Search Results

Search found 386 results on 16 pages for 'sqrt'.

Page 4/16 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Python to C# Conversion of RGBA values not working

    - by clangers
    I'm currently converting some python code to C#, and I'm having an issue with the RGBA C# libraries # Original Python Code: d = math.sqrt( (x - size/2.0)**2 + (y - size/2.0)**2 ) rgbVal = int(200*d/md + 50) rgba = (0,0,0, 255 - rgbVal) img.putpixel((x,y), rgba) // My C# Code double d = Math.Sqrt(Math.Pow((x - DotSize / 2.0), 2) + Math.Pow((y - DotSize / 2.0), 2)); int rgbVal = (int) (200 * d / md + 50); Color color = Color.FromArgb(255 - rgbVal, 0, 0, 0); // ** ERROR ** img.SetPixel(x,y, color); At both instances of the code d is equal to 106 and md is equal to 53. However the resulting rgbVal value is 450. This would obviously mean that 255 - 450 is -195, which causes an error to be thrown as each individual value must be between 0 and 255. Anyone have any idea how I can fix this. Please note that the data is the same when running both the python and C# versions.

    Read the article

  • C Different answers for a variable when running 'Debug' and 'Start without debug'

    - by Craz
    I keep getting this weird output from my code everytime I use the 'start without degugging' (ctrl-F5) as opposed to normal 'debug' (F5). When I try to find the following value of norm_differnece in debug (pressing F5) mode, it gives me the correct answer for norm_difference normdifference = 1.000000 but in 'start without debugging' (pressing ctrl-f5) the wrong output normdifference = 1456816083547664100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.000000 The following is a segment of code which is gives the output Note: X[] = is a array of stored DOUBLE values for(i=0;i<n;i++){ sum_difference += (pow((X[i*n]-X[i]),2)); } norm_difference = sqrt(norm_difference); for(i=0;i<n;i++){ sum_norm_1 += pow(X[i],2); } norm_1 = sqrt(norm_1); //Take square root of the sum of squares for the row printf("normdifference = %f \n norm_1 = %f \n",norm_difference,norm_1);

    Read the article

  • SQL SERVER – Fix : Error 3623 – An invalid floating point operation occurred

    - by pinaldave
    Going back in time, I always had a problem with mathematics. It was a great subject and I loved it a lot but I only mastered it after practices a lot. I learned that mathematics problems should be addressed systematically and being verbose is not a trick, I learned to solve any problem. Recently one of reader sent me an email with the title “Mathematics problem – please help!” and I was a bit scared. I was good at mathematics but not the best. When I opened the email I was relieved as it was Mathematics problem with SQL Server. My friend received following error while working with SQL Server. Msg 3623, Level 16, State 1, Line 1 An invalid floating point operation occurred. The reasons for the error is simply that invalid usage of the mathematical function is attempted. Let me give you a few examples of the same. SELECT SQRT(-5); SELECT ACOS(-3); SELECT LOG(-9); If you run any of the above functions they will give you an error related to invalid floating point. Honestly there is no workaround except passing the function appropriate values. SQRT of a negative number will give you result in real numbers which is not supported at this point of time as well LOG of a negative number is not possible (because logarithm is the inverse function of an exponential function and the exponential function is NEVER negative). When I send above reply to my friend he did understand that he was passing incorrect value to the function. As mentioned earlier the only way to fix this issue is finding incorrect value and avoid passing it to the function. Every mathematics function is different and there is not a single solution to identify erroneous value passed. If you are facing this error and not able to figure out the solution. Post a comment and I will do my best to figure out the solution. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Error Messages, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to store generated eigen faces for future face recognition?

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong? 2.Instead of running the training set everytime how eigen faces generated are stored so that stored eigen faces are used for future face recoginition for a new input image.So it reduces wastage of time.

    Read the article

  • Vectorization of matlab code for faster execution

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); Running time for 50 images:Elapsed time is 103.947573 seconds. QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong?

    Read the article

  • Isometric layer moving inside map

    - by gronzzz
    i'm created isometric map and now trying to limit layer moving. Main idea, that i have left bottom, right bottom, left top, right top points, that camera can not move outside, so player will not see map out of bounds. But i can not understand algorithm of how to do that. It's my layer scale/moving code. - (void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event { _isTouchBegin = YES; } - (void)touchMoved:(UITouch *)touch withEvent:(UIEvent *)event { NSArray *allTouches = [[event allTouches] allObjects]; UITouch *touchOne = [allTouches objectAtIndex:0]; CGPoint touchLocationOne = [touchOne locationInView: [touchOne view]]; CGPoint previousLocationOne = [touchOne previousLocationInView: [touchOne view]]; // Scaling if ([allTouches count] == 2) { _isDragging = NO; UITouch *touchTwo = [allTouches objectAtIndex:1]; CGPoint touchLocationTwo = [touchTwo locationInView: [touchTwo view]]; CGPoint previousLocationTwo = [touchTwo previousLocationInView: [touchTwo view]]; CGFloat currentDistance = sqrt( pow(touchLocationOne.x - touchLocationTwo.x, 2.0f) + pow(touchLocationOne.y - touchLocationTwo.y, 2.0f)); CGFloat previousDistance = sqrt( pow(previousLocationOne.x - previousLocationTwo.x, 2.0f) + pow(previousLocationOne.y - previousLocationTwo.y, 2.0f)); CGFloat distanceDelta = currentDistance - previousDistance; CGPoint pinchCenter = ccpMidpoint(touchLocationOne, touchLocationTwo); pinchCenter = [self convertToNodeSpace:pinchCenter]; CGFloat predictionScale = self.scale + (distanceDelta * PINCH_ZOOM_MULTIPLIER); if([self predictionScaleInBounds:predictionScale]) { [self scale:predictionScale scaleCenter:pinchCenter]; } } else { // Dragging _isDragging = YES; CGPoint previous = [[CCDirector sharedDirector] convertToGL:previousLocationOne]; CGPoint current = [[CCDirector sharedDirector] convertToGL:touchLocationOne]; CGPoint delta = ccpSub(current, previous); self.position = ccpAdd(self.position, delta); } } - (void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event { _isDragging = NO; _isTouchBegin = NO; // Check if i need to bounce _touchLoc = [touch locationInNode:self]; } #pragma mark - Update - (void)update:(CCTime)delta { CGPoint position = self.position; float scale = self.scale; static float friction = 0.92f; //0.96f; if(_isDragging && !_isScaleBounce) { _velocity = ccp((position.x - _lastPos.x)/2, (position.y - _lastPos.y)/2); _lastPos = position; } else { _velocity = ccp(_velocity.x * friction, _velocity.y *friction); position = ccpAdd(position, _velocity); self.position = position; } if (_isScaleBounce && !_isTouchBegin) { float min = fabsf(self.scale - MIN_SCALE); float max = fabsf(self.scale - MAX_SCALE); int dif = max > min ? 1 : -1; if ((scale > MAX_SCALE - SCALE_BOUNCE_AREA) || (scale < MIN_SCALE + SCALE_BOUNCE_AREA)) { CGFloat newSscale = scale + dif * (delta * friction); [self scale:newSscale scaleCenter:_touchLoc]; } else { _isScaleBounce = NO; } } }

    Read the article

  • Rotate triangle so that its tip points in the direction of the point on the screen that we last touched

    - by Sid
    OpenGL ES - Android. Hello all, I am unable to rotate the triangle accordingly in such a way that its tip always points to my finger. What i did : Constructed a triangle in by GL.GL_TRIANGLES. Added touch events to it. I can rotate the triangle along my Z-axis successfully. Even made the vector class for it. What i need : Each time when I touch the screen, I want to rotate the triangle to face the touch point. Need some help. Here's what i implemented. I wonder that where i am going wrong? My code : public class Graphic2DTriangle { private FloatBuffer vertexBuffer; private ByteBuffer indexBuffer; private float[] vertices = { -1.0f,-1.0f, 0.0f, 2.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f }; private byte[] indices = { 0, 1, 2 }; public Graphic2DTriangle() { ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4); vbb.order(ByteOrder.nativeOrder()); // Use native byte order vertexBuffer = vbb.asFloatBuffer(); // Convert byte buffer to float vertexBuffer.put(vertices); // Copy data into buffer vertexBuffer.position(0); // Rewind // Setup index-array buffer. Indices in byte. indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public void draw(GL10 gl) { gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer); gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE, indexBuffer); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); } } My SurfaceView class where i've done some Touch Events. public class BallThrowGLSurfaceView extends GLSurfaceView{ MySquareRender _renderObj; View _viewObj; float oldX,oldY,dX,dY; final float TOUCH_SCALE_FACTOR = 0.6f; Vector2 touchPos = new Vector2(); float angle=0; public BallThrowGLSurfaceView(Context context) { super(context); // TODO Auto-generated constructor stub _renderObj = new MySquareRender(context); this.setRenderer(_renderObj); this.setRenderMode(RENDERMODE_WHEN_DIRTY); } @Override public boolean onTouchEvent(MotionEvent event) { // TODO Auto-generated method stub touchPos.x = event.getX(); touchPos.y = event.getY(); Log.i("Co-ord", touchPos.x+"hh"+touchPos.y); switch(event.getAction()){ case MotionEvent.ACTION_MOVE : dX = touchPos.x - oldX; dY = touchPos.y - oldY; if(touchPos.y > getHeight()/2){ dX = dX*-1; } if(touchPos.x < getWidth()/2){ dY = dY*-1; } _renderObj.mAngle += (dX+dY) * TOUCH_SCALE_FACTOR; requestRender(); Log.i("AngleCo-ord", _renderObj.mAngle +"hh"); } oldX = touchPos.x; oldY = touchPos.y; Log.i("OldCo-ord", oldX+" hh "+oldY); return true; } } Last but not the least. My vector2 class. public class Vector2 { public static float TO_RADIANS = (1 / 180.0f) * (float) Math.PI; public static float TO_DEGREES = (1 / (float) Math.PI) * 180; public float x, y; public Vector2() { } public Vector2(float x, float y) { this.x = x; this.y = y; } public Vector2(Vector2 other) { this.x = other.x; this.y = other.y; } public Vector2 cpy() { return new Vector2(x, y); } public Vector2 set(float x, float y) { this.x = x; this.y = y; return this; } public Vector2 set(Vector2 other) { this.x = other.x; this.y = other.y; return this; } public Vector2 add(float x, float y) { this.x += x; this.y += y; return this; } public Vector2 add(Vector2 other) { this.x += other.x; this.y += other.y; return this; } public Vector2 sub(float x, float y) { this.x -= x; this.y -= y; return this; } public Vector2 sub(Vector2 other) { this.x -= other.x; this.y -= other.y; return this; } public Vector2 mul(float scalar) { this.x *= scalar; this.y *= scalar; return this; } public float len() { return FloatMath.sqrt(x * x + y * y); } public Vector2 nor() { float len = len(); if (len != 0) { this.x /= len; this.y /= len; } return this; } public float angle() { float angle = (float) Math.atan2(y, x) * TO_DEGREES; if (angle < 0) angle += 360; return angle; } public Vector2 rotate(float angle) { float rad = angle * TO_RADIANS; float cos = FloatMath.cos(rad); float sin = FloatMath.sin(rad); float newX = this.x * cos - this.y * sin; float newY = this.x * sin + this.y * cos; this.x = newX; this.y = newY; return this; } public float dist(Vector2 other) { float distX = this.x - other.x; float distY = this.y - other.y; return FloatMath.sqrt(distX * distX + distY * distY); } public float dist(float x, float y) { float distX = this.x - x; float distY = this.y - y; return FloatMath.sqrt(distX * distX + distY * distY); } public float distSquared(Vector2 other) { float distX = this.x - other.x; float distY = this.y - other.y; return distX * distX + distY * distY; } public float distSquared(float x, float y) { float distX = this.x - x; float distY = this.y - y; return distX * distX + distY * distY; } } PS : i am able to handle the touch events. I can rotate the triangle with the touch of my finger. But i want that ONE VERTEX of the triangle should point at my finger position respective of the position of my finger.

    Read the article

  • Why are there 3 conflicting OpenCV camera calibration formulas?

    - by John
    I'm having a problem with OpenCV's various parameterization of coordinates used for camera calibration purposes. The problem is that three different sources of information on image distortion formulae apparently give three non-equivalent description of the parameters and equations involved: (1) In their book "Learning OpenCV…" Bradski and Kaehler write regarding lens distortion (page 376): xcorrected = x * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ 2 * p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ], ycorrected = y * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ p1 * ( r^2 + 2 * y^2 ) + 2 * p2 * x * y ], where r = sqrt( x^2 + y^2 ). Assumably, (x, y) are the coordinates of pixels in the uncorrected captured image corresponding to world-point objects with coordinates (X, Y, Z), camera-frame referenced, for which xcorrected = fx * ( X / Z ) + cx and ycorrected = fy * ( Y / Z ) + cy, where fx, fy, cx, and cy, are the camera's intrinsic parameters. So, having (x, y) from a captured image, we can obtain the desired coordinates ( xcorrected, ycorrected ) to produced an undistorted image of the captured world scene by applying the above first two correction expressions. However... (2) The complication arises as we look at OpenCV 2.0 C Reference entry under the Camera Calibration and 3D Reconstruction section. For ease of comparison we start with all world-point (X, Y, Z) coordinates being expressed with respect to the camera's reference frame, just as in #1. Consequently, the transformation matrix [ R | t ] is of no concern. In the C reference, it is expressed that: x' = X / Z, y' = Y / Z, x'' = x' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ 2 * p1 * x' * y' + p2 * ( r'^2 + 2 * x'^2 ) ], y'' = y' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ p1 * ( r'^2 + 2 * y'^2 ) + 2 * p2 * x' * y' ], where r' = sqrt( x'^2 + y'^2 ), and finally that u = fx * x'' + cx, v = fy * y'' + cy. As one can see these expressions are not equivalent to those presented in #1, with the result that the two sets of corrected coordinates ( xcorrected, ycorrected ) and ( u, v ) are not the same. Why the contradiction? It seems to me the first set makes more sense as I can attach physical meaning to each and every x and y in there, while I find no physical meaning in x' = X / Z and y' = Y / Z when the camera focal length is not exactly 1. Furthermore, one cannot compute x' and y' for we don't know (X, Y, Z). (3) Unfortunately, things get even murkier when we refer to the writings in Intel's Open Source Computer Vision Library Reference Manual's section Lens Distortion (page 6-4), which states in part: "Let ( u, v ) be true pixel image coordinates, that is, coordinates with ideal projection, and ( u ~, v ~ ) be corresponding real observed (distorted) image coordinates. Similarly, ( x, y ) are ideal (distortion-free) and ( x ~, y ~ ) are real (distorted) image physical coordinates. Taking into account two expansion terms gives the following: x ~ = x * ( 1 + k1 * r^2 + k2 * r^4 ) + [ 2 p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ] y ~ = y * ( 1 + k1 * r^2 + k2 * r^4 ] + [ 2 p2 * x * y + p2 * ( r^2 + 2 * y^2 ) ], where r = sqrt( x^2 + y^2 ). ... "Because u ~ = cx + fx * u and v ~ = cy + fy * v , … the resultant system can be rewritten as follows: u ~ = u + ( u – cx ) * [ k1 * r^2 + k2 * r^4 + 2 * p1 * y + p2 * ( r^2 / x + 2 * x ) ] v ~ = v + ( v – cy ) * [ k1 * r^2 + k2 * r^4 + 2 * p2 * x + p1 * ( r^2 / y + 2 * y ) ] The latter relations are used to undistort images from the camera." Well, it would appear that the expressions involving x ~ and y ~ coincided with the two expressions given at the top of this writing involving xcorrected and ycorrected. However, x ~ and y ~ do not refer to corrected coordinates, according to the given description. I don't understand the distinction between the meaning of the coordinates ( x ~, y ~ ) and ( u ~, v ~ ), or for that matter, between the pairs ( x, y ) and ( u, v ). From their descriptions it appears their only distinction is that ( x ~, y ~ ) and ( x, y ) refer to 'physical' coordinates while ( u ~, v ~ ) and ( u, v ) do not. What is this distinction all about? Aren't they all physical coordinates? I'm lost! Thanks for any input!

    Read the article

  • Oval collision detection not working properly

    - by William
    So I'm trying to implement a test where a oval can connect with a circle, but it's not working. edist = (float) Math.sqrt(Math.pow((px + ((pwidth/2) )) - (bx + (bsize/2)), 2) + Math.pow(-((py + ((pwidth/2)) ) - (bx + (bsize/2))), 2)); and here is the full code (requires Slick2D): import org.newdawn.slick.AppGameContainer; import org.newdawn.slick.BasicGame; import org.newdawn.slick.Color; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.Input; import org.newdawn.slick.SlickException; public class ColTest extends BasicGame{ float px = 50; float py = 50; float pheight = 50; float pwidth = 50; float bx = 200; float by = 200; float bsize = 200; float edist; float pspeed = 3; Input input; public ColTest() { super("ColTest"); } @Override public void init(GameContainer gc) throws SlickException { } @Override public void update(GameContainer gc, int delta) throws SlickException { input = gc.getInput(); try{ if(input.isKeyDown(Input.KEY_UP)) py-=pspeed; if(input.isKeyDown(Input.KEY_DOWN)) py+=pspeed; if(input.isKeyDown(Input.KEY_LEFT)) px-=pspeed; if(input.isKeyDown(Input.KEY_RIGHT)) px+=pspeed; } catch(Exception e){} } public void render(GameContainer gc, Graphics g) throws SlickException { g.setColor(new Color(255,255,255)); g.drawString("col: " + col(), 10, 10); g.drawString("edist: " + edist + " dist: " + dist, 10, 100); g.fillRect(px, py, pwidth, pheight); g.setColor(new Color(255,0,255)); g.fillOval(px, py, pwidth, pheight); g.setColor(new Color(255,255,255)); g.fillOval(200, 200, 200, 200); } public boolean col(){ edist = (float) Math.sqrt(Math.pow((px + ((pwidth/2) )) - (bx + (bsize/2)), 2) + Math.pow(-((py + ((pwidth/2)) ) - (bx + (bsize/2))), 2)); if(edist <= (bsize/2) + (px + (pwidth/2))) return true; else return false; } public float rotate(float x, float y, float ox, float oy, float a, boolean b) { float dst = (float) Math.sqrt(Math.pow(x-ox,2.0)+ Math.pow(y-oy,2.0)); float oa = (float) Math.atan2(y-oy,x-ox); if(b) return (float) Math.cos(oa + Math.toRadians(a))*dst+ox; else return (float) Math.sin(oa + Math.toRadians(a))*dst+oy; } public static void main(String[] args) throws SlickException { AppGameContainer app = new AppGameContainer( new ColTest() ); app.setShowFPS(false); app.setAlwaysRender(true); app.setTargetFrameRate(60); app.setDisplayMode(800, 600, false); app.start(); } }

    Read the article

  • How can I draw an arrow at the edge of the screen pointing to an object that is off screen?

    - by Adam Henderson
    I am wishing to do what is described in this topic: http://www.allegro.cc/forums/print-thread/283220 I have attempted a variety of the methods mentioned here. First I tried to use the method described by Carrus85: Just take the ratio of the two triangle hypontenuses (doesn't matter which triagle you use for the other, I suggest point 1 and point 2 as the distance you calculate). This will give you the aspect ratio percentage of the triangle in the corner from the larger triangle. Then you simply multiply deltax by that value to get the x-coordinate offset, and deltay by that value to get the y-coordinate offset. But I could not find a way to calculate how far the object is away from the edge of the screen. I then tried using ray casting (which I have never done before) suggested by 23yrold3yrold: Fire a ray from the center of the screen to the offscreen object. Calculate where on the rectangle the ray intersects. There's your coordinates. I first calculated the hypotenuse of the triangle formed by the difference in x and y positions of the two points. I used this to create a unit vector along that line. I looped through that vector until either the x coordinate or the y coordinate was off the screen. The two current x and y values then form the x and y of the arrow. Here is the code for my ray casting method (written in C++ and Allegro 5) void renderArrows(Object* i) { float x1 = i->getX() + (i->getWidth() / 2); float y1 = i->getY() + (i->getHeight() / 2); float x2 = screenCentreX; float y2 = ScreenCentreY; float dx = x2 - x1; float dy = y2 - y1; float hypotSquared = (dx * dx) + (dy * dy); float hypot = sqrt(hypotSquared); float unitX = dx / hypot; float unitY = dy / hypot; float rayX = x2 - view->getViewportX(); float rayY = y2 - view->getViewportY(); float arrowX = 0; float arrowY = 0; bool posFound = false; while(posFound == false) { rayX += unitX; rayY += unitY; if(rayX <= 0 || rayX >= screenWidth || rayY <= 0 || rayY >= screenHeight) { arrowX = rayX; arrowY = rayY; posFound = true; } } al_draw_bitmap(sprite, arrowX - spriteWidth, arrowY - spriteHeight, 0); } This was relatively successful. Arrows are displayed in the bottom right section of the screen when objects are located above and left of the screen as if the locations of the where the arrows are drawn have been rotated 180 degrees around the center of the screen. I assumed this was due to the fact that when I was calculating the hypotenuse of the triangle, it would always be positive regardless of whether or not the difference in x or difference in y is negative. Thinking about it, ray casting does not seem like a good way of solving the problem (due to the fact that it involves using sqrt() and a large for loop). Any help finding a suitable solution would be greatly appreciated, Thanks Adam

    Read the article

  • Changes in Language Punctuation [closed]

    - by Wes Miller
    More social curiosity than actual programming question... (I got shot for posting this on Stack Overflow. They sent me here. At least i hope here is where they meant.) Based on the few responses I got before the content police ran me off Stack Overflow, I should note that I am legally blind and neatness and consistency in programming are my best friends. A thousand years ago when I took my first programming class (Fortran 66) and a mere 500 years ago when I tokk my first C and C++ classes, there were some pretty standard punctuation practices across languages. I saw them in Basic (shudder), PL/1, PL/AS, Rexx even Pascal. Ok, APL2 is not part of this discussion. Each language has its own peculiar punctuation. Pascal's periods, Fortran's comma separated do loops, almost everybody else's semicolons. As I learned it, each language also has KEYWORDS (if, for, do, while, until, etc.) which are set off by whitespace (or the left margin) if, etc. Each language has function, subroutines of whatever they're called. Some built-in some user coded. They were set off by function_name( parameters );. As in sqrt( x ) or rand( y ); Lately, there seems to be a new set of punctuation rules. Especially in c++ where initializers get glued onto the end of variable declarations int x(0); or auto_ptr p(new gizmo); This usually, briefly fools me into thinking someone is declaring a function prototype or using a function as a integer. Then "if" and 'for' seems to have grown parens; if(true) for(;;), etc. Since when did keywords become functions. I realize some people think they ARE functions with iterators as parameters. But if "for" is a function, where did the arg separating commas go? And finally, functions seem to have shed their parens; sqrt (2) select (...) I know, I koow, loosening whitespace rules is good. Keep reading. Question: when did the old ways disappear and this new way come into vogue? Does anyone besides me find it irritating to read and that the information that the placement of punctuation used to convey is gone? I know full well that K&R put the { at the end of the "if" or "for" to save a byte here and there. Can't use that excuse here. Space as an excuse for loss of readability died as HDD space soared past 100 MiB. Your thoughts are solicited. If there is a good reason to do this, I'll gladly learn it and maybe in another 50 years I'll get used to it. Of course it's good that compilers recognize these (IMHO) typos and keep right on going, but just because you CAN code it that way doesn't mean you HAVE to, right?

    Read the article

  • Making AI jump on a spot effectively

    - by Pasquale Sada
    How to calculate, in 3D environment, the closest point, from which an AI character can jump onto a platform? Setup I have an initial velocity V(Vx,Vy,VZ) and a spot where the character stands still at S(Sx,Sy,Sz). What I'm trying to achieve is a successful jump on a spot E(Ex,Ey,Ez) where you have clicked on(only lower or higher spot, because I've in place a simple steering behavior for even terrains). There are no obstacles around. I've implemented a formula that can make him jump in a precise way on a spot but you need to declare an angle: the problem arise when the selected spot is straight above your head. It' pretty lame that the char hang there and can reach a thing that is 1cm above is head. I'll share the code I'm using: Vector3 dir = target - transform.position; // get target direction float h = dir.y; // get height difference dir.y = 0; // retain only the horizontal direction float dist = dir.magnitude ; // get horizontal distance float a = angle * Mathf.Deg2Rad; // convert angle to radians dir.y = dist * Mathf.Tan(a); // set dir to the elevation angle dist += h / Mathf.Tan(a); // correct for small height differences // calculate the velocity magnitude float vel = Mathf.Sqrt(dist * Physics.gravity.magnitude / Mathf.Sin(2 *a)); return vel * dir.normalized; Ended up using the lowest angle (20 degree) and checking for collision on the trajectory. If found any increase the angle. Here some code (to improve the code maybe must stop the check at the highest point of the curve): Vector3 BallisticVel(Vector3 target, float angle) { Vector3 dir = target - transform.position; // get target direction float h = dir.y; // get height difference dir.y = 0; // retain only the horizontal direction float dist = dir.magnitude ; // get horizontal distance float a = angle * Mathf.Deg2Rad; // convert angle to radians dir.y = dist * Mathf.Tan(a); // set dir to the elevation angle dist += h / Mathf.Tan(a); // correct for small height differences // calculate the velocity magnitude float vel = Mathf.Sqrt(dist * Physics.gravity.magnitude / Mathf.Sin(2 * a)); return vel * dir.normalized; } Vector3 TrajectoryPoint(Vector3 startingPosition, Vector3 startingVelocity, float n ) { float t = 1/60 ; // seconds per time step Vector3 stepVelocity = t * startingVelocity; // m/s Vector3 stepGravity = t * t * Physics.gravity; // m/s/s return startingPosition + n * stepVelocity + 0.5f * (n*n+n) * stepGravity; } bool CheckTrajectory(Vector3 startingPosition,Vector3 target, float angle_jump) { Debug.Log("checking"); if(angle_jump < 80f) { Debug.Log("if"); Vector3 startingVelocity = BallisticVel(target, angle_jump); for (int i = 0; i < 180; i++) { //Debug.Log(i); Vector3 trajectoryPosition = TrajectoryPoint( startingPosition, startingVelocity, i ); if(Physics.Raycast(trajectoryPosition,Vector3.forward,safeDistance)) { angle_jump += 10; break; // restart loop with the new angle } else continue; } return true; JumpVelocity = BallisticVel(target, angle_jump); } return false; }

    Read the article

  • the problem of "cvEigenVV"

    - by gg-anny
    Hi!When I compile the program,VC2005 always tell :"error C2198: 'cvEigenVV' : too few arguments for call". Part of the code below: void draw_oxfd_feature( IplImage* img, struct feature* feat, CvScalar color ) { double m[4] = { feat-a, feat-b, feat-b, feat-c }; double v[4] = { 0 }; double e[2] = { 0 }; CvMat M; CvMat V; CvMat E; double alpha, l1, l2; /* compute axes and orientation of ellipse surrounding affine region */ cvInitMatHeader( &M, 2, 2, CV_64FC1, m, CV_AUTOSTEP ); cvInitMatHeader( &V, 2, 2, CV_64FC1, v, CV_AUTOSTEP ); cvInitMatHeader( &E, 2, 1, CV_64FC1, e, CV_AUTOSTEP ); cvEigenVV( &M, &V, &E, DBL_EPSILON ); l1 = 1 / sqrt( e[1] ); l2 = 1 / sqrt( e[0] ); alpha = -atan2( v[1], v[0] ); alpha *= 180 / CV_PI; cvEllipse( img, cvPoint( feat-x, feat-y ), cvSize( l2, l1 ), alpha, 0, 360, CV_RGB(0,0,0), 3, 8, 0 ); cvEllipse( img, cvPoint( feat-x, feat-y ), cvSize( l2, l1 ), alpha, 0, 360, color, 1, 8, 0 ); cvLine( img, cvPoint( feat-x+2, feat-y ), cvPoint( feat-x-2, feat-y ), color, 1, 8, 0 ); cvLine( img, cvPoint( feat-x, feat-y+2 ), cvPoint( feat-x, feat-y-2 ), color, 1, 8, 0 ); // cvCircle(img,cvPoint(cvRound( feat-x ),cvRound( feat-y )),2, color, CV_FILLED, 8, 0); cvCircle(img,cvPoint( cvRound( feat-x ), cvRound( feat-y )), 2,CV_RGB(0,255,0), CV_FILLED, 8, 0 ); } How to solve the problem?Thank you!

    Read the article

  • Double type returns -1.#IND/NaN error when calculating pi iteratively

    - by Draak
    I am working through a problem for my MCTS certification. The program has to calculate pi until the user presses a key, at which point the thread is aborted, the result returned to the main thread and printed in the console. Simple enough, right? This exercise is really meant to be about threading, but I'm running into another problem. The procedure that calculates pi returns -1.#IND. I've read some of the material on the web about this error, but I'm still not sure how to fix it. When I change double to Decimal type, I unsurprisingly get Overflow Exception very quickly. So, the question is how do I store the numbers correctly? Do I have to create a class to somehow store parts of the number when it gets too big to be contained in a Decimal? Class PiCalculator Dim a As Double = 1 Dim b As Double = 1 / Math.Sqrt(2) Dim t As Double = 1 / 4 Dim p As Double = 1 Dim pi As Double Dim callback As DelegateResult Sub New(ByVal _callback As DelegateResult) callback = _callback End Sub Sub Calculate() Try Do While True Dim a1 = (a + b) / 2 Dim b1 = Math.Sqrt(a * b) Dim t1 = t - p * (a - a1) ^ 2 Dim p1 = 2 * p a = a1 b = b1 t = t1 p = p1 pi = ((a + b) ^ 2) / (4 * t) Loop Catch ex As ThreadAbortException Finally callback(pi) End Try End Sub End Class

    Read the article

  • Beginner problems with references to arrays in python 3.1.1

    - by Protean
    As part of the last assignment in a beginner python programing class, I have been assigned a traveling sales man problem. I settled on a recursive function to find each permutation and the sum of the distances between the destinations, however, I am have a lot of problems with references. Arrays in different instances of the Permute and Main functions of TSP seem to be pointing to the same reference. from math import sqrt class TSP: def __init__(self): self.CartisianCoordinates = [['A',[1,1]], ['B',[2,2]], ['C',[2,1]], ['D',[1,2]], ['E',[3,3]]] self.Array = [] self.Max = 0 self.StoredList = ['',0] def Distance(self, i1, i2): x1 = self.CartisianCoordinates[i1][1][0] y1 = self.CartisianCoordinates[i1][1][1] x2 = self.CartisianCoordinates[i2][1][0] y2 = self.CartisianCoordinates[i2][1][1] return sqrt(pow((x2 - x1), 2) + pow((y2 - y1), 2)) def Evaluate(self): temparray = [] Data = [] for i in range(len(self.CartisianCoordinates)): Data.append([]) for i1 in range(len(self.CartisianCoordinates)): for i2 in range(len(self.CartisianCoordinates)): if i1 != i2: temparray.append(self.Distance(i1, i2)) else: temparray.append('X') Data[i1] = temparray temparray = [] self.Array = Data self.Max = len(Data) def Permute(self,varray,index,vcarry,mcarry): #Problem Class array = varray[:] carry = vcarry[:] for i in range(self.Max): print ('ARRAY:', array) print (index,i,carry,array[index][i]) if array[index][i] != 'X': carry[0] += self.CartisianCoordinates[i][0] carry[1] += array[index][i] if len(carry) != self.Max: temparray = array[:] for j in range(self.Max):temparray[j][i] = 'X' index = i mcarry += self.Permute(temparray,index,carry,mcarry) else: return mcarry print ('pass',mcarry) return mcarry def Main(self): out = [] self.Evaluate() for i in range(self.Max): array = self.Array[:] #array appears to maintain the same reference after each copy, resulting in an incorrect array being passed to Permute after the first iteration. print (self.Array[:]) for j in range(self.Max):array[j][i] = 'X' print('I:', i, array) out.append(self.Permute(array,i,[str(self.CartisianCoordinates[i][0]),0],[])) return out SalesPerson = TSP() print(SalesPerson.Main()) It would be greatly appreciated if you could provide me with help in solving the reference problems I am having. Thank you.

    Read the article

  • Project Euler 7 Scala Problem

    - by Nishu
    I was trying to solve Project Euler problem number 7 using scala 2.8 First solution implemented by me takes ~8 seconds def problem_7:Int = { var num = 17; var primes = new ArrayBuffer[Int](); primes += 2 primes += 3 primes += 5 primes += 7 primes += 11 primes += 13 while (primes.size < 10001){ if (isPrime(num, primes)) primes += num if (isPrime(num+2, primes)) primes += num+2 num += 6 } return primes.last; } def isPrime(num:Int, primes:ArrayBuffer[Int]):Boolean = { // if n == 2 return false; // if n == 3 return false; var r = Math.sqrt(num) for (i <- primes){ if(i <= r ){ if (num % i == 0) return false; } } return true; } Later I tried the same problem without storing prime numbers in array buffer. This take .118 seconds. def problem_7_alt:Int = { var limit = 10001; var count = 6; var num:Int = 17; while(count < limit){ if (isPrime2(num)) count += 1; if (isPrime2(num+2)) count += 1; num += 6; } return num; } def isPrime2(n:Int):Boolean = { // if n == 2 return false; // if n == 3 return false; var r = Math.sqrt(n) var f = 5; while (f <= r){ if (n % f == 0) { return false; } else if (n % (f+2) == 0) { return false; } f += 6; } return true; } I tried using various mutable array/list implementations in Scala but was not able to make solution one faster. I do not think that storing Int in a array of size 10001 can make program slow. Is there some better way to use lists/arrays in scala?

    Read the article

  • tangent of two circles

    - by harryovers
    Hello, I am trying to write some code that that will draw the line which is a tangent between 2 circles. so far i have been able to draw multiple circles, and lines between the centers. i have a class which stores the values used in drawing the circles (radius, position). what i need is a method in this class to find all posible tangents between 2 circles. any help would be great. this is what i have so far (it could very well be a load of rubbish) public static Vector2[] Tangents(circle c1, circle c2) { if (c2.radius > c1.radius) { circle temp = c1; c1 = c2; c2 = temp; } circle c0 = new circle(c1.radius - c2.radius, c1.center); Vector2[] tans = new Vector2[2]; Vector2 dir = _point - _center; float len = (float)Math.Sqrt((dir.X * dir.X) + (dir.Y * dir.Y)); float angle = (float)Math.Atan2(dir.X, dir.Y); float tan_length = (float)Math.Sqrt((len * len) - (_radius * _radius)); float tan_angle = (float)Math.Asin(_radius / len); tans[0] = new Vector2((float)Math.Cos(angle + tan_angle), (float)Math.Sin(angle + tan_angle)); tans[1] = new Vector2((float)Math.Cos(angle - tan_angle), (float)Math.Sin(angle - tan_angle)); Vector2 dir0 = c0.center - tans[0]; Vector2 dir1 = c0.center - tans[1]; Vector2 tan00 = Vector2.Add(Vector2.Multiply(tans[0], (float)c2.radius), c1.center); Vector2 tan01 = c2.center; Vector2 tan10 = Vector2.Add(Vector2.Multiply(tans[1], (float)c2.radius), c1.center); Vector2 tan11 = c2.center; }

    Read the article

  • printing out prime numbers from array

    - by landscape
    I'd like to print out all prime numbers from an array with method. I can do it with one int but don't know how to return certain numbers from array. Thanks for help! public static boolean isPrime(int [] tab) { boolean prime = true; for (int i = 3; i <= Math.sqrt(tab[i]); i += 2) if (tab[i] % i == 0) { prime = false; break; } for(int i=0; i<tab.length; i++) if (( tab[i]%2 !=0 && prime && tab[i] > 2) || tab[i] == 2) { return true; } else { return false; } //return prime; } thanks both of you. Seems like its solved: public static void isPrime(int[] tab) { for (int i = 0; i < tab.length; i++) { if (isPrimeNum(tab[i])) { System.out.println(tab[i]); } } } public static boolean isPrimeNum(int n) { boolean prime = true; for (long i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) { prime = false; break; } } if ((n % 2 != 0 && prime && n > 2) || n == 2) { return true; } else { return false; } }

    Read the article

  • Does isEmpty method in Stream evaluate the whole Stream?

    - by abhin4v
    In Scala, does calling isEmtpy method on an instance of Stream class cause the stream to be evaluated completely? My code is like this: import Stream.cons private val odds: Stream[Int] = cons(3, odds.map(_ + 2)) private val primes: Stream[Int] = cons(2, odds filter isPrime) private def isPrime(n: Int): Boolean = n match { case 1 => false case 2 => true case 3 => true case 5 => true case 7 => true case x if n % 3 == 0 => false case x if n % 5 == 0 => false case x if n % 7 == 0 => false case x if (x + 1) % 6 == 0 || (x - 1) % 6 == 0 => true case x => primeDivisors(x) isEmpty } import Math.{sqrt, ceil} private def primeDivisors(n: Int) = primes takeWhile { _ <= ceil(sqrt(n))} filter {n % _ == 0 } So, does the call to isEmpty on the line case x => primeDivisors(x) isEmpty cause all the prime divisors to be evaluated or only the first one?

    Read the article

  • How to generate random numbers of lognormal distribution within specific range in Matlab

    - by Harpreet
    My grain sizes are defined as D=[1.19,1.00,0.84,0.71,0.59,0.50,0.42]. The problem is described below in steps. Grain sizes should follow lognormal distribution. The mean of the grain sizes is fixed as 0.84 and the standard deviation should be as low as possible but not zero. 90% of the grains (by weight %) fall in the size range of 1.19 to 0.59, and the rest 10% fall in size range of 0.50 to 0.42. Now I want to find the probabilities (weight percentage) of the grains falling in each grain size. It is allowable to split this grain size distribution into further small sizes but it must always be in the range of 1.19 and 0.42, i.e. 'D' can be continuous but 0.42 < D < 1.19. I need it fast. I tried on my own but I am not able to get the correct result. I am getting negative probabilities (weight percentages). Thanks to anyone who helps. I didn't incorporate the point 3 as I came to know about that condition later. Here are simple steps I tried: %% D=[1.19,1.00,0.84,0.71,0.59,0.50,0.42]; s=0.30; % std dev of the lognormal distribution m=0.84; % mean of the lognormal distribution mu=log(m^2/sqrt(s^2+m^2)); % mean of the associated normal dist. sigma=sqrt(log((s^2/m^2)+1)); % std dev of the associated normal dist. [r,c]=size(D); for i=1:c D(i)=mu+(sigma.*randn(1)); w(i)=(log(D(i))-mu)/sigma; % the probability or the wt. percentage of the grain sizes end grain_size=exp(D); %%

    Read the article

  • C# vs C - Big performance difference

    - by John
    I'm finding massive performance differences between similar code in C anc C#. The C code is: #include <stdio.h> #include <time.h> #include <math.h> main() { int i; double root; clock_t start = clock(); for (i = 0 ; i <= 100000000; i++){ root = sqrt(i); } printf("Time elapsed: %f\n", ((double)clock() - start) / CLOCKS_PER_SEC); } And the C# (console app) is: using System; using System.Collections.Generic; using System.Text; namespace ConsoleApplication2 { class Program { static void Main(string[] args) { DateTime startTime = DateTime.Now; double root; for (int i = 0; i <= 100000000; i++) { root = Math.Sqrt(i); } TimeSpan runTime = DateTime.Now - startTime; Console.WriteLine("Time elapsed: " + Convert.ToString(runTime.TotalMilliseconds/1000)); } } } With the above code, the C# completes in 0.328125 seconds (release version) and the C takes 11.14 seconds to run. The c is being compiled to a windows executable using mingw. I've always been under the assumption that C/C++ were faster or at least comparable to C#.net. What exactly is causing the C to run over 30 times slower? EDIT: It does appear that the C# optimizer was removing the root as it wasn't being used. I changed the root assignment to root += and printed out the total at the end. I've also compiled the C using cl.exe with the /O2 flag set for max speed. The results are now: 3.75 seconds for the C 2.61 seconds for the C# The C is still taking longer, but this is acceptable

    Read the article

  • Combinatorial optimisation of a distance metric

    - by Jose
    I have a set of trajectories, made up of points along the trajectory, and with the coordinates associated with each point. I store these in a 3d array ( trajectory, point, param). I want to find the set of r trajectories that have the maximum accumulated distance between the possible pairwise combinations of these trajectories. My first attempt, which I think is working looks like this: max_dist = 0 for h in itertools.combinations ( xrange(num_traj), r): for (m,l) in itertools.combinations (h, 2): accum = 0. for ( i, j ) in itertools.izip ( range(k), range(k) ): A = [ (my_mat[m, i, z] - my_mat[l, j, z])**2 \ for z in xrange(k) ] A = numpy.array( numpy.sqrt (A) ).sum() accum += A if max_dist < accum: selected_trajectories = h This takes forever, as num_traj can be around 500-1000, and r can be around 5-20. k is arbitrary, but can typically be up to 50. Trying to be super-clever, I have put everything into two nested list comprehensions, making heavy use of itertools: chunk = [[ numpy.sqrt((my_mat[m, i, :] - my_mat[l, j, :])**2).sum() \ for ((m,l),i,j) in \ itertools.product ( itertools.combinations(h,2), range(k), range(k)) ]\ for h in itertools.combinations(range(num_traj), r) ] Apart from being quite unreadable (!!!), it is also taking a long time. Can anyone suggest any ways to improve on this?

    Read the article

  • C#: Wrong answer when finding "cool" numbers.

    - by user300484
    Hello you all! In my application, a "cool" number is a number that is both a square and a cube, like for example: 64 = 8^2 and 64 = 4^3. My application is supposed to find the number of "cool numbers" between a range given by the user. I wrote my code and the application runs fine, but it is giving me the wrong answer. Can you help me here please? for example: IMPUT 1 100 OUTPUT 1 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { double a = Convert.ToDouble(Console.ReadLine()); // first number in the range double b = Convert.ToDouble(Console.ReadLine()); // second number in the range long x = 0; for (double i = a; i <= b; i++) { double cube = 1.0 / 3.0; double cuad = 1.0 / 2.0; double crt = Math.Pow(i, cube); // cube root double sqrt = Math.Pow(i, cuad); // square root if ((crt * 10) % 10 == 0 || (sqrt * 10) % 10 == 0) // condition to determine if it is a cool number. x++; } Console.WriteLine(x); Console.ReadLine(); } } }

    Read the article

  • OpenCL - incremental summation during compute

    - by user1721997
    I'm absolutelly novice in OpenCL programming. For my app. (molecular simulaton) I wrote a kernel for calculate intermolecular potential of lennard-jones liquid. In this kernel I need to compute cumulative value of the potential of all particles with one: __kernel void Molsim(__global const float* inmatrix, __global float* fi, const int c, const float r1, const float r2, const float r3, const float rc, const float epsilon, const float sigma, const float h1, const float h23) { float fi0; float fi1; float d; unsigned int i = get_global_id(0); //number of particles (typically 2000) if(c!=i) { // potential before particle movement d=sqrt(pow((0.5*h1-fabs(0.5*h1-fabs(inmatrix[c*3]-inmatrix[i*3]))),2.0)+pow((0.5*h23-fabs(0.5*h23-fabs(inmatrix[c*3+1]-inmatrix[i*3+1]))),2.0)+pow((0.5*h23-fabs(0.5*h23-fabs(inmatrix[c*3+2]-inmatrix[i*3+2]))),2.0)); if(d<rc) { fi0=4.0*epsilon*(pow(sigma/d,12.0)-pow(sigma/d,6.0)); } else { fi0=0; } // potential after particle movement d=sqrt(pow((0.5*h1-fabs(0.5*h1-fabs(r1-inmatrix[i*3]))),2.0)+pow((0.5*h23-fabs(0.5*h23-fabs(r2-inmatrix[i*3+1]))),2.0)+pow((0.5*h23-fabs(0.5*h23-fabs(r3-inmatrix[i*3+2]))),2.0)); if(d<rc) { fi1=4.0*epsilon*(pow(sigma/d,12.0)-pow(sigma/d,6.0)); } else { fi1=0; } // cumulative difference of potentials fi[0]+=fi1-fi0; } } My problem is in the line: fi[0]+=fi1-fi0;. In the one-element vector fi[0] are wrong results. I read something about sum reduction, but I do not know how to do it during the calculation. Exist any simple solution of my problem?

    Read the article

  • noncopyable static const member class in template class

    - by Dukales
    I have a non-copyable (inherited from boost::noncopyable) class that I use as a custom namespace. Also, I have another class, that uses previous one, as shown here: #include <boost/utility.hpp> #include <cmath> template< typename F > struct custom_namespace : boost::noncopyable { F sqrt_of_half(F const & x) const { using std::sqrt; return sqrt(x / F(2.0L)); } // ... maybe others are not so dummy const/constexpr methods }; template< typename F > class custom_namespace_user { static ::custom_namespace< F > const custom_namespace_; public : F poisson() const { return custom_namespace_.sqrt_of_half(M_PI); } static F square_diagonal(F const & a) { return a * custom_namespace_.sqrt_of_half(1.0L); } }; template< typename F > ::custom_namespace< F > const custom_namespace_user< F >::custom_namespace_(); this code leads to the next error (even without instantiation): error: no 'const custom_namespace custom_namespace_user::custom_namespace_()' member function declared in class 'custom_namespace_user' The next way is not legitimate: template< typename F ::custom_namespace< F const custom_namespace_user< F ::custom_namespace_ = ::custom_namespace< F (); What should I do to declare this two classes (first as noncopyable static const member class of second)? Is this feaseble?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >