Search Results

Search found 3706 results on 149 pages for 'nano optimization'.

Page 82/149 | < Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >

  • How to read a XML format file to memory in C#?

    - by Nano HE
    // .net 2.0 and vs2005 used. I find some code below. I am not sure I can extended the sample code or not? thank you. if (radioButton.Checked) { MemoryStream ms=new MemoryStream(); byte[] data=ASCIIEncoding.ASCII.GetBytes(textBox1.Text); ms.Write(data,0,data.Length); reader = new XmlTextReader(ms); //some procesing code ms.Close(); reader.Close(); } BTW, Could you please help me to do some dissection about the line below. byte[] data=ASCIIEncoding.ASCII.GetBytes(textBox1.Text);

    Read the article

  • How to wrtie a XML License Line in C#?

    - by Nano HE
    My want to write a XML file as this: <?xml version="1.0" encoding="UTF-8"?> <Equipment xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <License licenseId="" licensePath="" /> Some piece of my code attached here // Create a new file in D:\\ and set the encoding to UTF-8 XmlTextWriter textWriter = new XmlTextWriter("D:\\books.xml", System.Text.Encoding.UTF8); // Format automatically textWriter.Formatting = Formatting.Indented; // Opens the document textWriter.WriteStartDocument(); // Write the namespace declaration. textWriter.WriteStartElement("books", null); // Write the genre attribute. textWriter.WriteAttributeString("xmlns", "xsd", null, "http://www.w3.org/2001/XMLSchema"); textWriter.WriteAttributeString("xmlns", "xsi", null, "http://www.w3.org/2001/XMLSchema-instance"); And now I need to write the License Line below in C# <License licenseId="" licensePath="" /> But I don't know how to move on for I found the Line ended with the special / .Thank you.

    Read the article

  • Any testing suggestions on replace a 3rd-party production?

    - by Nano HE
    It's a complex 3rd-party DLL. Phase 1 for My project already finished. I need find a good way to integrate testing with both my DLLs and 3rd-party DLL. Now I need to replace the 3rd-party DLL with some of my my small DLLs step by step. All the interface member are same names. How to disable some of the 3rd-party DLL reference and enable related my small DLL? Thank you.

    Read the article

  • How can I change the default startup directory for cmd.exe?

    - by Nano HE
    Hi. My Procedure last day as below Click Start, Run and type Regedit.exe Navigate to the following branch: HKEY_CURRENT_USER \ Software \ Microsoft \ Command Processor In the right-pane, double-click Autorun and set the startup folder path as its data, preceded by “CD /d “. If Autorun value is missing, you need to create one, of type REG_EXPAND_SZ or REG_SZ in the above location. Example: To set the startup directory to D:\learning\perl, set the Autorun value data to CD /d D:\learning\perl Then I clicked Start, run and type cmd. It successfully. I could do perl practice more conveniently now. But today, I find when I try to build my Visual Studio 2005 solution which included some Pre-build event Command like this: perl.exe MyAppVersion.pl perl.exe AttrScan.pl It doesn't work. Show error: can't find the path. I check the environment variable setting and find the variable-path and it's value-c:\perl\bin\; still exist. Finially, I try to removed the Regedit.exe configuration "Autorun" value and test again. The issue fixed. I only changed the default startup directory for cmd.exe command. Why the pre-build event perl command was impacted? (I am using winxp and activePerl 5.8)

    Read the article

  • How do I split Chinese characters one by one?

    - by Nano HE
    If there is no special character(such as white space, : etc) between firstname and lastname. Then how to split the Chinese characters below. use strict; use warnings; use Data::Dumper; my $fh = \*DATA; my $fname; # ??; my $lname; # ? ; while(my $name = <$fh>) { $name =~ ??? ; print $fname"/n"; print $lname; } __DATA__ ??? Output ?? ?

    Read the article

  • How to get the substring in C#?

    - by Nano HE
    Hi, I can get the first three characters with the function below. However, how can I get the output of the last five characters (Three) with Substring() function. Or other string function will be used? Thank you. static void Main() { string input = "OneTwoThree"; // Get first three characters string sub = input.Substring(0, 3); Console.WriteLine("Substring: {0}", sub); // Output One. }

    Read the article

  • Deploying locally compiled binaries on server

    - by nano
    Hi, I have a Zen based VPS server that runs on a dual-core AMD Opteron 64-bit machine. I have some locally developed C++ based daemons that I would want to deploy in that machine. My local machine is an Intel core 2 duo laptop. Can I execute binaries compiled from source code on my machine directly on the above mentioned server? I am a newbie in this area. Would be great if someone could throw light on the standard practices in this kind of situation. Thanks in advance

    Read the article

  • Fatal error: Allowed memory size exhausted...

    - by Nano HE
    HI, I upload my php testing script to online vps server just now. The script used to parse a big size XML file(about 4M, 7000Lines). But my IE explorer show the online error message below. Fatal error: Allowed memory size of 16777216 bytes exhausted (tried to allocate 77 bytes) in /var/www/test/result/index.php on line 26 I am sure I already tested the php script on localhost successfully. Is there any configuration need be enable/modify on my VPS? Such as php.ini or some setting for apache server? I just verified there are about 200M memory usage are avaliable for my VPS. How can I fix this? ...... function startElementHandler ($parser,$name,$attrib){ global $usercount; global $userdata; global $state; // Line #26; //Debug //print "name is: ".$name."\n"; switch ($name) { case $name=="_ID" : { $userdata[$usercount]["first"] = $attrib["FIRST"]; $userdata[$usercount]["last"] = $attrib["LAST"]; $userdata[$usercount]["nick"] = $attrib["NICK"]; $userdata[$usercount]["title"] = $attrib["TITLE"]; break; } ...... default : {$state=$name;break;} } }

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Beware Sneaky Reads with Unique Indexes

    - by Paul White NZ
    A few days ago, Sandra Mueller (twitter | blog) asked a question using twitter’s #sqlhelp hash tag: “Might SQL Server retrieve (out-of-row) LOB data from a table, even if the column isn’t referenced in the query?” Leaving aside trivial cases (like selecting a computed column that does reference the LOB data), one might be tempted to say that no, SQL Server does not read data you haven’t asked for.  In general, that’s quite correct; however there are cases where SQL Server might sneakily retrieve a LOB column… Example Table Here’s a T-SQL script to create that table and populate it with 1,000 rows: CREATE TABLE dbo.LOBtest ( pk INTEGER IDENTITY NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( some_value, lob_data ) SELECT TOP (1000) N.n, @Data FROM Numbers N WHERE N.n <= 1000; Test 1: A Simple Update Let’s run a query to subtract one from every value in the some_value column: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; As you might expect, modifying this integer column in 1,000 rows doesn’t take very long, or use many resources.  The STATITICS IO and TIME output shows a total of 9 logical reads, and 25ms elapsed time.  The query plan is also very simple: Looking at the Clustered Index Scan, we can see that SQL Server only retrieves the pk and some_value columns during the scan: The pk column is needed by the Clustered Index Update operator to uniquely identify the row that is being changed.  The some_value column is used by the Compute Scalar to calculate the new value.  (In case you are wondering what the Top operator is for, it is used to enforce SET ROWCOUNT). Test 2: Simple Update with an Index Now let’s create a nonclustered index keyed on the some_value column, with lob_data as an included column: CREATE NONCLUSTERED INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); This is not a useful index for our simple update query; imagine that someone else created it for a different purpose.  Let’s run our update query again: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; We find that it now requires 4,014 logical reads and the elapsed query time has increased to around 100ms.  The extra logical reads (4 per row) are an expected consequence of maintaining the nonclustered index. The query plan is very similar to before (click to enlarge): The Clustered Index Update operator picks up the extra work of maintaining the nonclustered index. The new Compute Scalar operators detect whether the value in the some_value column has actually been changed by the update.  SQL Server may be able to skip maintaining the nonclustered index if the value hasn’t changed (see my previous post on non-updating updates for details).  Our simple query does change the value of some_data in every row, so this optimization doesn’t add any value in this specific case. The output list of columns from the Clustered Index Scan hasn’t changed from the one shown previously: SQL Server still just reads the pk and some_data columns.  Cool. Overall then, adding the nonclustered index hasn’t had any startling effects, and the LOB column data still isn’t being read from the table.  Let’s see what happens if we make the nonclustered index unique. Test 3: Simple Update with a Unique Index Here’s the script to create a new unique index, and drop the old one: CREATE UNIQUE NONCLUSTERED INDEX [UQ dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); GO DROP INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest; Remember that SQL Server only enforces uniqueness on index keys (the some_data column).  The lob_data column is simply stored at the leaf-level of the non-clustered index.  With that in mind, we might expect this change to make very little difference.  Let’s see: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; Whoa!  Now look at the elapsed time and logical reads: Scan count 1, logical reads 2016, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   CPU time = 172 ms, elapsed time = 16172 ms. Even with all the data and index pages in memory, the query took over 16 seconds to update just 1,000 rows, performing over 52,000 LOB logical reads (nearly 16,000 of those using read-ahead). Why on earth is SQL Server reading LOB data in a query that only updates a single integer column? The Query Plan The query plan for test 3 looks a bit more complex than before: In fact, the bottom level is exactly the same as we saw with the non-unique index.  The top level has heaps of new stuff though, which I’ll come to in a moment. You might be expecting to find that the Clustered Index Scan is now reading the lob_data column (for some reason).  After all, we need to explain where all the LOB logical reads are coming from.  Sadly, when we look at the properties of the Clustered Index Scan, we see exactly the same as before: SQL Server is still only reading the pk and some_value columns – so what’s doing the LOB reads? Updates that Sneakily Read Data We have to go as far as the Clustered Index Update operator before we see LOB data in the output list: [Expr1020] is a bit flag added by an earlier Compute Scalar.  It is set true if the some_value column has not been changed (part of the non-updating updates optimization I mentioned earlier). The Clustered Index Update operator adds two new columns: the lob_data column, and some_value_OLD.  The some_value_OLD column, as the name suggests, is the pre-update value of the some_value column.  At this point, the clustered index has already been updated with the new value, but we haven’t touched the nonclustered index yet. An interesting observation here is that the Clustered Index Update operator can read a column into the data flow as part of its update operation.  SQL Server could have read the LOB data as part of the initial Clustered Index Scan, but that would mean carrying the data through all the operations that occur prior to the Clustered Index Update.  The server knows it will have to go back to the clustered index row to update it, so it delays reading the LOB data until then.  Sneaky! Why the LOB Data Is Needed This is all very interesting (I hope), but why is SQL Server reading the LOB data?  For that matter, why does it need to pass the pre-update value of the some_value column out of the Clustered Index Update? The answer relates to the top row of the query plan for test 3.  I’ll reproduce it here for convenience: Notice that this is a wide (per-index) update plan.  SQL Server used a narrow (per-row) update plan in test 2, where the Clustered Index Update took care of maintaining the nonclustered index too.  I’ll talk more about this difference shortly. The Split/Sort/Collapse combination is an optimization, which aims to make per-index update plans more efficient.  It does this by breaking each update into a delete/insert pair, reordering the operations, removing any redundant operations, and finally applying the net effect of all the changes to the nonclustered index. Imagine we had a unique index which currently holds three rows with the values 1, 2, and 3.  If we run a query that adds 1 to each row value, we would end up with values 2, 3, and 4.  The net effect of all the changes is the same as if we simply deleted the value 1, and added a new value 4. By applying net changes, SQL Server can also avoid false unique-key violations.  If we tried to immediately update the value 1 to a 2, it would conflict with the existing value 2 (which would soon be updated to 3 of course) and the query would fail.  You might argue that SQL Server could avoid the uniqueness violation by starting with the highest value (3) and working down.  That’s fine, but it’s not possible to generalize this logic to work with every possible update query. SQL Server has to use a wide update plan if it sees any risk of false uniqueness violations.  It’s worth noting that the logic SQL Server uses to detect whether these violations are possible has definite limits.  As a result, you will often receive a wide update plan, even when you can see that no violations are possible. Another benefit of this optimization is that it includes a sort on the index key as part of its work.  Processing the index changes in index key order promotes sequential I/O against the nonclustered index. A side-effect of all this is that the net changes might include one or more inserts.  In order to insert a new row in the index, SQL Server obviously needs all the columns – the key column and the included LOB column.  This is the reason SQL Server reads the LOB data as part of the Clustered Index Update. In addition, the some_value_OLD column is required by the Split operator (it turns updates into delete/insert pairs).  In order to generate the correct index key delete operation, it needs the old key value. The irony is that in this case the Split/Sort/Collapse optimization is anything but.  Reading all that LOB data is extremely expensive, so it is sad that the current version of SQL Server has no way to avoid it. Finally, for completeness, I should mention that the Filter operator is there to filter out the non-updating updates. Beating the Set-Based Update with a Cursor One situation where SQL Server can see that false unique-key violations aren’t possible is where it can guarantee that only one row is being updated.  Armed with this knowledge, we can write a cursor (or the WHILE-loop equivalent) that updates one row at a time, and so avoids reading the LOB data: SET NOCOUNT ON; SET STATISTICS XML, IO, TIME OFF;   DECLARE @PK INTEGER, @StartTime DATETIME; SET @StartTime = GETUTCDATE();   DECLARE curUpdate CURSOR LOCAL FORWARD_ONLY KEYSET SCROLL_LOCKS FOR SELECT L.pk FROM LOBtest L ORDER BY L.pk ASC;   OPEN curUpdate;   WHILE (1 = 1) BEGIN FETCH NEXT FROM curUpdate INTO @PK;   IF @@FETCH_STATUS = -1 BREAK; IF @@FETCH_STATUS = -2 CONTINUE;   UPDATE dbo.LOBtest SET some_value = some_value - 1 WHERE CURRENT OF curUpdate; END;   CLOSE curUpdate; DEALLOCATE curUpdate;   SELECT DATEDIFF(MILLISECOND, @StartTime, GETUTCDATE()); That completes the update in 1280 milliseconds (remember test 3 took over 16 seconds!) I used the WHERE CURRENT OF syntax there and a KEYSET cursor, just for the fun of it.  One could just as well use a WHERE clause that specified the primary key value instead. Clustered Indexes A clustered index is the ultimate index with included columns: all non-key columns are included columns in a clustered index.  Let’s re-create the test table and data with an updatable primary key, and without any non-clustered indexes: IF OBJECT_ID(N'dbo.LOBtest', N'U') IS NOT NULL DROP TABLE dbo.LOBtest; GO CREATE TABLE dbo.LOBtest ( pk INTEGER NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( pk, some_value, lob_data ) SELECT TOP (1000) N.n, N.n, @Data FROM Numbers N WHERE N.n <= 1000; Now here’s a query to modify the cluster keys: UPDATE dbo.LOBtest SET pk = pk + 1; The query plan is: As you can see, the Split/Sort/Collapse optimization is present, and we also gain an Eager Table Spool, for Halloween protection.  In addition, SQL Server now has no choice but to read the LOB data in the Clustered Index Scan: The performance is not great, as you might expect (even though there is no non-clustered index to maintain): Table 'LOBtest'. Scan count 1, logical reads 2011, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   Table 'Worktable'. Scan count 1, logical reads 2040, physical reads 0, read-ahead reads 0, lob logical reads 34000, lob physical reads 0, lob read-ahead reads 8000.   SQL Server Execution Times: CPU time = 483 ms, elapsed time = 17884 ms. Notice how the LOB data is read twice: once from the Clustered Index Scan, and again from the work table in tempdb used by the Eager Spool. If you try the same test with a non-unique clustered index (rather than a primary key), you’ll get a much more efficient plan that just passes the cluster key (including uniqueifier) around (no LOB data or other non-key columns): A unique non-clustered index (on a heap) works well too: Both those queries complete in a few tens of milliseconds, with no LOB reads, and just a few thousand logical reads.  (In fact the heap is rather more efficient). There are lots more fun combinations to try that I don’t have space for here. Final Thoughts The behaviour shown in this post is not limited to LOB data by any means.  If the conditions are met, any unique index that has included columns can produce similar behaviour – something to bear in mind when adding large INCLUDE columns to achieve covering queries, perhaps. Paul White Email: [email protected] Twitter: @PaulWhiteNZ

    Read the article

  • What are the implications of Nvidia's "the way it's meant to be played"?

    - by Mike Pateras
    I have an AMD Radeon 5850 (about to be 2), and today I read that Rift is a member of Nvidia's "the way it's meant to be played" program. It was suggested that as such the developers would not be speaking with or working directly with AMD for optimization, and that it would be unlikely that Crossfire support would be added until the game's release. Are any of these implications likely? Or does it just mean that Nvidia is working closely with the developers for optimization and marketing support?

    Read the article

  • What Simple Changes Made the Biggest Improvements to Your Delphi Programs

    - by lkessler
    I have a Delphi 2009 program that handles a lot of data and needs to be as fast as possible and not use too much memory. What small simple changes have you made to your Delphi code that had the biggest impact on the performance of you program by noticeably reducing execution time or memory use? Thanks everyone for all your answers. Many great tips. For completeness, I'll post a few important articles on Delphi optimization that I found. Before you start optimizing Delphi code at About.com Speed and Size: Top 10 Tricks also at About.com Code Optimization Fundamentals and Delphi Optimization Guidelines at High Performance Delphi, relating to Delphi 7 but still very pertinent.

    Read the article

  • What's the best way to match a query to a set of keywords?

    - by Ryan Detzel
    Pretty much what you would assume Google does. Advertisers come in and big on keywords, lets say "ipod", "ipod nano", "ipod 60GB", "used ipod", etc. Then we have a query, "I want to buy an ipod nano" or "best place to buy used ipods" what kind of algorithms and systems are used to match those queries to the keyword set. I would imagine that some of those keyword sets are huge, 100k keywords made up of one or more actual words. on top of that queries can be 1-n words as well. Any thoughts, links to wikipedia I can start reading? From what I know already I would use some stemmed hash in disk(CDB?) and a bloom filter to check to see if I should even go to disk.

    Read the article

  • ASP.NET MVC 4: Short syntax for script and style bundling

    - by DigiMortal
    ASP.NET MVC 4 introduces new methods for style and scripts bundling. I found something brilliant there I want to introduce you. In this posting I will show you how easy it is to include whole folder with stylesheets or JavaScripts to your page. I’m using ASP.NET MVC 4 Internet Site template for this example. When we open layout pages located in shared views folder we can see something like this in layout file header: <link href="@System.Web.Optimization.BundleTable.Bundles.ResolveBundleUrl("~/Content/css")" rel="stylesheet" type="text/css" />    <link href="@System.Web.Optimization.BundleTable.Bundles.ResolveBundleUrl("~/Content/themes/base/css")" rel="stylesheet" type="text/css" />    <script src="@System.Web.Optimization.BundleTable.Bundles.ResolveBundleUrl("~/Scripts/js")"></script> Let’s take the last line and modify it so it looks like this: <script src="/Scripts/js"></script> After saving the layout page let’s run browser and see what is coming in over network. As you can see the request to folder ended up with result code 200 which means that request was successful. 327.2KB was received and it is not mark-up size for error page or directory index. Here is the body of response: I scrolled down to point where one script ends and another one starts when I made the screenshot above. All scripts delivered with ASP.NET MVC project templates start with this green note. So now we can be sure that the request to scripts folder ended up with bundled script and not with something else. Conclusion Script and styles bundling uses currently by default long syntax where bundling is done through Bundling class. We can still avoid those long lines and use extremely short syntax for script and styles bundling – we just write usual script or link tag and give folder URL as source. ASP.NET MVC 4 is smart enough to combine styles or scripts when request like this comes in.

    Read the article

  • How to tell if SPARC T4 crypto is being used?

    - by danx
    A question that often comes up when running applications on SPARC T4 systems is "How can I tell if hardware crypto accleration is being used?" To review, the SPARC T4 processor includes a crypto unit that supports several crypto instructions. For hardware crypto these include 11 AES instructions, 4 xmul* instructions (for AES GCM carryless multiply), mont for Montgomery multiply (optimizes RSA and DSA), and 5 des_* instructions (for DES3). For hardware hash algorithm optimization, the T4 has the md5, sha1, sha256, and sha512 instructions (the last two are used for SHA-224 an SHA-384). First off, it's easy to tell if the processor T4 crypto instructions—use the isainfo -v command and look for "sparcv9" and "aes" (and other hash and crypto algorithms) in the output: $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc These instructions are not-privileged, so are available for direct use in user-level applications and libraries (such as OpenSSL). Here is the "openssl speed -evp" command shown with the built-in t4 engine and with the pkcs11 engine. Both run the T4 AES instructions, but the t4 engine is faster than the pkcs11 engine because it has less overhead (especially for smaller packet sizes): t-4 $ /usr/bin/openssl version OpenSSL 1.0.0j 10 May 2012 t-4 $ /usr/bin/openssl engine (t4) SPARC T4 engine support (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support t-4 $ /usr/bin/openssl speed -evp aes-128-cbc # t4 engine used by default . . . The 'numbers' are in 1000s of bytes per second processed. type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 487777.10k 816822.21k 986012.59k 1017029.97k 1053543.08k t-4 $ /usr/bin/openssl speed -engine pkcs11 -evp aes-128-cbc engine "pkcs11" set. . . . The 'numbers' are in 1000s of bytes per second processed. type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 31703.58k 116636.39k 350672.81k 696170.50k 993599.49k Note: The "-evp" flag indicates use the OpenSSL "EnVeloPe" API, which gives more accurate results. That's because it tells OpenSSL to use the same API that external programs use when calling OpenSSL libcrypto functions, evp(3openssl). DTrace Shows if T4 Crypto Functions Are Used OK, good enough, the isainfo(1) command shows the instructions are present, but how does one know if they are being used? Chi-Chang Lin, who works on Oracle Solaris performance, wrote a Dtrace script to show if T4 instructions are being executed. To show the T4 instructions are being used, run the following Dtrace script. Look for functions named "t4" and "yf" in the output. The OpenSSL T4 engine uses functions named "t4" and the PKCS#11 engine uses functions named "yf". To demonstrate, I'll first run "openssl speed" with the built-in t4 engine then with the pkcs11 engine. The performance numbers are not valid due to dtrace probes slowing things down. t-4 # dtrace -Z -n ' pid$target::*yf*:entry,pid$target::*t4_*:entry{ @[probemod, probefunc] = count();}' \ -c "/usr/bin/openssl speed -evp aes-128-cbc" dtrace: description 'pid$target::*yf*:entry' matched 101 probes . . . dtrace: pid 2029 has exited libcrypto.so.1.0.0 ENGINE_load_t4 1 libcrypto.so.1.0.0 t4_DH 1 libcrypto.so.1.0.0 t4_DSA 1 libcrypto.so.1.0.0 t4_RSA 1 libcrypto.so.1.0.0 t4_destroy 1 libcrypto.so.1.0.0 t4_free_aes_ctr_NIDs 1 libcrypto.so.1.0.0 t4_init 1 libcrypto.so.1.0.0 t4_add_NID 3 libcrypto.so.1.0.0 t4_aes_expand128 5 libcrypto.so.1.0.0 t4_cipher_init_aes 5 libcrypto.so.1.0.0 t4_get_all_ciphers 6 libcrypto.so.1.0.0 t4_get_all_digests 59 libcrypto.so.1.0.0 t4_digest_final_sha1 65 libcrypto.so.1.0.0 t4_digest_init_sha1 65 libcrypto.so.1.0.0 t4_sha1_multiblock 126 libcrypto.so.1.0.0 t4_digest_update_sha1 261 libcrypto.so.1.0.0 t4_aes128_cbc_encrypt 1432979 libcrypto.so.1.0.0 t4_aes128_load_keys_for_encrypt 1432979 libcrypto.so.1.0.0 t4_cipher_do_aes_128_cbc 1432979 t-4 # dtrace -Z -n 'pid$target::*yf*:entry{ @[probemod, probefunc] = count();}   pid$target::*yf*:entry,pid$target::*t4_*:entry{ @[probemod, probefunc] = count();}' \ -c "/usr/bin/openssl speed -engine pkcs11 -evp aes-128-cbc" dtrace: description 'pid$target::*yf*:entry' matched 101 probes engine "pkcs11" set. . . . dtrace: pid 2033 has exited libcrypto.so.1.0.0 ENGINE_load_t4 1 libcrypto.so.1.0.0 t4_DH 1 libcrypto.so.1.0.0 t4_DSA 1 libcrypto.so.1.0.0 t4_RSA 1 libcrypto.so.1.0.0 t4_destroy 1 libcrypto.so.1.0.0 t4_free_aes_ctr_NIDs 1 libcrypto.so.1.0.0 t4_get_all_ciphers 1 libcrypto.so.1.0.0 t4_get_all_digests 1 libsoftcrypto.so.1 rijndael_key_setup_enc_yf 1 libsoftcrypto.so.1 yf_aes_expand128 1 libcrypto.so.1.0.0 t4_add_NID 3 libsoftcrypto.so.1 yf_aes128_cbc_encrypt 1542330 libsoftcrypto.so.1 yf_aes128_load_keys_for_encrypt 1542330 So, as shown above the OpenSSL built-in t4 engine executes t4_* functions (which are hand-coded assembly executing the T4 AES instructions) and the OpenSSL pkcs11 engine executes *yf* functions. Programmatic Use of OpenSSL T4 engine The OpenSSL t4 engine is used automatically with the /usr/bin/openssl command line. Chi-Chang Lin also points out that if you're calling the OpenSSL API (libcrypto.so) from a program, you must call ENGINE_load_built_engines(), otherwise the built-in t4 engine will not be loaded. You do not call ENGINE_set_default(). That's because "openssl speed -evp" test calls ENGINE_load_built_engines() even though the "-engine" option wasn't specified. OpenSSL T4 engine Availability The OpenSSL t4 engine is available with Solaris 11 and 11.1. For Solaris 10 08/11 (U10), you need to use the OpenSSL pkcs311 engine. The OpenSSL t4 engine is distributed only with the version of OpenSSL distributed with Solaris (and not third-party or self-compiled versions of OpenSSL). The OpenSSL engine implements the AES cipher for Solaris 11, released 11/2011. For Solaris 11.1, released 11/2012, the OpenSSL engine adds optimization for the MD5, SHA-1, and SHA-2 hash algorithms, and DES-3. Although the T4 processor has Camillia and Kasumi block cipher instructions, these are not implemented in the OpenSSL T4 engine. The following charts may help view availability of optimizations. The first chart shows what's available with Solaris CLIs and APIs, the second chart shows what's available in Solaris OpenSSL. Native Solaris Optimization for SPARC T4 This table is shows Solaris native CLI and API support. As such, they are all available with the OpenSSL pkcs11 engine. CLIs: "openssl -engine pkcs11", encrypt(1), decrypt(1), mac(1), digest(1), MD5sum(1), SHA1sum(1), SHA224sum(1), SHA256sum(1), SHA384sum(1), SHA512sum(1) APIs: PKCS#11 library libpkcs11(3LIB) (incluDES Openssl pkcs11 engine), libMD(3LIB), and Solaris kernel modules AlgorithmSolaris 1008/11 (U10)Solaris 11Solaris 11.1 AES-ECB, AES-CBC, AES-CTR, AES-CBC AES-CFB128 XXX DES3-ECB, DES3-CBC, DES2-ECB, DES2-CBC, DES-ECB, DES-CBC XXX bignum Montgomery multiply (RSA, DSA) XXX MD5, SHA-1, SHA-256, SHA-384, SHA-512 XXX SHA-224 X ARCFOUR (RC4) X Solaris OpenSSL T4 Engine Optimization This table is for the Solaris OpenSSL built-in t4 engine. Algorithms listed above are also available through the OpenSSL pkcs11 engine. CLI: openssl(1openssl) APIs: openssl(5), engine(3openssl), evp(3openssl), libcrypto crypto(3openssl) AlgorithmSolaris 11Solaris 11SRU2Solaris 11.1 AES-ECB, AES-CBC, AES-CTR, AES-CBC AES-CFB128 XXX DES3-ECB, DES3-CBC, DES-ECB, DES-CBC X bignum Montgomery multiply (RSA, DSA) X MD5, SHA-1, SHA-256, SHA-384, SHA-512 XX SHA-224 X Source Code Availability Solaris Most of the T4 assembly code that called the new T4 crypto instructions was written by Ferenc Rákóczi of the Solaris Security group, with assistance from others. You can download the Solaris source for this and other parts of Solaris as a few zip files at the Oracle Download website. The relevant source files are generally under directories usr/src/common/crypto/{aes,arcfour,des,md5,modes,sha1,sha2}}/sun4v/. and usr/src/common/bignum/sun4v/. Solaris 11 binary is available from the Oracle Solaris 11 download website. OpenSSL t4 engine The source for the OpenSSL t4 engine, which is based on the Solaris source above, is viewable through the OpenGrok source code browser in directory src/components/openssl/openssl-1.0.0/engines/t4 . You can download the source from the same website or through Mercurial source code management, hg(1). Conclusion Oracle Solaris with SPARC T4 provides a rich set of accelerated cryptographic and hash algorithms. Using the latest update, Solaris 11.1, provides the best set of optimized algorithms, but alternatives are often available, sometimes slightly slower, for releases back to Solaris 10 08/11 (U10). Reference See also these earlier blogs. SPARC T4 OpenSSL Engine by myself, Dan Anderson (2011), discusses the Openssl T4 engine and reviews the SPARC T4 processor for the Solaris 11 release. Exciting Crypto Advances with the T4 processor and Oracle Solaris 11 by Valerie Fenwick (2011) discusses crypto algorithms that were optimized for the T4 processor with the Solaris 11 FCS (11/11) and Solaris 10 08/11 (U10) release. T4 Crypto Cheat Sheet by Stefan Hinker (2012) discusses how to make T4 crypto optimization available to various consumers (such as SSH, Java, OpenSSL, Apache, etc.) High Performance Security For Oracle Database and Fusion Middleware Applications using SPARC T4 (PDF, 2012) discusses SPARC T4 and its usage to optimize application security. Configuring Oracle iPlanet WebServer / Oracle Traffic Director to use crypto accelerators on T4-1 servers by Meena Vyas (2012)

    Read the article

  • Awesome new feature for HCC

    - by Steve Tunstall
    I've talked about HCC (Hybrid Columnar Compression) before. This is Oracle's built-in compression feature, free of charge in 11Gr2, that allows a CRAZY amount of compression on historical data inside an Oracle database. It only works if the database is being stored in a ZFSSA, Exadata or Axiom. You can read all about it in this whitepaper, which shows the huge value of HCC when used with the ZFSSA. http://www.oracle.com/technetwork/articles/servers-storage-admin/perf-hybrid-columnar-compression-1689701.html Now, even better, Oracle has announced  a great new feature in Oracle 12c called "Automatic Data Optimization". This allows one to setup HCC to AUTOMATICALLY compress data AS IT AGES.  So this is now ILM all built into the Oracle database. It's free for crying out loud. It just needs to be sitting on Oracle storage, such as the ZFSSA, Exadata or Axiom.  Read about ADO here: http://www.oracle.com/technetwork/database/automatic-data-optimization-wp-12c-1896120.pdf?ssSourceSiteId=ocomen

    Read the article

  • terminal does not find xmonad.hs

    - by arpho
    Iam using xmonad on ubuntu 13.04, in ~/.xmonad my computer has the file xmonad.hs, if I try to read it from terminal using nano it opens a new file, I can access the file opening it from geany or gedit, but if I try to recompile it, the system does not find that file, so I cannot configure xmonad, every thing I try on this file from console does not work, because terminal even if I am root cannot see it, can you help me solve this issue?

    Read the article

  • When there's no TCO, when to worry about blowing the stack?

    - by Cedric Martin
    Every single time there's a discussion about a new programming language targetting the JVM, there are inevitably people saying things like: "The JVM doesn't support tail-call optimization, so I predict lots of exploding stacks" There are thousands of variations on that theme. Now I know that some language, like Clojure for example, have a special recur construct that you can use. What I don't understand is: how serious is the lack of tail-call optimization? When should I worry about it? My main source of confusion probably comes from the fact that Java is one of the most succesful languages ever and quite a few of the JVM languages seems to be doing fairly well. How is that possible if the lack of TCO is really of any concern?

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >