Search Results

Search found 386 results on 16 pages for 'sqrt'.

Page 8/16 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Algorithm to shoot at a target in a 3d game

    - by Sebastian Bugiu
    For those of you remembering Descent Freespace it had a nice feature to help you aim at the enemy when shooting non-homing missiles or lasers: it showed a crosshair in front of the ship you chased telling you where to shoot in order to hit the moving target. I tried using the answer from http://stackoverflow.com/questions/4107403/ai-algorithm-to-shoot-at-a-target-in-a-2d-game?lq=1 but it's for 2D so I tried adapting it. I first decomposed the calculation to solve the intersection point for XoZ plane and saved the x and z coordinates and then solving the intersection point for XoY plane and adding the y coordinate to a final xyz that I then transformed to clipspace and put a texture at those coordinates. But of course it doesn't work as it should or else I wouldn't have posted the question. From what I notice the after finding x in XoZ plane and the in XoY the x is not the same so something must be wrong. float a = ENG_Math.sqr(targetVelocity.x) + ENG_Math.sqr(targetVelocity.y) - ENG_Math.sqr(projectileSpeed); float b = 2.0f * (targetVelocity.x * targetPos.x + targetVelocity.y * targetPos.y); float c = ENG_Math.sqr(targetPos.x) + ENG_Math.sqr(targetPos.y); ENG_Math.solveQuadraticEquation(a, b, c, collisionTime); First time targetVelocity.y is actually targetVelocity.z (the same for targetPos) and the second time it's actually targetVelocity.y. The final position after XoZ is crossPosition.set(minTime * finalEntityVelocity.x + finalTargetPos4D.x, 0.0f, minTime * finalEntityVelocity.z + finalTargetPos4D.z); and after XoY crossPosition.y = minTime * finalEntityVelocity.y + finalTargetPos4D.y; Is my approach of separating into 2 planes and calculating any good? Or for 3D there is a whole different approach? sqr() is square not sqrt - avoiding a confusion.

    Read the article

  • Interaction using Kinect in XNA

    - by Sweta Dwivedi
    So i have written a program to play a sound file when ever my RightHand.Joint touches the 3D model . . It goes like this . . even though the code works somehow but not very accurate . . for example it will play the sound when my hand is slightly under my 3D object not exactly on my 3D object . How do i make it more accurate? here is the code . . (HandX & HandY is the values coming from the Skeleton data RightHand.Joint.X etc) and also this calculation doesnt work with Animated Sprites..which i need to do foreach (_3DModel s in Solar) { float x = (float)Math.Floor(((handX * 0.5f) + 0.5f) * (resolution.X)); float y = (float)Math.Floor(((handY * -0.5f) + 0.5f) * (resolution.Y)); float z = (float)Math.Floor((handZ) / 4 * 20000); if (Math.Sqrt(Math.Pow(x - s.modelPosition.X, 2) + Math.Pow(y - s.modelPosition.Y, 2)) < 15) { //Exit(); PlaySound("hyperspace_activate"); Console.WriteLine("1" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } else { Console.WriteLine("2" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } }

    Read the article

  • 3d Picking under reticle

    - by Wolftousen
    i'm currently trying to work out some 3d picking code that I started years ago, but then lost interested the assignment was completed (this part wasn't actually part of the assignment). I am not using the mouse coords for picking, i'm just using the position in 3d space and a ray directly out from there. A small hitch though is that I want to use a cone and not a ray. Here are the variables i'm using: float iReticleSlope = 95/3000; //inverse reticle slope float baseReticle = 1; //radius of the reticle at z = 0 float maxRange = 3000; //max range to target Quaternion orientation; //the cameras orientation Vector3d position; //the cameras position Then I loop through each object in the world: Vector3d transformed; //object position after transformations float d, r; //holder variables for(i = 0; i < objects.length; i++) { transformed = position - objects[i].position; //transform the position relative to camera orientation.multiply(transformed); //orient the object relative to the camera if(transformed.z < 0) { d = sqrt(transformed[0] * transformed[0] + transformed[1] * transformed[1]); r = -transformed[2] * iReticleSlope + objects[i].radius; if(d < r && -transformed[2] - objects[i].radius <= maxRange) { //the object is under the reticle } else { //the object is not under the reticle } } else { //the object is not under the reticle } } Now this all works fine and dandy until the window ratio doesn't match the resolution ratio. Is there any simple way to account for that

    Read the article

  • Java Slick2d - Mouse picking how to take into account camera

    - by Corey
    When I move it it obviously changes the viewport so my mouse picking is off. My camera is just a float x and y and I use g.translate(-cam.cameraX+400, -cam.cameraY+300); to translate the graphics. I have the numbers hard coded just for testing purposes. How would I take into account the camera so my mouse picking works correctly. double mousetileX = Math.floor((double)mouseX/tiles.tileWidth); double mousetileY = Math.floor((double)mouseY/tiles.tileHeight); double playertileX = Math.floor(playerX/tiles.tileWidth); double playertileY = Math.floor(playerY/tiles.tileHeight); double lengthX = Math.abs((float)playertileX - mousetileX); double lengthY = Math.abs((float)playertileY - mousetileY); double distance = Math.sqrt((lengthX*lengthX)+(lengthY*lengthY)); if(input.isMousePressed(Input.MOUSE_LEFT_BUTTON) && distance < 4) { if(tiles.map[(int)mousetileX][(int)mousetileY] == 1) { tiles.map[(int)mousetileX][(int)mousetileY] = 0; } } That is my mouse picking code

    Read the article

  • Dynamic Jump spot

    - by Pasquale Sada
    I have an initial velocity V(Vx,Vy,VZ) and a spot where he stands still at S(Sx,Sy,Sz). What I'm trying to achieve is a jump on a spot E(Ex,Ey,Ez) where you have clicked on(only lower or higher spot, because I've in place a simple steering behavior for even terrains). There are no obstacle around. I've implemented a formula that can make him jump in a precise way on a spot but you need to declare an angle: the problem arise when the selected spot is straight above your head. It' pretty lame that the char hang there and can reach a thing that is 1cm above is head. I'll share the code I'm using: Vector3 dir = target - transform.position; // get target direction float h = dir.y; // get height difference dir.y = 0; // retain only the horizontal direction float dist = dir.magnitude ; // get horizontal distance float a = angle * Mathf.Deg2Rad; // convert angle to radians dir.y = dist * Mathf.Tan(a); // set dir to the elevation angle dist += h / Mathf.Tan(a); // correct for small height differences // calculate the velocity magnitude float vel = Mathf.Sqrt(dist * Physics.gravity.magnitude / Mathf.Sin(2 *a)); return vel * dir.normalized;

    Read the article

  • Filling in gaps for outlines

    - by user146780
    I'm using an algorithm to generate quads. These become outlines. The algorithm is: void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input, std::vector<GLfloat> &output, int width) { output.clear(); if(input.size() < 2) { return; } int temp; float dirlen; float perplen; POINTFLOAT start; POINTFLOAT end; POINTFLOAT dir; POINTFLOAT ndir; POINTFLOAT perp; POINTFLOAT nperp; POINTFLOAT perpoffset; POINTFLOAT diroffset; POINTFLOAT p0, p1, p2, p3; for(unsigned int i = 0; i < input.size() - 1; ++i) { start.x = static_cast<float>(input[i][0]); start.y = static_cast<float>(input[i][1]); end.x = static_cast<float>(input[i + 1][0]); end.y = static_cast<float>(input[i + 1][1]); dir.x = end.x - start.x; dir.y = end.y - start.y; dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y)); ndir.x = static_cast<float>(dir.x * 1.0 / dirlen); ndir.y = static_cast<float>(dir.y * 1.0 / dirlen); perp.x = dir.y; perp.y = -dir.x; perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y)); nperp.x = static_cast<float>(perp.x * 1.0 / perplen); nperp.y = static_cast<float>(perp.y * 1.0 / perplen); perpoffset.x = static_cast<float>(nperp.x * width * 0.5); perpoffset.y = static_cast<float>(nperp.y * width * 0.5); diroffset.x = static_cast<float>(ndir.x * 0 * 0.5); diroffset.y = static_cast<float>(ndir.y * 0 * 0.5); // p0 = start + perpoffset - diroffset //p1 = start - perpoffset - diroffset //p2 = end + perpoffset + diroffset // p3 = end - perpoffset + diroffset p0.x = start.x + perpoffset.x - diroffset.x; p0.y = start.y + perpoffset.y - diroffset.y; p1.x = start.x - perpoffset.x - diroffset.x; p1.y = start.y - perpoffset.y - diroffset.y; p2.x = end.x + perpoffset.x + diroffset.x; p2.y = end.y + perpoffset.y + diroffset.y; p3.x = end.x - perpoffset.x + diroffset.x; p3.y = end.y - perpoffset.y + diroffset.y; output.push_back(p2.x); output.push_back(p2.y); output.push_back(p0.x); output.push_back(p0.y); output.push_back(p1.x); output.push_back(p1.y); output.push_back(p3.x); output.push_back(p3.y); } } The problem is that there are then gaps as seen here: http://img816.imageshack.us/img816/2882/eeekkk.png There must be a way to fix this. I see a pattern but I just cant figure it out. There must be a way to fill the missing inbetweens. Thanks

    Read the article

  • jump pads problem

    - by Pasquale Sada
    I'm trying to make a character jump on a landing pad who stays above him. Here is the formula I've used (everything is pretty much self-explainable, maybe except character_MaxForce that is the total force the character can jump ): deltaPosition = target - character_position; sqrtTerm = Sqrt(2*-gravity.y * deltaPosition.y + MaxYVelocity* character_MaxForce); time = (MaxYVelocity-sqrtTerm) /gravity.y; speedSq = jumpVelocity.x* jumpVelocity.x + jumpVelocity.z *jumpVelocity.z; if speedSq < (character_MaxForce * character_MaxForce) we have the right time so we can store the value jumpVelocity.x = deltaPosition.x / time; jumpVelocity.z = deltaPosition.z / time; otherwise we try the other solution time = (MaxYVelocity+sqrtTerm) /gravity.y; and then store it jumpVelocity.x = deltaPosition.x / time; jumpVelocity.z = deltaPosition.z / time; jumpVelocity.y = MaxYVelocity; rigidbody_velocity = jumpVelocity; The problem is that the character is jumping away from the landing pad or sometime he jumps too far never hitting the landing pad.

    Read the article

  • How to determine edges in an image optimally?

    - by SorinA.
    I recently was put in front of the problem of cropping and resizing images. I needed to crop the 'main content' of an image for example if i had an image similar to this: the result should be an image with the msn content without the white margins(left& right). I search on the X axis for the first and last color change and on the Y axis the same thing. The problem is that traversing the image line by line takes a while..for an image that is 2000x1600px it takes up to 2 seconds to return the CropRect = x1,y1,x2,y2 data. I tried to make for each coordinate a traversal and stop on the first value found but it didn't work in all test cases..sometimes the returned data wasn't the expected one and the duration of the operations was similar.. Any idea how to cut down the traversal time and discovery of the rectangle round the 'main content'? public static CropRect EdgeDetection(Bitmap Image, float Threshold) { CropRect cropRectangle = new CropRect(); int lowestX = 0; int lowestY = 0; int largestX = 0; int largestY = 0; lowestX = Image.Width; lowestY = Image.Height; //find the lowest X bound; for (int y = 0; y < Image.Height - 1; ++y) { for (int x = 0; x < Image.Width - 1; ++x) { Color currentColor = Image.GetPixel(x, y); Color tempXcolor = Image.GetPixel(x + 1, y); Color tempYColor = Image.GetPixel(x, y + 1); if ((Math.Sqrt(((currentColor.R - tempXcolor.R) * (currentColor.R - tempXcolor.R)) + ((currentColor.G - tempXcolor.G) * (currentColor.G - tempXcolor.G)) + ((currentColor.B - tempXcolor.B) * (currentColor.B - tempXcolor.B))) > Threshold)) { if (lowestX > x) lowestX = x; if (largestX < x) largestX = x; } if ((Math.Sqrt(((currentColor.R - tempYColor.R) * (currentColor.R - tempYColor.R)) + ((currentColor.G - tempYColor.G) * (currentColor.G - tempYColor.G)) + ((currentColor.B - tempYColor.B) * (currentColor.B - tempYColor.B))) > Threshold)) { if (lowestY > y) lowestY = y; if (largestY < y) largestY = y; } } } if (lowestX < Image.Width / 4) cropRectangle.X = lowestX - 3 > 0 ? lowestX - 3 : 0; else cropRectangle.X = 0; if (lowestY < Image.Height / 4) cropRectangle.Y = lowestY - 3 > 0 ? lowestY - 3 : 0; else cropRectangle.Y = 0; cropRectangle.Width = largestX - lowestX + 8 > Image.Width ? Image.Width : largestX - lowestX + 8; cropRectangle.Height = largestY + 8 > Image.Height ? Image.Height - lowestY : largestY - lowestY + 8; return cropRectangle; } }

    Read the article

  • Did I implement this correctly?

    - by user146780
    I'm trying to implement line thickness as denoted here: start = line start = vector(x1, y1) end = line end = vector(x2, y2) dir = line direction = end - start = vector(x2-x1, y2-y1) ndir = normalized direction = dir*1.0/length(dir) perp = perpendicular to direction = vector(dir.x, -dir.y) nperp = normalized perpendicular = perp*1.0/length(perp) perpoffset = nperp*w*0.5 diroffset = ndir*w*0.5 p0, p1, p2, p3 = polygon points: p0 = start + perpoffset - diroffset p1 = start - perpoffset - diroffset p2 = end + perpoffset + diroffset p3 = end - perpoffset + diroffset I'v implemented this like so: void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input, std::vector<GLfloat> &output, int width) { output.clear(); float temp; float dirlen; float perplen; POINTFLOAT start; POINTFLOAT end; POINTFLOAT dir; POINTFLOAT ndir; POINTFLOAT perp; POINTFLOAT nperp; POINTFLOAT perpoffset; POINTFLOAT diroffset; POINTFLOAT p0, p1, p2, p3; for(int i = 0; i < input.size() - 1; ++i) { start.x = input[i][0]; start.y = input[i][1]; end.x = input[i + 1][0]; end.y = input[i + 1][1]; dir.x = end.x - start.x; dir.y = end.y - start.y; dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y)); ndir.x = dir.x * (1.0 / dirlen); ndir.y = dir.y * (1.0 / dirlen); perp.x = dir.x; perp.y = -dir.y; perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y)); nperp.x = perp.x * (1.0 / perplen); nperp.y = perp.y * (1.0 / perplen); perpoffset.x = nperp.x * width * 0.5; perpoffset.y = nperp.y * width * 0.5; diroffset.x = ndir.x * width * 0.5; diroffset.y = ndir.x * width * 0.5; // p0 = start + perpoffset - diroffset //p1 = start - perpoffset - diroffset //p2 = end + perpoffset + diroffset // p3 = end - perpoffset + diroffset p0.x = start.x + perpoffset.x - diroffset.x; p0.y = start.y + perpoffset.y - diroffset.y; p1.x = start.x - perpoffset.x - diroffset.x; p1.y = start.y - perpoffset.y - diroffset.y; p2.x = end.x + perpoffset.x + diroffset.x; p2.y = end.y + perpoffset.y + diroffset.y; p3.x = end.x - perpoffset.x + diroffset.x; p3.y = end.y - perpoffset.y + diroffset.y; output.push_back(p0.x); output.push_back(p0.y); output.push_back(p1.x); output.push_back(p1.y); output.push_back(p2.x); output.push_back(p2.y); output.push_back(p3.x); output.push_back(p3.y); } } But right now the lines look perpendicular and wrong, it should be giving me quads to render which is what i'm rendering, but the points it is outputing are strange. Have I done this wrong? Thanks

    Read the article

  • LibGDX onTouch() method kill on touch

    - by johnny-b
    How can I add this on my application. i want to use the onTouch() method from the implementation of the InputProcessor to kill the enemies on screen. how do i do that? do i have to do anything to the enemy class? please help Thank you M @Override public boolean touchDown(int screenX, int screenY, int pointer, int button) { return false; } here is my enemy class public class Bullet extends Sprite { private Vector2 velocity; private float lifetime; public Bullet(float x, float y) { velocity = new Vector2(0, 0); } public void update(float delta) { float targetX = GameWorld.getBall().getX(); float targetY = GameWorld.getBall().getY(); float dx = targetX - getX(); float dy = targetY - getY(); float distToTarget = (float) Math.sqrt(dx * dx + dy * dy); velocity.x += dx * delta; velocity.y += dy * delta; } } i am rendering all graphics in a GameRender class and a gameworld class if you need more info please let me know Thank you

    Read the article

  • Algorithm to zoom a plotted function

    - by astinx
    I'm making a game in android and I need plot a function, my algorithm is this: @Override protected void onDraw(Canvas canvas) { float e = 0.5f; //from -x axis to +x evaluate f(x) for (float x = -z(canvas.getWidth()); x < z(canvas.getWidth()); x+=e) { float x1,y1; x1 = x; y1 = f(x); canvas.drawPoint((canvas.getWidth()/2)+x1, (canvas.getHeight()/2)-y1, paintWhite); } super.onDraw(canvas); } This is how it works. If my function is, for example f(x)=x^2, then z(x) is sqrt(x). I evaluate each point between -z(x) to z(x) and then I draw them. As you can see I use the half of the size of the screen to put the function in the middle of the screen. The problem isn't that the code isn't working, actually plots the function. But if the screen is of 320*480 then this function will be really tiny like in the image below. My question is: how can I change this algorithm to scale the function?. BTW what I'm really wanting to do is trace a route to later display an animated sprite, so actually scale this image doesnt gonna help me. I need change the algorithm in order to draw the same interval but in a larger space. Any tip helps, thanks! Current working result Desired result UPDATE: I will try explain more in detail what the problem is. Given this interval [-15...15] (-z(x) to z(x)) I need divide this points in a bigger interval [-320...320] (-x to x). For example, when you use some plotting software like this one. Although the div where is contain the function has 640 px of width, you dont see that the interval is from -320 to 320, you see that the interval is from -6 to 6. How can I achieve this?

    Read the article

  • Edges on polygon outlines not always correct

    - by user146780
    I'm using the algorithm below to generate quads which are then rendered to make an outline like this http://img810.imageshack.us/img810/8530/uhohz.png The problem as seen on the image, is that sometimes the lines are too thin when they should always be the same width. My algorithm finds the 4 verticies for the first one then the top 2 verticies of the next ones are the bottom 2 of the previous. This creates connected lines, but it seems to not always work. How could I fix this? This is my algorithm: void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input, std::vector<GLfloat> &output, int width) { output.clear(); if(input.size() < 2) { return; } int temp; float dirlen; float perplen; POINTFLOAT start; POINTFLOAT end; POINTFLOAT dir; POINTFLOAT ndir; POINTFLOAT perp; POINTFLOAT nperp; POINTFLOAT perpoffset; POINTFLOAT diroffset; POINTFLOAT p0, p1, p2, p3; for(unsigned int i = 0; i < input.size() - 1; ++i) { start.x = static_cast<float>(input[i][0]); start.y = static_cast<float>(input[i][1]); end.x = static_cast<float>(input[i + 1][0]); end.y = static_cast<float>(input[i + 1][1]); dir.x = end.x - start.x; dir.y = end.y - start.y; dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y)); ndir.x = static_cast<float>(dir.x * 1.0 / dirlen); ndir.y = static_cast<float>(dir.y * 1.0 / dirlen); perp.x = dir.y; perp.y = -dir.x; perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y)); nperp.x = static_cast<float>(perp.x * 1.0 / perplen); nperp.y = static_cast<float>(perp.y * 1.0 / perplen); perpoffset.x = static_cast<float>(nperp.x * width * 0.5); perpoffset.y = static_cast<float>(nperp.y * width * 0.5); diroffset.x = static_cast<float>(ndir.x * 0 * 0.5); diroffset.y = static_cast<float>(ndir.y * 0 * 0.5); // p0 = start + perpoffset - diroffset //p1 = start - perpoffset - diroffset //p2 = end + perpoffset + diroffset // p3 = end - perpoffset + diroffset p0.x = start.x + perpoffset.x - diroffset.x; p0.y = start.y + perpoffset.y - diroffset.y; p1.x = start.x - perpoffset.x - diroffset.x; p1.y = start.y - perpoffset.y - diroffset.y; if(i > 0) { temp = (8 * (i - 1)); p2.x = output[temp + 2]; p2.y = output[temp + 3]; p3.x = output[temp + 4]; p3.y = output[temp + 5]; } else { p2.x = end.x + perpoffset.x + diroffset.x; p2.y = end.y + perpoffset.y + diroffset.y; p3.x = end.x - perpoffset.x + diroffset.x; p3.y = end.y - perpoffset.y + diroffset.y; } output.push_back(p2.x); output.push_back(p2.y); output.push_back(p0.x); output.push_back(p0.y); output.push_back(p1.x); output.push_back(p1.y); output.push_back(p3.x); output.push_back(p3.y); } } Thanks

    Read the article

  • Characteristics, what's the inverse of (x*(x+1))/2? [closed]

    - by Valmond
    In my game you can spend points to upgrade characteristics. Each characteristic has a formula like: A) out = in : for one point spent, one pont gained (you spend 1 point on Force so your force goes from 5 to 6) B) out = last level (starting at 1) : so the first point spent earns you 1 point, the next point spent earns you an additional 2 and so on (+3,+4,+5...) C) The inverse of B) : You need to spend 1 point to earn one, then you need to spend 2 to earn another one and so on. I have already found the formula for calculating the actual level of B when points spent = x : charac = (x*(x+1))/2 But I'd like to know what the "reverse" version of B) (usable for C) is, ie. if I have spent x points, how many have I earned if 1 spent gives 1, 1+2=3 gives 2, 1+2+3=6 gives 3 and so on. I know I can just calculate the numbers but I'd like to have the formula because its neater and so that I can stick it in an excel sheet for example... Thanks! ps. I think I have nailed it down to something like charac = sqrt( x*m +k) but then I'm stuck doing number guessing for k and m and I feel I might be wrong anyway as I get close but never hits the spot.

    Read the article

  • Is there a Math.atan2 substitute for j2ME? Blackberry development

    - by Kai
    I have a wide variety of locations stored in my persistent object that contain latitudes and longitudes in double(43.7389, 7.42577) format. I need to be able to grab the user's latitude and longitude and select all items within, say 1 mile. Walking distance. I have done this in PHP so I snagged my PHP code and transferred it to Java, where everything plugged in fine until I figured out J2ME doesn't support atan2(double, double). So, after some searching, I find a small snippet of code that is supposed to be a substitute for atan2. Here is the code: public double atan2(double y, double x) { double coeff_1 = Math.PI / 4d; double coeff_2 = 3d * coeff_1; double abs_y = Math.abs(y)+ 1e-10f; double r, angle; if (x >= 0d) { r = (x - abs_y) / (x + abs_y); angle = coeff_1; } else { r = (x + abs_y) / (abs_y - x); angle = coeff_2; } angle += (0.1963f * r * r - 0.9817f) * r; return y < 0.0f ? -angle : angle; } I am getting odd results from this. My min and max latitude and longitudes are coming back as incredibly low numbers that can't possibly be right. Like 0.003785746 when I am expecting something closer to the original lat and long values (43.7389, 7.42577). Since I am no master of advanced math, I don't really know what to look for here. Perhaps someone else may have an answer. Here is my complete code: package store_finder; import java.util.Vector; import javax.microedition.location.Criteria; import javax.microedition.location.Location; import javax.microedition.location.LocationException; import javax.microedition.location.LocationListener; import javax.microedition.location.LocationProvider; import javax.microedition.location.QualifiedCoordinates; import net.rim.blackberry.api.invoke.Invoke; import net.rim.blackberry.api.invoke.MapsArguments; import net.rim.device.api.system.Bitmap; import net.rim.device.api.system.Display; import net.rim.device.api.ui.Color; import net.rim.device.api.ui.Field; import net.rim.device.api.ui.Graphics; import net.rim.device.api.ui.Manager; import net.rim.device.api.ui.component.BitmapField; import net.rim.device.api.ui.component.RichTextField; import net.rim.device.api.ui.component.SeparatorField; import net.rim.device.api.ui.container.HorizontalFieldManager; import net.rim.device.api.ui.container.MainScreen; import net.rim.device.api.ui.container.VerticalFieldManager; public class nearBy extends MainScreen { private HorizontalFieldManager _top; private VerticalFieldManager _middle; private int horizontalOffset; private final static long animationTime = 300; private long animationStart = 0; private double latitude = 43.7389; private double longitude = 7.42577; private int _interval = -1; private double max_lat; private double min_lat; private double max_lon; private double min_lon; private double latitude_in_degrees; private double longitude_in_degrees; public nearBy() { super(); horizontalOffset = Display.getWidth(); _top = new HorizontalFieldManager(Manager.USE_ALL_WIDTH | Field.FIELD_HCENTER) { public void paint(Graphics gr) { Bitmap bg = Bitmap.getBitmapResource("bg.png"); gr.drawBitmap(0, 0, Display.getWidth(), Display.getHeight(), bg, 0, 0); subpaint(gr); } }; _middle = new VerticalFieldManager() { public void paint(Graphics graphics) { graphics.setBackgroundColor(0xFFFFFF); graphics.setColor(Color.BLACK); graphics.clear(); super.paint(graphics); } protected void sublayout(int maxWidth, int maxHeight) { int displayWidth = Display.getWidth(); int displayHeight = Display.getHeight(); super.sublayout( displayWidth, displayHeight); setExtent( displayWidth, displayHeight); } }; add(_top); add(_middle); Bitmap lol = Bitmap.getBitmapResource("logo.png"); BitmapField lolfield = new BitmapField(lol); _top.add(lolfield); Criteria cr= new Criteria(); cr.setCostAllowed(true); cr.setPreferredResponseTime(60); cr.setHorizontalAccuracy(5000); cr.setVerticalAccuracy(5000); cr.setAltitudeRequired(true); cr.isSpeedAndCourseRequired(); cr.isAddressInfoRequired(); try{ LocationProvider lp = LocationProvider.getInstance(cr); if( lp!=null ){ lp.setLocationListener(new LocationListenerImpl(), _interval, 1, 1); } } catch(LocationException le) { add(new RichTextField("Location exception "+le)); } //_middle.add(new RichTextField("this is a map " + Double.toString(latitude) + " " + Double.toString(longitude))); int lat = (int) (latitude * 100000); int lon = (int) (longitude * 100000); String document = "<location-document>" + "<location lon='" + lon + "' lat='" + lat + "' label='You are here' description='You' zoom='0' />" + "<location lon='742733' lat='4373930' label='Hotel de Paris' description='Hotel de Paris' address='Palace du Casino' postalCode='98000' phone='37798063000' zoom='0' />" + "</location-document>"; // Invoke.invokeApplication(Invoke.APP_TYPE_MAPS, new MapsArguments( MapsArguments.ARG_LOCATION_DOCUMENT, document)); _middle.add(new SeparatorField()); surroundingVenues(); _middle.add(new RichTextField("max lat: " + max_lat)); _middle.add(new RichTextField("min lat: " + min_lat)); _middle.add(new RichTextField("max lon: " + max_lon)); _middle.add(new RichTextField("min lon: " + min_lon)); } private void surroundingVenues() { double point_1_latitude_in_degrees = latitude; double point_1_longitude_in_degrees= longitude; // diagonal distance + error margin double distance_in_miles = (5 * 1.90359441) + 10; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, 45); double lat_limit_1 = latitude_in_degrees; double lon_limit_1 = longitude_in_degrees; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, 135); double lat_limit_2 = latitude_in_degrees; double lon_limit_2 = longitude_in_degrees; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, -135); double lat_limit_3 = latitude_in_degrees; double lon_limit_3 = longitude_in_degrees; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, -45); double lat_limit_4 = latitude_in_degrees; double lon_limit_4 = longitude_in_degrees; double mx1 = Math.max(lat_limit_1, lat_limit_2); double mx2 = Math.max(lat_limit_3, lat_limit_4); max_lat = Math.max(mx1, mx2); double mm1 = Math.min(lat_limit_1, lat_limit_2); double mm2 = Math.min(lat_limit_3, lat_limit_4); min_lat = Math.max(mm1, mm2); double mlon1 = Math.max(lon_limit_1, lon_limit_2); double mlon2 = Math.max(lon_limit_3, lon_limit_4); max_lon = Math.max(mlon1, mlon2); double minl1 = Math.min(lon_limit_1, lon_limit_2); double minl2 = Math.min(lon_limit_3, lon_limit_4); min_lon = Math.max(minl1, minl2); //$qry = "SELECT DISTINCT zip.zipcode, zip.latitude, zip.longitude, sg_stores.* FROM zip JOIN store_finder AS sg_stores ON sg_stores.zip=zip.zipcode WHERE zip.latitude<=$lat_limit_max AND zip.latitude>=$lat_limit_min AND zip.longitude<=$lon_limit_max AND zip.longitude>=$lon_limit_min"; } private void getCords(double point_1_latitude, double point_1_longitude, double distance, int degs) { double m_EquatorialRadiusInMeters = 6366564.86; double m_Flattening=0; double distance_in_meters = distance * 1609.344 ; double direction_in_radians = Math.toRadians( degs ); double eps = 0.000000000000005; double r = 1.0 - m_Flattening; double point_1_latitude_in_radians = Math.toRadians( point_1_latitude ); double point_1_longitude_in_radians = Math.toRadians( point_1_longitude ); double tangent_u = (r * Math.sin( point_1_latitude_in_radians ) ) / Math.cos( point_1_latitude_in_radians ); double sine_of_direction = Math.sin( direction_in_radians ); double cosine_of_direction = Math.cos( direction_in_radians ); double heading_from_point_2_to_point_1_in_radians = 0.0; if ( cosine_of_direction != 0.0 ) { heading_from_point_2_to_point_1_in_radians = atan2( tangent_u, cosine_of_direction ) * 2.0; } double cu = 1.0 / Math.sqrt( ( tangent_u * tangent_u ) + 1.0 ); double su = tangent_u * cu; double sa = cu * sine_of_direction; double c2a = ( (-sa) * sa ) + 1.0; double x= Math.sqrt( ( ( ( 1.0 /r /r ) - 1.0 ) * c2a ) + 1.0 ) + 1.0; x= (x- 2.0 ) / x; double c= 1.0 - x; c= ( ( (x * x) / 4.0 ) + 1.0 ) / c; double d= ( ( 0.375 * (x * x) ) -1.0 ) * x; tangent_u = distance_in_meters /r / m_EquatorialRadiusInMeters /c; double y= tangent_u; boolean exit_loop = false; double cosine_of_y = 0.0; double cz = 0.0; double e = 0.0; double term_1 = 0.0; double term_2 = 0.0; double term_3 = 0.0; double sine_of_y = 0.0; while( exit_loop != true ) { sine_of_y = Math.sin(y); cosine_of_y = Math.cos(y); cz = Math.cos( heading_from_point_2_to_point_1_in_radians + y); e = (cz * cz * 2.0 ) - 1.0; c = y; x = e * cosine_of_y; y = (e + e) - 1.0; term_1 = ( sine_of_y * sine_of_y * 4.0 ) - 3.0; term_2 = ( ( term_1 * y * cz * d) / 6.0 ) + x; term_3 = ( ( term_2 * d) / 4.0 ) -cz; y= ( term_3 * sine_of_y * d) + tangent_u; if ( Math.abs(y - c) > eps ) { exit_loop = false; } else { exit_loop = true; } } heading_from_point_2_to_point_1_in_radians = ( cu * cosine_of_y * cosine_of_direction ) - ( su * sine_of_y ); c = r * Math.sqrt( ( sa * sa ) + ( heading_from_point_2_to_point_1_in_radians * heading_from_point_2_to_point_1_in_radians ) ); d = ( su * cosine_of_y ) + ( cu * sine_of_y * cosine_of_direction ); double point_2_latitude_in_radians = atan2(d, c); c = ( cu * cosine_of_y ) - ( su * sine_of_y * cosine_of_direction ); x = atan2( sine_of_y * sine_of_direction, c); c = ( ( ( ( ( -3.0 * c2a ) + 4.0 ) * m_Flattening ) + 4.0 ) * c2a * m_Flattening ) / 16.0; d = ( ( ( (e * cosine_of_y * c) + cz ) * sine_of_y * c) + y) * sa; double point_2_longitude_in_radians = ( point_1_longitude_in_radians + x) - ( ( 1.0 - c) * d * m_Flattening ); heading_from_point_2_to_point_1_in_radians = atan2( sa, heading_from_point_2_to_point_1_in_radians ) + Math.PI; latitude_in_degrees = Math.toRadians( point_2_latitude_in_radians ); longitude_in_degrees = Math.toRadians( point_2_longitude_in_radians ); } public double atan2(double y, double x) { double coeff_1 = Math.PI / 4d; double coeff_2 = 3d * coeff_1; double abs_y = Math.abs(y)+ 1e-10f; double r, angle; if (x >= 0d) { r = (x - abs_y) / (x + abs_y); angle = coeff_1; } else { r = (x + abs_y) / (abs_y - x); angle = coeff_2; } angle += (0.1963f * r * r - 0.9817f) * r; return y < 0.0f ? -angle : angle; } private Vector fetchVenues(double max_lat, double min_lat, double max_lon, double min_lon) { return new Vector(); } private class LocationListenerImpl implements LocationListener { public void locationUpdated(LocationProvider provider, Location location) { if(location.isValid()) { nearBy.this.longitude = location.getQualifiedCoordinates().getLongitude(); nearBy.this.latitude = location.getQualifiedCoordinates().getLatitude(); //double altitude = location.getQualifiedCoordinates().getAltitude(); //float speed = location.getSpeed(); } } public void providerStateChanged(LocationProvider provider, int newState) { // MUST implement this. Should probably do something useful with it as well. } } } please excuse the mess. I have the user lat long hard coded since I do not have GPS functional yet. You can see the SQL query commented out to know how I plan on using the min and max lat and long values. Any help is appreciated. Thanks

    Read the article

  • How to use onSensorChanged sensor data in combination with OpenGL

    - by Sponge
    I have written a TestSuite to find out how to calculate the rotation angles from the data you get in SensorEventListener.onSensorChanged(). I really hope you can complete my solution to help people who will have the same problems like me. Here is the code, i think you will understand it after reading it. Feel free to change it, the main idea was to implement several methods to send the orientation angles to the opengl view or any other target which would need it. method 1 to 4 are working, they are directly sending the rotationMatrix to the OpenGl view. all other methods are not working or buggy and i hope someone knows to get them working. i think the best method would be method 5 if it would work, because it would be the easiest to understand but i'm not sure how efficient it is. the complete code isn't optimized so i recommend to not use it as it is in your project. here it is: import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGL10; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import static javax.microedition.khronos.opengles.GL10.*; import android.app.Activity; import android.content.Context; import android.content.pm.ActivityInfo; import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import android.hardware.SensorManager; import android.opengl.GLSurfaceView; import android.opengl.GLSurfaceView.Renderer; import android.os.Bundle; import android.util.Log; import android.view.WindowManager; /** * This class provides a basic demonstration of how to use the * {@link android.hardware.SensorManager SensorManager} API to draw a 3D * compass. */ public class SensorToOpenGlTests extends Activity implements Renderer, SensorEventListener { private static final boolean TRY_TRANSPOSED_VERSION = false; /* * MODUS overview: * * 1 - unbufferd data directly transfaired from the rotation matrix to the * modelview matrix * * 2 - buffered version of 1 where both acceleration and magnetometer are * buffered * * 3 - buffered version of 1 where only magnetometer is buffered * * 4 - buffered version of 1 where only acceleration is buffered * * 5 - uses the orientation sensor and sets the angles how to rotate the * camera with glrotate() * * 6 - uses the rotation matrix to calculate the angles * * 7 to 12 - every possibility how the rotationMatrix could be constructed * in SensorManager.getRotationMatrix (see * http://www.songho.ca/opengl/gl_anglestoaxes.html#anglestoaxes for all * possibilities) */ private static int MODUS = 2; private GLSurfaceView openglView; private FloatBuffer vertexBuffer; private ByteBuffer indexBuffer; private FloatBuffer colorBuffer; private SensorManager mSensorManager; private float[] rotationMatrix = new float[16]; private float[] accelGData = new float[3]; private float[] bufferedAccelGData = new float[3]; private float[] magnetData = new float[3]; private float[] bufferedMagnetData = new float[3]; private float[] orientationData = new float[3]; // private float[] mI = new float[16]; private float[] resultingAngles = new float[3]; private int mCount; final static float rad2deg = (float) (180.0f / Math.PI); private boolean mirrorOnBlueAxis = false; private boolean landscape; public SensorToOpenGlTests() { } /** Called with the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE); openglView = new GLSurfaceView(this); openglView.setRenderer(this); setContentView(openglView); } @Override protected void onResume() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onResume(); openglView.onResume(); if (((WindowManager) getSystemService(WINDOW_SERVICE)) .getDefaultDisplay().getOrientation() == 1) { landscape = true; } else { landscape = false; } mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ORIENTATION), SensorManager.SENSOR_DELAY_GAME); } @Override protected void onPause() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onPause(); openglView.onPause(); mSensorManager.unregisterListener(this); } public int[] getConfigSpec() { // We want a depth buffer, don't care about the // details of the color buffer. int[] configSpec = { EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE }; return configSpec; } public void onDrawFrame(GL10 gl) { // clear screen and color buffer: gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); // set target matrix to modelview matrix: gl.glMatrixMode(GL10.GL_MODELVIEW); // init modelview matrix: gl.glLoadIdentity(); // move camera away a little bit: if ((MODUS == 1) || (MODUS == 2) || (MODUS == 3) || (MODUS == 4)) { if (landscape) { // in landscape mode first remap the rotationMatrix before using // it with glMultMatrixf: float[] result = new float[16]; SensorManager.remapCoordinateSystem(rotationMatrix, SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, result); gl.glMultMatrixf(result, 0); } else { gl.glMultMatrixf(rotationMatrix, 0); } } else { //in all other modes do the rotation by hand: gl.glRotatef(resultingAngles[1], 1, 0, 0); gl.glRotatef(resultingAngles[2], 0, 1, 0); gl.glRotatef(resultingAngles[0], 0, 0, 1); if (mirrorOnBlueAxis) { //this is needed for mode 6 to work gl.glScalef(1, 1, -1); } } //move the axis to simulate augmented behaviour: gl.glTranslatef(0, 2, 0); // draw the 3 axis on the screen: gl.glVertexPointer(3, GL_FLOAT, 0, vertexBuffer); gl.glColorPointer(4, GL_FLOAT, 0, colorBuffer); gl.glDrawElements(GL_LINES, 6, GL_UNSIGNED_BYTE, indexBuffer); } public void onSurfaceChanged(GL10 gl, int width, int height) { gl.glViewport(0, 0, width, height); float r = (float) width / height; gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glFrustumf(-r, r, -1, 1, 1, 10); } public void onSurfaceCreated(GL10 gl, EGLConfig config) { gl.glDisable(GL10.GL_DITHER); gl.glClearColor(1, 1, 1, 1); gl.glEnable(GL10.GL_CULL_FACE); gl.glShadeModel(GL10.GL_SMOOTH); gl.glEnable(GL10.GL_DEPTH_TEST); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); // load the 3 axis and there colors: float vertices[] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; float colors[] = { 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1 }; byte indices[] = { 0, 1, 0, 2, 0, 3 }; ByteBuffer vbb; vbb = ByteBuffer.allocateDirect(vertices.length * 4); vbb.order(ByteOrder.nativeOrder()); vertexBuffer = vbb.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); vbb = ByteBuffer.allocateDirect(colors.length * 4); vbb.order(ByteOrder.nativeOrder()); colorBuffer = vbb.asFloatBuffer(); colorBuffer.put(colors); colorBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { // load the new values: loadNewSensorData(event); if (MODUS == 1) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); } if (MODUS == 2) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, bufferedMagnetData); } if (MODUS == 3) { rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, bufferedMagnetData); } if (MODUS == 4) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, magnetData); } if (MODUS == 5) { // this mode uses the sensor data recieved from the orientation // sensor resultingAngles = orientationData.clone(); if ((-90 > resultingAngles[1]) || (resultingAngles[1] > 90)) { resultingAngles[1] = orientationData[0]; resultingAngles[2] = orientationData[1]; resultingAngles[0] = orientationData[2]; } } if (MODUS == 6) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); final float[] anglesInRadians = new float[3]; SensorManager.getOrientation(rotationMatrix, anglesInRadians); if ((-90 < anglesInRadians[2] * rad2deg) && (anglesInRadians[2] * rad2deg < 90)) { // device camera is looking on the floor // this hemisphere is working fine mirrorOnBlueAxis = false; resultingAngles[0] = anglesInRadians[0] * rad2deg; resultingAngles[1] = anglesInRadians[1] * rad2deg; resultingAngles[2] = anglesInRadians[2] * -rad2deg; } else { mirrorOnBlueAxis = true; // device camera is looking in the sky // this hemisphere is mirrored at the blue axis resultingAngles[0] = (anglesInRadians[0] * rad2deg); resultingAngles[1] = (anglesInRadians[1] * rad2deg); resultingAngles[2] = (anglesInRadians[2] * rad2deg); } } if (MODUS == 7) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x y z * order Rx*Ry*Rz */ resultingAngles[2] = (float) (Math.asin(rotationMatrix[2])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[0] = -(float) (Math.acos(rotationMatrix[0] / cosB)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[10] / cosB)) * rad2deg; } if (MODUS == 8) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z y x */ resultingAngles[2] = (float) (Math.asin(-rotationMatrix[8])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[9] / cosB)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[4] / cosB)) * rad2deg; } if (MODUS == 9) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z x y * * note z axis looks good at this one */ resultingAngles[1] = (float) (Math.asin(rotationMatrix[9])); final float minusCosA = -(float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[8] / minusCosA)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[1] / minusCosA)) * rad2deg; } if (MODUS == 10) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y x z */ resultingAngles[1] = (float) (Math.asin(-rotationMatrix[6])); final float cosA = (float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[2] / cosA)) * rad2deg; resultingAngles[0] = (float) (Math.acos(rotationMatrix[5] / cosA)) * rad2deg; } if (MODUS == 11) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y z x */ resultingAngles[0] = (float) (Math.asin(rotationMatrix[4])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } if (MODUS == 12) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x z y */ resultingAngles[0] = (float) (Math.asin(-rotationMatrix[1])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } logOutput(); } /** * transposes the matrix because it was transposted (inverted, but here its * the same, because its a rotation matrix) to be used for opengl * * @param source * @return */ private float[] transpose(float[] source) { final float[] result = source.clone(); if (TRY_TRANSPOSED_VERSION) { result[1] = source[4]; result[2] = source[8]; result[4] = source[1]; result[6] = source[9]; result[8] = source[2]; result[9] = source[6]; } // the other values in the matrix are not relevant for rotations return result; } private void rootMeanSquareBuffer(float[] target, float[] values) { final float amplification = 200.0f; float buffer = 20.0f; target[0] += amplification; target[1] += amplification; target[2] += amplification; values[0] += amplification; values[1] += amplification; values[2] += amplification; target[0] = (float) (Math .sqrt((target[0] * target[0] * buffer + values[0] * values[0]) / (1 + buffer))); target[1] = (float) (Math .sqrt((target[1] * target[1] * buffer + values[1] * values[1]) / (1 + buffer))); target[2] = (float) (Math .sqrt((target[2] * target[2] * buffer + values[2] * values[2]) / (1 + buffer))); target[0] -= amplification; target[1] -= amplification; target[2] -= amplification; values[0] -= amplification; values[1] -= amplification; values[2] -= amplification; } private void loadNewSensorData(SensorEvent event) { final int type = event.sensor.getType(); if (type == Sensor.TYPE_ACCELEROMETER) { accelGData = event.values.clone(); } if (type == Sensor.TYPE_MAGNETIC_FIELD) { magnetData = event.values.clone(); } if (type == Sensor.TYPE_ORIENTATION) { orientationData = event.values.clone(); } } private void logOutput() { if (mCount++ > 30) { mCount = 0; Log.d("Compass", "yaw0: " + (int) (resultingAngles[0]) + " pitch1: " + (int) (resultingAngles[1]) + " roll2: " + (int) (resultingAngles[2])); } } }

    Read the article

  • "unbound identifier" errors in scheme

    - by user186909
    Hello: I'm using drscheme from: http://www.archlinux.org/packages/extra/x86_64/drscheme/ I'm trying to work with the sample code in my textbook, but I keep getting getting "unbound identifier" errors. Is it because the scheme interpreter is not configured correctly? or is the code just plain wrong? Here are a few examples: Input: #lang scheme (define (equalimp lis1 lis2) (COND ((NULL? lis1) (NULL? lis2)) ((NULL? lis2) '()) ((EQ? (CAR lis1) (CAR lis2)) (equalimp (CDR lis1) (CDR lis2))) (ELSE '()) )) Output: Welcome to DrScheme, version 4.2.5 [3m]. Language: scheme; memory limit: 128 MB. expand: unbound identifier in module in: COND Input: #lang scheme (define (quadratic_roots a b c) (LET ( (root_part_over_2a (/ (SQRT (- (* b b) (* 4 a c))) (* 2 a))) (minus_b_over_2a (/ (- 0 b) (* 2 a))) ) (DISPLAY (+ minus_b_over_2a root_part_over_2a)) (NEWLINE) (DISPLAY (- minus_b_over_2a root_part_over_2a)) )) Output: expand: unbound identifier in module in: LET Note: I tried using LET* because I read this: stackoverflow.com/ questions/946050/using-let-in-scheme but it produces the same error. Thanks !

    Read the article

  • Django: making raw SQL query, passing multiple/repeated params?

    - by AP257
    Hopefully this should be a fairly straightforward question, I just don't know enough about Python and Django to answer it. I've got a raw SQL query in Django that takes six different parameters, the first two of which (centreLat and centreLng) are each repeated: query = "SELECT units, (SQRT(((lat-%s)*(lat-%s)) + ((lng-%s)*(lng-%s)))) AS distance FROM places WHERE lat<%s AND lat>%s AND lon<%s AND lon>%s ORDER BY distance;" params = [centreLat,centreLng,swLat,neLat,swLng,neLng] places = Place.objects.raw(query, params) How do I structure the params object and the query string so they know which parameters to repeat and where?

    Read the article

  • Why is my implementation of the Sieve of Atkin overlooking numbers close to the specified limit?

    - by Ross G
    My implementation either overlooks primes near the limit or composites near the limit. while some limits work and others don't. I'm am completely confused as to what is wrong. def AtkinSieve (limit): results = [2,3,5] sieve = [False]*limit factor = int(math.sqrt(lim)) for i in range(1,factor): for j in range(1, factor): n = 4*i**2+j**2 if (n <= lim) and (n % 12 == 1 or n % 12 == 5): sieve[n] = not sieve[n] n = 3*i**2+j**2 if (n <= lim) and (n % 12 == 7): sieve[n] = not sieve[n] if i>j: n = 3*i**2-j**2 if (n <= lim) and (n % 12 == 11): sieve[n] = not sieve[n] for index in range(5,factor): if sieve[index]: for jndex in range(index**2, limit, index**2): sieve[jndex] = False for index in range(7,limit): if sieve[index]: results.append(index) return results For example, when I generate a primes to the limit of 1000, the Atkin sieve misses the prime 997, but includes the composite 965. But if I generate up the limit of 5000, the list it returns is completely correct.

    Read the article

  • Why is my implementation of the Sieve of Atkin overlooking numbers close to the specified limit?

    - by Ross G
    My implementation either overlooks primes near the limit or composites near the limit. while some limits work and others don't. I'm am completely confused as to what is wrong. def AtkinSieve (limit): results = [2,3,5] sieve = [False]*limit factor = int(math.sqrt(lim)) for i in range(1,factor): for j in range(1, factor): n = 4*i**2+j**2 if (n <= lim) and (n % 12 == 1 or n % 12 == 5): sieve[n] = not sieve[n] n = 3*i**2+j**2 if (n <= lim) and (n % 12 == 7): sieve[n] = not sieve[n] if i>j: n = 3*i**2-j**2 if (n <= lim) and (n % 12 == 11): sieve[n] = not sieve[n] for index in range(5,factor): if sieve[index]: for jndex in range(index**2, limit, index**2): sieve[jndex] = False for index in range(7,limit): if sieve[index]: results.append(index) return results For example, when I generate a primes to the limit of 1000, the Atkin sieve misses the prime 997, but includes the composite 965. But if I generate up the limit of 5000, the list it returns is completely correct.

    Read the article

  • Time complexity of Sieve of Eratosthenes algorithm

    - by eSKay
    From Wikipedia: The complexity of the algorithm is O(n(logn)(loglogn)) bit operations. How do you arrive at that? That the complexity includes the loglogn term tells me that there is a sqrt(n) somewhere. Suppose I am running the sieve on the first 100 numbers (n = 100), assuming that marking the numbers as composite takes constant time (array implementation), the number of times we use mark_composite() would be something like n/2 + n/3 + n/5 + n/7 + ... + n/97 = O(n) And to find the next prime number (for example to jump to 7 after crossing out all the numbers that are multiples of 5), the number of operations would be O(n). So, the complexity would be O(n^2). Do you agree?

    Read the article

  • Is there a calculator with LaTeX-syntax?

    - by Jørgen Fogh
    When I write math in LaTeX I often need to perform simple arithmetic on numbers in my LaTeX source, like 515.1544 + 454 = ???. I usually copy-paste the LaTeX code into Google to get the result, but I still have to manually change the syntax, e.g. \frac{154,7}{25} - (289 - \frac{1337}{42}) must be changed to 154,7/25 - (289 - 1337/42) It seems trivial to write a program to do this for the most commonly used operations. Is there a calculator which understand this syntax? EDIT: I know that doing this perfectly is impossible (because of the halting problem). Doing it for the simple cases I need is trivial. \frac, \cdot, \sqrt and a few other tags would do the trick. The program could just return an error for cases it does not understand.

    Read the article

  • jump search algorithm

    - by davit-datuashvili
    i am doing jump search algorithm but it show me that element is not in array while it is here is code import java.math.*; public class jamp { public static int min(int a,int b){ return a } public static void main(String[]args){ int a[]=new int[]{3,7,9,12,14,15,16,17,18}; int l=14; System.out.println(jumpsearch(a,a.length,l)); } public static int jumpsearch(int a[],int n, int l ){ int t=0; int b=(int)Math.sqrt(n); while (a[min(b,n)-1]=n) return -1 ; } while (a[t] return -1 ; if ( a[t]==l) { return t; } } return -1; } } please help

    Read the article

  • Scalar-Valued Function in NHibernate

    - by Byron Sommardahl
    I have the following scalar function in MS SQL 2005: CREATE FUNCTION [dbo].[Distance] ( @lat1 float, @long1 float,@lat2 float, @long2 float ) RETURNS float AS BEGIN RETURN (3958*3.1415926*sqrt((@lat2-@lat1)*(@lat2-@lat1) + cos(@lat2/57.29578)*cos(@lat1/57.29578)*(@long2-@long1)*(@long2-@long1))/180); END I need to be able to call this function from my NHibernate queries. I read over this article, but I got bogged down in some details that I didn't understand right away. If you've used scalar functions with NHibernate, could you possibly give me an example of how your HBM file would look for a function like this?

    Read the article

  • Where is the virtual function call overhead?

    - by Semen Semenych
    Hello everybody, I'm trying to benchmark the difference between a function pointer call and a virtual function call. To do this, I have written two pieces of code, that do the same mathematical computation over an array. One variant uses an array of pointers to functions and calls those in a loop. The other variant uses an array of pointers to a base class and calls its virtual function, which is overloaded in the derived classes to do absolutely the same thing as the functions in the first variant. Then I print the time elapsed and use a simple shell script to run the benchmark many times and compute the average run time. Here is the code: #include <iostream> #include <cstdlib> #include <ctime> #include <cmath> using namespace std; long long timespecDiff(struct timespec *timeA_p, struct timespec *timeB_p) { return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec); } void function_not( double *d ) { *d = sin(*d); } void function_and( double *d ) { *d = cos(*d); } void function_or( double *d ) { *d = tan(*d); } void function_xor( double *d ) { *d = sqrt(*d); } void ( * const function_table[4] )( double* ) = { &function_not, &function_and, &function_or, &function_xor }; int main(void) { srand(time(0)); void ( * index_array[100000] )( double * ); double array[100000]; for ( long int i = 0; i < 100000; ++i ) { index_array[i] = function_table[ rand() % 4 ]; array[i] = ( double )( rand() / 1000 ); } struct timespec start, end; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for ( long int i = 0; i < 100000; ++i ) { index_array[i]( &array[i] ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); unsigned long long time_elapsed = timespecDiff(&end, &start); cout << time_elapsed / 1000000000.0 << endl; } and here is the virtual function variant: #include <iostream> #include <cstdlib> #include <ctime> #include <cmath> using namespace std; long long timespecDiff(struct timespec *timeA_p, struct timespec *timeB_p) { return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec); } class A { public: virtual void calculate( double *i ) = 0; }; class A1 : public A { public: void calculate( double *i ) { *i = sin(*i); } }; class A2 : public A { public: void calculate( double *i ) { *i = cos(*i); } }; class A3 : public A { public: void calculate( double *i ) { *i = tan(*i); } }; class A4 : public A { public: void calculate( double *i ) { *i = sqrt(*i); } }; int main(void) { srand(time(0)); A *base[100000]; double array[100000]; for ( long int i = 0; i < 100000; ++i ) { array[i] = ( double )( rand() / 1000 ); switch ( rand() % 4 ) { case 0: base[i] = new A1(); break; case 1: base[i] = new A2(); break; case 2: base[i] = new A3(); break; case 3: base[i] = new A4(); break; } } struct timespec start, end; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for ( int i = 0; i < 100000; ++i ) { base[i]->calculate( &array[i] ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); unsigned long long time_elapsed = timespecDiff(&end, &start); cout << time_elapsed / 1000000000.0 << endl; } My system is LInux, Fedora 13, gcc 4.4.2. The code is compiled it with g++ -O3. The first one is test1, the second is test2. Now I see this in console: [Ignat@localhost circuit_testing]$ ./test2 && ./test2 0.0153142 0.0153166 Well, more or less, I think. And then, this: [Ignat@localhost circuit_testing]$ ./test2 && ./test2 0.01531 0.0152476 Where are the 25% which should be visible? How can the first executable be even slower than the second one? I'm asking this because I'm doing a project which involves calling a lot of small functions in a row like this in order to compute the values of an array, and the code I've inherited does a very complex manipulation to avoid the virtual function call overhead. Now where is this famous call overhead?

    Read the article

  • calculix data visualizor using QT

    - by Ann
    include "final1.h" include "ui_final1.h" include include include ifndef GL_MULTISAMPLE define GL_MULTISAMPLE 0x809D endif define numred 100 define numgrn 10 define numblu 6 final1::final1(QWidget *parent) : QGLWidget(parent) { setFormat(QGLFormat(QGL::SampleBuffers)); rotationX = -38.0; rotationY = -58.0; rotationZ = 0.0; scaling = .05; // glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); //createGradient(); createGLObject(); } final1::~final1() { makeCurrent(); glDeleteLists(glObject, 1); } void final1::paintEvent(QPaintEvent * /* event */) { QPainter painter(this); draw(); } void final1::mousePressEvent(QMouseEvent *event) { lastPos = event-pos(); } void final1::mouseMoveEvent(QMouseEvent *event) { GLfloat dx = GLfloat(event-x() - lastPos.x()) / width(); GLfloat dy = GLfloat(event-y() - lastPos.y()) / height(); if (event->buttons() & Qt::LeftButton) { rotationX += 180 * dy; rotationY += 180 * dx; update(); } else if (event->buttons() & Qt::RightButton) { rotationX += 180 * dy; rotationZ += 180 * dx; update(); } lastPos = event->pos(); } void final1::createGLObject() { makeCurrent(); GLfloat f1[150],f2[150],f3[150],length=0; qreal size=2; int k=1,a,b,c,d,e,f,g,h,element_node_no=0; GLfloat x,y,z; QString str1,str2,str3,str4,str5,str6,str7,str8; int red,green,blue,index=1,displacement; int LUT[1000][3]; for(red=100;red glShadeModel(GL_SMOOTH); glObject = glGenLists(1); glNewList(glObject, GL_COMPILE); // qglColor(QColor(255, 239, 191)); glLineWidth(1.0); QLinearGradient linearGradient(0, 0, 100, 100); linearGradient.setColorAt(0.0, Qt::red); linearGradient.setColorAt(0.2, Qt::green); linearGradient.setColorAt(1.0, Qt::black); //renderArea->setBrush(linearGradient); //glColor3f(1,0,0);pow((f1[e]-f1[a]),2) QFile file("/home/41407/input1.txt"); if (!file.open(QIODevice::ReadOnly | QIODevice::Text)) return; QTextStream in(&file); while (!in.atEnd()) { QString line = in.readLine(); if(k<=125) { str1= line.section(',', 1, 1); str2=line.section(',', 2, 2); str3=line.section(',', 3, 3); x=str1.toFloat(); y=str2.toFloat(); z=str3.toFloat(); f1[k]=x; f2[k]=y; f3[k]=z; /* glBegin(GL_TRIANGLES); // glColor3f(LUT[k][0],LUT[k][1],LUT[k][2]); //QColorAt();//setPointSize(size); glVertex3f(x,y,z); glEnd();*/ } else if(k>125) { element_node_no=0; qCount(line.begin(),line.end(),',',element_node_no); // printf("\n%d",element_node_no); str1= line.section(',', 1, 1); str2=line.section(',', 2, 2); str3=line.section(',', 3, 3); str4= line.section(',', 4, 4); str5=line.section(',', 5, 5); str6=line.section(',', 6, 6); str7= line.section(',', 7, 7); str8=line.section(',', 8, 8); a=str1.toInt(); b=str2.toInt(); c=str3.toInt(); d=str4.toInt(); e=str5.toInt(); f=str6.toInt(); g=str7.toInt(); h=str8.toInt(); glBegin(GL_POLYGON); glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); //brush.setColor(Qt::black);//setColor(QColor::black()); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); // pmp.setBrush(gradient); glVertex3f(f1[a],f2[a] ,f3[a]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[b],f2[b] ,f3[b]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[c],f2[c] ,f3[c]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[d],f2[d] ,f3[d]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[a],f2[a] ,f3[a]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); //glEnd(); //glBegin(GL_LINE_LOOP); glVertex3f(f1[e],f2[e] ,f3[e]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[f],f2[f] ,f3[f]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[g],f2[g], f3[g]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[h],f2[h], f3[h]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[d],f2[d] ,f3[d]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[a],f2[a] ,f3[a]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glEnd(); glBegin(GL_POLYGON); //glVertex3f(f1[a],f2[a] ,f3[a]); glVertex3f(f1[e],f2[e] ,f3[e]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[h],f2[h], f3[h]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); //glVertex3f(f1[d],f2[d] ,f3[d]); glVertex3f(f1[g],f2[g], f3[g]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[c],f2[c] ,f3[c]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[f],f2[f] ,f3[f]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glVertex3f(f1[b],f2[b] ,f3[b]); glColor3f(LUT[k][0],LUT[k][1],LUT[k++][2]); glEnd(); /*length=sqrt(pow((f1[e]-f1[a]),2)+pow((f2[e]-f2[a]),2)+pow((f3[e]-f3[a]),2)); printf("\n%d",length);*/ } k++; } glEndList(); file.close(); k=1; QFile file1("/home/41407/op.txt"); if (!file1.open(QIODevice::ReadOnly | QIODevice::Text)) return; QTextStream in1(&file1); k=1; while (!in1.atEnd()) { QString line = in1.readLine(); // if(k<=125) { str1= line.section(' ', 1, 1); x=str1.toFloat(); str2=line.section(' ', 2, 2); y=str2.toFloat(); str3=line.section(' ', 3, 3); z=str3.toFloat(); displacement=sqrt(pow( (x-f1[k]),2)+pow((y-f2[k]),2)+pow((z-f3[k]),2)); //printf("\n %d : %d",k,displacement); glBegin(GL_POLYGON); //glColor3f(LUT[displacement][0],LUT[displacement][1],LUT[displacement][2]); glVertex3f(f1[k],f2[k],f3[k]); glEnd(); a1[k]=x+f1[k]; a2[k]=y+f2[k]; a3[k]=z+f3[k]; //printf("\nc: %f %f %f",x,y,z); //printf("\nf: %f %f %f",f1[k],f2[k],f3[k]); //printf("\na: %f %f %f",a1[k],a2[k],a3[k]); } k++; glEndList(); } } void final1::draw() { glPushAttrib(GL_ALL_ATTRIB_BITS); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); GLfloat x = 3.0 * GLfloat(width()) / height(); glOrtho(-x, +x, -3.0, +3.0, 4.0, 15.0); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glTranslatef(0.0, 0.0, -10.0); glScalef(scaling, scaling, scaling); glRotatef(rotationX, 1.0, 0.0, 0.0); glRotatef(rotationY, 0.0, 1.0, 0.0); glRotatef(rotationZ, 0.0, 0.0, 1.0); glEnable(GL_MULTISAMPLE); glCallList(glObject); glMatrixMode(GL_MODELVIEW); glPopMatrix(); glMatrixMode(GL_PROJECTION); glPopMatrix(); glPopAttrib(); } /*uint final1::colorAt(int x) { generateShade(); QPolygonF pts = m_hoverPoints->points(); for (int i=1; i < pts.size(); ++i) { if (pts.at(i-1).x() <= x && pts.at(i).x() >= x) { QLineF l(pts.at(i-1), pts.at(i)); l.setLength(l.length() * ((x - l.x1()) / l.dx())); return m_shade.pixel(qRound(qMin(l.x2(), (qreal(m_shade.width() - 1)))), qRound(qMin(l.y2(), qreal(m_shade.height() - 1)))); } } return 0;*/ //final1:: //} /*void final1::createGLObject() { makeCurrent(); //QPainter painter; QPixmap pm(20, 20); QPainter pmp(&pm); pmp.fillRect(0, 0, 10, 10, Qt::blue); pmp.fillRect(10, 10, 10, 10, Qt::lightGray); pmp.fillRect(0, 10, 10, 10, Qt::darkGray); pmp.fillRect(10, 0, 10, 10, Qt::darkGray); pmp.end(); QPalette pal = palette(); pal.setBrush(backgroundRole(), QBrush(pm)); //setAutoFillBackground(true); setPalette(pal); //GLfloat f1[150],f2[150],f3[150],a1[150],a2[150],a3[150]; int k=1,a,b,c,d,e,f,g,h; //int p=0; GLfloat x,y,z; int displacement; QString str1,str2,str3,str4,str5,str6,str7,str8; int red,green,blue,index=1; int LUT[8000][3]; for(red=0;red //glShadeModel(GL_LINE); glObject = glGenLists(1); glNewList(glObject, GL_COMPILE); //qglColor(QColor(120,255,210)); glLineWidth(1.0); //glColor3f(1,0,0); QFile file("/home/41407/input.txt"); if (!file.open(QIODevice::ReadOnly | QIODevice::Text)) return; QTextStream in(&file); while (!in.atEnd()) { //glColor3f(LUT[k][0],LUT[k][1],LUT[k][2]); QString line = in.readLine(); if(k<=125) { //printf("\nline :%c",line); str1= line.section(',', 1, 1); str2=line.section(',', 2, 2); str3=line.section(',', 3, 3); x=str1.toFloat(); y=str2.toFloat(); z=str3.toFloat(); f1[k]=x; f2[k]=y; f3[k]=z; //printf("\nf: %f %f %f",f1[k],f2[k],f3[k]); } else if(k125) //for(p=0;p<6;p++) { //glColor3f(LUT[k][0],LUT[k][1],LUT[k][2]); update(); str1= line.section(',', 1, 1); str2=line.section(',', 2, 2); str3=line.section(',', 3, 3); str4= line.section(',', 4, 4); str5=line.section(',', 5, 5); str6=line.section(',', 6, 6); str7= line.section(',', 7, 7); str8=line.section(',', 8, 8); a=str1.toInt(); b=str2.toInt(); c=str3.toInt(); d=str4.toInt(); e=str5.toInt(); f=str6.toInt(); g=str7.toInt(); h=str8.toInt(); //for (p = 0; p < 6; p++) { // glBegin(GL_LINE_WIDTH); //glColor3f(LUT[126][0],LUT[126][1],LUT[126][2]); //update(); //glNormal3fv(&n[p][0]); //glVertex3f(f1[i],f2[i],f3[i]); glVertex3fv(&v[faces[i][1]][0]); glVertex3fv(&v[faces[i][2]][0]); glVertex3fv(&v[faces[i][3]][0]); //glEnd(); //} glBegin(GL_LINE_LOOP); //glColor3f(p*20,p*20,p); glColor3f(1,0,0); glVertex3f(f1[a],f2[a] ,f3[a]); //painter.fillRect(QRectF(f1[a],f2[a] ,f3[a], 2), Qt::magenta); glVertex3f(f1[b],f2[b] ,f3[b]); glVertex3f(f1[c],f2[c] ,f3[c]); glVertex3f(f1[d],f2[d] ,f3[d]); glVertex3f(f1[a],f2[a] ,f3[a]); glVertex3f(f1[e],f2[e] ,f3[e]); glVertex3f(f1[f],f2[f] ,f3[f]); glVertex3f(f1[g],f2[g], f3[g]); glVertex3f(f1[h],f2[h], f3[h]); glVertex3f(f1[d],f2[d] ,f3[d]); glVertex3f(f1[a],f2[a] ,f3[a]); //glColor3f(1,0,0); //QLinearGradient ( f1[a], f2[a], f1[b], f2[b] ); glEnd(); glBegin(GL_LINES); //glNormal3fv(&n[p][0]); //glColor3f(LUT[k][0],LUT[k][1],LUT[k][2]); glVertex3f(f1[e],f2[e] ,f3[e]); glVertex3f(f1[h],f2[h], f3[h]); glVertex3f(f1[g],f2[g], f3[g]); glVertex3f(f1[c],f2[c] ,f3[c]); glVertex3f(f1[f],f2[f] ,f3[f]); glVertex3f(f1[b],f2[b] ,f3[b]); glEnd(); } } k++; } glEndList(); qglColor(QColor(239, 255, 191)); glLineWidth(1.0); glColor3f(0,1,0); k=1; QFile file1("/home/41407/op.txt"); if (!file1.open(QIODevice::ReadOnly | QIODevice::Text)) return; QTextStream in1(&file1); k=1; while (!in1.atEnd()) { QString line = in1.readLine(); // if(k<=125) { str1= line.section(' ', 1, 1); x=str1.toFloat(); str2=line.section(' ', 2, 2); y=str2.toFloat(); str3=line.section(' ', 3, 3); z=str3.toFloat(); displacement=sqrt(pow( (x-f1[k]),2)+pow((y-f2[k]),2)+pow((z-f3[k]),2)); printf("\n %d : %d",k,displacement); glBegin(GL_POINT); glColor3f(LUT[displacement][0],LUT[displacement][1],LUT[displacement][2]); glVertex3f(x,y,z); glLoadIdentity(); glEnd(); a1[k]=x+f1[k]; a2[k]=y+f2[k]; a3[k]=z+f3[k]; //printf("\nc: %f %f %f",x,y,z); //printf("\nf: %f %f %f",f1[k],f2[k],f3[k]); //printf("\na: %f %f %f",a1[k],a2[k],a3[k]); } k++; glEndList(); } }*/ /*void final1::draw() { glPushAttrib(GL_ALL_ATTRIB_BITS); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); GLfloat x = 3.0 * GLfloat(width()) / height(); glOrtho(-x, +x, -3.0, +3.0, 4.0, 15.0); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glTranslatef(0.0, 0.0, -10.0); glScalef(scaling, scaling, scaling); glRotatef(rotationX, 1.0, 0.0, 0.0); glRotatef(rotationY, 0.0, 1.0, 0.0); glRotatef(rotationZ, 0.0, 0.0, 1.0); glEnable(GL_MULTISAMPLE); glCallList(glObject); glMatrixMode(GL_MODELVIEW); glPopMatrix(); glMatrixMode(GL_PROJECTION); glPopMatrix(); glPopAttrib(); }*/ I need to change the color of a portion of beam where pressure is applied.But I am not able to color the front end back phase.

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >