can see in real time what customers are using and not using." Miranda underscored Oracle's commitment to socializing its HCM platform,and named recruiting as an area where social has had a significant impact. "We want to make social a part of the fabric, not a separate piece," he said. "Already, if you're doing recruiting without social, it probably doesn't make any sense."" Having Mark Hurd at the conference was another real treat and everyone took notice.  The Business of HR publication covered Mark's participation at HR Tech and the full article is available here. Here is what Business of HR had to say: "In truth, the story of Oracle today is a story similar to many of the current and potential customers they faced at the conference this week. Their business is changing and growing. They've dealt with acquisitions of their own and their competitors continue to nip at their heels. They are dealing with growth (and yes, they are hiring in case you're interested). They have concerns about talent as well. If Oracle feels as strongly about their products as they seem to be, they will be getting their co-president in front of a lot more groups of current and potential customers like they did at the HR Technology Conference this year. And here's hoping this is one executive who won't stop talking about the importance of talent just because he isn't at the HR tech conference anymore." Natalia RachelsonSenior Director, Oracle Applications

    Read the article

  • PeopleSoft and PeopleTools at Oracle OpenWorld 2012

    - by PeopleTools Strategy
    From Jeff Robbins PeopleTools 8.52 Gregory Sawyer October 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Oracle Open World is once again just around the corner.  This is a huge event for Oracle with thousands of individual sessions that cover all sorts of topics.  Here’s a link to a note from Paco Aubrejuan about PeopleSoft’s plans for this year’s conference: [link: http://www.oracle.com/us/industries/utilities/pfst-oow12-letter-1841052.pdf] Each year, PeopleTools sessions prove to be among the highest rated and best attended sessions of the conference. Once again we’ve put together a broad program of sessions and a great Hands on Lab, so be sure to use the Open World Schedule Builder to pre-register for the sessions you think will be of greatest value to you: [link: https://www.oracle.com/webapps/token/scheduler] Highlights of our program include: · Customer success with PeopleTools 8.52 · Great new features of the upcoming PeopleTools 8.53 · PeopleSoft’s new mobile solutions · Innovative technologies for your PeopleSoft system: Integration, User Experience, Lifecycle Management and more We’re excited about all that we have planned and look forward to seeing you there.  Stop by the DEMOGrounds to ask questions, see new features or just say hello. See you all there Jeff

    Read the article

  • Is an app that does nothing but link to a web site functional enough to meet Apple's iOS guidelines?

    - by Pointy
    I don't hang out on Programmers enough to know whether this question is "ok", so my apologies if not. I tried to make the title obvious so at least it can be closed quickly :-) The question is simple. My employer wants "home screen presence" (or at least the possibility thereof) on iOS devices (also Android but I'm mostly interested in Apple at the moment). Our actual application will be a pure web-delivered mobile-friendly application, so what we want on the homescreen is basically something that just acts as a link to bring up Safari (or Chrome now I guess; not important). I'm presuming that that's more-or-less possible; if not then that would be interesting too. I know that the Apple guidelines are such that low-functionality apps are generally rejected out of hand. There are a lot of existing apps that seem (to me) less functional than a link to something useful, but I'm not Apple of course. Because this seems like a not-too-weird situation, I'm hoping that somebody knows it's either definitely OK (maybe because there are many such apps) or definitely not OK. Note that I know about things like PhoneGap and I don't want that, at least not at the moment.

    Read the article

  • Advice on designing web application with a 40+ year lifetime

    - by user2708395
    Scenario Currently, I am apart of a health care project whose main requirement is to capture data with unknown attributes using user generated forms by health care providers. The second requirement is that data integrity is key and that the application will be used for 40+ years. We are currently migrating the client's data from the past 40 years from various sources (Paper, Excel, Access, etc...) to the database. Future requirements are: Workflow management of forms Schedule management of forms Security/Role based management Reporting engine Mobile/Tablet support Situation Only 6 months in, the current (contracted) architect/senior programmer has taken the "fast" approach and has designed a poor system. The database is not normalized, the code is coupled, the tiers have no dedicated purpose and data is starting to go missing since he has designed some beans to perform "deletes" on the database. The code base is extremely bloated and there are jobs just to synchronize data since the database is not normalized. His approach has been to rely on backup jobs to restore missing data and doesn't seem to believe in re-factoring. Having presented my findings to the PM, the architect will be removed when his contract ends. I have been given the task to re-architect this application. My team consists of me and one junior programmer. We have no other resources. We have been granted a 6-month requirement freeze in which we can focus on re-building this system. I suggested using a CMS system like Drupal, but for policy reasons at the client's organization, the system must be built from scratch. This is the first time that I will be designing a system with a 40+ lifespan. I have only worked on projects with 3-5 year lifespans, so this situation is very new, yet exciting. Questions What design considerations will make the system more "future proof"? What experiences have you had in designing such systems - both failures and successes? What questions should be asked to the client/PM to make the system more "future proof"?

    Read the article

  • Cannot use WCF service from windows mobile 5: no endpoint found.

    - by sweeney
    Hi All, I'm trying to figure out how to call a WCF service from a windows smart phone. I have a very simple smartphone console app, which does nothing but launch and make 1 call to the service. The service simply returns a string. I am able to instantiate the proxy class but when i call the method it throws an exception: There was no endpoint listening at http://mypcname/Service1.svc/basic that could accept the message. This is often caused by an incorrect address or SOAP action. See InnerException, if present, for more details. The inner exception: Could not establish connection to network. I've tried to follow this tutorial on setting up services with windows mobile. I've used the NetCFSvcUtil to create the proxy classes. I have the service running on IIS on my machine and had the Util consume the wsdl from that location. I've created a basic http binding as suggested in the article and i think i've pointed the proxy at the correct uri. Here some sections of relevant code in case it's helpful to see. If anyone has any suggestions, i'd really appreciate it. I'm not sure what else i can poke at to get this thing to work. Thanks! Client, (Program.cs): using System; using System.Linq; using System.Collections.Generic; using System.Text; namespace WcfPoC { class Program { static void Main(string[] args) { try { Service1Client proxy = new Service1Client(); string test = proxy.GetData(5); } catch (Exception e) { Console.WriteLine(e.Message); Console.WriteLine(e.InnerException.Message); Console.WriteLine(e.StackTrace); } } } } Client Proxy excerpt (Service1.cs): [System.Diagnostics.DebuggerStepThroughAttribute()] [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "3.0.0.0")] public partial class Service1Client : Microsoft.Tools.ServiceModel.CFClientBase<IService1>, IService1 { //modified according to the walk thru linked above... public static System.ServiceModel.EndpointAddress EndpointAddress = new System.ServiceModel.EndpointAddress("http://boston7/Service1.svc/basic"); /* *a bunch of code create by the svc util - left unmodified */ } The Service (Service1.svc.cs): using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using System.ServiceModel; using System.Text; namespace WcfService1 { // NOTE: If you change the class name "Service1" here, you must also update the reference to "Service1" in Web.config and in the associated .svc file. public class Service1 : IService1 { public string GetData(int value) //i'm calling this one... { return string.Format("You entered: {0}", value); } public CompositeType GetDataUsingDataContract(CompositeType composite) { if (composite.BoolValue) { composite.StringValue += "Suffix"; } return composite; } } } Service Interface (IService1.cs): using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using System.ServiceModel; using System.Text; namespace WcfService1 { // NOTE: If you change the interface name "IService1" here, you must also update the reference to "IService1" in Web.config. [ServiceContract] public interface IService1 { [OperationContract] string GetData(int value); //this is the call im using... [OperationContract] CompositeType GetDataUsingDataContract(CompositeType composite); // TODO: Add your service operations here } // Use a data contract as illustrated in the sample below to add composite types to service operations. [DataContract] public class CompositeType { /* * ommitted - not using this type anyway... */ } } Web.config excerpt: <services> <service name="WcfService1.Service1" behaviorConfiguration="WcfService1.Service1Behavior"> <!-- Service Endpoints --> <endpoint address="" binding="basicHttpBinding" contract="WcfService1.IService1"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> <host> <baseAddresses> <add baseAddress="http://boston7/" /> </baseAddresses> </host> </service> </services>

    Read the article

  • Displaying a pdf file located on a http server from mobile phone

    - by JCasso
    I have some pdf files located on a http server: Like: http://domain.com/files/file1.pdf http://domain.com/files/file1.pdf http://domain.com/files/file1.pdf I need to display these files on a mobile application using java me. I tried to display them by opening Google Docs Viewer with platformRequest. However it seems Google Docs Viewer uses ajax and many mobile browsers does not support it. Is there an alternative for "Google Docs Viewer" for mobile devices ? Or is there a better solution for this problem ?

    Read the article

  • WCF - Compact Framework - Pull data from mobile client

    - by jagse
    Hello guys, I want to communicate xml serialized objects from the server to the client and the other way arround. Now it is (probably) easy to invoke methods from a mobile client (compact framework) using WCF, but is there a way so that the server can invoke methods on the client side or some other way to pull data from the client? I know that callback contracts are not available in the compact framework as you can see here: http://blogs.msdn.com/andrewarnottms/archive/2007/09/13/calling-wcf-services-from-netcf-3-5-using-compact-wcf-and-netcfsvcutil-exe.aspx Originally I thought of socket programming and of developing this by myself, then someone here mentioned WCF. But it seems like WCF only would work in a non mobile environment as I need callbacks. Anyone can help me with this? Is it possible to develop a two way communication with a desktop server and multiple mobile clients using WCF, or will I have to do socket programming? Thanks for any advice or any kind of help!

    Read the article

  • Developing Mobile App (Iphone,Blackberry,Android) for an existing website

    - by soodos
    Hey Guys I have a website and am planning to develop a mobile version of it for the iphone, blackberry and android. My website is a social network built on PHP Zend framework. Now all these mobile apps are going to be having the same functionality like the website. I am little ignorant about this - but from a high level I understand that all these mobile apps should not have to write any backend logic. For every functionality - they will simply make a web service API call to interact with the backend. So does that mean, for every functionality I need to create a web service method. Can the existing code be re used - I'm a little lost - Can someone shed some light on this matter or point me in the right direction (like some articles) Thanks

    Read the article

  • WebSocket support on mobile devices

    - by Marco W.
    For an Android multiplayer game's communication between players I'm using a WebSocket server and TooTallNate's Java library on the client side to enable WebSocket support in the Android app. So just to point it out clearly, WebSocket support in mobile browsers is not important to me. Unfortunately, users report that they're experiencing problems such as connection failures or unreceived messages. Is that a general problem of WebSockets on mobile devices (blocked ports, firewalls, mobile Internet connection) or is that probably a flaw in the client side code? Do you have experience with WebSocket client libraries such as the one above? I've just discovered autobahn.ws for Android - but I don't know if it's worth switching from my current library (see above). What about WAMP? Is WebSocket technology not exactly the adequate solution so that I should use the sub-protocol (?) WAMP?

    Read the article

  • Developing for mobile devices and desktop

    - by Augusto
    Hi, I'm starting a new project. It will run on devices running Windows CE, Windows Mobile 6 and will also have a desktop version. The software will connect to some equipments through the serial port, using it's own protocol. Basically it will: connect to the equipment send and receive info read and write binary files These tasks will be shared between desktop and mobile devices. I've been searching the information I need, but I still have some doubts: If I target Windows CE devices it will work with Windows Mobile 6 too? Creating a class library targeting Windows CE will give me any trouble on using it in the desktop version? (when I add a reference to that class library, my VS says that I could experience some unexpected results) Is it possible to install .NET CF 3.5 on devices running Windows CE 4.2? Thanks!

    Read the article

  • JavaFX media player in mobile

    - by cancelledout
    Does anyone have any tutorials in playing videos in javafx applications in mobile? My codes strangely work only in desktop execution. But the official site of JavaFX says it plays in mobile phones. I used their sample code and guess what, it doesn't play on the mobile phone too. Here is the sample code I used: http://javafx.com/docs/articles/media/EmbeddedPlayer.fx.jsp Please help me guys. I'm on a dead-end here. =<

    Read the article

  • Mobile Application Upgrade/Update Framework

    - by sharjeel
    I am developing a few mobile apps for different platforms including Blackberry, Windows Mobile, Android and Symbian S60. I want my mobile apps to have the capability of checking for updates before starting and in case a new version is available, prompt the user to upgrade. Moreover in certain cases (like security patches), the user must be forced to update or the app won't work. Surely I can cook some code to achieve the task but I was wondering if there are already existing framework to serve the purpose so that I don't have to re-invent the wheel and test all over?

    Read the article

  • BULK SMS, Long Codes (VMN MSIDN), T-mobile?

    - by John
    Does any US wireless carrier offer individuals or companies with a direct connection to the SMSC? The number is 747-772-3101 (repalce 7's with 6's) This number is registered to t-mobile, also verified by t-mobile to be a valid subscriber sending 160,000+ text messages monthly and that all they have is an unlimited text messaging plan on top of the cheapest voice plan. This company of the number verified to me that they don't use gsm modems as they are too slow. So I know it's possible but who would I contact, Sales or anyone else reachable through a 1-800 is ignorant to these services and developer.t-mobile is worthless and doesn't reply to emails. Any info??

    Read the article

< Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >