Search Results

Search found 14292 results on 572 pages for 'high integrity systems'.

Page 81/572 | < Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >

  • I have a WPF/Silverlight ListView whose height is unpredictable and too high. How do I control it be

    - by Rob Perkins
    I have a ListView element with a DataTemplate for each ListViewItem defined as follows. When run, the ListView's height is not collapsed onto the items in the view, which is undesirable behavior: <DataTemplate x:Key="LicenseItemTemplate"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="Auto" /> <RowDefinition Height="Auto" /> </Grid.RowDefinitions> <TextBlock Grid.Row="0" Text="{Binding company}"></TextBlock> <Grid Grid.Row="1" Style="{StaticResource HiddenWhenNotSelectedStyle}"> <Grid.RowDefinitions> <RowDefinition /> </Grid.RowDefinitions> <Button Grid.Row="0">ClickIt</Button> </Grid> </Grid> </DataTemplate> The second row of the outer grid has a style applied which looks like this. The purpose of the style is to : <Style TargetType="{x:Type Grid}" x:Key="HiddenWhenNotSelectedStyle" > <Style.Triggers> <DataTrigger Binding="{Binding Path=IsSelected, RelativeSource={ RelativeSource Mode=FindAncestor, AncestorType={x:Type ListViewItem} } }" Value="False"> <Setter Property="Grid.Visibility" Value="Collapsed" /> </DataTrigger> <DataTrigger Binding="{Binding Path=IsSelected, RelativeSource={ RelativeSource Mode=FindAncestor, AncestorType={x:Type ListViewItem} } }" Value="True"> <Setter Property="Grid.Visibility" Value="Visible" /> </DataTrigger> </Style.Triggers> </Style> The ListView renders like this: The desired appearance is this, when none of the elements are selected: ...with, of course, the ListView's height adjusting to accommodate the additional content when the second grid is made visible by selection. What can I do to get the desired behavior?

    Read the article

  • Performance Comparison of Shell Scripts vs high level interpreted langs (C#/Java/etc.)

    - by dferraro
    Hi all, First - This is not meant to be a 'which is better, ignorant nonionic war thread'... But rather, I generally need help in making an architecture decision / argument to put forward to my boss. Skipping the details - I simply just would love to know and find the results of anyone who has done some performance comparisons of Shell vs [Insert General Purpose Programming Language (interpreted) here), such as C# or Java... Surprisingly, I have spent some time on Google on searching here to not find any of this data. Has anyone ever done these comparisons, in different use-cases; hitting a database like in a XYX # of loops doing different types of SQL (Oracle pref, but MSSQL would do) queries such as any of the CRUD ops - and also not hitting database and just regular 50k loop type comparison doing different types of calculations, and things of that nature? In particular - for right now, I need to a comparison of hitting an Oracle DB from a shell script vs, lets say C# (again, any GPPL thats interpreted would be fine, even the higher level ones like Python). But I also need to know about standard programming calculations / instructions/etc... Before you ask 'why not just write a quick test yourself? The answer is: I've been a Windows developer my whole life/career and have very limited knowledge of Shell scripting - not to mention *nix as a whole.... So asking the question on here from the more experienced guys would be grealty beneficial, not to mention time saving as we are in near perputual deadline crunch as it is ;). Thanks so much in advance,

    Read the article

  • Does normalization really hurt performance in high traffic sites?

    - by Luke101
    I am designing a database and I would like to normalize the database. I one query I will joining about 30-40 tables. Will this hurt the website performance if it ever becomes extremely popular? This will be the main query and it will be getting called 50% of the time. The other queries I will be joining about 2 tables. I have a choice right now to normalize or not to normalize but if the normalization becomes a problem in the future i may have to rewrite 40% of the software and it may take me a long time. Does normalization really hurt in this case? Should I denormalize now while I have the time?

    Read the article

  • Produce high-quality, custom-size thumbnails from Office documents on Windows?

    - by Edwin
    Hi, What do you think would be the best way to produce custom size image thumbnail from MS Office documents (doc, xls and ppt) on Windows with native code (means all means besides .NET/JAVA)? My current research result: IExtractImage COM. Problem: The size of the generated result is fixed and low quality, and you can't be sure all the source documents contain the thumbnails. Use a programmable virtual printer to print the specified page, and the printer must support image output, any good suggestion for this? What else would you suggest? thanks!

    Read the article

  • Guidance required: FIrst time gonna work with real high end database (size = 50GB).

    - by claws
    I got a project of designing a Database. This is going to be my first big scale project. Good thing about it is information is mostly organized & currently stored in text files. The size of this information is 50GB. There are going to be few millions of records in each Table. Its going to have around 50 tables. I need to provide a web interface for searching & browsing. I'm going to use MySQL DBMS. I've never worked with a database more than 200MB before. So, speed & performance was never a concern but I followed things like normalization & Indexes. I never used any kind of testing/benchmarking/queryOptimization/whatever because I never had to care about them. But here the purpose of creating a database is to make it quickly searchable. So, I need to consider all possible aspects in design. I was browsing archives & found: http://stackoverflow.com/questions/1981526/what-should-every-developer-know-about-databases http://stackoverflow.com/questions/621884/database-development-mistakes-made-by-app-developers I'm gonna keep the points mentioned in above answers in mind. What else should I know? What else should I keep in mind?

    Read the article

  • Is there a better way to throttle a high throughput job?

    - by ChaosPandion
    I created a simple class that shows what I am trying to do without any noise. Feel free to bash away at my code. That's why I posted it here. public class Throttled : IDisposable { private readonly Action work; private readonly Func<bool> stop; private readonly ManualResetEvent continueProcessing; private readonly Timer throttleTimer; private readonly int throttlePeriod; private readonly int throttleLimit; private int totalProcessed; public Throttled(Action work, Func<bool> stop, int throttlePeriod, int throttleLimit) { this.work = work; this.stop = stop; this.throttlePeriod = throttlePeriod; this.throttleLimit = throttleLimit; continueProcessing = new ManualResetEvent(true); throttleTimer = new Timer(ThrottleUpdate, null, throttlePeriod, throttlePeriod); } public void Dispose() { throttleTimer.Dispose(); ((IDisposable)continueProcessing).Dispose(); } public void Execute() { while (!stop()) { if (Interlocked.Increment(ref totalProcessed) > throttleLimit) { lock (continueProcessing) { continueProcessing.Reset(); } if (!continueProcessing.WaitOne(throttlePeriod)) { throw new TimeoutException(); } } work(); } } private void ThrottleUpdate(object state) { Interlocked.Exchange(ref totalProcessed, 0); lock (continueProcessing) { continueProcessing.Set(); } } }

    Read the article

  • What is the most suitable for writing a high speed server C, C++ or C# ?

    - by wniroshan
    I'm goint to write a server which does lots of image processing. Server-end processsing is expected to be very tedious. Server will maily have mobile phones as its clients. I am really concerend about speed and effciency. Security is pretty important too. Server will be running on a windows platform. Can anyone tell me what should I use as the language C, C++ or C#? or at least what are the ares that I should be looking at when selecting one of them Thank you.

    Read the article

  • best web database solution for scala for a high traffic site?

    - by egervari
    I am in charge of a rebuilding a website that gets about 250,000 visitors a day. We'd like to use Scala, but it does not work very well with Spring (in some minor cases) and Hibernate (there is a major and very annoying mismatch here if you want to use scala collections, which we do). The application itself is going to have about 40-50 tables. Other than Hibernate, is there an ORM that works awesome with Scala and is as performant and reliable as Hibernate? Does it also have the same capabilities, or are we going to run into leaky-abstractions if we don't use Hibernate? It would be a big risk for us to go with a framework that is newer and doesn't seem to have a lot of industry backing... and at the same time, Hibernate is a real pain to program against when using Scala. 1) The Java Collection <- Scala Collection is absolutely painful. There is a lot more boilerplate and crap to write. 2) The IDE doesn't import JavaConversions and java interfaces automatically... so we this needs to be done manually. Optimizing Imports in IDEA is going to destroy all the manual work. 3) There is also a performance cost to converting back and forth all the time in your domain objects and your dao classes. 4) Not to mention there needs to be a lot of casting, which produces code ugly as sin. I actually would love to write my own orm that is 100% tailored to scala, but obviously this is really outside of the scope of our project for now. So what is the best approach?

    Read the article

  • Which relational databases exist with a public API for a high level language?

    - by Jens Schauder
    We typically interface with a RDBMS through SQL. I.e. we create a sql string and send it to the server through JDBC or ODBC or something similar. Are there any RDBMS that allow direct interfacing with the database engine through some API in Java, C#, C or similar? I would expect an API that allows constructs like this (in some arbitrary pseudo code): Iterator iter = engine.getIndex("myIndex").getReferencesForValue("23"); for (Reference ref: iter){ Row row = engine.getTable("mytable").getRow(ref); } I guess something like this is hidden somewhere in (and available from) open source databases, but I am looking for something that is officially supported as a public API, so one finds at least a note in the release notes, when it changes. In order to make this a question that actually has a 'best' answer: I prefer languages in the order given above and I will prefer mature APIs over prototypes and research work, although these are welcome as well.

    Read the article

  • 2D Game: Fast(est) way to find x closest entities for another entity - huge amount of entities, high

    - by Pygmy
    I'm working on a 2D game that has a huge amount of dynamic entities. For fun's sake, let's call them soldiers, and let's say there are 50000 of them (which I just randomly thought up, it might be much more or much less :)). All these soldiers are moving every frame according to rules - think boids / flocking / steering behaviour. For each soldier, to update it's movement I need the X soldiers that are closest to the one I'm processing. What would be the best spatial hierarchy to store them to facilitate calculations like this without too much overhead ? (All entities are updated/moved every frame, so it has to handle dynamic entities very well)

    Read the article

  • set arraylist element as null

    - by Jessy
    The first index is set to null (empty), but it doesn't print the right output, why? //set the first index as null and the rest as "High" String a []= {null,"High","High","High","High","High"}; //add array to arraylist ArrayList<Object> choice = new ArrayList<Object>(Arrays.asList(a)); for(int i=0; i<choice.size(); i++){ if(i==0){ if(choice.get(0).equals(null)) System.out.println("I am empty"); //it doesn't print this output } }

    Read the article

  • What's the best CDN for image hosting on a high-volume web site?

    - by Mike
    Akamai is way too expensive. Photobucket is not reliable. Is there a great content delivery network that I can use just to host my images? We deploy images programmatically via FTP, so there is some programming behind the scenes. Having some sort of reporting about the reliability of the service, whether it's raw logs files or a web-based admin screen that shows http errors, would also be important. Has anyone worked with edgecast?

    Read the article

  • How do I prevent a <td> from being too high?

    - by Cornflake
    It must be something stupid, but I can't figure it out so far... Here is my HTML: <table cellspacing="0" cellpadding="0" border="0"> <tr> <td style="height: 8px"><img src="/media/note2.png" width="8" height="8" border="0"></td> <td style="height: 8px"></td> <td style="height: 8px"><img src="/media/note1.png" width="8" height="8" border="0"></td> </tr> <tr> <td class="NoteCell"></td> <td class="NoteCell">{{ text }}</td> <td class="NoteCell"></td> </tr> <tr> <td style="height: 8px"><img src="/media/note4.png" width="8" height="8" border="0"></td> <td style="height: 8px"></td> <td style="height: 8px"><img src="/media/note3.png" width="8" height="8" border="0"></td> </tr> I'm expecting the first and third rows to have a height of 8 pixels, but for some reason they are much higher (as if there was text inside, but there is no text!) Puzzled... Any help will be appreciated!

    Read the article

  • Why doesn't list.get(0).equals(null) work?

    - by Jessy
    The first index is set to null (empty), but it doesn't print the right output, why? //set the first index as null and the rest as "High" String a []= {null,"High","High","High","High","High"}; //add array to arraylist ArrayList<Object> choice = new ArrayList<Object>(Arrays.asList(a)); for(int i=0; i<choice.size(); i++){ if(i==0){ if(choice.get(0).equals(null)) System.out.println("I am empty"); //it doesn't print this output } }

    Read the article

  • Controlling fan speed on ASUS K43SV

    - by user181677
    ASUS K43SV laptop it very hot. Is it possible to control fan speed with fancontrol? When I run $sudo pwmconfig it displays this message: /usr/sbin/pwmconfig: There are no fan-capable sensor modules installed When I run $sensors, here is the output acpitz-virtual-0 Adapter: Virtual device temp1: +61.0°C (crit = +103.0°C) coretemp-isa-0000 Adapter: ISA adapter Physical id 0: +62.0°C (high = +86.0°C, crit = +100.0°C) Core 0: +62.0°C (high = +86.0°C, crit = +100.0°C) Core 1: +61.0°C (high = +86.0°C, crit = +100.0°C)

    Read the article

  • Windows Azure Evolution &ndash; Caching (Preview)

    - by Shaun
    Caching is a popular topic when we are building a high performance and high scalable system not only on top of the cloud platform but the on-premise environment as well. On March 2011 the Windows Azure AppFabric Caching had been production launched. It provides an in-memory, distributed caching service over the cloud. And now, in this June 2012 update, the cache team announce a grand new caching solution on Windows Azure, which is called Windows Azure Caching (Preview). And the original Windows Azure AppFabric Caching was renamed to Windows Azure Shared Caching.   What’s Caching (Preview) If you had been using the Shared Caching you should know that it is constructed by a bunch of cache servers. And when you want to use you should firstly create a cache account from the developer portal and specify the size you want to use, which means how much memory you can use to store your data that wanted to be cached. Then you can add, get and remove them through your code through the cache URL. The Shared Caching is a multi-tenancy system which host all cached items across all users. So you don’t know which server your data was located. This caching mode works well and can take most of the cases. But it has some problems. The first one is the performance. Since the Shared Caching is a multi-tenancy system, which means all cache operations should go through the Shared Caching gateway and then routed to the server which have the data your are looking for. Even though there are some caches in the Shared Caching system it also takes time from your cloud services to the cache service. Secondary, the Shared Caching service works as a block box to the developer. The only thing we know is my cache endpoint, and that’s all. Someone may satisfied since they don’t want to care about anything underlying. But if you need to know more and want more control that’s impossible in the Shared Caching. The last problem would be the price and cost-efficiency. You pay the bill based on how much cache you requested per month. But when we host a web role or worker role, it seldom consumes all of the memory and CPU in the virtual machine (service instance). If using Shared Caching we have to pay for the cache service while waste of some of our memory and CPU locally. Since the issues above Microsoft offered a new caching mode over to us, which is the Caching (Preview). Instead of having a separated cache service, the Caching (Preview) leverage the memory and CPU in our cloud services (web role and worker role) as the cache clusters. Hence the Caching (Preview) runs on the virtual machines which hosted or near our cloud applications. Without any gateway and routing, since it located in the same data center and same racks, it provides really high performance than the Shared Caching. The Caching (Preview) works side-by-side to our application, initialized and worked as a Windows Service running in the virtual machines invoked by the startup tasks from our roles, we could get more information and control to them. And since the Caching (Preview) utilizes the memory and CPU from our existing cloud services, so it’s free. What we need to pay is the original computing price. And the resource on each machines could be used more efficiently.   Enable Caching (Preview) It’s very simple to enable the Caching (Preview) in a cloud service. Let’s create a new windows azure cloud project from Visual Studio and added an ASP.NET Web Role. Then open the role setting and select the Caching page. This is where we enable and configure the Caching (Preview) on a role. To enable the Caching (Preview) just open the “Enable Caching (Preview Release)” check box. And then we need to specify which mode of the caching clusters we want to use. There are two kinds of caching mode, co-located and dedicate. The co-located mode means we use the memory in the instances we run our cloud services (web role or worker role). By using this mode we must specify how many percentage of the memory will be used as the cache. The default value is 30%. So make sure it will not affect the role business execution. The dedicate mode will use all memory in the virtual machine as the cache. In fact it will reserve some for operation system, azure hosting etc.. But it will try to use as much as the available memory to be the cache. As you can see, the Caching (Preview) was defined based on roles, which means all instances of this role will apply the same setting and play as a whole cache pool, and you can consume it by specifying the name of the role, which I will demonstrate later. And in a windows azure project we can have more than one role have the Caching (Preview) enabled. Then we will have more caches. For example, let’s say I have a web role and worker role. The web role I specified 30% co-located caching and the worker role I specified dedicated caching. If I have 3 instances of my web role and 2 instances of my worker role, then I will have two caches. As the figure above, cache 1 was contributed by three web role instances while cache 2 was contributed by 2 worker role instances. Then we can add items into cache 1 and retrieve it from web role code and worker role code. But the items stored in cache 1 cannot be retrieved from cache 2 since they are isolated. Back to our Visual Studio we specify 30% of co-located cache and use the local storage emulator to store the cache cluster runtime status. Then at the bottom we can specify the named caches. Now we just use the default one. Now we had enabled the Caching (Preview) in our web role settings. Next, let’s have a look on how to consume our cache.   Consume Caching (Preview) The Caching (Preview) can only be consumed by the roles in the same cloud services. As I mentioned earlier, a cache contributed by web role can be connected from a worker role if they are in the same cloud service. But you cannot consume a Caching (Preview) from other cloud services. This is different from the Shared Caching. The Shared Caching is opened to all services if it has the connection URL and authentication token. To consume the Caching (Preview) we need to add some references into our project as well as some configuration in the Web.config. NuGet makes our life easy. Right click on our web role project and select “Manage NuGet packages”, and then search the package named “WindowsAzure.Caching”. In the package list install the “Windows Azure Caching Preview”. It will download all necessary references from the NuGet repository and update our Web.config as well. Open the Web.config of our web role and find the “dataCacheClients” node. Under this node we can specify the cache clients we are going to use. For each cache client it will use the role name to identity and find the cache. Since we only have this web role with the Caching (Preview) enabled so I pasted the current role name in the configuration. Then, in the default page I will add some code to show how to use the cache. I will have a textbox on the page where user can input his or her name, then press a button to generate the email address for him/her. And in backend code I will check if this name had been added in cache. If yes I will return the email back immediately. Otherwise, I will sleep the tread for 2 seconds to simulate the latency, then add it into cache and return back to the page. 1: protected void btnGenerate_Click(object sender, EventArgs e) 2: { 3: // check if name is specified 4: var name = txtName.Text; 5: if (string.IsNullOrWhiteSpace(name)) 6: { 7: lblResult.Text = "Error. Please specify name."; 8: return; 9: } 10:  11: bool cached; 12: var sw = new Stopwatch(); 13: sw.Start(); 14:  15: // create the cache factory and cache 16: var factory = new DataCacheFactory(); 17: var cache = factory.GetDefaultCache(); 18:  19: // check if the name specified is in cache 20: var email = cache.Get(name) as string; 21: if (email != null) 22: { 23: cached = true; 24: sw.Stop(); 25: } 26: else 27: { 28: cached = false; 29: // simulate the letancy 30: Thread.Sleep(2000); 31: email = string.Format("{0}@igt.com", name); 32: // add to cache 33: cache.Add(name, email); 34: } 35:  36: sw.Stop(); 37: lblResult.Text = string.Format( 38: "Cached = {0}. Duration: {1}s. {2} => {3}", 39: cached, sw.Elapsed.TotalSeconds.ToString("0.00"), name, email); 40: } The Caching (Preview) can be used on the local emulator so we just F5. The first time I entered my name it will take about 2 seconds to get the email back to me since it was not in the cache. But if we re-enter my name it will be back at once from the cache. Since the Caching (Preview) is distributed across all instances of the role, so we can scaling-out it by scaling-out our web role. Just use 2 instances and tweak some code to show the current instance ID in the page, and have another try. Then we can see the cache can be retrieved even though it was added by another instance.   Consume Caching (Preview) Across Roles As I mentioned, the Caching (Preview) can be consumed by all other roles within the same cloud service. For example, let’s add another web role in our cloud solution and add the same code in its default page. In the Web.config we add the cache client to one enabled in the last role, by specifying its role name here. Then we start the solution locally and go to web role 1, specify the name and let it generate the email to us. Since there’s no cache for this name so it will take about 2 seconds but will save the email into cache. And then we go to web role 2 and specify the same name. Then you can see it retrieve the email saved by the web role 1 and returned back very quickly. Finally then we can upload our application to Windows Azure and test again. Make sure you had changed the cache cluster status storage account to the real azure account.   More Awesome Features As a in-memory distributed caching solution, the Caching (Preview) has some fancy features I would like to highlight here. The first one is the high availability support. This is the first time I have heard that a distributed cache support high availability. In the distributed cache world if a cache cluster was failed, the data it stored will be lost. This behavior was introduced by Memcached and is followed by almost all distributed cache productions. But Caching (Preview) provides high availability, which means you can specify if the named cache will be backup automatically. If yes then the data belongs to this named cache will be replicated on another role instance of this role. Then if one of the instance was failed the data can be retrieved from its backup instance. To enable the backup just open the Caching page in Visual Studio. In the named cache you want to enable backup, change the Backup Copies value from 0 to 1. The value of Backup Copies only for 0 and 1. “0” means no backup and no high availability while “1” means enabled high availability with backup the data into another instance. But by using the high availability feature there are something we need to make sure. Firstly the high availability does NOT means the data in cache will never be lost for any kind of failure. For example, if we have a role with cache enabled that has 10 instances, and 9 of them was failed, then most of the cached data will be lost since the primary and backup instance may failed together. But normally is will not be happened since MS guarantees that it will use the instance in the different fault domain for backup cache. Another one is that, enabling the backup means you store two copies of your data. For example if you think 100MB memory is OK for cache, but you need at least 200MB if you enabled backup. Besides the high availability, the Caching (Preview) support more features introduced in Windows Server AppFabric Caching than the Windows Azure Shared Caching. It supports local cache with notification. It also support absolute and slide window expiration types as well. And the Caching (Preview) also support the Memcached protocol as well. This means if you have an application based on Memcached, you can use Caching (Preview) without any code changes. What you need to do is to change the configuration of how you connect to the cache. Similar as the Windows Azure Shared Caching, MS also offers the out-of-box ASP.NET session provider and output cache provide on top of the Caching (Preview).   Summary Caching is very important component when we building a cloud-based application. In the June 2012 update MS provides a new cache solution named Caching (Preview). Different from the existing Windows Azure Shared Caching, Caching (Preview) runs the cache cluster within the role instances we have deployed to the cloud. It gives more control, more performance and more cost-effect. So now we have two caching solutions in Windows Azure, the Shared Caching and Caching (Preview). If you need a central cache service which can be used by many cloud services and web sites, then you have to use the Shared Caching. But if you only need a fast, near distributed cache, then you’d better use Caching (Preview).   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • MySQL Connect 8 Days Away - Replication Sessions

    - by Mat Keep
    Following on from my post about MySQL Cluster sessions at the forthcoming Connect conference, its now the turn of MySQL Replication - another technology at the heart of scaling and high availability for MySQL. Unless you've only just returned from a 6-month alien abduction, you will know that MySQL 5.6 includes the largest set of replication enhancements ever packaged into a single new release: - Global Transaction IDs + HA utilities for self-healing cluster..(yes both automatic failover and manual switchover available!) - Crash-safe slaves and binlog - Binlog Group Commit and Multi-Threaded Slaves for high performance - Replication Event Checksums and Time-Delayed replication - and many more There are a number of sessions dedicated to learn more about these important new enhancements, delivered by the same engineers who developed them. Here is a summary Saturday 29th, 13.00 Replication Tips and Tricks, Mats Kindahl In this session, the developers of MySQL Replication present a bag of useful tips and tricks related to the MySQL 5.5 GA and MySQL 5.6 development milestone releases, including multisource replication, using logs for auditing, handling filtering, examining the binary log, using relay slaves, splitting the replication stream, and handling failover. Saturday 29th, 17.30 Enabling the New Generation of Web and Cloud Services with MySQL 5.6 Replication, Lars Thalmann This session showcases the new replication features, including • High performance (group commit, multithreaded slave) • High availability (crash-safe slaves, failover utilities) • Flexibility and usability (global transaction identifiers, annotated row-based replication [RBR]) • Data integrity (event checksums) Saturday 29th, 1900 MySQL Replication Birds of a Feather In this session, the MySQL Replication engineers discuss all the goodies, including global transaction identifiers (GTIDs) with autofailover; multithreaded, crash-safe slaves; checksums; and more. The team discusses the design behind these enhancements and how to get started with them. You will get the opportunity to present your feedback on how these can be further enhanced and can share any additional replication requirements you have to further scale your critical MySQL-based workloads. Sunday 30th, 10.15 Hands-On Lab, MySQL Replication, Luis Soares and Sven Sandberg But how do you get started, how does it work, and what are the best practices and tools? During this hands-on lab, you will learn how to get started with replication, how it works, architecture, replication prerequisites, setting up a simple topology, and advanced replication configurations. The session also covers some of the new features in the MySQL 5.6 development milestone releases. Sunday 30th, 13.15 Hands-On Lab, MySQL Utilities, Chuck Bell Would you like to learn how to more effectively manage a host of MySQL servers and manage high-availability features such as replication? This hands-on lab addresses these areas and more. Participants will get familiar with all of the MySQL utilities, using each of them with a variety of options to configure and manage MySQL servers. Sunday 30th, 14.45 Eliminating Downtime with MySQL Replication, Luis Soares The presentation takes a deep dive into new replication features such as global transaction identifiers and crash-safe slaves. It also showcases a range of Python utilities that, combined with the Release 5.6 feature set, results in a self-healing data infrastructure. By the end of the session, attendees will be familiar with the new high-availability features in the whole MySQL 5.6 release and how to make use of them to protect and grow their business. Sunday 30th, 17.45 Scaling for the Web and the Cloud with MySQL Replication, Luis Soares In a Replication topology, high performance directly translates into improving read consistency from slaves and reducing the risk of data loss if a master fails. MySQL 5.6 introduces several new replication features to enhance performance. In this session, you will learn about these new features, how they work, and how you can leverage them in your applications. In addition, you will learn about some other best practices that can be used to improve performance. So how can you make sure you don't miss out - the good news is that registration is still open ;-) And just to whet your appetite, listen to the On-Demand webinar that presents an overview of MySQL 5.6 Replication.  

    Read the article

  • How do I get a Dane-Elec mp3/mp4 player working?

    - by user40432
    My MP3/MP4 does not plug-in and play and therefore I can not transfer any file to the MP3/MP4 dane-elec music my touch or only dane-elec with 8 gb in memory and perhapses model zt1 with radio,..and microsdhc card slot following the above link the mp3/mp4 is there and it is MP3 Player: TOUCH MY MUSIC and the complete information is on this site http://www.danedigital.com/8-Music-Media-Players/2-music-touch.html as the Technical Specifications MP3 Player: TOUCH MY MUSIC The Mp4 player has a very classy. It allows its users to play music and view photos and video. His fluent interface, its touch-pad, his radio and RDS Micro SDHC reader makes him a very complete device will become the ideal musical companion. ubuntu i am with is ubuntu 11.10 kernel 3.0.0-14-generic the latest I tried to install many applications but nothing worked. With disk utility I can see that Ubuntu can recognize something, that as a peripheral device named rockchip usbdisk user and rockchip usbdisk sd, and i can plug and play other devices, and only this mp3/mp4 do not connect to the computer with ubuntu and the device as no problem working disconnected to computer I try to see if work on Windows and it does! I can see the device and transfer files to the MP3/MP4 dane-elec folder device and use FAT32. So why can not do on Ubuntu!? What can I do and why does not work on Ubuntu? What is wrong with it? Here are the logs: Jan 4 17:27:34 a-ubuntu kernel: [ 141.948863] init: apport pre-start process (1970) terminated with status 1 Jan 4 17:27:34 a-ubuntu kernel: [ 141.963202] init: apport post-stop process (1994) terminated with status 1 Jan 4 17:30:02 a-ubuntu kernel: [ 289.564049] usb 2-4: new high speed USB device number 3 using ehci_hcd Jan 4 17:30:02 a-ubuntu kernel: [ 289.988706] usbcore: registered new interface driver uas Jan 4 17:30:02 a-ubuntu kernel: [ 289.992056] Initializing USB Mass Storage driver... Jan 4 17:30:02 a-ubuntu kernel: [ 289.992272] scsi6 : usb-storage 2-4:1.0 Jan 4 17:30:02 a-ubuntu kernel: [ 289.993082] usbcore: registered new interface driver usb-storage Jan 4 17:30:02 a-ubuntu kernel: [ 289.993088] USB Mass Storage support registered. Jan 4 17:30:03 a-ubuntu kernel: [ 290.996887] scsi 6:0:0:0: Direct-Access RockChip USBDISK User 1.00 PQ: 0 ANSI: 0 Jan 4 17:30:03 a-ubuntu kernel: [ 290.997372] scsi 6:0:0:1: Direct-Access RockChip USBDISK SD 1.00 PQ: 0 ANSI: 0 Jan 4 17:30:03 a-ubuntu kernel: [ 290.997478] scsi: killing requests for dead queue Jan 4 17:30:03 a-ubuntu kernel: [ 291.002712] scsi: killing requests for dead queue Jan 4 17:30:03 a-ubuntu kernel: [ 291.002880] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.016249] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.032252] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.048182] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.060178] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.060357] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.080381] sd 6:0:0:0: Attached scsi generic sg2 type 0 Jan 4 17:30:04 a-ubuntu kernel: [ 291.080646] sd 6:0:0:1: Attached scsi generic sg3 type 0 Jan 4 17:30:04 a-ubuntu kernel: [ 291.088381] sd 6:0:0:0: [sdb] 16015360 512-byte logical blocks: (8.19 GB/7.63 GiB) Jan 4 17:30:04 a-ubuntu kernel: [ 291.088988] sd 6:0:0:1: [sdc] Attached SCSI removable disk Jan 4 17:30:04 a-ubuntu kernel: [ 291.200050] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:04 a-ubuntu kernel: [ 291.448044] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:04 a-ubuntu kernel: [ 291.696055] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:04 a-ubuntu kernel: [ 291.832046] sd 6:0:0:0: [sdb] Test WP failed, assume Write Enabled Jan 4 17:30:04 a-ubuntu kernel: [ 291.832994] sd 6:0:0:0: [sdb] Asking for cache data failed Jan 4 17:30:04 a-ubuntu kernel: [ 291.833001] sd 6:0:0:0: [sdb] Assuming drive cache: write through Jan 4 17:30:04 a-ubuntu kernel: [ 291.834378] sdb: detected capacity change from 8199864320 to 0 Jan 4 17:30:04 a-ubuntu kernel: [ 291.835367] sd 6:0:0:0: [sdb] Attached SCSI removable disk Jan 4 17:30:06 a-ubuntu kernel: [ 293.004741] sd 6:0:0:0: [sdb] 16015360 512-byte logical blocks: (8.19 GB/7.63 GiB) Jan 4 17:30:06 a-ubuntu kernel: [ 293.116051] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:21 a-ubuntu kernel: [ 308.228043] usb 2-4: device descriptor read/64, error -110 Jan 4 17:30:36 a-ubuntu kernel: [ 323.444072] usb 2-4: device descriptor read/64, error -110 Jan 4 17:30:36 a-ubuntu kernel: [ 323.660047] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:51 a-ubuntu kernel: [ 338.772085] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:06 a-ubuntu kernel: [ 353.988064] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:07 a-ubuntu kernel: [ 354.204058] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:31:12 a-ubuntu kernel: [ 359.224115] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:17 a-ubuntu kernel: [ 364.344136] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:17 a-ubuntu kernel: [ 364.560037] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:31:22 a-ubuntu kernel: [ 369.580132] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:27 a-ubuntu kernel: [ 374.700126] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:27 a-ubuntu kernel: [ 374.804121] usb 2-4: USB disconnect, device number 3 Jan 4 17:31:27 a-ubuntu kernel: [ 374.804518] sd 6:0:0:0: Device offlined - not ready after error recovery Jan 4 17:31:27 a-ubuntu kernel: [ 374.804600] sd 6:0:0:0: [sdb] No Caching mode page present Jan 4 17:31:27 a-ubuntu kernel: [ 374.804606] sd 6:0:0:0: [sdb] Assuming drive cache: write through Jan 4 17:31:27 a-ubuntu kernel: [ 374.804693] sd 6:0:0:0: [sdb] READ CAPACITY failed Jan 4 17:31:27 a-ubuntu kernel: [ 374.804698] sd 6:0:0:0: [sdb] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK Jan 4 17:31:27 a-ubuntu kernel: [ 374.804704] sd 6:0:0:0: [sdb] Sense not available. Jan 4 17:31:27 a-ubuntu kernel: [ 374.804744] sd 6:0:0:0: [sdb] No Caching mode page present Jan 4 17:31:27 a-ubuntu kernel: [ 374.804748] sd 6:0:0:0: [sdb] Assuming drive cache: write through Jan 4 17:31:27 a-ubuntu kernel: [ 374.804754] sdb: detected capacity change from 8199864320 to 0 Jan 4 17:31:27 a-ubuntu kernel: [ 374.820273] scsi: killing requests for dead queue Jan 4 17:31:27 a-ubuntu kernel: [ 374.852240] scsi: killing requests for dead queue Jan 4 17:31:27 a-ubuntu kernel: [ 374.980054] usb 2-4: new high speed USB device number 4 using ehci_hcd Jan 4 17:31:43 a-ubuntu kernel: [ 390.092059] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:58 a-ubuntu kernel: [ 405.308070] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:58 a-ubuntu kernel: [ 405.524078] usb 2-4: new high speed USB device number 5 using ehci_hcd and the other post is: http://pastebin.ubuntu.com/792915/ and the other bDeviceSubClass 2 ? bDeviceProtocol 1 Interface Association bMaxPacketSize0 64 idVendor 0x04f2 Chicony Electronics Co., Ltd idProduct 0xb008 USB 2.0 Camera bcdDevice 93.27 iManufacturer 2 Chicony Electronics Co., Ltd. iProduct 1 Chicony USB 2.0 Camera iSerial 3 SN0001 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 565 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0x80 (Bus Powered) MaxPower 500mA Interface Association: bLength 8 bDescriptorType 11 bFirstInterface 0 bInterfaceCount 2 bFunctionClass 14 Video bFunctionSubClass 3 Video Interface Collection bFunctionProtocol 0 iFunction 1 Chicony USB 2.0 Camera Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 1 Video Control bInterfaceProtocol 0 iInterface 1 Chicony USB 2.0 Camera VideoControl Interface Descriptor: bLength 13 bDescriptorType 36 bDescriptorSubtype 1 (HEADER) bcdUVC 1.00 wTotalLength 77 dwClockFrequency 15.000000MHz bInCollection 1 baInterfaceNr( 0) 1 VideoControl Interface Descriptor: bLength 9 bDescriptorType 36 bDescriptorSubtype 3 (OUTPUT_TERMINAL) bTerminalID 2 wTerminalType 0x0101 USB Streaming bAssocTerminal 0 bSourceID 4 iTerminal 0 VideoControl Interface Descriptor: bLength 26 bDescriptorType 36 bDescriptorSubtype 6 (EXTENSION_UNIT) bUnitID 4 guidExtensionCode {7033f028-1163-2e4a-ba2c-6890eb334016} bNumControl 1 bNrPins 1 baSourceID( 0) 3 bControlSize 1 bmControls( 0) 0x01 iExtension 0 VideoControl Interface Descriptor: bLength 18 bDescriptorType 36 bDescriptorSubtype 2 (INPUT_TERMINAL) bTerminalID 1 wTerminalType 0x0201 Camera Sensor bAssocTerminal 0 iTerminal 0 wObjectiveFocalLengthMin 0 wObjectiveFocalLengthMax 0 wOcularFocalLength 0 bControlSize 3 bmControls 0x00000000 VideoControl Interface Descriptor: bLength 11 bDescriptorType 36 bDescriptorSubtype 5 (PROCESSING_UNIT) Warning: Descriptor too short bUnitID 3 bSourceID 1 wMaxMultiplier 0 bControlSize 2 bmControls 0x0000053f Brightness Contrast Hue Saturation Sharpness Gamma Backlight Compensation Power Line Frequency iProcessing 0 bmVideoStandards 0x a NTSC - 525/60 SECAM - 625/50 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0010 1x 16 bytes bInterval 6 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 0 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 VideoStreaming Interface Descriptor: bLength 14 bDescriptorType 36 bDescriptorSubtype 1 (INPUT_HEADER) bNumFormats 1 wTotalLength 345 bEndPointAddress 129 bmInfo 0 bTerminalLink 2 bStillCaptureMethod 0 bTriggerSupport 1 bTriggerUsage 0 bControlSize 1 bmaControls( 0) 27 VideoStreaming Interface Descriptor: bLength 27 bDescriptorType 36 bDescriptorSubtype 4 (FORMAT_UNCOMPRESSED) bFormatIndex 1 bNumFrameDescriptors 7 guidFormat {59555932-0000-1000-8000-00aa00389b71} bBitsPerPixel 16 bDefaultFrameIndex 1 bAspectRatioX 0 bAspectRatioY 0 bmInterlaceFlags 0x00 Interlaced stream or variable: No Fields per frame: 2 fields Field 1 first: No Field pattern: Field 1 only bCopyProtect 0 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 1 bmCapabilities 0x00 Still image unsupported wWidth 640 wHeight 480 dwMinBitRate 614400 dwMaxBitRate 18432000 dwMaxVideoFrameBufferSize 614400 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 2 bmCapabilities 0x00 Still image unsupported wWidth 352 wHeight 288 dwMinBitRate 202752 dwMaxBitRate 6082560 dwMaxVideoFrameBufferSize 202752 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 3 bmCapabilities 0x00 Still image unsupported wWidth 320 wHeight 240 dwMinBitRate 153600 dwMaxBitRate 4608000 dwMaxVideoFrameBufferSize 153600 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 4 bmCapabilities 0x00 Still image unsupported wWidth 176 wHeight 144 dwMinBitRate 50688 dwMaxBitRate 1520640 dwMaxVideoFrameBufferSize 50688 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 5 bmCapabilities 0x00 Still image unsupported wWidth 160 wHeight 120 dwMinBitRate 38400 dwMaxBitRate 1152000 dwMaxVideoFrameBufferSize 38400 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 34 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 6 bmCapabilities 0x00 Still image unsupported wWidth 1280 wHeight 800 dwMinBitRate 2048000 dwMaxBitRate 18432000 dwMaxVideoFrameBufferSize 2048000 dwDefaultFrameInterval 1333333 bFrameIntervalType 2 dwFrameInterval( 0) 1333333 dwFrameInterval( 1) 2000000 VideoStreaming Interface Descriptor: bLength 34 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 7 bmCapabilities 0x00 Still image unsupported wWidth 1280 wHeight 1024 dwMinBitRate 2621440 dwMaxBitRate 23592960 dwMaxVideoFrameBufferSize 2621440 dwDefaultFrameInterval 1333333 bFrameIntervalType 2 dwFrameInterval( 0) 1333333 dwFrameInterval( 1) 2000000 VideoStreaming Interface Descriptor: bLength 6 bDescriptorType 36 bDescriptorSubtype 13 (COLORFORMAT) bColorPrimaries 1 (BT.709,sRGB) bTransferCharacteristics 1 (BT.709) bMatrixCoefficients 4 (SMPTE 170M (BT.601)) Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 1 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0080 1x 128 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 2 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0100 1x 256 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 3 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0320 1x 800 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 4 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0b20 2x 800 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 5 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x1320 3x 800 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 6 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x13e8 3x 1000 bytes bInterval 1 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 239 Miscellaneous Device bDeviceSubClass 2 ? bDeviceProtocol 1 Interface Association bMaxPacketSize0 64 bNumConfigurations 1 Device Status: 0x0000 (Bus Powered) Bus 006 Device 002: ID 04d9:1503 Holtek Semiconductor, Inc. Shortboard Lefty Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x04d9 Holtek Semiconductor, Inc. idProduct 0x1503 Shortboard Lefty bcdDevice 3.10 iManufacturer 1 iProduct 2 USB Keyboard iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 59 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 100mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 1 Keyboard iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 62 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 0 No Subclass bInterfaceProtocol 0 None iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 101 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0000 (Bus Powered)

    Read the article

  • Transformation of Product Management in Telecommunications for Rapid Launch of Next Generation Products

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }a:link, span.MsoHyperlink { color: blue; text-decoration: underline; }a:visited, span.MsoHyperlinkFollowed { color: purple; text-decoration: underline; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } The Telecom industry continues to evolve through disruptive products, uncertain markets, shorter product lifecycles and convergence of technologies. Today’s market has moved from network centric to consumer centric and focuses primarily on the customer experience. It has resulted in several product management challenges such as an increased complexity and volume of offerings, creating product variants, accelerating time-to-market, ability to provide multiple product views for varied stakeholders, leveraging OSS intelligence to BSS layer, product co-creation and increasing audit and security concerns for service providers. The document discusses how enterprise product management enabled by PLM-based product catalogue solutions helps to launch next generation products rapidly in the context of the Telecommunication Industry.   1.0.       Introduction   Figure 1: Business Scenario   Modern business demands the launch of complex products in a very short timeframe and effecting changes in the price plan faster without IT intervention. One of the key transformation initiatives companies are focusing on is in the area of product management transformation and operational efficiency improvement. As part of these initiatives, companies are investing in best- in-class COTs-based Product Management solutions developed on industry-wide standards.   The new COTs packages are planned to integrate with existing or new B/OSS systems to provide a strategic end-to-end agile solution for reduced time-to-market and order journey time. In addition, system rationalization is being undertaken to phase out legacy systems and migrate to strategic systems.   2.0.       An Overview of Product Management in Telecom   Product data in telecom is multi- dimensional and difficult to manage. It increased significantly due to the complexity of the product, product offerings on the converged network, increased volume of offerings, bundled offering structures and ever increasing regulatory requirements.   In addition, the shrinking product lifecycle in telecom makes it difficult to manage the dynamic product data. Mergers and acquisitions coupled with organic growth pose major challenges in product portfolio management. It is a roadblock in the journey towards becoming an agile organization.       Figure 2: Complexity in Product Management   Network Technology’ is the new dimension in telecom product management where the same products are realized through different networks i.e., Soiled network to Converged network. Consequently, the product solution is different.     Figure 3: Current Scenario - Pain Points in Product Management   The major business implications arising out of the current scenario are slow time-to-market and an inefficient process that affects innovation.   3.0. Transformation of Next Generation Product Management   Companies must focus on their Product Management Transformation Journey in the areas of:   ·       Management of single truth of product information across the organization/geographies which is currently managed in heterogeneous systems   ·       Management of the Intellectual Property (IP) on the product concept and partnership in the design of discrete components to integrate into the system   ·       Leveraging structured and unstructured product data within the extended enterprise to extract consumer insights and drive innovation   ·       Management of effective operational separation to comply with regulatory bodies   ·       Reuse of existing designs and add relevant features such as value-added services to enable effective product bundling     Figure 4: Next generation needs   PLM-based Enterprise Product Catalogue solutions efficiently address the above requirements and act as an enabler towards product management transformation and rapid product launch.   4.0. PLM-based Enterprise Product Management     Figure 5: PLM-based Enterprise Product Mastering   Enterprise Product Management (EPM) enables the business to manage complex product attributes of data in complex environments. Product Mastering helps create a 'single view' of the product by creating a business-driven, IT-supported environment where a global 'single truth record' is created, managed and reused.   4.1 The Business Case for Telco PLM-based solutions for Enterprise Product Management   ·       Telco PLM-based Product Mastering solutions provide a centralized authoring environment for product definition and control of all product data and rules   ·       PLM packages are designed to support multiple perspectives of product data (ordering perspective, billing perspective, provisioning perspective)   ·       Maintains relationships/links between different elements of the entire product definition   ·       Telco PLM packages are specialized in next generation lifecycle management requirements of products such as revision and state management, test and release management, role management and impact analysis)   ·       Takes into consideration all aspects of OSS product requirements compared to CRM product catalogue solutions where the product data managed is mostly order oriented and transactional     ·       New breed of Telco PLM packages are designed with 'open' standards such as SID and eTOM. They are interoperable, support integration frameworks such as subscription and notification.   ·       Telco PLM packages have developed good collaboration frameworks to integrate suppliers and partners into the product development value chain   4.2 Various Architectures/Approaches for Product Mastering using Telco PLM systems   4. 2.a Single Central Product Management (Mastering) Approach   Figure 6: Single Central Product Management (Master) Approach       This approach is implemented across verticals such as aerospace and automotive. It focuses on a physically centralized product master to which other sources are dependent on. The product definition data (Product bundles, service bundles, price plans, offers and discounts, product configuration rules and market campaigns) is created and maintained physically in a centralized environment. In addition, the product definition/authoring environment is centralized. The existing legacy product definition data available in CRM product catalogue, billing catalogue and the legacy product catalogue is migrated to the centralized PLM-based Enterprise Product Management solution.   Architectural changes must be made in the existing business landscape of applications to create and revise data because the applications have to refer to the central repository for approvals and validation of product configurations. It is achieved by modifying how the applications write data or how the applications can be adapted to use the rules to be managed and published.   Complete product configuration validation will be done in enterprise / central product catalogue and final configuration will be sent to the B/OSS system through the SOA compliant product distribution architecture. The approach/architecture enables greater control in terms of product data management and product data governance.   4.2.b Federated Product Management (Mastering) Architecture     Figure 7: Federated Product Management (Mastering) Architecture   In the federated product mastering approach, the basic unique product definition data (product id, description product hierarchy, basic price plans and simple product design rules) will be centrally created and will be maintained. And, the advanced product definition (Product bundling, promotions, offers & discount plans) will be created in respective down stream OSS systems. The advanced product definition (Product bundling, promotions, offers and discount plans) will be created in respective downstream OSS systems.   For example, basic product definitions such as attributes, product hierarchy and basic price plans will be created and maintained in Enterprise/Central product reference catalogue and distributed to downstream OSS systems. Respective downstream OSS systems build product bundles, promotions, advanced price plans over the basic product definition and master the advanced product definition. Central reference database accesses the respective other source product master data and assembles a point-in-time consolidated view of the product. The approach is typically adapted in some merger and acquisition scenarios where there is a low probability of a central physical authority managing the data. In addition, the migration effort in this case is minimal and there are no big architectural changes to the organization application landscape. However, this approach will not result in better product data management and data governance.   5.0 Customer Scenario – Before EPC deployment   A leading global telecommunications service provider wanted to launch a quad play and triple play service offering in the shortest possible lead time. The service provider was offering Broadband and VoIP services to customers. The company wanted to reuse a majority of the Broadband services and price plans and bundle them with new wireless and IPTV services for quad play and triple play. The challenges in launching the new service offerings were:       Figure 8: Triple Play Plan   ·       Broadband product data was stored in multiple product catalogues (CRM catalogue, Billing catalogue, spread sheets)   ·       Product managers spent a lot of time performing tasks involving duplication or re-keying of data. Manual effort caused errors, cost and time over-runs.   ·       No effective product and price data governance mechanism. Price change issues arising from the lack of data consistency across systems resulted in leakage of customer value and revenue.   ·       Product data had re-usability issues and was not in a structured format. It resulted in uncontrolled product portfolio creation and product management issues.   ·       Lack of enterprise product model resulted into product distribution challenges and thus delays in product launch.   ·       Designers are constrained by existing legacy product management solutions to model product/service requirements and product configuration rules such as upgrading, downgrading and cross selling.    5.1 Customer Scenario - After EPC deployment     Figure 9: SOA-based end-to-end EPC Solution   The company deployed PLM-based Enterprise Product Catalogue solutions to launch quad play service after evaluating various product catalogues. The broadband product offering, service and price data were migrated to the new system, and the product and price plan hierarchy for new offerings were created using the entities defined in the Enterprise Product Model. Supplier product catalogue data such as routers and set up boxes were loaded onto the new solution through SOA-based web service. Price plans and configuration rules were built in the new system. The validated final product configurations were extracted from the product catalogue in a SID format and were distributed to the downstream B/OSS systems through exposed SOA-based web services. The transformations required for the B/OSS system were handled using the transformation layer as part of the solution.   6.0 How PLM enabled Product Management Transformation         Figure 10: Product Management Transformation     PLM-based Product Catalogue Solution helped the customer reduce the product launch cycle time by 30% and enable transformation of Product Management for next generation services.   7.0 Conclusion   On the one hand, the telecom industry is undergoing changes due to disruptions, uncertain product markets and increased complexity of products. On the other hand, the ARPU is decreasing year-on-year. Communications Service Providers are embarking on convergence, bundled service offerings, flexibility to cross-sell and up-sell, introduce new value-added services, leverage Web 2.0 concepts and network capabilities. Consequently, large scale IT transformation initiatives to improve their ARPU supporting network and business transformations are a business imperative. Product Management has become a focus area. Companies are investing in best-in- class COTS solutions to reduce time-to-market, ensure rapid service delivery and improve operational efficiency. An efficient PLM-based enterprise product mastering solution plays a key role in achieving zero touch automation and rapid product launch.   References:   1.     Preston G.Smith, Donald G.Reineristsem, Van Nostrand Reinhold “Developing Products in Half the time”.   2.     John G. Innes, "Achieving Successful Product Change", Pitman Publishing.   3.     D T Pham and R M Setchi (16th Jan, 2001) "Authoring environment for documentation development" University of Wales Cardiff, U.K., Proceedings on Institution of Mechanical Engineers, Vol. 215, Part B.   4.     Oracle Product Hub for Communications:   http://www.oracle.com/us/products/applications/master-data-management/product-hub-082059.html  

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • Oracle Launches Enterprise Manager Ops Center 12c at OpenWorld Japan

    - by Anand Akela
    Oracle Senior Vice President John Fowler and Oracle Vice President of Systems Management Steve Wilson unveiled Oracle Enterprise Manager Ops Center 12c at Oracle OpenWorld, Tokyo Japan on April 4th morning.  Oracle Enterprise Manager combines management of servers, operating systems, virtualization solution for x86 and SPRC servers, firmware, storage, and network fabrics with Oracle Enterprise Manager Ops Center. Available at no additional cost as part of the Ops Center Anywhere Program, Oracle Enterprise Manager Ops Center 12c allows enterprises to accelerate mission-critical cloud deployment, unleash the power of Solaris 11 — the first cloud OS, and simplify Oracle engineered systems management. Here are some of the resources for you to learn more about the new Oracle Enterprise Manager Ops Center 12c :  Press Release : Introducing Oracle Enterprise Manager Ops Center 12c White paper: Oracle Enterprise Manager Ops Center 12c - Making Infrastructure-as-a-Service in the Enterprise a Reality Oracle Enterprise Manager Ops Center web page at Oracle Technology Network Join Oracle Launch Webcast : Total Cloud Control for Systems on April 12th at 9 AM PST to learn more about  Oracle Enterprise Manager Ops Center 12c from Oracle Senior Vice President John Fowler, Oracle Vice President of Systems Management Steve Wilson and a panel of Oracle executive. Stay connected with  Oracle Enterprise Manager   :  Twitter | Facebook | YouTube | Linkedin | Newsletter

    Read the article

  • The future for Microsoft

    - by Scott Dorman
    Originally posted on: http://geekswithblogs.net/sdorman/archive/2013/10/16/the-future-for-microsoft.aspxMicrosoft is in the process of reinventing itself. While some may argue that it’s “too little, too late” or that their growing consumer-focused strategy is wrong, the truth of the situation is that Microsoft is reinventing itself into a new company. While Microsoft is now calling themselves a “devices and services” company, that’s not entirely accurate. Let’s look at some facts: Microsoft will always (for the long-term foreseeable future) be financially split into the following divisions: Windows/Operating Systems, which for FY13 made up approximately 24% of overall revenue. Server and Tools, which for FY13 made up approximately 26% of overall revenue. Enterprise/Business Products, which for FY13 made up approximately 32% of overall revenue. Entertainment and Devices, which for FY13 made up approximately 13% of overall revenue. Online Services, which for FY13 made up approximately 4% of overall revenue. It is important to realize that hardware products like the Surface fall under the Windows/Operating Systems division while products like the Xbox 360 fall under the Entertainment and Devices division. (Presumably other hardware, such as mice, keyboards, and cameras, also fall under the Entertainment and Devices division.) It’s also unclear where Microsoft’s recent acquisition of Nokia’s handset division will fall, but let’s assume that it will be under Entertainment and Devices as well. Now, for the sake of argument, let’s assume a slightly different structure that I think is more in line with how Microsoft presents itself and how the general public sees it: Consumer Products and Devices, which would probably make up approximately 9% of overall revenue. Developer Tools, which would probably make up approximately 13% of overall revenue. Enterprise Products and Devices, which would probably make up approximately 47% of overall revenue. Entertainment, which would probably make up approximately 13% of overall revenue. Online Services, which would probably make up approximately 17% of overall revenue. (Just so we’re clear, in this structure hardware products like the Surface, a portion of Windows sales, and other hardware fall under the Consumer Products and Devices division. I’m assuming that more of the income for the Windows division is coming from enterprise/volume licenses so 15% of that income went to the Enterprise Products and Devices division. Most of the enterprise services, like Azure, fall under the Online Services division so half of the Server and Tools income went there as well.) No matter how you look at it, the bulk of Microsoft’s income still comes from not just the enterprise but also software sales, and this really shouldn’t surprise anyone. So, now that the stage is set…what’s the future for Microsoft? The future I see for Microsoft (again, this is just my prediction based on my own instinct, gut-feel and publicly available information) is this: Microsoft is becoming a consumer-focused enterprise company. Let’s look at it a different way. Microsoft is an enterprise-focused company trying to create a larger consumer presence.  To a large extent, this is the exact opposite of Apple, who is really a consumer-focused company trying to create a larger enterprise presence. The major reason consumer-focused companies (like Apple) have started making in-roads into the enterprise is the “bring your own device” phenomenon. Yes, Apple has created some “game-changing” products but their enterprise influence is still relatively small. Unfortunately (for this blog post at least), Apple provides revenue in terms of hardware products rather than business divisions, so it’s not possible to do a direct comparison. However, in the interest of transparency, from Apple’s Quarterly Report (filed 24 July 2013), their revenue breakdown is: iPhone, which for the 3 months ending 29 June 2013 made up approximately 51% of revenue. iPad, which for the 3 months ending 29 June 2013 made up approximately 18% of revenue. Mac, which for the 3 months ending 29 June 2013 made up approximately 14% of revenue. iPod, which for the 3 months ending 29 June 2013 made up approximately 2% of revenue. iTunes, Software, and Services, which for the 3 months ending 29 June 2013 made up approximately 11% of revenue. Accessories, which for the 3 months ending 29 July 2013 made up approximately 3% of revenue. From this, it’s pretty clear that Apple is a consumer-and-hardware-focused company. At this point, you may be asking yourself “Where is all of this going?” The answer to that lies in Microsoft’s shift in company focus. They are becoming more consumer focused, but what exactly does that mean? The biggest change (at least that’s been in the news lately) is the pending purchase of Nokia’s handset division. This, in combination with their Surface line of tablets and the Xbox, will put Microsoft squarely in the realm of a hardware-focused company in addition to being a software-focused company. That can (and most likely will) shift the revenue split to looking at revenue based on software sales (both consumer and enterprise) and also hardware sales (mostly on the consumer side). If we look at things strictly from a Windows perspective, Microsoft clearly has a lot of irons in the fire at the moment. Discounting the various product SKUs available and painting the picture with broader strokes, there are currently 5 different Windows-based operating systems: Windows Phone Windows Phone 7.x, which runs on top of the Windows CE kernel Windows Phone 8.x+, which runs on top of the Windows 8 kernel Windows RT The ARM-based version of Windows 8, which runs on top of the Windows 8 kernel Windows (Pro) The Intel-based version of Windows 8, which runs on top of the Windows 8 kernel Xbox The Xbox 360, which runs it’s own proprietary OS. The Xbox One, which runs it’s own proprietary OS, a version of Windows running on top of the Windows 8 kernel and a proprietary “manager” OS which manages the other two. Over time, Windows Phone 7.x devices will fade so that really leaves 4 different versions. Looking at Windows RT and Windows Phone 8.x paints an interesting story. Right now, all mobile phone devices run on some sort of ARM chip and that doesn’t look like it will change any time soon. That means Microsoft has two different Windows based operating systems for the ARM platform. Long term, it doesn’t make sense for Microsoft to continue supporting that arrangement. I have long suspected (since the Surface was first announced) that Microsoft will unify these two variants of Windows and recent speculation from some of the leading Microsoft watchers lends credence to this suspicion. It is rumored that upcoming Windows Phone releases will include support for larger screen sizes, relax the requirement to have a hardware-based back button and will continue to improve API parity between Windows Phone and Windows RT. At the same time, Windows RT will include support for smaller screen sizes. Since both of these operating systems are based on the same core Windows kernel, it makes sense (both from a financial and development resource perspective) for Microsoft to unify them. The user interfaces are already very similar. So similar in fact, that visually it’s difficult to tell them apart. To illustrate this, here are two screen captures: Other than a few variations (the Bing News app, the picture shown in the Pictures tile and the spacing between the tiles) these are identical. The one on the left is from my Windows 8.1 laptop (which looks the same as on my Surface RT) and the one on the right is from my Windows Phone 8 Lumia 925. This pretty clearly shows that from a consumer perspective, there really is no practical difference between how these two operating systems look and how you interact with them. For the consumer, your entertainment device (Xbox One), phone (Windows Phone) and mobile computing device (Surface [or some other vendors tablet], laptop, netbook or ultrabook) and your desktop computing device (desktop) will all look and feel the same. While many people will denounce this consistency of user experience, I think this will be a good thing in the long term, especially for the upcoming generations. For example, my 5-year old son knows how to use my tablet, phone and Xbox because they all feature nearly identical user experiences. When Windows 8 was released, Microsoft allowed a Windows Store app to be purchased once and installed on as many as 5 devices. With Windows 8.1, this limit has been increased to over 50. Why is that important? If you consider that your phone, computing devices, and entertainment device will be running the same operating system (with minor differences related to physical hardware chipset), that means that I could potentially purchase my sons favorite Angry Birds game once and be able to install it on all of the devices I own. (And for those of you wondering, it’s only 7 [at the moment].) From an app developer perspective, the story becomes even more compelling. Right now there are differences between the different operating systems, but those differences are shrinking. The user interface technology for both is XAML but there are different controls available and different user experience concepts. Some of the APIs available are the same while some are not. You can’t develop a Windows Phone app that can also run on Windows (either Windows Pro or RT). With each release of Windows Phone and Windows RT, those difference become smaller and smaller. Add to this mix the Xbox One, which will also feature a Windows-based operating system and the same “modern” (tile-based) user interface and the visible distinctions between the operating systems will become even smaller. Unifying the operating systems means one set of APIs and one code base to maintain for an app that can run on multiple devices. One code base means it’s easier to add features and fix bugs and that those changes become available on all devices at the same time. It also means a single app store, which will increase the discoverability and reach of your app and consolidate revenue and app profile management. Now, the choice of what devices an app is available on becomes a simple checkbox decision rather than a technical limitation. Ultimately, this means more apps available to consumers, which is always good for the app ecosystem. Is all of this just rumor, speculation and conjecture? Of course, but it’s not unfounded. As I mentioned earlier, some of the prominent Microsoft watchers are also reporting similar rumors. However, Microsoft itself has even hinted at this future with their recent organizational changes and by telling developers “if you want to develop for Xbox One, start developing for Windows 8 now.” I think this pretty clearly paints the following picture: Microsoft is committed to the “modern” user interface paradigm. Microsoft is changing their release cadence (for all products, not just operating systems) to be faster and more modular. Microsoft is going to continue to unify their OS platforms both from a consumer perspective and a developer perspective. While this direction will certainly concern some people it will excite many others. Microsoft’s biggest failing has always been following through with a strong and sustained marketing strategy that presents a consistent view point and highlights what this unified and connected experience looks like and how it benefits consumers and enterprises. We’ve started to see some of this over the last few years, but it needs to continue and become more aggressive and consistent. In the long run, I think Microsoft will be able to pull all of these technologies and devices together into one seamless ecosystem. It isn’t going to happen overnight, but my prediction is that we will be there by the end of 2016. As both a consumer and a developer, I, for one, am excited about the future of Microsoft.

    Read the article

  • If some standards apply when "it depends" then should I stick with custom approaches?

    - by Travis J
    If I have an unconventional approach which works better than the industry standard, should I just stick with it even though in principal it violates those standards? What I am talking about is referential integrity for relational database management systems. The standard for enforcing referential integrity is to CASCADE delete. In practice, this is just not going to work all the time. In my current case, it does not. The alternative suggested is to either change the reference to NULL, DEFAULT, or just to take NO ACTION - usually in the form of a "soft delete". I am all about enforcing referential integrity. Love it. However, sometimes it just does not fully apply to use all the standards in practice. My approach has been to slightly abandon a small part of one of those practices which is the part about leaving "hanging references" around. Oops. The trade off is plentiful in this situation I believe. Instead of having deprecated data in the production database, a splattering of "soft delete" logic all across my controllers (and views sometimes depending on how far down the chain the soft delete occurred), and the prospect of queries taking longer and longer - instead of all that - I now have a recycle bin and centralized logic. The only tradeoff is that I must explicitly manage the possibility of "hanging references" which can be done through generics with one class. Any thoughts?

    Read the article

  • career in Mobile sw/Application Development [closed]

    - by pramod
    i m planning to do a course on Wireless & mobile computing.The syllabus are given below.Please check & let me know whether its worth to do.How is the job prospects after that.I m a fresher & from electronic Engg.The modules are- *Wireless and Mobile Computing (WiMC) – Modules* C, C++ Programming and Data Structures 100 Hours C Revision C, C++ programming tools on linux(Vi editor, gdb etc.) OOP concepts Programming constructs Functions Access Specifiers Classes and Objects Overloading Inheritance Polymorphism Templates Data Structures in C++ Arrays, stacks, Queues, Linked Lists( Singly, Doubly, Circular) Trees, Threaded trees, AVL Trees Graphs, Sorting (bubble, Quick, Heap , Merge) System Development Methodology 18 Hours Software life cycle and various life cycle models Project Management Software: A Process Various Phases in s/w Development Risk Analysis and Management Software Quality Assurance Introduction to Coding Standards Software Project Management Testing Strategies and Tactics Project Management and Introduction to Risk Management Java Programming 110 Hours Data Types, Operators and Language Constructs Classes and Objects, Inner Classes and Inheritance Inheritance Interface and Package Exceptions Threads Java.lang Java.util Java.awt Java.io Java.applet Java.swing XML, XSL, DTD Java n/w programming Introduction to servlet Mobile and Wireless Technologies 30 Hours Basics of Wireless Technologies Cellular Communication: Single cell systems, multi-cell systems, frequency reuse, analog cellular systems, digital cellular systems GSM standard: Mobile Station, BTS, BSC, MSC, SMS sever, call processing and protocols CDMA standard: spread spectrum technologies, 2.5G and 3G Systems: HSCSD, GPRS, W-CDMA/UMTS,3GPP and international roaming, Multimedia services CDMA based cellular mobile communication systems Wireless Personal Area Networks: Bluetooth, IEEE 802.11a/b/g standards Mobile Handset Device Interfacing: Data Cables, IrDA, Bluetooth, Touch- Screen Interfacing Wireless Security, Telemetry Java Wireless Programming and Applications Development(J2ME) 100 Hours J2ME Architecture The CLDC and the KVM Tools and Development Process Classification of CLDC Target Devices CLDC Collections API CLDC Streams Model MIDlets MIDlet Lifecycle MIDP Programming MIDP Event Architecture High-Level Event Handling Low-Level Event Handling The CLDC Streams Model The CLDC Networking Package The MIDP Implementation Introduction to WAP, WML Script and XHTML Introduction to Multimedia Messaging Services (MMS) Symbian Programming 60 Hours Symbian OS basics Symbian OS services Symbian OS organization GUI approaches ROM building Debugging Hardware abstraction Base porting Symbian OS reference design porting File systems Overview of Symbian OS Development – DevKits, CustKits and SDKs CodeWarrior Tool Application & UI Development Client Server Framework ECOM STDLIB in Symbian iPhone Programming 80 Hours Introducing iPhone core specifications Understanding iPhone input and output Designing web pages for the iPhone Capturing iPhone events Introducing the webkit CSS transforms transitions and animations Using iUI for web apps Using Canvas for web apps Building web apps with Dashcode Writing Dashcode programs Debugging iPhone web pages SDK programming for web developers An introduction to object-oriented programming Introducing the iPhone OS Using Xcode and Interface builder Programming with the SDK Toolkit OS Concepts & Linux Programming 60 Hours Operating System Concepts What is an OS? Processes Scheduling & Synchronization Memory management Virtual Memory and Paging Linux Architecture Programming in Linux Linux Shell Programming Writing Device Drivers Configuring and Building GNU Cross-tool chain Configuring and Compiling Linux Virtual File System Porting Linux on Target Hardware WinCE.NET and Database Technology 80 Hours Execution Process in .NET Environment Language Interoperability Assemblies Need of C# Operators Namespaces & Assemblies Arrays Preprocessors Delegates and Events Boxing and Unboxing Regular Expression Collections Multithreading Programming Memory Management Exceptions Handling Win Forms Working with database ASP .NET Server Controls and client-side scripts ASP .NET Web Server Controls Validation Controls Principles of database management Need of RDBMS etc Client/Server Computing RDBMS Technologies Codd’s Rules Data Models Normalization Techniques ER Diagrams Data Flow Diagrams Database recovery & backup SQL Android Application 80 Hours Introduction of android Why develop for android Android SDK features Creating android activities Fundamental android UI design Intents, adapters, dialogs Android Technique for saving data Data base in Androids Maps, Geocoding, Location based services Toast, using alarms, Instant messaging Using blue tooth Using Telephony Introducing sensor manager Managing network and wi-fi connection Advanced androids development Linux kernel security Implement AIDL Interface. Project 120 Hours

    Read the article

< Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >