Search Results

Search found 14292 results on 572 pages for 'high integrity systems'.

Page 83/572 | < Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >

  • VDC Research Webcast: Engineering Business Value in the IoT with Java 8

    - by tangelucci
    Date: Thursday, June 19, 2014 Time: 9:30 AM PDT, 12:30 PM EDT, 17:30 GMT The growth of the Internet of Things (IoT) opens up new service-driven opportunities, delivering increased efficiencies, better customer value, and improved quality of life. Realizing the full potential of the Internet of Things requires that we change how we view and build devices. These next-generation systems provide the core foundation of the services, rapidly transforming data to information to value. From healthcare to building control systems to vehicle telematic systems, the IoT focuses on how conneted devices can become more intelligent, enhance interoperability with other devices, systems and services, and drive timely decisions while delivering real business return for all. Join this webcast to learn about: Driving both revenue opportunities and operational efficiencies for the IoT value chain Leveraging Java to make devices more secure How Java can help overcome resource gaps around intelligent connected devices Suggestions on how to better manage fragmentation in embedded devices Register here: http://event.on24.com/r.htm?e=793757&s=1&k=4EA8426D0D31C60A2EDB139635FF75AB

    Read the article

  • Listen To The Oracle Xsigo Webcast Replays

    - by Cinzia Mascanzoni
    For product strategy, sales plays, steps to resell, sales benefits and resources listen to the webcast replays: Xsigo Systems VAD Update: Understanding the Xsigo Channel Model & Product Strategies (November 13, 2012) Replay Xsigo Systems Partner Update: Get Ready to Sell Xsigo Systems Products With Oracle (November 15, 2012) Replay

    Read the article

  • ?Oracle Database 12c????ASM Scrubbing Disk Groups

    - by Liu Maclean(???)
    ?12.1?Oracle ASM??????????????????? ??Scrubbing Disk Groups, Disk Scrubbing???????????,?????Normal ??High Redundancy?disk group?????? Scrubbing ?????????????????Disk Scrubbing???disk group rebalancing???????I/O?????Disk Scrubbing??????I/O????? ?????????Scrubbing????,?????,????????????,?????ALTER DISKGROUP?????????: SQL> ALTER DISKGROUP data SCRUB POWER LOW; SQL> ALTER DISKGROUP data SCRUB FILE '+DATA/ORCL/ASKMACLEAN/example.266.806582193' REPAIR POWER HIGH FORCE; SQL> ALTER DISKGROUP data SCRUB DISK DATA_0005 REPAIR POWER HIGH FORCE; ?????SCRUB ?: ??REPAIR??????????,?????REPAIR,?SCRUB???????????????? ??POWER?????AUTO LOW HIGH ??MAX? ?POWER???,???AUTO????? ??WAIT ???????scrubbing ?????????WAIT???,?scrubbing??????scrubbing queue ??,??????? ?FORCE?????,?????I/O????????????????scrubbing ,????????

    Read the article

  • Strange remoting connection problem

    - by Voyager Systems
    In trying to configure a .NET remoting setup over TCP, I've been having problems accepting outside connections (connections from any computer not on my LAN). I did some investigation and hit netstat -a as soon as my friend started to connect. Here's what I saw: TCP 0.0.0.0:2594 Taylor-PC:0 LISTENING ... TCP 192.168.1.102:2594 24-155-7-16:63588 ESTABLISHED TCP 192.168.1.102:62488 192.168.0.100:1554 SYN_SENT Now here's the weird part: 24.155.7.16 is my friend's IP (modified) and it says the connection is established. But the connection hangs until it times out. I then found out that 192.168.0.100 is his local address on his network. Something screwy's going on somewhere. My server and client are both TCPChannels, the latter initialized 'new TCPChannel( 0 ).' Localhost connections work when I run a client on the same machine as the server, but I can't accept remote connections. There is no port forwarding or firewall issue. Thanks for the help

    Read the article

  • Remoting connection over TCP

    - by Voyager Systems
    I've got a remoting server and client built. The server is set up as such: BinaryServerFormatterSinkProvider serverProv = new BinaryServerFormatterSinkProvider(); serverProv.TypeFilterLevel = TypeFilterLevel.Full; BinaryClientFormatterSinkProvider clientProv = new BinaryClientFormatterSinkProvider(); IDictionary props = new Hashtable(); props["port"] = port; TcpChannel channel = new TcpChannel( props, clientProv, serverProv ); ChannelServices.RegisterChannel( channel, false ); RemotingConfiguration.RegisterWellKnownServiceType( typeof( Controller ), "Controller", WellKnownObjectMode.Singleton ); The client is set up as such: ChannelServices.RegisterChannel( new TcpChannel( 0 ), false ); m_Controller = (Controller)RemotingServices.Connect( typeof( Controller ), "tcp://" + ip + ":2594/Controller" ); When I try to connect to the server from the same computer with the IP specified as 'localhost,' it connects fine. However, when I try to connect from a remote computer, not on the LAN, given the server's IP address, I receive the following exception on the client after a long wait: A connection attempt failed because the connected party did not properly respond after a period of time How can I resolve this? I'm sure it's a configuration problem because the ports are forwarded properly on the server and there is no firewall active. Thanks

    Read the article

  • Android on Desktop tutorials/resources

    - by Ascension Systems
    I'm aware of the android-x86 project and as far as the end result (bootable live/install iso), I am looking to do the same thing. The difference is, I'm looking to do this with the ice cream sandwich branch from android master repo. Ice cream sandwich adds full support for x86 hardware and even sports a build target specifically for running the OS in virtualbox. So my question is, is anyone aware of any documentation for building and deploying to that target? Just in case it's not clear, I'm not just using the android-x86 project because they haven't yet put up a build for anything later than android 3.

    Read the article

  • Formatting data from management database

    - by bVector
    I've got some data that goes like this: Config_Name Question Answer Cisco WAN Sensitivity: High Cisco WAN Authorized Users: Brent, Charles Cisco WAN Last Audited: n/a Cisco WAN Next Audit: 3/30/2012 Cisco WAN Audit Signature: Cisco WAN Username: MYCOMPANY Cisco WAN Password: Cisco WAN Encrypted-A ENCRYPTED DATA Cisco WAN Encrypted-B Cisco WAN Encrypted-C vCenter server Sensitivity: High vCenter server Authorized Users: Brent, Charles vCenter server Last Audited: vCenter server Next Audit: 3/30/2012 vCenter server Audit Signature: ENCRYPTED DATA vCenter server Username: administrator vCenter server Password: vCenter server Encrypted-A ENCRYPTED DATA vCenter server Encrypted-B vCenter server Encrypted-C AKSC-NE01 IPMI Sensitivity: High AKSC-NE01 IPMI Authorized Users: Brent, Charles AKSC-NE01 IPMI Last Audited: AKSC-NE01 IPMI Next Audit: 3/30/2012 AKSC-NE01 IPMI Audit Signature: ENCRYPTED DATA AKSC-NE01 IPMI Username: MYCOMPANY AKSC-NE01 IPMI Password: AKSC-NE01 IPMI Encrypted-A ENCRYPTED DATA AKSC-NE01 IPMI Encrypted-B AKSC-NE01 IPMI Encrypted-C and I need it to be in this format: Config_Name Sensitivity: Authorized Users: Last Audited: Next Audit: Audit Signature: Username: Password: Encrypted-A Encrypted-B Encrypted-C AKSC-NE01 IPMI High Brent, Charles 3/30/2012 ENCRYPTED DATA MYCOMPANY ENCRYPTED DATA Cisco ASA5505 WAN High Brent, Charles n/a 3/30/2012 ENCRYPTED DATA MYCOMPANY ENCRYPTED DATA vCenter server High Brent, Charles 3/30/2012 ENCRYPTED DATA administrator ENCRYPTED DATA the tabs get messed up on here but hopefully you get my drift. does anyone know an easy way to do this? I haven't found one with excel just yet.

    Read the article

  • Outlook 2010, 2007 Sync problems after migration from SMTP to Exchange

    - by kirgy
    Our organization recently switched from an SMTP server to an Exchange server, since then several user's Outlook's are not synchronizing their emails as expected with the Exchange server. Our move over from an SMTP server to an Exchange server consisted of adding the new Exchange account alongside the existing SMTP account, drag-dropping/copy-pasting folders client-side from the SMTP account in the folder pane in outlook, to the newly created Exchange account. The problem happens when a user moves an email to a folder from their inbox or another folder. At this point the email disappears from Outlook client side. Re-syncing the folder, send/receive, closing/opening outlook and even system reboots do not make this email reappear. The Outlook web interface (OWA) reports the email is in fact in the folder they placed it in, and is not deleted. Doing a "search all mail items" for the emails shows that the email is still there; not deleted nor removed. To add to the confusion, when new folders are created and the email is placed in these folders, the synchronization happens without any issue both client side and server side. As the emails are appearing server side, we are confident to presume this is a client side issue. We have tried adding/removing accounts on one system which resulted in the same issue. This was a very long and slow process due to the sheer volume of emails (20gig+ from most users). We have tried reinstalling outlook restoring accounts from back-ups which has not resolved the issue. We also tried upgrading one system from outlook 2007 to outlook 2010 which, again, did not resolve the issue. We have experienced issues with a lot of emails disappearing during the copy-over process in which I'm not convinced it was the best route of migration, but nonetheless we are where we are. Can anyone suggest potential avenues of solutions to resolve this issue? Thank you. Systems: Windows 7 (10 systems) Windows XP (2 systems) Outlook 2007 (2 systems) Outlook 2010 (7 systems) Problem Outlook systems: Windows XP, Outlook 2007 x 1 Windows 7, Outlook 2007 x1 Windows 7, Outlook 2010 x 2

    Read the article

  • What is Best storage servers infrastructure ? DAS/NAS/SAN or installing GlusterFS/LUSTER/HDFS/RBDB

    - by TORr0t
    I am trying to design an infrastucture for the project I am working on. It would be somehow a file-sharing/downloading project (like rapidshare) and I would need high storage sizes and good scability, and I would add new storage nodes after my project grows up. I have come up with 3 solutions for my project which are using Luster, GlusterFS, HDFS, RDBD. For start, i would have 2 servers, one server is for glusterfs client + webserver + db server+ a streaming server, and the other server is gluster storage node. (After sometime, i would be adding more node servers, and client servers (dont know how many new client new servers to add, will see later) So, i am thinking to work with glusterfs. But i really wonder that if i have to use high performance servers with high sotrage sizes or avarage/slow servers with high storage sizes? Or nas/das/san solutions are better for glusterfs storage nodes? I might buy a nas and install glusterfs onto it. I would be happy to listen to your recommendations for the server properties (for each clients and nodes) . I really dont know if I really need high amount of ram and good cpus to for the nodes. I am sure i need it for client servers. The files would be streamed as well, so the Automatic file replication is important, thus, my system should work like a cloud, when needed, according to high traffic, the storage nodes should copy the most demanded file to be streamed and would help me to get rid of scability problems and my visitors would able to stream/download those files. Also, i am open to your experiences/thoughts about any good solution. Luster, hdfs, rbdb are the other options and i would be happy to listen to your thoughts here. I would be very very happy to hear back from anyone commented of any words I have used here. Thanks

    Read the article

  • How can I update generic non-pnp monitor?

    - by njk
    Background I've been running a KVM switch with my monitor at 1920 x 1080 over VGA for over a year. Did a Windows Update on 12/11/12 which did the following: Update for Windows 7 for x64-based Systems (KB2779562) Security Update for Windows 7 for x64-based Systems (KB2779030) Cumulative Security Update for Internet Explorer 8 for Windows 7 for x64-based Systems (KB2761465) Windows Malicious Software Removal Tool x64 - December 2012 (KB890830) Security Update for Windows 7 for x64-based Systems (KB2753842) Security Update for Windows 7 for x64-based Systems (KB2758857) Security Update for Windows 7 for x64-based Systems (KB2770660) After a restart, my extended monitor was dark. I attempted to reset the extended display configuration, and noticed my monitor was being detected as a Generic Non-PnP Monitor: I uninstalled, downloaded new, and re-installed display drivers. Nothing. I attempted to unplug my monitor from the power for 15 minutes. Nothing. I followed some of the suggestions on this thread; specifically DanM's which suggested to create a new *.inf file and replace that in Device Manager. Device Manager said the "best driver software for your device is already installed". The only thing that works is when the monitor is directly attached to the laptop. This obviously is not what I want. My thought is to somehow remove the Generic Non-PnP Monitor from registry. How would I accomplish this and would this help? Any other suggestions? Relevant Hardware ASUS VE276 Monitor TRENDnet 2-Port USB KVM Switch (TK-207K) HP Laptop w/ ATI Radeon HD 4200 Screens

    Read the article

  • Very high CPU and low RAM usage - is it possible to place some of swap some of the CPU usage to the RAM (with CloudLinux LVE Manager installed)?

    - by Chriswede
    I had to install CloudLinux so that I could somewhat controle the CPU ussage and more importantly the Concurrent-Connections the Websites use. But as you can see the Server load is way to high and thats why some sites take up to 10 sec. to load! Server load 22.46 (8 CPUs) (!) Memory Used 36.32% (2,959,188 of 8,146,632) (ok) Swap Used 0.01% (132 of 2,104,504) (ok) Server: 8 x Intel(R) Xeon(R) CPU E31230 @ 3.20GHz Memory: 8143680k/9437184k available (2621k kernel code, 234872k reserved, 1403k data, 244k init) Linux Yesterday: Total of 214,514 Page-views (Awstat) Now my question: Can I shift some of the CPU usage to the RAM? Or what else could I do to make the sites run faster (websites are dynamic - so SQL heavy) Thanks top - 06:10:14 up 29 days, 20:37, 1 user, load average: 11.16, 13.19, 12.81 Tasks: 526 total, 1 running, 524 sleeping, 0 stopped, 1 zombie Cpu(s): 42.9%us, 21.4%sy, 0.0%ni, 33.7%id, 1.9%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 8146632k total, 7427632k used, 719000k free, 131020k buffers Swap: 2104504k total, 132k used, 2104372k free, 4506644k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 318421 mysql 15 0 1315m 754m 4964 S 474.9 9.5 95300:17 mysqld 6928 root 10 -5 0 0 0 S 2.0 0.0 90:42.85 kondemand/3 476047 headus 17 0 172m 19m 10m S 1.7 0.2 0:00.05 php 476055 headus 18 0 172m 18m 9.9m S 1.7 0.2 0:00.05 php 476056 headus 15 0 172m 19m 10m S 1.7 0.2 0:00.05 php 476061 headus 18 0 172m 19m 10m S 1.7 0.2 0:00.05 php 6930 root 10 -5 0 0 0 S 1.3 0.0 161:48.12 kondemand/5 6931 root 10 -5 0 0 0 S 1.3 0.0 193:11.74 kondemand/6 476049 headus 17 0 172m 19m 10m S 1.3 0.2 0:00.04 php 476050 headus 15 0 172m 18m 9.9m S 1.3 0.2 0:00.04 php 476057 headus 17 0 172m 18m 9.9m S 1.3 0.2 0:00.04 php 6926 root 10 -5 0 0 0 S 1.0 0.0 90:13.88 kondemand/1 6932 root 10 -5 0 0 0 S 1.0 0.0 247:47.50 kondemand/7 476064 worldof 18 0 172m 19m 10m S 1.0 0.2 0:00.03 php 6927 root 10 -5 0 0 0 S 0.7 0.0 93:52.80 kondemand/2 6929 root 10 -5 0 0 0 S 0.3 0.0 161:54.38 kondemand/4 8459 root 15 0 103m 5576 1268 S 0.3 0.1 54:45.39 lvest

    Read the article

  • How to check location of 32bit Program FIles folder in windows .bat script

    - by Arek
    I want to write .bat script which works under all flavours of Windows, no matter if 32 or 64 bit. In this script I want to run some file.exe. That file is located in C:\Program Files\ under 32-bit systems or C:\Program FIles (x86)\ under x64 systems. I can write: "%ProgramFiles(x86)%\file.exe" under 64bit systems or "%ProgramFiles%\file.exe" under 32bit systems but I want to make the script universal. Is there any way of determining that path universally?

    Read the article

  • adding a div with data()

    - by Dizzy Bryan High
    Hi people am generating a list of flash swfs, the information comes from an ajax call which returns a json object which i loop through to create the rows of data using my makeAppRow function. makeAppRow = function(myData){ var myStr = '<div class="fileEntry">' myStr = myStr +'<div class="appDate">'+dateFormat(myData.date_swf, "dS mmmm, yyyy, h:MM TT")+'</div>' myStr = myStr +'<div class="appName">'+myData.name_swf+'</div>' myStr = myStr +'<div class="appOptions" data>' myStr = myStr +'<div class="gotoAppBtn" data-options="'+myData+'">Open App</div>' myStr = myStr +'</div>' myStr = myStr +'</div>' $('#appData').append(myStr); } I need the json data to be attached to the gotoAppBtn so that when its clicked i can read in the data from the attached json object and use it in my click function, as you can see ive been trying to embed the data using the html5 data but i cant get it to work. <div class="gotoAppBtn" data-options="'+myData+'">Open App</div> i have a function so that when the button is clicked it loads in an swf. $('.gotoAppBtn').live('click', function(){ //alert('button clicked') var myData = $(this).data("options") alert('../userfiles/'+myData.id_ugp+'/'+myData.id_swf+'/'+myData.launchfile_swf+'') console.log(myData); var flashvars = {}; var params = {}; params.menu = "false"; params.quality = "best"; params.scale = "noscale"; var attributes = {}; attributes.id = "flashAppDisplay"; attributes.name = "flashAppDisplay"; swfobject.embedSWF( '../userfiles/'+myData.id_ugp+'/'+myData.id_swf+'/'+myData.launchfile_swf+'', 'flashAppDisplay', myData.width_swf, myData.height_swf, myData.version_swf ,"../FAVideo/expressInstall.swf", flashvars, params, attributes) }); but the data does not seem to be there, any pointers on where i am going wrong, or a better way to achive this???

    Read the article

  • Managing access to multiple linux system

    - by Swartz
    A searched for answers but have found nothing on here... Long story short: a non-profit organization is in dire need of modernizing its infrastructure. First thing is to find an alternatives to managing user accounts on a number of Linux hosts. We have 12 servers (both physical and virtual) and about 50 workstations. We have 500 potential users for these systems. The individual who built and maintained the systems over the years has retired. He wrote his own scripts to manage it all. It still works. No complaints there. However, a lot of the stuff is very manual and error-prone. Code is messy and after updates often needs to be tweaked. Worst part is there is little to no docs written. There are just a few ReadMe's and random notes which may or may not be relevant anymore. So maintenance has become a difficult task. Currently accounts are managed via /etc/passwd on each system. Updates are distributed via cron scripts to correct systems as accounts are added on the "main" server. Some users have to have access to all systems (like a sysadmin account), others need access to shared servers, while others may need access to workstations or only a subset of those. Is there a tool that can help us manage accounts that meets the following requirements? Preferably open source (i.e. free as budget is VERY limited) mainstream (i.e. maintained) preferably has LDAP integration or could be made to interface with LDAP or AD service for user authentication (will be needed in the near future to integrate accounts with other offices) user management (adding, expiring, removing, lockout, etc) allows to manage what systems (or group of systems) each user has access to - not all users are allowed on all systems support for user accounts that could have different homedirs and mounts available depending on what system they are logged into. For example sysadmin logged into "main" server has main://home/sysadmin/ as homedir and has all shared mounts sysadmin logged into staff workstations would have nas://user/s/sysadmin as homedir(different from above) and potentially limited set of mounts, a logged in client would have his/her homedir at different location and no shared mounts. If there is an easy management interface that would be awesome. And if this tool is cross-platform (Linux / MacOS / *nix), that will be a miracle! I have searched the web and so have found nothing suitable. We are open to any suggestions. Thank you. EDIT: This question has been incorrectly marked as a duplicate. The linked to answer only talks about having same homedirs on all systems, whereas we need to have different homedirs based on what system user is currently logged into(MULTIPLE homedirs). Also access needs to be granted only to some machinees not the whole lot. Mods, please understand the full extent of the problem instead of merely marking it as duplicate for points...

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • Difficulty analyzing text from a file

    - by Nikko
    I'm running into a rather amusing error with my output on this lab and I was wondering if any of you might be able to hint at where my problem lies. The goal is find the high, low, average, sum of the record, and output original record. I started with a rather basic program to solve for one record and when I achieved this I expanded the program to work with the entire text file. Initially the program would correctly output: 346 130 982 90 656 117 595 High# Low# Sum# Average# When I expanded it to work for the entire record my output stopped working how I had wanted it to. 0 0 0 0 0 0 0 High: 0 Low: 0 Sum: 0 Average: 0 0 0 0 0 0 0 0 High: 0 Low: 0 Sum: 0 Average: 0 etc... I cant quite figure out why my ifstream just completely stopped bothering to input the values from file. I'll go take a walk and take another crack at it. If that doesn't work I'll be back here to check for any responses =) Thank you! #include <iostream> #include <fstream> #include <iomanip> #include <string> using namespace std; int main() { int num; int high = 0; int low = 1000; double average = 0; double sum = 0; int numcount = 0; int lines = 1; char endoline; ifstream inData; ofstream outData; inData.open("c:\\Users\\Nikko\\Desktop\\record5ain.txt"); outData.open("c:\\Users\\Nikko\\Desktop\\record5aout.txt"); if(!inData) //Reminds me to change path names when working on different computers. { cout << "Could not open file, program will exit" << endl; exit(1); } while(inData.get(endoline)) { if(endoline == '\n') lines++; } for(int A = 0; A < lines; A++) { for(int B = 0; B < 7; B++) { while(inData >> num) inData >> num; numcount++; sum += num; if(num < low) low = num; if(num > high) high = num; average = sum / numcount; outData << num << '\t'; } outData << "High: " << high << " " << "Low: " << low << " " << "Sum: " << sum << " " << "Average: " << average << endl; } inData.close(); outData.close(); return(0); }

    Read the article

  • 10 Reasons Why Java is the Top Embedded Platform

    - by Roger Brinkley
    With the release of Oracle ME Embedded 3.2 and Oracle Java Embedded Suite, Java is now ready to fully move into the embedded developer space, what many have called the "Internet of Things". Here are 10 reasons why Java is the top embedded platform. 1. Decouples software development from hardware development cycle Development is typically split between both hardware and software in a traditional design flow . This leads to complicated co-design and requires prototype hardware to be built. This parallel and interdependent hardware / software design process typically leads to two or more re-development phases. With Embedded Java, all specific work is carried out in software, with the (processor) hardware implementation fully decoupled. This with eliminate or at least reduces the need for re-spins of software or hardware and the original development efforts can be carried forward directly into product development and validation. 2. Development and testing can be done (mostly) using standard desktop systems through emulation Because the software and hardware are decoupled it now becomes easier to test the software long before it reaches the hardware through hardware emulation. Emulation is the ability of a program in an electronic device to imitate another program or device. In the past Java tools like the Java ME SDK and the SunSPOTs Solarium provided developers with emulation for a complete set of mobile telelphones and SunSpots. This often included network interaction or in the case of SunSPOTs radio communication. What emulation does is speed up the development cycle by refining the software development process without the need of hardware. The software is fixed, redefined, and refactored without the timely expense of hardware testing. With tools like the Java ME 3.2 SDK, Embedded Java applications can be be quickly developed on Windows based platforms. In the end of course developers should do a full set of testing on the hardware as incompatibilities between emulators and hardware will exist, but the amount of time to do this should be significantly reduced. 3. Highly productive language, APIs, runtime, and tools mean quick time to market Charles Nutter probably said it best in twitter blog when he tweeted, "Every time I see a piece of C code I need to port, my heart dies a little. Then I port it to 1/4 as much Java, and feel better." The Java environment is a very complex combination of a Java Virtual Machine, the Java Language, and it's robust APIs. Combine that with the Java ME SDK for small devices or just Netbeans for the larger devices and you have a development environment where development time is reduced significantly meaning the product can be shipped sooner. Of course this is assuming that the engineers don't get slap happy adding new features given the extra time they'll have.  4. Create high-performance, portable, secure, robust, cross-platform applications easily The latest JIT compilers for the Oracle JVM approach the speed of C/C++ code, and in some memory allocation intensive circumstances, exceed it. And specifically for the embedded devices both ME Embedded and SE Embedded have been optimized for the smaller footprints.  In portability Java uses Bytecode to make the language platform independent. This creates a write once run anywhere environment that allows you to develop on one platform and execute on others and avoids a platform vendor lock in. For security, Java achieves protection by confining a Java program to a Java execution environment and not allowing it to access other parts of computer.  In variety of systems the program must execute reliably to be robust. Finally, Oracle Java ME Embedded is a cross-industry and cross-platform product optimized in release version 3.2 for chipsets based on the ARM architectures. Similarly Oracle Java SE Embedded works on a variety of ARM V5, V6, and V7, X86 and Power Architecture Linux. 5. Java isolates your apps from language and platform variations (e.g. C/C++, kernel, libc differences) This has been a key factor in Java from day one. Developers write to Java and don't have to worry about underlying differences in the platform variations. Those platform variations are being managed by the JVM. Gone are the C/C++ problems like memory corruptions, stack overflows, and other such bugs which are extremely difficult to isolate. Of course this doesn't imply that you won't be able to get away from native code completely. There could be some situations where you have to write native code in either assembler or C/C++. But those instances should be limited. 6. Most popular embedded processors supported allowing design flexibility Java SE Embedded is now available on ARM V5, V6, and V7 along with Linux on X86 and Power Architecture platforms. Java ME Embedded is available on system based on ARM architecture SOCs with low memory footprints and a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN). 7. Support for key embedded features (low footprint, power mgmt., low latency, etc) All embedded devices by there very nature are constrained in some way. Economics may dictate a device with a less RAM and ROM. The CPU needs can dictate a less powerful device. Power consumption is another major resource in some embedded devices as connecting to consistent power source not always desirable or possible. For others they have to constantly on. Often many of these systems are headless (in the embedded space it's almost always Halloween).  For memory resources ,Java ME Embedded can run in environment as low as 130KB RAM/350KB ROM for a minimal, customized configuration up to 700KB RAM/1500KB ROM for the full, standard configuration. Java SE Embedded is designed for environments starting at 32MB RAM/39MB  ROM. Key functionality of embedded devices such as auto-start and recovery, flexible networking are fully supported. And while Java SE Embedded has been optimized for mid-range to high-end embedded systems, Java ME Embedded is a Java runtime stack optimized for small embedded systems. It provides a robust and flexible application platform with dedicated embedded functionality for always-on, headless (no graphics/UI), and connected devices. 8. Leverage huge Java developer ecosystem (expertise, existing code) There are over 9 million developers in world that work on Java, and while not all of them work on embedded systems, their wealth of expertise in developing applications is immense. In short, getting a java developer to work on a embedded system is pretty easy, you probably have a java developer living in your subdivsion.  Then of course there is the wealth of existing code. The Java Embedded Community on Java.net is central gathering place for embedded Java developers. Conferences like Embedded Java @ JavaOne and the a variety of hardware vendor conferences like Freescale Technlogy Forums offer an excellent opportunity for those interested in embedded systems. 9. Easily create end-to-end solutions integrated with Java back-end services In the "Internet of Things" things aren't on an island doing an single task. For instance and embedded drink dispenser doesn't just dispense a beverage, but could collect money from a credit card and also send information about current sales. Similarly, an embedded house power monitoring system doesn't just manage the power usage in a house, but can also send that data back to the power company. In both cases it isn't about the individual thing, but monitoring a collection of  things. How much power did your block, subdivsion, area of town, town, county, state, nation, world use? How many Dr Peppers were purchased from thing1, thing2, thingN? The point is that all this information can be collected and transferred securely  (and believe me that is key issue that Java fully supports) to back end services for further analysis. And what better back in service exists than a Java back in service. It's interesting to note that on larger embedded platforms that support the Java Embedded Suite some of the analysis might be done on the embedded device itself as JES has a glassfish server and Java Database as part of the installation. The result is an end to end Java solution. 10. Solutions from constrained devices to server-class systems Just take a look at some of the embedded Java systems that have already been developed and you'll see a vast range of solutions. Livescribe pen, Kindle, each and every Blu-Ray player, Cisco's Advanced VOIP phone, KronosInTouch smart time clock, EnergyICT smart metering, EDF's automated meter management, Ricoh Printers, and Stanford's automated car  are just a few of the list of embedded Java implementation that continues to grow. Conclusion Now if your a Java Developer you probably look at some of the 10 reasons and say "duh", but for the embedded developers this is should be an eye opening list. And with the release of ME Embedded 3.2 and the Java Embedded Suite the embedded developers life is now a whole lot easier. For the Java developer your employment opportunities are about to increase. For both it's a great time to start developing Java for the "Internet of Things".

    Read the article

  • Cloud Computing = Elasticity * Availability

    - by Herve Roggero
    What is cloud computing? Is hosting the same thing as cloud computing? Are you running a cloud if you already use virtual machines? What is the difference between Infrastructure as a Service (IaaS) and a cloud provider? And the list goes on… these questions keep coming up and all try to fundamentally explain what “cloud” means relative to other concepts. At the risk of over simplification, answering these questions becomes simpler once you understand the primary foundations of cloud computing: Elasticity and Availability.   Elasticity The basic value proposition of cloud computing is to pay as you go, and to pay for what you use. This implies that an application can expand and contract on demand, across all its tiers (presentation layer, services, database, security…).  This also implies that application components can grow independently from each other. So if you need more storage for your database, you should be able to grow that tier without affecting, reconfiguring or changing the other tiers. Basically, cloud applications behave like a sponge; when you add water to a sponge, it grows in size; in the application world, the more customers you add, the more it grows. Pure IaaS providers will provide certain benefits, specifically in terms of operating costs, but an IaaS provider will not help you in making your applications elastic; neither will Virtual Machines. The smallest elasticity unit of an IaaS provider and a Virtual Machine environment is a server (physical or virtual). While adding servers in a datacenter helps in achieving scale, it is hardly enough. The application has yet to use this hardware.  If the process of adding computing resources is not transparent to the application, the application is not elastic.   As you can see from the above description, designing for the cloud is not about more servers; it is about designing an application for elasticity regardless of the underlying server farm.   Availability The fact of the matter is that making applications highly available is hard. It requires highly specialized tools and trained staff. On top of it, it's expensive. Many companies are required to run multiple data centers due to high availability requirements. In some organizations, some data centers are simply on standby, waiting to be used in a case of a failover. Other organizations are able to achieve a certain level of success with active/active data centers, in which all available data centers serve incoming user requests. While achieving high availability for services is relatively simple, establishing a highly available database farm is far more complex. In fact it is so complex that many companies establish yearly tests to validate failover procedures.   To a certain degree certain IaaS provides can assist with complex disaster recovery planning and setting up data centers that can achieve successful failover. However the burden is still on the corporation to manage and maintain such an environment, including regular hardware and software upgrades. Cloud computing on the other hand removes most of the disaster recovery requirements by hiding many of the underlying complexities.   Cloud Providers A cloud provider is an infrastructure provider offering additional tools to achieve application elasticity and availability that are not usually available on-premise. For example Microsoft Azure provides a simple configuration screen that makes it possible to run 1 or 100 web sites by clicking a button or two on a screen (simplifying provisioning), and soon SQL Azure will offer Data Federation to allow database sharding (which allows you to scale the database tier seamlessly and automatically). Other cloud providers offer certain features that are not available on-premise as well, such as the Amazon SC3 (Simple Storage Service) which gives you virtually unlimited storage capabilities for simple data stores, which is somewhat equivalent to the Microsoft Azure Table offering (offering a server-independent data storage model). Unlike IaaS providers, cloud providers give you the necessary tools to adopt elasticity as part of your application architecture.    Some cloud providers offer built-in high availability that get you out of the business of configuring clustered solutions, or running multiple data centers. Some cloud providers will give you more control (which puts some of that burden back on the customers' shoulder) and others will tend to make high availability totally transparent. For example, SQL Azure provides high availability automatically which would be very difficult to achieve (and very costly) on premise.   Keep in mind that each cloud provider has its strengths and weaknesses; some are better at achieving transparent scalability and server independence than others.    Not for Everyone Note however that it is up to you to leverage the elasticity capabilities of a cloud provider, as discussed previously; if you build a website that does not need to scale, for which elasticity is not important, then you can use a traditional host provider unless you also need high availability. Leveraging the technologies of cloud providers can be difficult and can become a journey for companies that build their solutions in a scale up fashion. Cloud computing promises to address cost containment and scalability of applications with built-in high availability. If your application does not need to scale or you do not need high availability, then cloud computing may not be for you. In fact, you may pay a premium to run your applications with cloud providers due to the underlying technologies built specifically for scalability and availability requirements. And as such, the cloud is not for everyone.   Consistent Customer Experience, Predictable Cost With all its complexities, buzz and foggy definition, cloud computing boils down to a simple objective: consistent customer experience at a predictable cost.  The objective of a cloud solution is to provide the same user experience to your last customer than the first, while keeping your operating costs directly proportional to the number of customers you have. Making your applications elastic and highly available across all its tiers, with as much automation as possible, achieves the first objective of a consistent customer experience. And the ability to expand and contract the infrastructure footprint of your application dynamically achieves the cost containment objectives.     Herve Roggero is a SQL Azure MVP and co-author of Pro SQL Azure (APress).  He is the co-founder of Blue Syntax Consulting (www.bluesyntax.net), a company focusing on cloud computing technologies helping customers understand and adopt cloud computing technologies. For more information contact herve at hroggero @ bluesyntax.net .

    Read the article

  • Expectations + Rewards = Innovation

    - by D'Arcy Lussier
    “Innovation” is a heavy word. We regard those that embrace it as “Innovators”. We describe organizations as being “Innovative”. We hold those associated with the word in high regard, even though its dictionary definition is very simple: Introducing something new. What our culture has done is wrapped Innovation in white robes and a gold crown. Innovation is rarely just introducing something new. Innovations and innovators are typically associated with other terms: groundbreaking, genius, industry-changing, creative, leading. Being a true innovator and creating innovations are a big deal, and something companies try to strive for…or at least say they strive for. There’s huge value in being recognized as an innovator in an industry, since the idea is that innovation equates to increased profitability. IBM ran an ad a few years back that showed what their view of innovation is: “The point of innovation is to make actual money.” If the money aspect makes you feel uneasy, consider it another way: the point of innovation is to <insert payoff here>. Companies that innovate will be more successful. Non-profits that innovate can better serve their target clients. Governments that innovate can better provide services to their citizens. True innovation is not easy to come by though. As with anything in business, how well an organization will innovate is reliant on the employees it retains, the expectations placed on those employees, and the rewards available to them. In a previous blog post I talked about one formula: Right Employees + Happy Employees = Productive Employees I want to introduce a new one, that builds upon the previous one: Expectations + Rewards = Innovation  The level of innovation your organization will realize is directly associated with the expectations you place on your staff and the rewards you make available to them. Expectations We may feel uncomfortable with the idea of placing expectations on our staff, mainly because expectation has somewhat of a negative or cold connotation to it: “I expect you to act this way or else!” The problem is in the or-else part…we focus on the negative aspects of failing to meet expectations instead of looking at the positive side. “I expect you to act this way because it will produce <insert benefit here>”. Expectations should not be set to punish but instead be set to ensure quality. At a recent conference I spoke with some Microsoft employees who told me that you have five years from starting with the company to reach a “Senior” level. If you don’t, then you’re let go. The expectation Microsoft placed on their staff is that they should be working towards improving themselves, taking more responsibility, and thus ensure that there is a constant level of quality in the workforce. Rewards Let me be clear: a paycheck is not a reward. A paycheck is simply the employer’s responsibility in the employee/employer relationship. A paycheck will never be the key motivator to drive innovation. Offering employees something over and above their required compensation can spur them to greater performance and achievement. Working in the food service industry, this tactic was used again and again: whoever has the highest sales over lunch will receive a free lunch/gift certificate/entry into a draw/etc. There was something to strive for, to try beyond the baseline of what our serving jobs were. It was through this that innovative sales techniques would be tried and honed, with key servers being top sellers time and time again. At a code camp I spoke at, I was amazed to see that all the employees from one company receive $100 Visa gift cards as a thank you for taking time to speak. Again, offering something over and above that can give that extra push for employees. Rewards work. But what about the fairness angle? In the restaurant example I gave, there were servers that would never win the competition. They just weren’t good enough at selling and never seemed to get better. So should those that did work at performing better and produce more sales for the restaurant not get rewarded because those who weren’t working at performing better might get upset? Of course not! Organizations succeed because of their top performers and those that strive to join their ranks. The Expectation/Reward Graph While the Expectations + Rewards = Innovation formula may seem like a simple mathematics formula, there’s much more going under the hood. In fact there are three different outcomes that could occur based on what you put in as values for Expectations and Rewards. Consider the graph below and the descriptions that follow: Disgruntled – High Expectation, Low Reward I worked at a company where the mantra was “Company First, Because We Pay You”. Even today I still hear stories of how this sentiment continues to be perpetuated: They provide you a paycheck and a means to live, therefore you should always put them as your top priority. Of course, this is a huge imbalance in the expectation/reward equation. Why would anyone willingly meet high expectations of availability, workload, deadlines, etc. when there is no reward other than a paycheck to show for it? Remember: paychecks are not rewards! Instead, you see employees be disgruntled which not only affects the level of production but also the level of quality within an organization. It also means that you see higher turnover. Complacent – Low Expectation, Low Reward Complacency is a systemic problem that typically exists throughout all levels of an organization. With no real expectations or rewards, nobody needs to excel. In fact, those that do try to innovate, improve, or introduce new things into the organization might be shunned or pushed out by the rest of the staff who are just doing things the same way they’ve always done it. The bigger issue for the organization with low/low values is that at best they’ll never grow beyond their current size (and may shrink actually), and at worst will cease to exist. Entitled – Low Expectation, High Reward It’s one thing to say you have the best people and reward them as such, but its another thing to actually have the best people and reward them as such. Organizations with Entitled employees are the former: their organization provides them with all types of comforts, benefits, and perks. But there’s no requirement before the rewards are dolled out, and there’s no short-list of who receives the rewards. Everyone in the company is treated the same and is given equal share of the spoils. Entitlement is actually almost identical with Complacency with one notable difference: just try to introduce higher expectations into an entitled organization! Entitled employees have been spoiled for so long that they can’t fathom having rewards taken from them, or having to achieve specific levels of performance before attaining them. Those running the organization also buy in to the Entitled sentiment, feeling that they must persist the same level of comforts to appease their staff…even though the quality of the employee pool may be suspect. Innovative – High Expectation, High Reward Finally we have the Innovative organization which places high expectations but also provides high rewards. This organization gets it: if you truly want the best employees you need to apply equal doses of pressure and praise. Realize that I’m not suggesting crazy overtime or un-realistic working conditions. I do not agree with the “Glengary-Glenross” method of encouragement. But as anyone who follows sports can tell you, the teams that win are the ones where the coaches push their players to be their best; to achieve new levels of performance that they didn’t know they could receive. And the result for the players is more money, fame, and opportunity. It’s in this environment that organizations can focus on innovation – true innovation that builds the business and allows everyone involved to truly benefit. In Closing Organizations love to use the word “Innovation” and its derivatives, but very few actually do innovate. For many, the term has just become another marketing buzzword to lump in with all the other business terms that get overused. But for those organizations that truly get the value of innovation, they will be the ones surging forward while other companies simply fade into the background. And they will be the organizations that expect more from their employees, and give them their just rewards.

    Read the article

  • Orchestrating the Virtual Enterprise

    - by John Murphy
    During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems.  Case in point, almost everyone has ordered from Amazon.com at one time or another. Our orders are as likely to be fulfilled by third parties as they are by Amazon itself. To deliver the order promptly and efficiently, Amazon has to send it to the right fulfillment location and know the availability in that location. It needs to be able to track status of the fulfillment and deal with exceptions. As a virtual enterprise, Amazon's operations, using thousands of trading partners, requires a very different approach to fulfillment than the traditional 'take an order and ship it from your own warehouse' model. Amazon had no choice but to develop a complex, expensive and custom solution to tackle this problem as there used to be no product solution available. Now, other companies who want to follow similar models have a better off-the-shelf choice -- Oracle Distributed Order Orchestration (DOO).  Consider how another of our customers is using our distributed orchestration solution. This major airplane manufacturer has a highly complex business and interacts regularly with the U.S. Government and major airlines. It sits in the middle of an intricate supply chain and needed to improve visibility across its many different entities. Oracle Fusion DOO gives the company an orchestration mechanism so it could improve quality, speed, flexibility, and consistency without requiring an organ transplant of these highly complex legacy systems. Many retailers face the challenge of dealing with brick and mortar, Web, and reseller channels. They all need to be knitted together into a virtual enterprise experience that is consistent for their customers. When a large U.K. grocer with a strong brick and mortar retail operation added an online business, they turned to Oracle Fusion DOO to bring these entities together. Disturbing the Peace with Acquisitions Quite often a company's ERP system is disrupted when it acquires a new company. An acquisition can inject a new set of processes and systems -- or even introduce an entirely new business like Sun's hardware did at Oracle. This challenge has been a driver for some of our DOO customers. A large power management company is using Oracle Fusion DOO to provide the flexibility to rapidly integrate additional products and services into its central fulfillment operation. The Flip Side of Fulfillment Meanwhile, we haven't ignored similar challenges on the supply side of the equation. Specifically, how to manage complex supply in a flexible way when there are multiple trading parties involved? How to manage the supply to suppliers? How to manage critical components that need to merge in a tier two or tier three supply chain? By investing in supply orchestration solutions for the virtual enterprise, we plan to give users better visibility into their network of suppliers to help them drive down costs. We also think this technology and full orchestration process can be applied to the financial side of organizations. An example is transactions that flow through complex internal structures to minimize tax exposure. We can help companies manage those transactions effectively by thinking about the internal organization as a virtual enterprise and bringing the same solution set to this internal challenge.  The Clear Front Runner No other company is investing in solving the virtual enterprise supply chain issues like Oracle is. Oracle is in a unique position to become the gold standard in this market space. We have the infrastructure of Oracle technology. We already have an Oracle Fusion DOO application which embraces the best of what's required in this area. And we're absolutely committed to extending our Fusion solution to other use cases and delivering even more business value.

    Read the article

  • Building an OpenStack Cloud for Solaris Engineering, Part 1

    - by Dave Miner
    One of the signature features of the recently-released Solaris 11.2 is the OpenStack cloud computing platform.  Over on the Solaris OpenStack blog the development team is publishing lots of details about our version of OpenStack Havana as well as some tips on specific features, and I highly recommend reading those to get a feel for how we've leveraged Solaris's features to build a top-notch cloud platform.  In this and some subsequent posts I'm going to look at it from a different perspective, which is that of the enterprise administrator deploying an OpenStack cloud.  But this won't be just a theoretical perspective: I've spent the past several months putting together a deployment of OpenStack for use by the Solaris engineering organization, and now that it's in production we'll share how we built it and what we've learned so far.In the Solaris engineering organization we've long had dedicated lab systems dispersed among our various sites and a home-grown reservation tool for developers to reserve those systems; various teams also have private systems for specific testing purposes.  But as a developer, it can still be difficult to find systems you need, especially since most Solaris changes require testing on both SPARC and x86 systems before they can be integrated.  We've added virtual resources over the years as well in the form of LDOMs and zones (both traditional non-global zones and the new kernel zones).  Fundamentally, though, these were all still deployed in the same model: our overworked lab administrators set up pre-configured resources and we then reserve them.  Sounds like pretty much every traditional IT shop, right?  Which means that there's a lot of opportunity for efficiencies from greater use of virtualization and the self-service style of cloud computing.  As we were well into development of OpenStack on Solaris, I was recruited to figure out how we could deploy it to both provide more (and more efficient) development and test resources for the organization as well as a test environment for Solaris OpenStack.At this point, let's acknowledge one fact: deploying OpenStack is hard.  It's a very complex piece of software that makes use of sophisticated networking features and runs as a ton of service daemons with myriad configuration files.  The web UI, Horizon, doesn't often do a good job of providing detailed errors.  Even the command-line clients are not as transparent as you'd like, though at least you can turn on verbose and debug messaging and often get some clues as to what to look for, though it helps if you're good at reading JSON structure dumps.  I'd already learned all of this in doing a single-system Grizzly-on-Linux deployment for the development team to reference when they were getting started so I at least came to this job with some appreciation for what I was taking on.  The good news is that both we and the community have done a lot to make deployment much easier in the last year; probably the easiest approach is to download the OpenStack Unified Archive from OTN to get your hands on a single-system demonstration environment.  I highly recommend getting started with something like it to get some understanding of OpenStack before you embark on a more complex deployment.  For some situations, it may in fact be all you ever need.  If so, you don't need to read the rest of this series of posts!In the Solaris engineering case, we need a lot more horsepower than a single-system cloud can provide.  We need to support both SPARC and x86 VM's, and we have hundreds of developers so we want to be able to scale to support thousands of VM's, though we're going to build to that scale over time, not immediately.  We also want to be able to test both Solaris 11 updates and a release such as Solaris 12 that's under development so that we can work out any upgrade issues before release.  One thing we don't have is a requirement for extremely high availability, at least at this point.  We surely don't want a lot of down time, but we can tolerate scheduled outages and brief (as in an hour or so) unscheduled ones.  Thus I didn't need to spend effort on trying to get high availability everywhere.The diagram below shows our initial deployment design.  We're using six systems, most of which are x86 because we had more of those immediately available.  All of those systems reside on a management VLAN and are connected with a two-way link aggregation of 1 Gb links (we don't yet have 10 Gb switching infrastructure in place, but we'll get there).  A separate VLAN provides "public" (as in connected to the rest of Oracle's internal network) addresses, while we use VxLANs for the tenant networks. One system is more or less the control node, providing the MySQL database, RabbitMQ, Keystone, and the Nova API and scheduler as well as the Horizon console.  We're curious how this will perform and I anticipate eventually splitting at least the database off to another node to help simplify upgrades, but at our present scale this works.I had a couple of systems with lots of disk space, one of which was already configured as the Automated Installation server for the lab, so it's just providing the Glance image repository for OpenStack.  The other node with lots of disks provides Cinder block storage service; we also have a ZFS Storage Appliance that will help back-end Cinder in the near future, I just haven't had time to get it configured in yet.There's a separate system for Neutron, which is our Elastic Virtual Switch controller and handles the routing and NAT for the guests.  We don't have any need for firewalling in this deployment so we're not doing so.  We presently have only two tenants defined, one for the Solaris organization that's funding this cloud, and a separate tenant for other Oracle organizations that would like to try out OpenStack on Solaris.  Each tenant has one VxLAN defined initially, but we can of course add more.  Right now we have just a single /24 network for the floating IP's, once we get demand up to where we need more then we'll add them.Finally, we have started with just two compute nodes; one is an x86 system, the other is an LDOM on a SPARC T5-2.  We'll be adding more when demand reaches the level where we need them, but as we're still ramping up the user base it's less work to manage fewer nodes until then.My next post will delve into the details of building this OpenStack cloud's infrastructure, including how we're using various Solaris features such as Automated Installation, IPS packaging, SMF, and Puppet to deploy and manage the nodes.  After that we'll get into the specifics of configuring and running OpenStack itself.

    Read the article

< Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >