Search Results

Search found 1706 results on 69 pages for 'offset'.

Page 8/69 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Will wear induced by turning computers off in the evening be offset by energy savings?

    - by sharptooth
    I'm asking this here because this is primarily a huge office scenario and administrators will more likely have the answer I'm looking for. Employees' desktop computers can be either left turned on for the whole night or switched off in the evening and turned back on in the morning. The latter will surely save energy. In the same time turning on and off is very harmful for the equipment - hardware often breaks specifically when turned on. Both energy and hardware replacements cost money. With energy it's quite obvious - you pay every month according to what your power meter shows. With hardware replacements it's worse - you need qualified stuff to quickly diagnose the problems and once something breaks the affected employee will have to wait for some time while his computer is fixed/replaced and the data is recovered. So the company has to choose between saving money on energy and saving money on computer maintaince and lost hours. Such decisions must be well though. Is there any detailed study of how turning computers off each evening affects their lifetime?

    Read the article

  • NTP daemon or ntpdate doesn't synchronize

    - by user2862333
    I'm having some problems with synchronization with an NTP server. 1) The NTP daemon doesn't sync the system clock at all, even though it's running (confirmed with /etc/init.d/ntp status). Forcing to sync with ntpd -q or ntpd -gq does not work either. 2) Stopping the NTP daemon and syncing manually with ntpdate does give me the following output: ~# ntpdate -d 0.debian.pool.ntp.org 6 Nov 16:48:53 ntpdate[4417]: ntpdate [email protected] Sat May 12 09:07:19 UTC 2012 (1) transmit(79.132.237.5) receive(79.132.237.5) transmit(85.234.197.2) receive(85.234.197.2) transmit(194.50.97.34) receive(194.50.97.34) transmit(79.132.237.1) receive(79.132.237.1) transmit(79.132.237.5) receive(79.132.237.5) transmit(85.234.197.2) receive(85.234.197.2) transmit(194.50.97.34) receive(194.50.97.34) transmit(79.132.237.1) receive(79.132.237.1) transmit(79.132.237.5) receive(79.132.237.5) transmit(85.234.197.2) receive(85.234.197.2) transmit(194.50.97.34) receive(194.50.97.34) transmit(79.132.237.1) receive(79.132.237.1) transmit(79.132.237.5) receive(79.132.237.5) transmit(85.234.197.2) receive(85.234.197.2) transmit(194.50.97.34) receive(194.50.97.34) transmit(79.132.237.1) receive(79.132.237.1) server 79.132.237.5, port 123 stratum 2, precision -20, leap 00, trust 000 refid [79.132.237.5], delay 0.05141, dispersion 0.00145 transmitted 4, in filter 4 reference time: d624e3b1.f490b90d Wed, Nov 6 2013 16:50:09.955 originate timestamp: d624e457.eaaf787c Wed, Nov 6 2013 16:52:55.916 transmit timestamp: d624e36c.4a7036fd Wed, Nov 6 2013 16:49:00.290 filter delay: 0.08537 0.05141 0.05151 0.06346 0.00000 0.00000 0.00000 0.00000 filter offset: 235.6038 235.6087 235.6095 235.6068 0.000000 0.000000 0.000000 0.000000 delay 0.05141, dispersion 0.00145 offset 235.608782 server 85.234.197.2, port 123 stratum 2, precision -20, leap 00, trust 000 refid [85.234.197.2], delay 0.05151, dispersion 0.00336 transmitted 4, in filter 4 reference time: d624e3e7.dc6cd02b Wed, Nov 6 2013 16:51:03.861 originate timestamp: d624e458.1c91031f Wed, Nov 6 2013 16:52:56.111 transmit timestamp: d624e36c.7da1d882 Wed, Nov 6 2013 16:49:00.490 filter delay: 0.05765 0.07750 0.06013 0.05151 0.00000 0.00000 0.00000 0.00000 filter offset: 235.6048 235.6014 235.6035 235.6078 0.000000 0.000000 0.000000 0.000000 delay 0.05151, dispersion 0.00336 offset 235.607826 server 194.50.97.34, port 123 stratum 3, precision -23, leap 00, trust 000 refid [194.50.97.34], delay 0.03021, dispersion 0.00090 transmitted 4, in filter 4 reference time: d624e38d.2bce952c Wed, Nov 6 2013 16:49:33.171 originate timestamp: d624e458.4dbbc114 Wed, Nov 6 2013 16:52:56.303 transmit timestamp: d624e36c.b0d38834 Wed, Nov 6 2013 16:49:00.690 filter delay: 0.03030 0.03636 0.03091 0.03021 0.00000 0.00000 0.00000 0.00000 filter offset: 235.6095 235.6085 235.6098 235.6105 0.000000 0.000000 0.000000 0.000000 delay 0.03021, dispersion 0.00090 offset 235.610589 server 79.132.237.1, port 123 stratum 3, precision -20, leap 00, trust 000 refid [79.132.237.1], delay 0.05113, dispersion 0.00305 transmitted 4, in filter 4 reference time: d624dfcb.6acea332 Wed, Nov 6 2013 16:33:31.417 originate timestamp: d624e458.838672ad Wed, Nov 6 2013 16:52:56.513 transmit timestamp: d624e36c.e405181c Wed, Nov 6 2013 16:49:00.890 filter delay: 0.06345 0.05113 0.05681 0.05656 0.00000 0.00000 0.00000 0.00000 filter offset: 235.6087 235.6038 235.6010 235.6074 0.000000 0.000000 0.000000 0.000000 delay 0.05113, dispersion 0.00305 offset 235.603888 6 Nov 16:49:00 ntpdate[4417]: step time server 79.132.237.5 offset 235.608782 sec Clearly, ntpdate can reach the NTP server(s), but after checking the clock, it hasn't changed and is still displaying the wrong time. Any ideas what would be the problem would be much appreciated.

    Read the article

  • How do I offset centered text (without fancy CSS, DHTML, etc.)?

    - by Larry
    Hi, Quick, hopefully easy question. Google is failing me. I don't want my text exactly centered. I want it maybe 7 characters (blank spaces) over. What do I add to this to do that? <.centerThis is centered<./center Adding blanks in front of the "T" does nothing. (I added the dots in the code above because I can't get <.code blocks/spans to let me put the html code here.) (Nothing fancy - no CSS, DHTML, XHTML - just plain old HTML.) Thanks.

    Read the article

  • Block filters using fragment shaders

    - by Nils
    I was following this tutorial using Apple's OpenGL Shader Builder (tool similar to Nvidia's fx composer, but simpler). I could easily apply the filters, but I don't understand if they worked correct (and if so how can I improve the output). For example the blur filter: OpenGL itself does some image processing on the textures, so if they are displayed in a higher resolution than the original image, they are blurred already by OpenGL. Second the blurred part is brighter then the part not processed, I think this does not make sense, since it just takes pixels from the direct neighborhood. This is defined by float step_w = (1.0/width); Which I don't quite understand: The pixels are indexed using floating point values?? Edit: I forgot to attach the exact code I used: Fragment Shader // Originally taken from: http://www.ozone3d.net/tutorials/image_filtering_p2.php#part_2 #define KERNEL_SIZE 9 float kernel[KERNEL_SIZE]; uniform sampler2D colorMap; uniform float width; uniform float height; float step_w = (1.0/width); float step_h = (1.0/height); // float step_w = 20.0; // float step_h = 20.0; vec2 offset[KERNEL_SIZE]; void main(void) { int i = 0; vec4 sum = vec4(0.0); offset[0] = vec2(-step_w, -step_h); // south west offset[1] = vec2(0.0, -step_h); // south offset[2] = vec2(step_w, -step_h); // south east offset[3] = vec2(-step_w, 0.0); // west offset[4] = vec2(0.0, 0.0); // center offset[5] = vec2(step_w, 0.0); // east offset[6] = vec2(-step_w, step_h); // north west offset[7] = vec2(0.0, step_h); // north offset[8] = vec2(step_w, step_h); // north east // Gaussian kernel // 1 2 1 // 2 4 2 // 1 2 1 kernel[0] = 1.0; kernel[1] = 2.0; kernel[2] = 1.0; kernel[3] = 2.0; kernel[4] = 4.0; kernel[5] = 2.0; kernel[6] = 1.0; kernel[7] = 2.0; kernel[8] = 1.0; // TODO make grayscale first // Laplacian Filter // 0 1 0 // 1 -4 1 // 0 1 0 /* kernel[0] = 0.0; kernel[1] = 1.0; kernel[2] = 0.0; kernel[3] = 1.0; kernel[4] = -4.0; kernel[5] = 1.0; kernel[6] = 0.0; kernel[7] = 2.0; kernel[8] = 0.0; */ // Mean Filter // 1 1 1 // 1 1 1 // 1 1 1 /* kernel[0] = 1.0; kernel[1] = 1.0; kernel[2] = 1.0; kernel[3] = 1.0; kernel[4] = 1.0; kernel[5] = 1.0; kernel[6] = 1.0; kernel[7] = 1.0; kernel[8] = 1.0; */ if(gl_TexCoord[0].s<0.5) { // For every pixel sample the neighbor pixels and sum up for( i=0; i<KERNEL_SIZE; i++ ) { // select the pixel with the concerning offset vec4 tmp = texture2D(colorMap, gl_TexCoord[0].st + offset[i]); sum += tmp * kernel[i]; } sum /= 16.0; } else if( gl_TexCoord[0].s>0.51 ) { sum = texture2D(colorMap, gl_TexCoord[0].xy); } else // Draw a red line { sum = vec4(1.0, 0.0, 0.0, 1.0); } gl_FragColor = sum; } Vertex Shader void main(void) { gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = ftransform(); }

    Read the article

  • Internal hard drive, can't format

    - by user113923
    I cannot format anymore the hard drive of my laptop. Here is how I proceed: I am starting my computer with a USB live drive (Ubuntu 10.04 LTS - the Lucid Lynx). Then I start disk utility and try to format the hard drive - I choosed to format the Master boot record but I get the following error: Error creating partition table: helper exited with exit code 1: Error calling fsync(2) on /dev/sda: Input/output error If I try to delete partitions I get the following error Error erasing: helper exited with exit code 1: In part_del_partition: device_file=/dev/sda, offset=32256 Entering MS-DOS parser (offset=0, size=30005821440) MSDOS_MAGIC found looking at part 0 (offset 32256, size 4096157184, type 0x83) new part entry looking at part 1 (offset 10618836480, size 8414461440, type 0x83) new part entry looking at part 2 (offset 19033297920, size 1077511680, type 0x82) new part entry looking at part 3 (offset 20110809600, size 9895011840, type 0x07) new part entry Exiting MS-DOS parser MSDOS partition table detected got it got disk got partition - part-type=0 Error: Input/output error during write on /dev/sda ped_disk_commit_to_dev() failed If I try to install ubuntu frrom the usb on the hard drive and choose erase and use the entire disk I get the error message Input/output error during write on /dev/sda For side infos I have at the moment 4 partitions on my hard drive: /dev/sda1 (ext2) /dev/sda2 (ext2) /dev/sda3 (swap) /dev/sda1 (ntfs) + /dev/sda (unlocated Space) My ultimate goal is to reinstall ubuntu and have only 2 partitions... I would really appreciate any help here! Thanks JB

    Read the article

  • Strange offset space between <button> as parent container and <div> as child.

    - by Maxja
    I need to decorate a standard html button. The base element I took <button> instead of <input>, cos I decided that the element must be a parent container. And there is child element <div> in it. This <div> element will be been the core element for decoration, and should occupy the entire space of the parent element - button. <button> <div>*decoration goes here*</div> </button> And within Cascading Style Sheets it might be looks like this: css button { margin: 0; border: 0; padding: 0; width: *150*px; height: *50*px; position: relative; } div { margin: 0; border: 0; padding: 0; width: 100%; height: 100%; background: *black*; position: absolute; top: 0; left: 0; } html <button type="button"> <div>*decoration goes here*</div> </button> So, Opera(10) is doing well, webkits Chrome(6) and Safari(4) is doing also well, but Internet Explorer(8) is bad - DOM Inspector shows some strange Offset space in top and left, FireFox(3) is also bad - DOM Inspector shows that <div> get some negative value in css-property right: and bottom:. Even if this property will set to zero(0) DOM-Inspector still shows same negative value. I almost broke my brain. Help me, solve this problem, please!

    Read the article

  • LIBGDX "parsing error emitter" with 2 or more emitters [on hold]

    - by flow969
    I have a problem with the use of particle effect of LIBGDX with 2 or more emitters. After using ParticleEditor to create my .p file, I use it in my code BUT...when I use only 1 emitter it's fine but with more than 1, not fine ! :( Here is my error code in java console : Exception in thread "LWJGL Application" java.lang.RuntimeException: Error parsing emitter: - Delay - at com.badlogic.gdx.graphics.g2d.ParticleEmitter.load(ParticleEmitter.java:910) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.<init>(ParticleEmitter.java:95) at com.badlogic.gdx.graphics.g2d.ParticleEffect.loadEmitters(ParticleEffect.java:154) at com.badlogic.gdx.graphics.g2d.ParticleEffect.load(ParticleEffect.java:138) at com.fasgame.fishtrip.android.screens.GameScreen.show(GameScreen.java:313) at com.badlogic.gdx.Game.setScreen(Game.java:61) at com.fasgame.fishtrip.android.screens.MainMenuScreen.render(MainMenuScreen.java:71) at com.badlogic.gdx.Game.render(Game.java:46) at com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop(LwjglApplication.java:206) at com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run(LwjglApplication.java:114) Caused by: java.lang.NumberFormatException: For input string: "- Count -" at sun.misc.FloatingDecimal.readJavaFormatString(Unknown Source) at sun.misc.FloatingDecimal.parseFloat(Unknown Source) at java.lang.Float.parseFloat(Unknown Source) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.readFloat(ParticleEmitter.java:929) at com.badlogic.gdx.graphics.g2d.ParticleEmitter$RangedNumericValue.load(ParticleEmitter.java:1062) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.load(ParticleEmitter.java:866) ... 9 more And here is my particle effect .p file : Blanc - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.50980395 colors1: 0.7647059 colors2: 0.7921569 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 4 scaling0: 1.0 scaling1: 1.0 scaling2: 1.0 scaling3: 1.0 timelineCount: 4 timeline0: 0.0 timeline1: 0.36301368 timeline2: 0.6164383 timeline3: 1.0 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png Bleu - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.0 colors1: 0.7254902 colors2: 0.7921569 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 6 scaling0: 0.0 scaling1: 1.0 scaling2: 1.0 scaling3: 1.0 scaling4: 1.0 scaling5: 0.0 timelineCount: 6 timeline0: 0.0 timeline1: 0.047945205 timeline2: 0.34246576 timeline3: 0.6712329 timeline4: 0.94520545 timeline5: 1.0 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png BleuFonce - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.0 colors1: 0.7294118 colors2: 1.0 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 4 scaling0: 1.0 scaling1: 0.0 scaling2: 0.0 scaling3: 1.0 timelineCount: 4 timeline0: 0.0 timeline1: 0.001 timeline2: 0.5753425 timeline3: 0.79452056 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png For the "- Image Path -" missing it's normal if I let them in it doesn't work even with only 1 emitter PS : I've already updated my lib to the last release

    Read the article

  • Combine multiple rows into one

    - by Jim
    I am trying to combine multiple rows of data into one. Column A contains the value on which the groupings will be based -- rows whose Column A values match will be combined into one row. My range extends from column A through X so I need a matching row of data to start in column Y. Example: +--------------+ ¦ 1001 ¦ A ¦ C ¦ ¦ 1001 ¦ B ¦ D ¦ ¦ 1002 ¦ A ¦ E ¦ ¦ 1002 ¦ B ¦ F ¦ ¦ 1002 ¦ C ¦ G ¦ +--------------+ Desired Result: +------------------------------+ ¦ 1001 ¦ A ¦ C ¦ B ¦ D ¦ ¦ ¦ ¦ 1002 ¦ A ¦ E ¦ B ¦ F ¦ C ¦ G ¦ +------------------------------+ The VBA code I am currently using is not taking the entire contents of the matched row. It is only taking the data in the 2nd column and moving it up. VBA Code: Sub Mergeitems() Dim cl As Range Dim rw As Range Set rw = ActiveCell Do While rw <> "" ' for each row in data set ' find first empty cell on row Set cl = rw.Offset(0, 1) Do While cl <> "" Set cl = cl.Offset(0, 1) Loop ' if next row needs to be processed... Do While rw = rw.Offset(1, 0) cl = rw.Offset(1, 1) ' move the data Set cl = cl.Offset(0, 1) ' update pointer to next blank cell rw.Offset(1, 0).EntireRow.Delete xlShiftUp ' delete old data Loop ' next row Set rw = rw.Offset(1, 0) Loop End Sub

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • JavaScript: Given an offset and substring length in an HTML string, what is the parent node?

    - by Bungle
    My current project requires locating an array of strings within an element's text content, then wrapping those matching strings in <a> elements using JavaScript (requirements simplified here for clarity). I need to avoid jQuery if at all possible - at least including the full library. For example, given this block of HTML: <div> <p>This is a paragraph of text used as an example in this Stack Overflow question.</p> </div> and this array of strings to match: ['paragraph', 'example'] I would need to arrive at this: <div> <p>This is a <a href="http://www.example.com/">paragraph</a> of text used as an <a href="http://www.example.com/">example</a> in this Stack Overflow question.</p> </div> I've arrived at a solution to this by using the innerHTML() method and some string manipulation - basically using the offsets (via indexOf()) and lengths of the strings in the array to break the HTML string apart at the appropriate character offsets and insert <a href="http://www.example.com/"> and </a> tags where needed. However, an additional requirement has me stumped. I'm not allowed to wrap any matched strings in <a> elements if they're already in one, or if they're a descendant of a heading element (<h1> to <h6>). So, given the same array of strings above and this block of HTML (the term matching has to be case-insensitive, by the way): <div> <h1>Example</a> <p>This is a <a href="http://www.example.com/">paragraph of text</a> used as an example in this Stack Overflow question.</p> </div> I would need to disregard both the occurrence of "Example" in the <h1> element, and the "paragraph" in <a href="http://www.example.com/">paragraph of text</a>. This suggests to me that I have to determine which node each matched string is in, and then traverse its ancestors until I hit <body>, checking to see if I encounter a <a> or <h_> node along the way. Firstly, does this sound reasonable? Is there a simpler or more obvious approach that I've failed to consider? It doesn't seem like regular expressions or another string-based comparison to find bounding tags would be robust - I'm thinking of issues like self-closing elements, irregularly nested tags, etc. There's also this... Secondly, is this possible, and if so, how would I approach it?

    Read the article

  • Help on TileMapRenderer

    - by Crypted
    In my project, I'm trying to render a map using TileMapRenderer. But it doesn't show anything when I render it. But when I use some other files from a tutorial they are rendered correctly. When debugging my TileAtlas instance shows the size as 0. I have used Texture Packer UI for packing the images. Comparing with the tutorial's files, I can see that the index starts from 1 in my file and 0 in the tutorial. But changing it to 0 wouldn't work also. map.png format: RGBA8888 filter: Nearest,Nearest repeat: none Map rotate: false xy: 0, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 1 Map rotate: false xy: 32, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 2 Map rotate: false xy: 64, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 3 Map rotate: false xy: 96, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 4 Map rotate: false xy: 128, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 5 Here is the begining of the tmx file. <?xml version="1.0" encoding="UTF-8"?> <map version="1.0" orientation="orthogonal" width="20" height="20" tilewidth="32" tileheight="32"> <tileset firstgid="1" name="a" tilewidth="32" tileheight="32"> <image source="map.png" width="256" height="32"/> </tileset> <layer name="Tile Layer 1" width="20" height="20"> <data> <tile gid="2"/> <tile gid="2"/> Apart from that the tutorial files and my files seems to be similar. Can anyone help me here.

    Read the article

  • Shuffle tiles position in the beginning of the game XNA Csharp

    - by GalneGunnar
    Im trying to create a puzzlegame where you move tiles to certain positions to make a whole image. I need help with randomizing the tiles startposition so that they don't create the whole image at the beginning. There is also something wrong with my offset, that's why it's set to (0,0). I know my code is not good, but Im just starting to learn :] Thanks in advance My Game1 class: { public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Texture2D PictureTexture; Texture2D FrameTexture; // Offset för bildgraff Vector2 Offset = new Vector2(0,0); //skapar en array som ska hålla delar av den stora bilden Square[,] squareArray = new Square[4, 4]; // Random randomeraBilder = new Random(); //Width och Height för bilden int pictureHeight = 95; int pictureWidth = 144; Random randomera = new Random(); int index = 0; MouseState oldMouseState; int WindowHeight; int WindowWidth; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; //scalar Window till 800x 600y graphics.PreferredBackBufferWidth = 800; graphics.PreferredBackBufferHeight = 600; graphics.ApplyChanges(); } protected override void Initialize() { IsMouseVisible = true; base.Initialize(); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); PictureTexture = Content.Load<Texture2D>(@"Images/bildgraff"); FrameTexture = Content.Load<Texture2D>(@"Images/framer"); //Laddar in varje liten bild av den stora bilden i en array for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { Vector2 position = new Vector2(x * pictureWidth, y * pictureHeight); position = position + Offset; Rectangle square = new Rectangle(x * pictureWidth, y * pictureHeight, pictureWidth, pictureHeight); Square frame = new Square(position, PictureTexture, square, Offset, index); squareArray[x, y] = frame; index++; } } } protected override void UnloadContent() { } protected override void Update(GameTime gameTime) { if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); MouseState ms = Mouse.GetState(); if (oldMouseState.LeftButton == ButtonState.Pressed && ms.LeftButton == ButtonState.Released) { // ta reda på vilken position vi har tryckt på int col = ms.X / pictureWidth; int row = ms.Y / pictureHeight; for (int x = 0; x < squareArray.GetLength(0); x++) { for (int y = 0; y < squareArray.GetLength(1); y++) { // kollar om rutan är tom och så att indexet inte går utanför för "col" och "row" if (squareArray[x, y].index == 0 && col >= 0 && row >= 0 && col <= 3 && row <= 3) { if (squareArray[x, y].index == 0 * col) { //kollar om rutan brevid mouseclick är tom if (col > 0 && squareArray[col - 1, row].index == 0 || row > 0 && squareArray[col, row - 1].index == 0 || col < 3 && squareArray[col + 1, row].index == 0 || row < 3 && squareArray[col, row + 1].index == 0) { Square sqaure = squareArray[col, row]; Square hal = squareArray[x, y]; squareArray[x, y] = sqaure; squareArray[col, row] = hal; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { Vector2 goalPosition = new Vector2(x * pictureWidth, y * pictureHeight); squareArray[x, y].Swap(goalPosition); } } } } } } } } //if (oldMouseState.RightButton == ButtonState.Pressed && ms.RightButton == ButtonState.Released) //{ // for (int x = 0; x < 4; x++) // { // for (int y = 0; y < 4; y++) // { // } // } //} oldMouseState = ms; base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); WindowHeight = Window.ClientBounds.Height; WindowWidth = Window.ClientBounds.Width; Rectangle screenPosition = new Rectangle(0,0, WindowWidth, WindowHeight); spriteBatch.Begin(); spriteBatch.Draw(FrameTexture, screenPosition, Color.White); //Ritar ut alla brickorna förutom den som har index 0 for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { if (squareArray[x, y].index != 0) { squareArray[x, y].Draw(spriteBatch); } } } spriteBatch.End(); base.Draw(gameTime); } } } My square class: class Square { public Vector2 position; public Texture2D grafTexture; public Rectangle square; public Vector2 offset; public int index; public Square(Vector2 position, Texture2D grafTexture, Rectangle square, Vector2 offset, int index) { this.position = position; this.grafTexture = grafTexture; this.square = square; this.offset = offset; this.index = index; } public void Draw(SpriteBatch spritebatch) { spritebatch.Draw(grafTexture, position, square, Color.White); } public void RandomPosition() { } public void Swap(Vector2 Goal ) { if (Goal.X > position.X) { position.X = position.X + 144; } else if (Goal.X < position.X) { position.X = position.X - 144; } else if (Goal.Y < position.Y) { position.Y = position.Y - 95; } else if (Goal.Y > position.Y) { position.Y = position.Y + 95; } } } }

    Read the article

  • Unity custom shaders and z-fighting

    - by Heisenbug
    I've just readed a chapter of Unity iOS Essential by Robert Wiebe. It shows a solution for handling z-figthing problem occuring while rendering a street on a plane with the same y offset. Basically it modified Normal-Diffuse shader provided by Unity, specifing the (texture?) offset in -1, -1. Here's basically what the shader looks like: Shader "Custom/ModifiedNormalDiffuse" { Properties { _Color ("Main Color", Color) = (1,1,1,1) _MainTex ("Base (RGB)", 2D) = "white" {} } SubShader { Offset -1,-1 //THIS IS THE ADDED LINE Tags { "RenderType"="Opaque" } LOD 200 CGPROGRAM #pragma surface surf Lambert sampler2D _MainTex; fixed4 _Color; struct Input { float2 uv_MainTex; }; void surf (Input IN, inout SurfaceOutput o) { half4 c = tex2D (_MainTex, IN.uv_MainTex) *_Color; o.Albedo = c.rgb; o.Alpha = c.a; } ENDCG } FallBack "Diffuse" } Ok. That's simple and it works. The author says about it: ...we could use a copy of the shader that draw the road at an Offset of -1, -1 so that whenever the two textures are drawn, the road is always drawn last. I don't know CG nor GLSL, but I've a little bit of experience with HLSL. Anyway I can't figure out what exactly is going on. Could anyone explain me what exactly Offset directly does, and how is solves z-fighting problems?

    Read the article

  • GLSL, is it possible to offsetting vertices based on height map colour?

    - by Rob
    I am attempting to generate some terrain based upon a heightmap. I have generated a 32 x 32 grid and a corresponding height map - In my vertex shader I am trying to offset the position of the Y axis based upon the colour of the heightmap, white vertices being higher than black ones. //Vertex Shader Code #version 330 uniform mat4 modelMatrix; uniform mat4 viewMatrix; uniform mat4 projectionMatrix; uniform sampler2D heightmap; layout (location=0) in vec4 vertexPos; layout (location=1) in vec4 vertexColour; layout (location=3) in vec2 vertexTextureCoord; layout (location=4) in float offset; out vec4 fragCol; out vec4 fragPos; out vec2 fragTex; void main() { // Retreive the current pixel's colour vec4 hmColour = texture(heightmap,vertexTextureCoord); // Offset the y position by the value of current texel's colour value ? vec4 offset = vec4(vertexPos.x , vertexPos.y + hmColour.r, vertexPos.z , 1.0); // Final Position gl_Position = projectionMatrix * viewMatrix * modelMatrix * offset; // Data sent to Fragment Shader. fragCol = vertexColour; fragPos = vertexPos; fragTex = vertexTextureCoord; } However the code I have produced only creates a grid with none of the y vertices higher than any others.

    Read the article

  • 3D Studio Max biped restrictions?

    - by meds
    I have a stock biped character in 3D studio max which has a jump animation. The problem I have with the jump animation is that there is actual y offset happening inside it which makes it awkward to play while the character is jumping since it's not only jumping in the game world but the jump animation is adding its own height offset. I'm tryuing to remove the jump animations height offset, so far I've found the root node and deleted all its key frames which has helped a bit. The problem I'm having now is that the character still has some height offset and if I try to lower it it has a fake 'ground' that isn't at 0 and the limbs sort of bend on the imaginary floor, si there a way to remove this restriction just for the jump animation? Here's what I mean: http://i.imgur.com/qoWIR.png Any idea for a fix? I'm using Unity 3D if that opens any other possibilities...

    Read the article

  • Why is ntpd not updating the time on my server?

    - by John
    I have ntpd running on my server. It's all the default settings, except I commented out its ability to be a server to other machines: # restrict -4 default kod notrap nomodify nopeer noquery # restrict -6 default kod notrap nomodify nopeer noquery restrict default ignore If I run ntpdate -q ntp.ubuntu.com, I'm told that my machine's clock is off by 7 seconds. What's going on? How can I diagnose what's happening, is there a log I can turn on? more info #1 # ntpq -np remote refid st t when poll reach delay offset jitter ============================================================================== 91.189.94.4 193.79.237.14 2 u 30 64 7 108.518 -0.136 0.361 more info #2 Here's what this looked like when I asked the question: # ntpdate -q ntp.ubuntu.com server 91.189.94.4, stratum 2, offset 7.191308, delay 0.13310 10 Jan 20:38:09 ntpdate[31055]: step time server 91.189.94.4 offset 7.191308 sec And here's what it looks like now, after restarting ntpd a couple times (I'm assuming that's what fixed it): # ntpdate -q ntp.ubuntu.com server 91.189.94.4, stratum 2, offset 0.000112, delay 0.13164 10 Jan 20:47:03 ntpdate[31419]: adjust time server 91.189.94.4 offset 0.000112 sec

    Read the article

  • How can I read from multiple textures in an OpenGL ES 2 shader?

    - by Peyman Tahghighi
    How can I enable more than one texture in OpenGL ES 2 so that I can sample from all of them in my shader? For example, I'm trying to read from two different textures in my shader for the player's car. This is how I'm currently dealing with the texture for my car: glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, this->texture2DObj); glUniform1i(1, 0); glBindBuffer(GL_ARRAY_BUFFER, this->vertexBuffer); glEnableVertexAttribArray(0); int offset = 0; glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, this->vertexBufferSize,(const void *)offset); offset += 3 * sizeof(GLfloat); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, this->vertexBufferSize, (const void*)offset); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->indexBuffer); glDrawElements(GL_TRIANGLES, this->indexBufferSize, GL_UNSIGNED_SHORT, 0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1);

    Read the article

  • Algorithm to match list of regular expressions

    - by DSII
    I have two algorithmic questions for a project I am working on. I have thought about these, and have some suspicions, but I would love to hear the community's input as well. Suppose I have a string, and a list of N regular expressions (actually they are wildcard patterns representing a subset of full regex functionality). I want to know whether the string matches at least one of the regular expressions in the list. Is there a data structure that can allow me to match the string against the list of regular expressions in sublinear (presumably logarithmic) time? This is an extension of the previous problem. Suppose I have the same situation: a string and a list of N regular expressions, only now each of the regular expressions is paired with an offset within the string at which the match must begin (or, if you prefer, each of the regular expressions must match a substring of the given string beginning at the given offset). To give an example, suppose I had the string: This is a test string and the regex patterns and offsets: (a) his.* at offset 0 (b) his.* at offset 1 The algorithm should return true. Although regex (a) does not match the string beginning at offset 0, regex (b) does match the substring beginning at offset 1 ("his is a test string"). Is there a data structure that can allow me to solve this problem in sublinear time? One possibly useful piece of information is that often, many of the offsets in the list of regular expressions are the same (i.e. often we are matching the substring at offset X many times). This may be useful to leverage the solution to problem #1 above. Thank you very much in advance for any suggestions you may have!

    Read the article

  • how to rotate the Circle in DrawRect?

    - by senthilmuthu
    HI, i want to draw a circle in DrawRect through context like pie chart(took from tutorial) thorugh UITouch? i have given the code as follows,how can i rotate ? any help please? define PI 3.14159265358979323846 define snapshot_start 360 define snapshot_finish 360 static inline float radians(double degrees) { return degrees * PI / 180; } - (void)drawRect:(CGRect)rect { // Drawing code CGRect parentViewBounds = self.bounds; CGFloat x = CGRectGetWidth(parentViewBounds)/2; CGFloat y = CGRectGetHeight(parentViewBounds)*0.55; // Get the graphics context and clear it CGContextRef ctx = UIGraphicsGetCurrentContext(); CGContextClearRect(ctx, rect); // define stroke color CGContextSetRGBStrokeColor(ctx, 1, 1, 1, 1.0); // define line width CGContextSetLineWidth(ctx, 4.0); // need some values to draw pie charts double snapshotCapacity =20; double rawCapacity = 100; double systemCapacity = 1; int offset = 5; double pie1_start = 315.0; double pie1_finish = snapshotCapacity *360.0/rawCapacity; double system_finish = systemCapacity*360.0/rawCapacity; CGContextSetFillColor(ctx, CGColorGetComponents( [[UIColor greenColor] CGColor])); CGContextMoveToPoint(ctx, x+2*offset, y); CGContextAddArc(ctx, x+2*offset, y, 100, radians(snapshot_start), radians(snapshot_start+snapshot_finish), 0); CGContextClosePath(ctx); CGContextFillPath(ctx); // system capacity CGContextSetFillColor(ctx, CGColorGetComponents( [[UIColor colorWithRed:15 green:165/255 blue:0 alpha:1 ] CGColor])); CGContextMoveToPoint(ctx, x+offset,y); CGContextAddArc(ctx, x+offset, y, 100, radians(snapshot_start+snapshot_finish+offset), radians(snapshot_start+snapshot_finish+system_finish), 0); CGContextClosePath(ctx); CGContextFillPath(ctx); /* data capacity */ CGContextSetFillColor(ctx, CGColorGetComponents( [[UIColor colorWithRed:99/255 green:184/255 blue:255/255 alpha:1 ] CGColor])); CGContextMoveToPoint(ctx, x, y); CGContextAddArc(ctx, x, y, 100, radians(snapshot_start+snapshot_finish+system_finish+offset), radians(snapshot_start), 0); CGContextClosePath(ctx); CGContextFillPath(ctx); }

    Read the article

  • rotating a circle in UIView?

    - by senthilmuthu
    HI, i want to draw a circle in DrawRect through context like pie chart(took from tutorial) thorugh UITouch? i have given the code as follows,how can i rotate ? any help please? define PI 3.14159265358979323846 define snapshot_start 360 define snapshot_finish 360 static inline float radians(double degrees) { return degrees * PI / 180; } - (void)drawRect:(CGRect)rect { // Drawing code CGRect parentViewBounds = self.bounds; CGFloat x = CGRectGetWidth(parentViewBounds)/2; CGFloat y = CGRectGetHeight(parentViewBounds)*0.55; // Get the graphics context and clear it CGContextRef ctx = UIGraphicsGetCurrentContext(); CGContextClearRect(ctx, rect); // define stroke color CGContextSetRGBStrokeColor(ctx, 1, 1, 1, 1.0); // define line width CGContextSetLineWidth(ctx, 4.0); // need some values to draw pie charts double snapshotCapacity =20; double rawCapacity = 100; double systemCapacity = 1; int offset = 5; double pie1_start = 315.0; double pie1_finish = snapshotCapacity *360.0/rawCapacity; double system_finish = systemCapacity*360.0/rawCapacity; CGContextSetFillColor(ctx, CGColorGetComponents( [[UIColor greenColor] CGColor])); CGContextMoveToPoint(ctx, x+2*offset, y); CGContextAddArc(ctx, x+2*offset, y, 100, radians(snapshot_start), radians(snapshot_start+snapshot_finish), 0); CGContextClosePath(ctx); CGContextFillPath(ctx); // system capacity CGContextSetFillColor(ctx, CGColorGetComponents( [[UIColor colorWithRed:15 green:165/255 blue:0 alpha:1 ] CGColor])); CGContextMoveToPoint(ctx, x+offset,y); CGContextAddArc(ctx, x+offset, y, 100, radians(snapshot_start+snapshot_finish+offset), radians(snapshot_start+snapshot_finish+system_finish), 0); CGContextClosePath(ctx); CGContextFillPath(ctx); /* data capacity */ CGContextSetFillColor(ctx, CGColorGetComponents( [[UIColor colorWithRed:99/255 green:184/255 blue:255/255 alpha:1 ] CGColor])); CGContextMoveToPoint(ctx, x, y); CGContextAddArc(ctx, x, y, 100, radians(snapshot_start+snapshot_finish+system_finish+offset), radians(snapshot_start), 0); CGContextClosePath(ctx); CGContextFillPath(ctx); }

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >