Search Results

Search found 7484 results on 300 pages for 'rendered attribute'.

Page 82/300 | < Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

  • What is wrong with my XSLT for the XML File?

    - by atrueguy
    Actually my XML file has SVG info, and my Project lead wants me to develop an XSLT for the XMl file to convert it in to a PDF file. But when I try to do so I am failing to convert the XML file to PDF, can anyone help me out in this....... My Sample XML file <?xml version="1.0" encoding="ISO-8859-1"?> <!--<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">--> <!-- Generator: Arbortext IsoDraw 7.0 --> <svg width="100%" height="100%" viewBox="0 0 214.819 278.002"> <g id="Standard_x0020_layer"/> <g id="Catalog"> <line stroke-width="0.353" stroke-linecap="butt" x1="5.839" y1="262.185" x2="209.039" y2="262.185"/> <text transform="matrix(0.984 0 0 0.93 183.515 265.271)" stroke="none" fill="#000000" font-family="'Helvetica'" font-size="3.174">© 2009 k Co.</text> <text transform="matrix(0.994 0 0 0.93 7.235 265.3)" stroke="none" fill="#000000" font-family="'Helvetica'" font-size="3.174">087156-8-</text> <text transform="matrix(0.995 0 0 0.93 21.708 265.357)" stroke="none" fill="#000000" font-family="'Helvetica'" font-size="3.174" font-weight="bold">AB</text> <text x="103.292" y="265.298" stroke="none" fill="#000000" font-family="'Helvetica'" font-size="3.174">P. 1/1</text> <g id="IC_TextBlock.1"> <g> <text transform="matrix(0.994 0 0 0.93 192.812 8.076)" stroke="none" fill="#000000" font-family="'Helvetica'" font-size="4.586" font-weight="bold">Fittings</text> <text transform="matrix(0.994 0 0 0.93 188.492 13.323)" stroke="none" fill="#000000" font-family="'Helvetica'" font-size="4.586" font-weight="bold">Raccords</text> <text transform="matrix(0.994 0 0 0.93 183.431 18.571)" stroke="none" fill="#000000" font-family="'Helvetica'" font-size="4.586" font-weight="bold">Conexiones</text> </g> </g> <g> <path stroke="none" fill="#000000" d="M26.507 12.628L26.507 4.977 28.599 4.977 28.599 10.673 30.946 10.673 30.946 12.628 26.507 12.628z"/> <path stroke="none" fill="#000000" d="M19.693 12.628L19.693 4.977 21.785 4.977 21.785 7.66 23.893 7.66 23.893 4.977 25.986 4.977 25.986 12.628 23.893 12.628 23.893 9.782 21.785 9.782 21.785 12.628 19.693 12.628z"/> <path stroke="none" fill="#000000" d="M12.587 4.977L9.566 8.621 13.019 12.631 10.25 12.63 7.905 9.9 7.9 9.9 7.9 12.628 5.81 12.628 5.81 4.977 7.9 4.977 7.9 7.267 7.884 7.27 9.875 4.977 12.587 4.977z"/> <path stroke="none" fill="#000000" d="M11.455 8.739C11.455 6.538 13.221 4.753 15.4 4.753L15.4 6.775C14.419 6.775 13.625 7.653 13.625 8.737 13.625 9.821 14.419 10.699 15.4 10.699 16.382 10.699 17.176 9.821 17.176 8.737 17.176 7.653 16.382 6.775 15.4 6.775L15.4 4.753C17.579 4.753 19.346 6.538 19.346 8.739 19.346 10.941 17.579 12.724 15.4 12.724 13.221 12.724 11.455 10.941 11.455 8.739z"/> <path stroke="none" fill="#000000" d="M33.472 4.977L35.621 4.977 35.621 6.74 33.521 6.743 33.515 7.952 35.454 7.952 35.454 9.664 33.518 9.664 33.518 10.833 35.64 10.833 35.64 12.628 33.491 12.628 31.376 12.628 31.376 4.977 33.472 4.977z"/> <path stroke="none" fill="#000000" d="M39.97 9.57L42.146 12.631 39.862 12.628 38.156 10.279 38.156 12.622 36.107 12.622 36.107 4.974 38.728 4.974 38.741 6.75 38.149 6.75 38.149 8.221 38.741 8.223C39.149 8.223 39.478 7.894 39.478 7.487 39.478 7.08 39.149 6.75 38.741 6.75L38.728 4.974C41.036 4.974 42.5 7.867 39.97 9.57z"/> <path stroke="none" fill="#000000" d="M42.415 12.205C42.415 11.82 42.72 11.512 43.106 11.512 43.49 11.512 43.796 11.82 43.796 12.205 43.796 12.586 43.49 12.894 43.106 12.894L43.106 12.73C43.402 12.73 43.631 12.51 43.631 12.205 43.631 11.894 43.402 11.676 43.106 11.676L43.179 11.837C43.344 11.837 43.457 11.868 43.457 12.057 43.457 12.189 43.39 12.243 43.262 12.252L43.436 12.554 43.262 12.554 43.103 12.252 42.99 12.252 42.99 12.143 43.182 12.143C43.262 12.143 43.308 12.127 43.308 12.035 43.308 11.962 43.216 11.962 43.146 11.962L42.99 11.962 42.99 12.143 42.99 12.252 42.99 12.554 42.832 12.554 42.832 11.837 43.179 11.837 43.106 11.676C42.804 11.676 42.579 11.894 42.579 12.205 42.579 12.51 42.804 12.73 43.106 12.73L43.106 12.894C42.72 12.894 42.415 12.586 42.415 12.205z"/> <g> <path stroke="none" fill="#000000" d="M8.837 17.466L8.599 17.466 8.554 16.832 8.544 16.832C8.31 17.329 7.843 17.539 7.339 17.539 6.243 17.539 5.697 16.675 5.697 15.724 5.697 14.774 6.243 13.91 7.339 13.91 8.071 13.91 8.666 14.305 8.794 15.067L8.461 15.067C8.417 14.666 8.003 14.194 7.339 14.194 6.418 14.194 6.027 14.964 6.027 15.724 6.027 16.486 6.418 17.257 7.339 17.257 8.111 17.257 8.56 16.716 8.544 15.978L7.36 15.978 7.36 15.695 8.837 15.695 8.837 17.466z"/> <path stroke="none" fill="#000000" d="M9.477 13.984L11.881 13.984 11.881 14.266 9.807 14.266 9.807 15.525 11.749 15.525 11.749 15.807 9.807 15.807 9.807 17.182 11.906 17.182 11.906 17.466 9.477 17.466 9.477 13.984z"/> <path stroke="none" fill="#000000" d="M12.364 13.984L12.734 13.984 14.763 16.929 14.772 16.929 14.772 13.984 15.105 13.984 15.105 17.466 14.734 17.466 12.705 14.521 12.695 14.521 12.695 17.466 12.364 17.466 12.364 13.984z"/> <path stroke="none" fill="#000000" d="M15.768 13.984L16.1 13.984 16.1 16.14C16.094 16.949 16.48 17.257 17.118 17.257 17.763 17.257 18.147 16.949 18.143 16.14L18.143 13.984 18.475 13.984 18.475 16.213C18.475 16.929 18.089 17.539 17.118 17.539 16.153 17.539 15.768 16.929 15.768 16.213L15.768 13.984z"/> <path stroke="none" fill="#000000" d="M19.167 13.984L19.498 13.984 19.498 17.466 19.167 17.466 19.167 13.984z"/> <path stroke="none" fill="#000000" d="M20.221 13.984L20.591 13.984 22.62 16.929 22.629 16.929 22.629 13.984 22.961 13.984 22.961 17.466 22.591 17.466 20.562 14.521 20.553 14.521 20.553 17.466 20.221 17.466 20.221 13.984z"/> <path stroke="none" fill="#000000" d="M23.658 13.984L26.064 13.984 26.064 14.266 23.99 14.266 23.99 15.525 25.931 15.525 25.931 15.807 23.99 15.807 23.99 17.182 26.088 17.182 26.088 17.466 23.658 17.466 23.658 13.984z"/> <path stroke="none" fill="#000000" d="M27.908 13.984L29.452 13.984C30.077 13.984 30.487 14.349 30.487 14.978 30.487 15.608 30.077 15.974 29.452 15.974L28.239 15.974 28.239 15.691 29.379 15.691C29.838 15.691 30.155 15.457 30.155 14.978 30.155 14.5 29.838 14.266 29.379 14.266L28.239 14.266 28.239 15.691 28.239 15.974 28.239 17.466 27.908 17.466 27.908 13.984z"/> <path stroke="none" fill="#000000" d="M31.643 13.984L32.014 13.984 33.38 17.466 33.024 17.466 32.598 16.384 31.013 16.384 31.117 16.1 32.487 16.1 31.814 14.314 31.117 16.1 31.013 16.384 30.594 17.466 30.239 17.466 31.643 13.984z"/> <path stroke="none" fill="#000000" d="M33.695 13.984L35.292 13.984C35.866 13.984 36.35 14.262 36.35 14.891 36.35 15.33 36.121 15.691 35.671 15.778L35.671 15.788C36.125 15.846 36.256 16.16 36.28 16.574 36.296 16.812 36.296 17.291 36.442 17.466L36.076 17.466C35.993 17.329 35.993 17.071 35.984 16.925 35.954 16.437 35.915 15.896 35.286 15.919L34.029 15.919 34.029 15.637 35.267 15.637C35.671 15.637 36.018 15.384 36.018 14.96 36.018 14.535 35.765 14.266 35.267 14.266L34.029 14.266 34.029 15.637 34.029 15.919 34.029 17.466 33.695 17.466 33.695 13.984z"/> <path stroke="none" fill="#000000" d="M36.603 13.984L39.363 13.984 39.363 14.266 38.149 14.266 38.149 17.466 37.817 17.466 37.817 14.266 36.603 14.266 36.603 13.984z"/> <path stroke="none" fill="#000000" d="M39.847 16.32C39.832 17.038 40.348 17.257 40.982 17.257 41.348 17.257 41.905 17.056 41.905 16.548 41.905 16.155 41.509 15.997 41.188 15.919L40.411 15.73C40.003 15.628 39.627 15.432 39.627 14.891 39.627 14.55 39.847 13.91 40.826 13.91 41.515 13.91 42.118 14.281 42.115 14.993L41.783 14.993C41.762 14.461 41.325 14.194 40.832 14.194 40.378 14.194 39.959 14.368 39.959 14.885 39.959 15.212 40.203 15.349 40.485 15.417L41.335 15.628C41.826 15.759 42.237 15.974 42.237 16.545 42.237 16.783 42.139 17.539 40.905 17.539 40.081 17.539 39.475 17.169 39.515 16.32L39.847 16.32z"/> </g> </g> </g> </svg> My Sample XSLT File <?xml version="1.0" encoding="ISO-8859-1"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:svg="http://www.w3.org/2000/svg"> <xsl:template match="/"> <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"> <fo:layout-master-set> <fo:simple-page-master master-name="simple" page-height="11in" page-width="8.5in"> <fo:region-body margin="0.7in" margin-top="1.15in" margin-left=".8in"/> <fo:region-before extent="1.5in"/> <fo:region-after extent="1.5in"/> <fo:region-start extent="1.5in"/> <fo:region-end extent="1.5in"/> </fo:simple-page-master> </fo:layout-master-set> <fo:page-sequence master-reference="simple"> <fo:flow flow-name="xsl-region-body"> <fo:block> <fo:instream-foreign-object xmlns:svg="http://www.w3.org/2000/svg"> <svg:svg height="100%" width="100%" viewBox="0 0 214.819 278.002"> <xsl:for-each select="svg/g/path"> <svg:g style="stroke:none;fill:#000000;stroke:black;"> <svg:path> <xsl:variable name="s"> <xsl:value-of select="translate(@d,' ','')"/> </xsl:variable> <xsl:attribute name="d"><xsl:value-of select="translate($s,',',' ')"/></xsl:attribute> </svg:path> </svg:g> </xsl:for-each> <xsl:for-each select="svg/g/text()"> <xsl:value-of select="."/> </xsl:for-each> <xsl:for-each select="svg/g/g/path"> <svg:g style="stroke:none;fill:#000000;stroke:black;"> <svg:path> <xsl:variable name="s"> <xsl:value-of select="translate(@d,' ','')"/> </xsl:variable> <xsl:attribute name="d"><xsl:value-of select="translate($s,',',' ')"/></xsl:attribute> </svg:path> </svg:g> </xsl:for-each> <xsl:for-each select="svg/g/g/g/path"> <svg:g style="stroke:none;fill:#000000;"> <svg:path> <xsl:variable name="s1"> <xsl:value-of select="translate(@d,' ','')"/> </xsl:variable> <xsl:attribute name="d"><xsl:value-of select="translate($s1,',',' ')"/></xsl:attribute> </svg:path> </svg:g> </xsl:for-each> <xsl:for-each select="svg/g/line"> <svg:g style="stroke-linecap:butt;"> <xsl:variable name="x1"> <xsl:value-of select="@x1"/> </xsl:variable> <xsl:variable name="y1"> <xsl:value-of select="@y1"/> </xsl:variable> <xsl:variable name="x2"> <xsl:value-of select="@x2"/> </xsl:variable> <xsl:variable name="y2"> <xsl:value-of select="@y2"/> </xsl:variable> <xsl:variable name="stroke-width"> <xsl:value-of select="@stroke-width"/> </xsl:variable> <svg:line x1="$x1" y1="$y1" x2="$x2" y2="$y2" stroke-width="$stroke-width" stroke="black" /> </svg:g> </xsl:for-each> </svg:svg> </fo:instream-foreign-object> </fo:block> </fo:flow> </fo:page-sequence> </fo:root> </xsl:template> </xsl:stylesheet> My Question I have developed the XSLT file for the XML, and I need to produce a pdf output after processing the xslt file. but I am not able to get the xml data in to my pdf. Please ask me if the information what I have provided is not sufficient, as I am bit new to Stackoverflow...

    Read the article

  • Creating a top-down spaceship

    - by Ali
    I'm creating a top-down 2D space game in LIBGDX for android. When spaceship is going forward it will look like this: when it goes upward I want to change it's direction with a nice animation so it seems like a real spaceship. A between frame would be like this: I have rendered the spaceship in different Z axis degrees from ship0 to ship90. Calculating rotation on XY plane wouldn't be so hard, but I don't know how to calculate the rotation on Z axis so I can choose the right sprite to use.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • HttpContext.Items and Server.Transfer/Execute

    - by Rick Strahl
    A few days ago my buddy Ben Jones pointed out that he ran into a bug in the ScriptContainer control in the West Wind Web and Ajax Toolkit. The problem was basically that when a Server.Transfer call was applied the script container (and also various ClientScriptProxy script embedding routines) would potentially fail to load up the specified scripts. It turns out the problem is due to the fact that the various components in the toolkit use request specific singletons via a Current property. I use a static Current property tied to a Context.Items[] entry to handle this type of operation which looks something like this: /// <summary> /// Current instance of this class which should always be used to /// access this object. There are no public constructors to /// ensure the reference is used as a Singleton to further /// ensure that all scripts are written to the same clientscript /// manager. /// </summary> public static ClientScriptProxy Current { get { if (HttpContext.Current == null) return new ClientScriptProxy(); ClientScriptProxy proxy = null; if (HttpContext.Current.Items.Contains(STR_CONTEXTID)) proxy = HttpContext.Current.Items[STR_CONTEXTID] as ClientScriptProxy; else { proxy = new ClientScriptProxy(); HttpContext.Current.Items[STR_CONTEXTID] = proxy; } return proxy; } } The proxy is attached to a Context.Items[] item which makes the instance Request specific. This works perfectly fine in most situations EXCEPT when you’re dealing with Server.Transfer/Execute requests. Server.Transfer doesn’t cause Context.Items to be cleared so both the current transferred request and the original request’s Context.Items collection apply. For the ClientScriptProxy this causes a problem because script references are tracked on a per request basis in Context.Items to check for script duplication. Once a script is rendered an ID is written into the Context collection and so considered ‘rendered’: // No dupes - ref script include only once if (HttpContext.Current.Items.Contains( STR_SCRIPTITEM_IDENTITIFIER + fileId ) ) return; HttpContext.Current.Items.Add(STR_SCRIPTITEM_IDENTITIFIER + fileId, string.Empty); where the fileId is the script name or unique identifier. The problem is on the Transferred page the item will already exist in Context and so fail to render because it thinks the script has already rendered based on the Context item. Bummer. The workaround for this is simple once you know what’s going on, but in this case it was a bitch to track down because the context items are used in many places throughout this class. The trick is to determine when a request is transferred and then removing the specific keys. The first issue is to determine if a script is in a Trransfer or Execute call: if (HttpContext.Current.CurrentHandler != HttpContext.Current.Handler) Context.Handler is the original handler and CurrentHandler is the actual currently executing handler that is running when a Transfer/Execute is active. You can also use Context.PreviousHandler to get the last handler and chain through the whole list of handlers applied if Transfer calls are nested (dog help us all for the person debugging that). For the ClientScriptProxy the full logic to check for a transfer and remove the code looks like this: /// <summary> /// Clears all the request specific context items which are script references /// and the script placement index. /// </summary> public void ClearContextItemsOnTransfer() { if (HttpContext.Current != null) { // Check for Server.Transfer/Execute calls - we need to clear out Context.Items if (HttpContext.Current.CurrentHandler != HttpContext.Current.Handler) { List<string> Keys = HttpContext.Current.Items.Keys.Cast<string>().Where(s => s.StartsWith(STR_SCRIPTITEM_IDENTITIFIER) || s == STR_ScriptResourceIndex).ToList(); foreach (string key in Keys) { HttpContext.Current.Items.Remove(key); } } } } along with a small update to the Current property getter that sets a global flag to indicate whether the request was transferred: if (!proxy.IsTransferred && HttpContext.Current.Handler != HttpContext.Current.CurrentHandler) { proxy.ClearContextItemsOnTransfer(); proxy.IsTransferred = true; } return proxy; I know this is pretty ugly, but it works and it’s actually minimal fuss without affecting the behavior of the rest of the class. Ben had a different solution that involved explicitly clearing out the Context items and replacing the collection with a manually maintained list of items which also works, but required changes through the code to make this work. In hindsight, it would have been better to use a single object that encapsulates all the ‘persisted’ values and store that object in Context instead of all these individual small morsels. Hindsight is always 20/20 though :-}. If possible use Page.Items ClientScriptProxy is a generic component that can be used from anywhere in ASP.NET, so there are various methods that are not Page specific on this component which is why I used Context.Items, rather than the Page.Items collection.Page.Items would be a better choice since it will sidestep the above Server.Transfer nightmares as the Page is reloaded completely and so any new Page gets a new Items collection. No fuss there. So for the ScriptContainer control, which has to live on the page the behavior is a little different. It is attached to Page.Items (since it’s a control): /// <summary> /// Returns a current instance of this control if an instance /// is already loaded on the page. Otherwise a new instance is /// created, added to the Form and returned. /// /// It's important this function is not called too early in the /// page cycle - it should not be called before Page.OnInit(). /// /// This property is the preferred way to get a reference to a /// ScriptContainer control that is either already on a page /// or needs to be created. Controls in particular should always /// use this property. /// </summary> public static ScriptContainer Current { get { // We need a context for this to work! if (HttpContext.Current == null) return null; Page page = HttpContext.Current.CurrentHandler as Page; if (page == null) throw new InvalidOperationException(Resources.ERROR_ScriptContainer_OnlyWorks_With_PageBasedHandlers); ScriptContainer ctl = null; // Retrieve the current instance ctl = page.Items[STR_CONTEXTID] as ScriptContainer; if (ctl != null) return ctl; ctl = new ScriptContainer(); page.Form.Controls.Add(ctl); return ctl; } } The biggest issue with this approach is that you have to explicitly retrieve the page in the static Current property. Notice again the use of CurrentHandler (rather than Handler which was my original implementation) to ensure you get the latest page including the one that Server.Transfer fired. Server.Transfer and Server.Execute are Evil All that said – this fix is probably for the 2 people who are crazy enough to rely on Server.Transfer/Execute. :-} There are so many weird behavior problems with these commands that I avoid them at all costs. I don’t think I have a single application that uses either of these commands… Related Resources Full source of ClientScriptProxy.cs (repository) Part of the West Wind Web Toolkit Static Singletons for ASP.NET Controls Post © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • New HTML 5 input types in ASP.Net 4.5 Developer Preview

    - by sreejukg
    Microsoft has released developer previews for Visual Studio 2011 and .Net framework 4.5. There are lots of new features available in the developer preview. One of the most interested things for web developers is the support introduced for new HTML 5 form controls. The following are the list of new controls available in HTML 5 email url number range Date pickers (date, month, week, time, datetime, datetime-local) search color Describing the functionality for these controls is not in the scope of this article. If you want to know about these controls, refer the below URLs http://msdn.microsoft.com/en-us/magazine/hh547102.aspx http://www.w3schools.com/html5/html5_form_input_types.asp ASP.Net 4.5 introduced more possible values to the Text Mode attribute to cater the above requirements. Let us evaluate these. I have created a project in Visual Studio 2011 developer preview, and created a page named “controls.aspx”. In the page I placed on Text box control from the toolbox Now select the control and go to the properties pane, look at the TextMode attribute. Now you can see more options are added here than prior versions of ASP.Net. I just selected Email as TextMode. I added one button to submit my page. The screen shot of the page in Visual Studio 2011 designer is as follows See the corresponding markup <form id="form1" runat="server">     <div>         Enter your email:         <asp:TextBox ID="TextBox1" runat="server" TextMode="Email"></asp:TextBox     </div>     <asp:Button ID="Button1" runat="server" Text="Submit" /> </form> Now let me run this page, IE 9 do not have the support for new form fields. I browsed the page using Firefox and the page appears as below. From the source of the rendered page, I saw the below markup for my email textbox <input name="TextBox1" type="email" id="TextBox1" /> Try to enter an invalid email and you will see the browser will ask you to enter a valid one by default. When rendered in non-supported browsers, these fields are behaving just as normal text boxes. So make sure you are using validation controls with these fields. See the browser support compatability matrix with these controls with various browser vendors. ASP.Net 4.5 introduced the support for these new form controls. You can build interactive forms using the newly added controls, keeping in mind that you need to validate the data for non-supported browsers.

    Read the article

  • Getting selected row in inputListOfValues returnPopupListener

    - by Frank Nimphius
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Model driven list-of-values in Oracle ADF are configured on the ADF Business component attribute which should be updated with the user value selection. The value lookup can be configured to be displayed as a select list, combo box, input list of values or combo box with list of values. Displaying the list in an af:inputListOfValues component shows the attribute value in an input text field and with an icon attached to it for the user to launch the list-of-values dialog. The list-of-values dialog allows users to use a search form to filter the lookup data list and to select an entry, which return value then is added as the value of the af:inputListOfValues component. Note: The model driven LOV can be configured in ADF Business Components to update multiple attributes with the user selection, though the most common use case is to update the value of a single attribute. A question on OTN was how to access the row of the selected return value on the ADF Faces front end. For this, you need to know that there is a Model property defined on the af:inputListOfValues that references the ListOfValuesModel implementation in the model. It is the value of this Model property that you need to get access to. The af:inputListOfValues has a ReturnPopupListener property that you can use to configure a managed bean method to receive notification when the user closes the LOV popup dialog by selecting the Ok button. This listener is not triggered when the cancel button is pressed. The managed bean signature can be created declaratively in Oracle JDeveloper 11g using the Edit option in the context menu next to the ReturnPopupListener field in the PropertyInspector. The empty method signature looks as shown below public void returnListener(ReturnPopupEvent returnPopupEvent) { } The ReturnPopupEvent object gives you access the RichInputListOfValues component instance, which represents the af:inputListOfValues component at runtime. From here you access the Model property of the component to then get a handle to the CollectionModel. The CollectionModel returns an instance of JUCtrlHierBinding in its getWrappedData method. Though there is no tree binding definition for the list of values dialog defined in the PageDef, it exists. Once you have access to this, you can read the row the user selected in the list of values dialog. See the following code: public void returnListener(ReturnPopupEvent returnPopupEvent) {   //access UI component instance from return event RichInputListOfValues lovField =        (RichInputListOfValues)returnPopupEvent.getSource();   //The LOVModel gives us access to the Collection Model and //ADF tree binding used to populate the lookup table ListOfValuesModel lovModel =  lovField.getModel(); CollectionModel collectionModel =          lovModel.getTableModel().getCollectionModel();     //The collection model wraps an instance of the ADF //FacesCtrlHierBinding, which is casted to JUCtrlHierBinding   JUCtrlHierBinding treeBinding =          (JUCtrlHierBinding) collectionModel.getWrappedData();     //the selected rows are defined in a RowKeySet.As the LOV table only   //supports single selections, there is only one entry in the rks RowKeySet rks = (RowKeySet) returnPopupEvent.getReturnValue();     //the ADF Faces table row key is a list. The list contains the //oracle.jbo.Key List tableRowKey = (List) rks.iterator().next();   //get the iterator binding for the LOV lookup table binding   DCIteratorBinding dciter = treeBinding.getDCIteratorBinding();   //get the selected row by its JBO key   Key key = (Key) tableRowKey.get(0); Row rw =  dciter.findRowByKeyString(key.toStringFormat(true)); //work with the row // ... }

    Read the article

  • New <%: %> Syntax for HTML Encoding Output in ASP.NET 4 (and ASP.NET MVC 2)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the nineteenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post covers a small, but very useful, new syntax feature being introduced with ASP.NET 4 – which is the ability to automatically HTML encode output within code nuggets.  This helps protect your applications and sites against cross-site script injection (XSS) and HTML injection attacks, and enables you to do so using a nice concise syntax. HTML Encoding Cross-site script injection (XSS) and HTML encoding attacks are two of the most common security issues that plague web-sites and applications.  They occur when hackers find a way to inject client-side script or HTML markup into web-pages that are then viewed by other visitors to a site.  This can be used to both vandalize a site, as well as enable hackers to run client-script code that steals cookie data and/or exploits a user’s identity on a site to do bad things. One way to help mitigate against cross-site scripting attacks is to make sure that rendered output is HTML encoded within a page.  This helps ensures that any content that might have been input/modified by an end-user cannot be output back onto a page containing tags like <script> or <img> elements.  ASP.NET applications (especially those using ASP.NET MVC) often rely on using <%= %> code-nugget expressions to render output.  Developers today often use the Server.HtmlEncode() or HttpUtility.Encode() helper methods within these expressions to HTML encode the output before it is rendered.  This can be done using code like below: While this works fine, there are two downsides of it: It is a little verbose Developers often forget to call the HtmlEncode method New <%: %> Code Nugget Syntax With ASP.NET 4 we are introducing a new code expression syntax (<%:  %>) that renders output like <%= %> blocks do – but which also automatically HTML encodes it before doing so.  This eliminates the need to explicitly HTML encode content like we did in the example above.  Instead you can just write the more concise code below to accomplish the same thing: We chose the <%: %> syntax so that it would be easy to quickly replace existing instances of <%= %> code blocks.  It also enables you to easily search your code-base for <%= %> elements to find and verify any cases where you are not using HTML encoding within your application to ensure that you have the correct behavior. Avoiding Double Encoding While HTML encoding content is often a good best practice, there are times when the content you are outputting is meant to be HTML or is already encoded – in which case you don’t want to HTML encode it again.  ASP.NET 4 introduces a new IHtmlString interface (along with a concrete implementation: HtmlString) that you can implement on types to indicate that its value is already properly encoded (or otherwise examined) for displaying as HTML, and that therefore the value should not be HTML-encoded again.  The <%: %> code-nugget syntax checks for the presence of the IHtmlString interface and will not HTML encode the output of the code expression if its value implements this interface.  This allows developers to avoid having to decide on a per-case basis whether to use <%= %> or <%: %> code-nuggets.  Instead you can always use <%: %> code nuggets, and then have any properties or data-types that are already HTML encoded implement the IHtmlString interface. Using ASP.NET MVC HTML Helper Methods with <%: %> For a practical example of where this HTML encoding escape mechanism is useful, consider scenarios where you use HTML helper methods with ASP.NET MVC.  These helper methods typically return HTML.  For example: the Html.TextBox() helper method returns markup like <input type=”text”/>.  With ASP.NET MVC 2 these helper methods now by default return HtmlString types – which indicates that the returned string content is safe for rendering and should not be encoded by <%: %> nuggets.  This allows you to use these methods within both <%= %> code nugget blocks: As well as within <%: %> code nugget blocks: In both cases above the HTML content returned from the helper method will be rendered to the client as HTML – and the <%: %> code nugget will avoid double-encoding it. This enables you to default to always using <%: %> code nuggets instead of <%= %> code blocks within your applications.  If you want to be really hardcore you can even create a build rule that searches your application looking for <%= %> usages and flags any cases it finds as an error to enforce that HTML encoding always takes place. Scaffolding ASP.NET MVC 2 Views When you use VS 2010 (or the free Visual Web Developer 2010 Express) you’ll find that the views that are scaffolded using the “Add View” dialog now by default always use <%: %> blocks when outputting any content.  For example, below I’ve scaffolded a simple “Edit” view for an article object.  Note the three usages of <%: %> code nuggets for the label, textbox, and validation message (all output with HTML helper methods): Summary The new <%: %> syntax provides a concise way to automatically HTML encode content and then render it as output.  It allows you to make your code a little less verbose, and to easily check/verify that you are always HTML encoding content throughout your site.  This can help protect your applications against cross-site script injection (XSS) and HTML injection attacks.  Hope this helps, Scott

    Read the article

  • Programmatically reuse Dynamics CRM 4 icons

    - by gperera
    The team that wrote the dynamics crm sdk help rocks! I wanted to display the same crm icons on our time tracking application for consistency, so I opened up the sdk help file, searched for 'icon', ignored all the sitemap/isv config entries since I know I want to get these icons programatically, about half way down the search results I see 'organizationui', sure enough that contains the 16x16 (gridicon), 32x32 (outlookshortcuticon) and 66x48 (largeentityicon) icons!To get all the entities, execute a retrieve multiple request. RetrieveMultipleRequest request = new RetrieveMultipleRequest{    Query = new QueryExpression    {        EntityName = "organizationui",        ColumnSet = new ColumnSet(new[] { "objecttypecode", "formxml", "gridicon" }),    }}; var response = sdk.Execute(request) as RetrieveMultipleResponse;Now you have all the entities and icons, here's the tricky part, all the custom entities in crm store the icons inside gridicon, outlookshortcuticon and largeentityicon attributes, the built-in entity icons are stored inside the /_imgs/ folder with the format of /_imgs/ico_16_xxxx.gif (gridicon), with xxxx being the entity type code. The entity type code is not stored inside an attribute of organizationui, however you can get it by looking at the formxml attribute objecttypecode xml attribute. response.BusinessEntityCollection.BusinessEntities.ToList()    .Cast<organizationui>().ToList()    .ForEach(a =>    {        try        {            // easy way to check if it's a custom entity            if (!string.IsNullOrEmpty(a.gridicon))            {                byte[] gif = Convert.FromBase64String(a.gridicon);            }            else            {                // built-in entity                if (!string.IsNullOrEmpty(a.formxml))                {                    int start = a.formxml.IndexOf("objecttypecode=\"") + 16;                    int end = a.formxml.IndexOf("\"", start);                     // found the entity type code                    string code = a.formxml.Substring(start, end - start);                    string url = string.Format("/_imgs/ico_16_{0}.gif", code);Enjoy!

    Read the article

  • cocos2dx - Custom Fragment Shader and CCRenderTexture

    - by saiy2k
    I have a CCRenderTexture that is filled with a sprite when the scene is loaded, as follows, canvas = CCRenderTexture::create(this->getContentSize().width, this->getContentSize().height); canvas->setPosition(data->position); canvas->beginWithClear(0.0, 0.0, 0.0, 0); this->visit(); canvas->end(); The above code is written within a class, which derives from CCSprite (Hence this). Then, in another function applyShader(), I create a sprite named splat, from the texture of CCRenderTexture *canvas. Thus splat will contain the whole texture of canvas. Now I apply a custom fragment shader to the splat by calling the function splat->renderShader(), which will modify some small portion of the whole texture. Then I draw the modified texture back to the CCRenderTexture *canvas. Hence, applyShader() will * take a texture from CCRenderTexture, * create a sprite based on it, * apply a fragment shader to it * and draw the modified texture back to CCRenderTexture. This applyShader() will be called repetitively and its code is as follows: splat = Splat::createWithTexture(art->canvas->getSprite()->getTexture()); splat->renderShader(); art->canvas->begin(); splat->visit(); art->canvas->end(); My shader code is (nothing fancy) precision mediump float; varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_colorRampTexture; uniform float params[5]; void main() { gl_FragColor = texture2D(u_texture, v_texCoord); return; } So, with the above code I expect the original sprite this to get rendered over and over again without any visual changes. But on each call to applyShader(), the texture is getting stretched a little and the stretched image is getting rendered. After some 10 calls, the image gets so distorted. Can someone please tell me where I am going wrong? Thanks :-) PS: All code shown here is partial, not complete code. Edit: Adding Screens Update: The problem has nothing to do with shaders it seems. It happens even when I dont call renderShader(). The actual lines of code is: splat = Splat::createWithTexture(art->canvas->getSprite()->getTexture()); splat->setPosition( ccp( art->getContentSize().width * 0.5, art->getContentSize().height * 0.5 ) ); splat->setFlipY(true); art->canvas->begin(); splat->visit(); art->canvas->end();

    Read the article

  • SQL SERVER – Challenge – Puzzle – Usage of FAST Hint

    - by pinaldave
    I was recently working with various SQL Server Hints. After working for a day on various hints, I realize that for one hint, I am not able to come up with good example. The hint is FAST. Let us look at the definition of the FAST hint from the Book On-Line. FAST number_rows Specifies that the query is optimized for fast retrieval of the first number_rows. This is a nonnegative integer. After the first number_rows are returned, the query continues execution and produces its full result set. Now the question is in what condition this hint can be useful. I have tried so many different combination, I have found this hint does not make much performance difference, infect I did not notice any change in time taken to load the resultset. I noticed that this hint does not change number of the page read to return result. Now when there is difference in performance is expected because if you read the what FAST hint does is that it only returns first few results FAST – which does not mean there will be difference in performance. I also understand that this hint gives the guidance/suggestions/hint to query optimizer that there are only 100 rows are in expected resultset. This tricking the optimizer to think there are only 100 rows and which (may) lead to render different execution plan than the one which it would have taken in normal case (without hint). Again, not necessarily, this will happen always. Now if you read above discussion, you will find that basic understanding of the hint is very clear to me but I still feel that I am missing something. Here are my questions: 1) In what condition this hint can be useful? What is the case, when someone want to see first few rows early because my experience suggests that when first few rows are rendered remaining rows are rendered as well. 2) Is there any way application can retrieve the fast fetched rows from SQL Server? 3) Do you use this hint in your application? Why? When? and How? Here are few examples I have attempted during the my experiment and found there is no difference in execution plan except its estimated number of rows are different leading optimizer think that the cost is less but in reality that is not the case. USE AdventureWorks GO SET STATISTICS IO ON SET STATISTICS TIME ON GO --------------------------------------------- -- Table Scan with Fast Hint SELECT * FROM Sales.SalesOrderDetail GO SELECT * FROM Sales.SalesOrderDetail OPTION (FAST 100) GO --------------------------------------------- -- Table Scan with Where on Index Key SELECT * FROM Sales.SalesOrderDetail WHERE OrderQty = 14 GO SELECT * FROM Sales.SalesOrderDetail WHERE OrderQty = 14 OPTION (FAST 100) GO --------------------------------------------- -- Table Scan with Where on Index Key SELECT * FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID < 1000 GO SELECT * FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID < 1000 OPTION (FAST 100) GO Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Tool to identify Internet Explorer rendering differences with css

    - by Bakaburg
    I develop website using chrome and mac os as development environment. Since my audience is pretty specific I don't feel the necessity for too much backward compatibility with IE8 and less. However to my great dismay, even IE9 looks totally broken... I would like to know if there's on the web a tool that could tell me what probably went wrong with IE, that is a webapp that parse the rendered css and check which rules are probably totally broken in IE9.

    Read the article

  • Routing to a Controller with no View in Angular

    - by Rick Strahl
    Angular provides a nice routing, and controller to view model that makes it easy to create sophisticated JavaScript views fairly easily. But Angular's views are destroyed and re-rendered each time they are activated - what if you need to work with a persisted view that's too expensive to re-render? Here's how to build a headless controller that doesn't render a view through Angular, but rather manages the the view or markup manually.

    Read the article

  • Using SurfaceFormat.Single and HLSL for GPGPU with XNA

    - by giancarlo todone
    I'm trying to implement a so-called ping-pong technique in XNA; you basically have two RenderTarget2D A and B and at each iteration you use one as texture and the other as target - and vice versa - for a quad rendered through an HLSL pixel shader. step1: A--PS--B step2: B--PS--A step3: A--PS--B ... In my setup, both RenderTargets are SurfaceFormat.Single. In my .fx file, I have a tachnique to do the update, and another to render the "current buffer" to the screen. Before starting the "ping-pong", buffer A is filled with test data with SetData<float>(float[]) function: this seems to work properly, because if I render a quad on the screen through the "Draw" pixel shader, i do see the test data being correctly rendered. However, if i do update buffer B, something does not function proerly and the next rendering to screen will be all black. For debug purposes, i replaced the "Update" HLSL pixel shader with one that should simply copy buffer A into B (or B into A depending on which among "ping" and "pong" phases we are...). From some examples i found on the net, i see that in order to correctly fetch a float value from a texture sampler from HLSL code, i should only need to care for the red channel. So, basically the debug "Update" HLSL function is: float4 ComputePS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,0,0,1); } which still doesn't work and results in a all-zeroes ouput. Here's the "Draw" function that seems to properly display initial data: float4 DrawPS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,v1,v1,1); } Now: playing around with HLSL doesn't change anything, so maybe I'm missing something on the c# side of this, so here's the infamous Update() function: _effect.Parameters["bufTexture"].SetValue(buf[_currentBuf]); _graphicsDevice.SetRenderTarget(buf[1 - _currentBuf]); _graphicsDevice.Clear(Color.Black); // probably not needed since RenderTargetUsage is DiscardContents _effect.CurrentTechnique = _computeTechnique; _computeTechnique.Passes[0].Apply(); _quadRender.Render(); _graphicsDevice.SetRenderTarget(null); _currentBuf = 1 - _currentBuf; Any clue?

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Allowing Access to HttpContext in WCF REST Services

    - by Rick Strahl
    If you’re building WCF REST Services you may find that WCF’s OperationContext, which provides some amount of access to Http headers on inbound and outbound messages, is pretty limited in that it doesn’t provide access to everything and sometimes in a not so convenient manner. For example accessing query string parameters explicitly is pretty painful: [OperationContract] [WebGet] public string HelloWorld() { var properties = OperationContext.Current.IncomingMessageProperties; var property = properties[HttpRequestMessageProperty.Name] as HttpRequestMessageProperty; string queryString = property.QueryString; var name = StringUtils.GetUrlEncodedKey(queryString,"Name"); return "Hello World " + name; } And that doesn’t account for the logic in GetUrlEncodedKey to retrieve the querystring value. It’s a heck of a lot easier to just do this: [OperationContract] [WebGet] public string HelloWorld() { var name = HttpContext.Current.Request.QueryString["Name"] ?? string.Empty; return "Hello World " + name; } Ok, so if you follow the REST guidelines for WCF REST you shouldn’t have to rely on reading query string parameters manually but instead rely on routing logic, but you know what: WCF REST is a PITA anyway and anything to make things a little easier is welcome. To enable the second scenario there are a couple of steps that you have to take on your service implementation and the configuration file. Add aspNetCompatibiltyEnabled in web.config Fist you need to configure the hosting environment to support ASP.NET when running WCF Service requests. This ensures that the ASP.NET pipeline is fired up and configured for every incoming request. <system.serviceModel>     <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> </system.serviceModel> Markup your Service Implementation with AspNetCompatibilityRequirements Attribute Next you have to mark up the Service Implementation – not the contract if you’re using a separate interface!!! – with the AspNetCompatibilityRequirements attribute: [ServiceContract(Namespace = "RateTestService")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class RestRateTestProxyService Typically you’ll want to use Allowed as the preferred option. The other options are NotAllowed and Required. Allowed will let the service run if the web.config attribute is not set. Required has to have it set. All these settings determine whether an ASP.NET host AppDomain is used for requests. Once Allowed or Required has been set on the implemented class you can make use of the ASP.NET HttpContext object. When I allow for ASP.NET compatibility in my WCF services I typically add a property that exposes the Context and Request objects a little more conveniently: public HttpContext Context { get { return HttpContext.Current; } } public HttpRequest Request { get { return HttpContext.Current.Request; } } While you can also access the Response object and write raw data to it and manipulate headers THAT is probably not such a good idea as both your code and WCF will end up writing into the output stream. However it might be useful in some situations where you need to take over output generation completely and return something completely custom. Remember though that WCF REST DOES actually support that as well with Stream responses that essentially allow you to return any kind of data to the client so using Response should really never be necessary. Should you or shouldn’t you? WCF purists will tell you never to muck with the platform specific features or the underlying protocol, and if you can avoid it you definitely should avoid it. Querystring management in particular can be handled largely with Url Routing, but there are exceptions of course. Try to use what WCF natively provides – if possible as it makes the code more portable. For example, if you do enable ASP.NET Compatibility you won’t be able to self host a WCF REST service. At the same time realize that especially in WCF REST there are number of big holes or access to some features are a royal pain and so it’s not unreasonable to access the HttpContext directly especially if it’s only for read-only access. Since everything in REST works of URLS and the HTTP protocol more control and easier access to HTTP features is a key requirement to building flexible services. It looks like vNext of the WCF REST stuff will feature many improvements along these lines with much deeper native HTTP support that is often so useful in REST applications along with much more extensibility that allows for customization of the inputs and outputs as data goes through the request pipeline. I’m looking forward to this stuff as WCF REST as it exists today still is a royal pain (in fact I’m struggling with a mysterious version conflict/crashing error on my machine that I have not been able to resolve – grrrr…).© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  WCF  

    Read the article

  • Sprites are sometimes blurry in Flash

    - by Tim Cooper
    I am playing around with drawing an SVG sprite (imported in through [Embed]). Depending on the coordinates of the image, sometimes it appears more crisp than others. The following image shows how at different locations is it rendered differently: (Image link - You may have to download and zoom in with an image editor to see it) You'll notice that the middle sprite is more blurry than the ones on the sides. Does anyone know why this is? Any help would be appreciated.

    Read the article

  • Ogre3D Fog with overlays

    - by Yourdoom
    I'm building a game with Ogre3d, I've got fog working properly with: scenemanager->setFog(Ogre::FOG_LINEAR, Ogre::ColourValue( 0.23f, 0.725f, 1.0f ), 0, 18, 20 ); However I'm currently implementing a GUI system (libRocket) which is rendered on top of everything else, and this removes the fog, does anyone know how to fix this? (I'm using the default libRocket rendering system for ogre as included in the samples, but this problem also appears when using a semi-transparent overlay).

    Read the article

  • Why You Should Follow Google Webmaster Guidelines

    Creativity is one of the most important aspects of an appealing site. Unique and compelling content are vital components to any successful site, but they're rendered obsolete if the site doesn't follow basic guidelines established by the Google Webmaster Guidelines.

    Read the article

  • Extending WikiPlex with Scope Augmenters

    - by mhawley
    [In addition to blogging, I am also using Twitter. Follow me: @matthawley] Another extension point with WikiPlex is Scope Augmenters. Scope Augmenters allow you to post process the collection of scopes to further augment, or insert/remove, new scopes prior to being rendered. WikiPlex comes with 3 out-of-the-box Scope Augmenters that it uses for indentation, tables, and lists. For reference, I'll be explaining… (read more)

    Read the article

  • How do I add shadow mapping?

    - by Jasper Creyf
    How do I add shadow mapping? I don't care if it uses GLSL it just has to work. I have been searching on stencil shadows and shadow mapping, all the examples given did nothing, if you don't understand that it means not even a single shadow is even being rendered. If you know how to add stencil shadows or shadow mapping, then please show some java code and if you're using GLSL then please show the code for them too.

    Read the article

  • WebCenter Content shared folders for clustering

    - by Kyle Hatlestad
    When configuring a WebCenter Content (WCC) cluster, one of the things which makes it unique from some other WebLogic Server applications is its requirement for a shared file system.  This is actually not any different then 10g and previous versions of UCM when it ran directly on a JVM.  And while it is simple enough to say it needs a shared file system, there are some crucial details in how those directories are configured. And if they aren't followed, you may result in some unwanted behavior. This blog post will go into the details on how exactly the file systems should be split and what options are required. Beyond documents being stored on the file system and/or database and metadata being stored in the database along with other structured data, there is other information being read and written to on the file system.  Information such as user profile preferences, workflow item state information, metadata profiles, and other details are stored in files.  In addition, for certain processes within WCC, each of the nodes needs to know what the other nodes are doing so they don’t step on each other.  WCC keeps track of this through the use of lock files on the file system.  Because of this, each node of the WCC must have access to the same file system just as they have access to the same database. WCC uses its own locking mechanism using files, so it also needs to have access to those files without file attribute caching and without locking being done by the client (node).  If one of the nodes accesses a certain status file and it happens to be cached, that node might attempt to run a process which another node is already working on.  Or if a particular file is locked by one of the node clients, this could interfere with access by another node.  Unfortunately, when disabling file attribute caching on the file share, this can impact performance.  So it is important to only disable caching and locking on the particular folders which require it.  When configuring WebCenter Content after deploying the domain, it asks for 3 different directories: Content Server Instance Folder, Native File Repository Location, and Weblayout Folder.  And starting in PS5, it now asks for the User Profile Folder. Even if you plan on storing the content in the database, you still need to establish a Native File (Vault) and Weblayout directories.  These will be used for handling temporary files, cached files, and files used to deliver the UI. For these directories, the only folder which needs to have the file attribute caching and locking disabled is the ‘Content Server Instance Folder’.  So when establishing this share through NFS or a clustered file system, be sure to specify those options. For instance, if creating the share through NFS, use the ‘noac’ and ‘nolock’ options for the mount options. For the other directories, caching and locking should be enabled to provide best performance to those locations.   These directory path configurations are contained within the <domain dir>\ucm\cs\bin\intradoc.cfg file: #Server System PropertiesIDC_Id=UCM_server1 #Server Directory Variables IdcHomeDir=/u01/fmw/Oracle_ECM1/ucm/idc/ FmwDomainConfigDir=/u01/fmw/user_projects/domains/base_domain/config/fmwconfig/ AppServerJavaHome=/u01/jdk/jdk1.6.0_22/jre/ AppServerJavaUse64Bit=true IntradocDir=/mnt/share_no_cache/base_domain/ucm/cs/ VaultDir=/mnt/share_with_cache/ucm/cs/vault/ WeblayoutDir=/mnt/share_with_cache/ucm/cs/weblayout/ #Server Classpath variables #Additional Variables #NOTE: UserProfilesDir is only available in PS5 – 11.1.1.6.0UserProfilesDir=/mnt/share_with_cache/ucm/cs/data/users/profiles/ In addition to these folder configurations, it’s also recommended to move node-specific folders to local disk to avoid unnecessary traffic to the shared directory.  So on each node, go to <domain dir>\ucm\cs\bin\intradoc.cfg and add these additional configuration entries: VaultTempDir=<domain dir>/ucm/<cs>/vault/~temp/ TraceDirectory=<domain dir>/servers/<UCM_serverN>/logs/EventDirectory=<domain dir>/servers/<UCM_serverN>/logs/event/ And of course, don’t forget the cluster-specific configuration values to add as well.  These can be added through Admin Server -> General Configuration -> Additional Configuration Variables or directly in the <IntradocDir>/config/config.cfg file: ArchiverDoLocks=true DisableSharedCacheChecking=true ServiceAllowRetry=true    (use only with Oracle RAC Database)PublishLockTimeout=300000  (time can vary depending on publishing time and number of nodes) For additional information and details on clustering configuration, I highly recommend reviewing document [1209496.1] on the support site.  In addition, there is a great step-by-step guide on setting up a WebCenter Content cluster [1359930.1].

    Read the article

  • How to Identify Stuck Pixels and Remove Them from Your Digital Photos

    - by Jason Fitzpatrick
    If you’ve noticed hotspots in your digital photos, areas where a stuck pixel in the camera’s sensor has rendered very bright spots of color that don’t belong in the image, you’re not alone. It’s an incredibly common phenomenon, but that doesn’t mean you have to put up with it. Read on as we discuss what distinguishes stuck pixels from other sensor defects and problems, how to identify it, and how to fix it both in-camera and out.Click Here to Continue Reading

    Read the article

  • Simple iOS glDrawElements - BAD_ACCESS

    - by user699215
    You can copy paste this into the default OpenGl template created in Xcode. Why am I not seeing anything :-) It is strange as the glDrawArrays(GL_TRIANGLES, 0, 3); is working fine, but with glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte), GL_UNSIGNED_BYTE, indices); Is giving BAD_ACCESS? Copy paste this into Xcode default OpenGl template: ViewController #import "ViewController.h" #define BUFFER_OFFSET(i) ((char *)NULL + (i)) // Uniform index. enum { UNIFORM_MODELVIEWPROJECTION_MATRIX, UNIFORM_NORMAL_MATRIX, NUM_UNIFORMS }; GLint uniforms[NUM_UNIFORMS]; // Attribute index. enum { ATTRIB_VERTEX, ATTRIB_NORMAL, NUM_ATTRIBUTES }; @interface ViewController () { GLKMatrix4 _modelViewProjectionMatrix; GLKMatrix3 _normalMatrix; float _rotation; GLuint _vertexArray; GLuint _vertexBuffer; NSArray* arrayOfVertex; } @property (strong, nonatomic) EAGLContext *context; @property (strong, nonatomic) GLKBaseEffect *effect; - (void)setupGL; - (void)tearDownGL; @end @implementation ViewController - (void)viewDidLoad { [super viewDidLoad]; self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2]; GLKView *view = (GLKView *)self.view; view.context = self.context; view.drawableDepthFormat = GLKViewDrawableDepthFormat24; [self setupGL]; } - (void)dealloc { [self tearDownGL]; if ([EAGLContext currentContext] == self.context) { [EAGLContext setCurrentContext:nil]; } } - (void)didReceiveMemoryWarning { [super didReceiveMemoryWarning]; if ([self isViewLoaded] && ([[self view] window] == nil)) { self.view = nil; [self tearDownGL]; if ([EAGLContext currentContext] == self.context) { [EAGLContext setCurrentContext:nil]; } self.context = nil; } // Dispose of any resources that can be recreated. } GLuint vertexBufferID; GLuint indexBufferID; static const GLfloat vertices[9] = { -0.5, -0.5, 0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5 }; static const GLubyte indices[3] = { 0, 1, 2 }; - (void)setupGL { [EAGLContext setCurrentContext:self.context]; // [self loadShaders]; self.effect = [[GLKBaseEffect alloc] init]; self.effect.light0.enabled = GL_TRUE; self.effect.light0.diffuseColor = GLKVector4Make(1.0f, 0.4f, 0.4f, 1.0f); glEnable(GL_DEPTH_TEST); // glGenVertexArraysOES(1, &_vertexArray); // glBindVertexArrayOES(_vertexArray); glGenBuffers(1, &vertexBufferID); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferID); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glGenBuffers(1, &indexBufferID); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBufferID); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glEnableVertexAttribArray(GLKVertexAttribPosition); glVertexAttribPointer(GLKVertexAttribPosition, // Specifies the index of the generic vertex attribute to be modified. 3, // Specifies the number of components per generic vertex attribute. Must be 1, 2, 3, 4. GL_FLOAT, // GL_FALSE, // 0, // BUFFER_OFFSET(0)); // // glBindVertexArrayOES(0); } - (void)tearDownGL { [EAGLContext setCurrentContext:self.context]; glDeleteBuffers(1, &_vertexBuffer); glDeleteVertexArraysOES(1, &_vertexArray); self.effect = nil; } #pragma mark - GLKView and GLKViewController delegate methods - (void)update { float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); self.effect.transform.projectionMatrix = projectionMatrix; GLKMatrix4 baseModelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -4.0f); baseModelViewMatrix = GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 0.0f, 1.0f, 0.0f); // Compute the model view matrix for the object rendered with GLKit GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); self.effect.transform.modelviewMatrix = modelViewMatrix; // Compute the model view matrix for the object rendered with ES2 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, 1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); _normalMatrix = GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3(modelViewMatrix), NULL); _modelViewProjectionMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); _rotation += self.timeSinceLastUpdate * 0.5f; } int i; - (void)glkView:(GLKView *)view drawInRect:(CGRect)rect { glClearColor(0.65f, 0.65f, 0.65f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // glBindVertexArrayOES(_vertexArray); // Render the object with GLKit [self.effect prepareToDraw]; //glDrawArrays(GL_TRIANGLES, 0, 3); // Render the object again with ES2 // glDrawArrays(GL_TRIANGLES, 0, 3); glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte), GL_UNSIGNED_BYTE, indices); } @end

    Read the article

  • Producing a smooth mesh from density cloud and marching cubes

    - by Wardy
    Based on my results from this question I decided to build myself a 3D noise map containing float values in place of my existing boolean point values. The effect I'm trying to produce is something like this, rather than typical rolling hills; which should explain the "missing cubes" in the image below. If I render my density map in normal "minecraft mode" (1 block per point in the density map) varying the size of the cube based on the value in my density map (floats in the range 0 to 1) I get something like this: I'm now happy that I can produce a density map for the marching cubes algorithm (which will need a little tweaking) but for some reason when I run it through my implementation it's not producing what I expect. My problem is that I'm getting something like the first image in this answer to my previous question, when I want to achieve the effect in the second image. Upon further investigation I can't see how marching cubes does the "move vertex along the edge" type logic (i.e. the difference between the two images on my previous link). I see that it does do some interpolation, but I'm not convinced I have the correct understanding of what I think it should do, because the code in question appears to give the same result regardless of whether I use boolean or float values. I took the code from here which is a C# implementation of marching cubes, but instead of using the MarchingCubesPrimitive I modified it to accept an object of type IDrawable, containing lists for the various collections (vertices, normals, UVs, indices), the logic was otherwise untouched. My understanding is that given a very low isovalue the accuracy level of the surface being rendered should increase, so in short "less 45 degree slows more rolling hills" type mesh output. However this isn't what I'm seeing. Have I missed something or is the implementation flawed and need to be fixed? EDIT: A little more detail on what I am seeing when I "marching cube" the data. Ok so firstly, ignore the fact that the meshes created by the chunks don't "connect" (i'll probably raise another question about this later). Then look at the shaping of the island, it's too ... square, from the voxels rendered as boxes you get the impression there's a clean soft gradual hill and yet from the image there are sharp falling edges even in the most central areas where the gradient in the first image looks the most smooth. The data is "regenerated" each time I run this so no 2 islands come out the same, and it's purely random so not based on noise, but still, how can it look so smooth in 1 image and so not smooth in the other?

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >