Search Results

Search found 12404 results on 497 pages for 'native types'.

Page 87/497 | < Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >

  • Best practices about creating a generic object dictionary in C#? Is this bad?

    - by JimDaniel
    For clarity I am using C# 3.5/Asp.Net MVC 2 Here is what I have done: I wanted the ability to add/remove functionality to an object at run-time. So I simply added a generic object dictionary to my class like this: public Dictionary<int, object> Components { get; set; } Then I can add/remove any kind of .Net object into this dictionary at run-time. To insert an object I do something like this: var tag = new Tag(); myObject.Components.Add((int)Types.Components.Tag, tag); Then to retrieve I just do this: if(myObject.Components.ContainsKey((int)Types.Components.Tag)) { var tag = myObject.Components[(int)Types.Components.Tag] as Tag; if(tag != null) { //do stuff } } Somehow I feel sneaky doing this. It works okay, but I am wondering what you guys think about it as a best practice. Thanks for your input, Daniel

    Read the article

  • Is there a limit to the number of DataContracts that can be used by a WCF Service?

    - by Chris
    Using WCF3.5SP1, VS2008. Building a WCF service that exposes about 10 service methods. We have defined about 40 [DataContract] types that are used by the service. We now experience that adding an additional [DataContract] type to the project (in the same namespace as the other existing types) does not get properly exposed. The new type is not in the XSD schemas generated with the WSDL. We have gone so far as to copy and rename an existing (and working) type, but it too is not present in the generated WSDL/XSD. We've tried this on two different developer machines, same problem. Is there a limit to the number of types that can exposed as [DataContract] for a Service? per Namespace?

    Read the article

  • Creating dynamic generics at runtime using Reflection

    - by MPhlegmatic
    I'm trying to convert a Dictionary< dynamic, dynamic to a statically-typed one by examining the types of the keys and values and creating a new Dictionary of the appropriate types using Reflection. If I know the key and value types, I can do the following: Type dictType = typeof(Dictionary<,>); newDict = Activator.CreateInstance(dictType.MakeGenericType(new Type[] { keyType, valueType })); However, I may need to create, for example, a Dictionary< MyKeyType, dynamic if the values are not all of the same type, and I can't figure out how to specify the dynamic type, since typeof(dynamic) isn't viable. How would I go about doing this, and/or is there a simpler way to accomplish what I'm trying to do?

    Read the article

  • C#: Oracle Data Type Equivalence with OracleDbType

    - by Partial
    Situation: I am creating an app in C# that uses Oracle.DataAccess.Client (11g) to do certain operations on a Oracle database with stored procedures. I am aware that there is a certain enum (OracleDbType) that contains the Oracle data types, but I am not sure which one to use for certain types. Questions: What is the equivalent Oracle PL/SQL data type for each enumerated type in the OracleDbType enumeration? There are three types of integer (Int16, Int32, Int64) in the OracleDbType... how to know which one to use or are they all suppose to work?

    Read the article

  • What is a common name for inheritance, composition, aggregation, delegation?

    - by Eye of Hell
    Hello. After program is separated into small object, these objects must be connected with each over. Where are different types of connection. Inheritance, composition, aggregation, delegation. These types has many kinds and patterns like loose coupling, tight coupling, inversion of control, delegation via interfaces etc. What is a correct common name for mentioned types of connections? I can suggest that they all are called 'coupling', but i can't find any good classification in google, so maybe i'm trying to use a wrong term? Maybe anyone knows a solid, trusted classification that i can user for terminology?

    Read the article

  • Django - User account with multiple identities

    - by Scott Willman
    Synopsis: Each User account has a UserProfile to hold extended info like phone numbers, addresses, etc. Then, a User account can have multiple Identities. There are multiple types of identities that hold different types of information. The structure would be like so: User |<-FK- UserProfile | |<-FK- IdentityType1 |<-FK- IdentityType1 |<-FK- IdentityType2 |<-FK- IdentityType3 (current) |<-FK- IdentityType3 |<-FK- IdentityType3 The User account can be connected to n number of Identities of different types but can only use one Identity at a time. Seemingly, the Django way would be to collect all of the connected identities (user.IdentityType1_set.select_related()) into a QuerySet and then check each one for some kind of 'current' field. Question: Can anyone think of a better way to select the 'current' marked Identity than doing three DB queries (one for each IdentityType)?

    Read the article

  • Is there any way to retrieve a float from a varargs function's parameters?

    - by Jared P
    If the function was defined with a prototype which explicitly stated the types of the parameters, eg. void somefunc(int arg1, float arg2); but is implemented as void somefunc(int arg1, ...) { ... } is it possible to use va_arg to retrieve a float? It's normally prevented from doing this because varargs functions have implicit type promotions, like float to double, so trying to retrieve an unpromoted type is unsupported, even though the function is being called with the unpromoted type do to the more specific function prototype. The reason for this is to retrieve arguments of different types at runtime, as part of an obj-c interpreter, where one function will be reused for all different types of methods. This would be best as architecture independent (so that if nothing else the same code works on simulator and on device), although if there is no way to do this then device specific fixes will be accepted.

    Read the article

  • How to reliably specialize template with intptr_t in 32 and 64 bit environments?

    - by vava
    I have a template I want to specialize with two int types, one of them plain old int and another one is intptr_t. On 64 bit platform they have different sizes and I can do that with ease but on 32 bit both types are the same and compiler throws an error about redefinition. What can I do to fix it except for disabling one of definitions off with preprocessor? Some code as an example: template<typename T> type * convert(); template<> type * convert<int>() { return getProperIntType(sizeof(int)); } template<> type * convert<intptr_t>() { return getProperIntType(sizeof(intptr_t)); } //this template can be specialized with non-integral types as well, // so I can't just use sizeof() as template parameter. template<> type * convert<void>() { return getProperVoidType(); }

    Read the article

  • Cross-referencing UML models in VS 2010

    - by cheaster
    I am just starting to explore/use the UML modeling support in Visual Studio 2010 Umltimate. I have created two model projects within a single solution. Let's call them Model A and Model B. I have some data types (classes) defined in Model B. I want to use them as return types for operations in Model A. However, I cannot figure out how to make the types defined in Model B show up in Model A when attempting to set return type on an operation. Any help/suggestions would be greatly appreciated! Thanks!

    Read the article

  • powershell folder stats

    - by huppy_doodoo
    Hi all, I keep all modules of our system in one dir (e.g. All\ModuleA; All\ModuleB). I want to see what types of files are most numerous and take up the most space, by module. So, I'd like output along the lines of: ModName,java-count,java-size,xml-count,xml-size,png-count,png-size... ModuleA,30,0.2,100,2.3,0,0,... ModuleB,21,0.1,20,0.7,1,1.2 Not all modules have files of all types, so this will only work if I list all types for all module (with lots of zeros). I have something that almost works, but it's hideous, verbose and inefficient. I'm sure someone can help me see the light :-) (which, by the way, can be a piece of freeware software that does this out of the box; I only chose to do this in powershell out of interest). thanks

    Read the article

  • Persisting Serializable Objects in Hibernate

    - by VeeArr
    I am attempting to persist objects that contain some large Serializable types. I want Hibernate to automatically generate my DDL (using Hibernate annotations). For the most part, this works, but the default database column type used by Hibernate when persisting these types is tinyblob. Unfortunately, this causes crashes when attempting to persist my class, because these types will not fit within the length of tinyblob. However, if I manually set the type (using @Column(columnDefinition="longblob")), it works fine. Is there any way to make the default binary type longblob instead of tinyblob, so that I don't need to manually specify the @Column annotation on each field?

    Read the article

  • Tomcat 6: Access Control Exception?

    - by iftrue
    I'm trying to setup a tomcat6 server, and I'm trying to match another setup someone else established. However, my deployment (default Ubuntu install) uses a policy.d/ directory structure, and the established server just uses a catalina.policy file. I've tried setting every entry in policy.d to match the given catalina.policy, but I still get the following stacktrace on boot (from localhost log). I have two questions, then. First, how do I get tomcat to use a single poilcy file, rather than the directory structure presented by policy.d/? Secondly, why, when I specify all files to use the same policy, do I still get the stack trace below? Stack trace: SEVERE: Servlet /myapp threw load() exception java.security.AccessControlException: access denied (java.lang.RuntimePermission accessClassInPackage.org.apache.jasper) at java.security.AccessControlContext.checkPermission(AccessControlContext.java:342) at java.security.AccessController.checkPermission(AccessController.java:553) at java.lang.SecurityManager.checkPermission(SecurityManager.java:549) at java.lang.SecurityManager.checkPackageAccess(SecurityManager.java:1529) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:291) at java.lang.ClassLoader.loadClass(ClassLoader.java:264) at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1314) at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1245) at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:332) at org.apache.jasper.servlet.JspServlet.init(JspServlet.java:100) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.catalina.security.SecurityUtil$1.run(SecurityUtil.java:244) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAsPrivileged(Subject.java:537) at org.apache.catalina.security.SecurityUtil.execute(SecurityUtil.java:276) at org.apache.catalina.security.SecurityUtil.doAsPrivilege(SecurityUtil.java:162) at org.apache.catalina.security.SecurityUtil.doAsPrivilege(SecurityUtil.java:115) at org.apache.catalina.core.StandardWrapper.loadServlet(StandardWrapper.java:1166) at org.apache.catalina.core.StandardWrapper.load(StandardWrapper.java:992) at org.apache.catalina.core.StandardContext.loadOnStartup(StandardContext.java:4058) at org.apache.catalina.core.StandardContext.start(StandardContext.java:4367) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:791) at org.apache.catalina.core.ContainerBase.access$000(ContainerBase.java:123) at org.apache.catalina.core.ContainerBase$PrivilegedAddChild.run(ContainerBase.java:145) at java.security.AccessController.doPrivileged(Native Method) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:769) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:525) at org.apache.catalina.startup.HostConfig.deployDirectory(HostConfig.java:978) at org.apache.catalina.startup.HostConfig.deployDirectories(HostConfig.java:941) at org.apache.catalina.startup.HostConfig.deployApps(HostConfig.java:499) at org.apache.catalina.startup.HostConfig.start(HostConfig.java:1201) at org.apache.catalina.startup.HostConfig.lifecycleEvent(HostConfig.java:318) at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent(LifecycleSupport.java:117) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1053) at org.apache.catalina.core.StandardHost.start(StandardHost.java:719) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardEngine.start(StandardEngine.java:443) at org.apache.catalina.core.StandardService.start(StandardService.java:516) at org.apache.catalina.core.StandardServer.start(StandardServer.java:710) at org.apache.catalina.startup.Catalina.start(Catalina.java:578) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:288) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.commons.daemon.support.DaemonLoader.start(DaemonLoader.java:177) Policy.d grant codeBase "file:${java.home}/lib/-" { permission java.security.AllPermission; }; // These permissions apply to all shared system extensions grant codeBase "file:${java.home}/jre/lib/ext/-" { permission java.security.AllPermission; }; // These permissions apply to javac when ${java.home] points at $JAVA_HOME/jre grant codeBase "file:${java.home}/../lib/-" { permission java.security.AllPermission; }; // These permissions apply to all shared system extensions when // ${java.home} points at $JAVA_HOME/jre grant codeBase "file:${java.home}/lib/ext/-" { permission java.security.AllPermission; }; // ========== CATALINA CODE PERMISSIONS ======================================= // These permissions apply to the daemon code grant codeBase "file:${catalina.home}/bin/commons-daemon.jar" { permission java.security.AllPermission; }; // These permissions apply to the logging API grant codeBase "file:${catalina.home}/bin/tomcat-juli.jar" { permission java.util.PropertyPermission "java.util.logging.config.class", "read"; permission java.util.PropertyPermission "java.util.logging.config.file", "read"; permission java.io.FilePermission "${java.home}${file.separator}lib${file.separator}logging.properties", "read"; permission java.lang.RuntimePermission "shutdownHooks"; permission java.io.FilePermission "${catalina.base}${file.separator}conf${file.separator}logging.properties", "read"; permission java.util.PropertyPermission "catalina.base", "read"; permission java.util.logging.LoggingPermission "control"; permission java.io.FilePermission "${catalina.base}${file.separator}logs", "read, write"; permission java.io.FilePermission "${catalina.base}${file.separator}logs${file.separator}*", "read, write"; permission java.lang.RuntimePermission "getClassLoader"; // To enable per context logging configuration, permit read access to the appropriate file. // Be sure that the logging configuration is secure before enabling such access // eg for the examples web application: // permission java.io.FilePermission "${catalina.base}${file.separator}webapps${file.separator}examples${file.separator}WEB-INF${file.separator}classes${file.separator}logging.properties", "read"; }; // These permissions apply to the server startup code grant codeBase "file:${catalina.home}/bin/bootstrap.jar" { permission java.security.AllPermission; }; // These permissions apply to the servlet API classes // and those that are shared across all class loaders // located in the "lib" directory grant codeBase "file:${catalina.home}/lib/-" { permission java.security.AllPermission; }; // ========== WEB APPLICATION PERMISSIONS ===================================== // These permissions are granted by default to all web applications // In addition, a web application will be given a read FilePermission // and JndiPermission for all files and directories in its document root. grant { // Required for JNDI lookup of named JDBC DataSource's and // javamail named MimePart DataSource used to send mail permission java.util.PropertyPermission "java.home", "read"; permission java.util.PropertyPermission "java.naming.*", "read"; permission java.util.PropertyPermission "javax.sql.*", "read"; // OS Specific properties to allow read access permission java.util.PropertyPermission "os.name", "read"; permission java.util.PropertyPermission "os.version", "read"; permission java.util.PropertyPermission "os.arch", "read"; permission java.util.PropertyPermission "file.separator", "read"; permission java.util.PropertyPermission "path.separator", "read"; permission java.util.PropertyPermission "line.separator", "read"; // JVM properties to allow read access permission java.util.PropertyPermission "java.version", "read"; permission java.util.PropertyPermission "java.vendor", "read"; permission java.util.PropertyPermission "java.vendor.url", "read"; permission java.util.PropertyPermission "java.class.version", "read"; permission java.util.PropertyPermission "java.specification.version", "read"; permission java.util.PropertyPermission "java.specification.vendor", "read"; permission java.util.PropertyPermission "java.specification.name", "read"; permission java.util.PropertyPermission "java.vm.specification.version", "read"; permission java.util.PropertyPermission "java.vm.specification.vendor", "read"; permission java.util.PropertyPermission "java.vm.specification.name", "read"; permission java.util.PropertyPermission "java.vm.version", "read"; permission java.util.PropertyPermission "java.vm.vendor", "read"; permission java.util.PropertyPermission "java.vm.name", "read"; // Required for OpenJMX permission java.lang.RuntimePermission "getAttribute"; // Allow read of JAXP compliant XML parser debug permission java.util.PropertyPermission "jaxp.debug", "read"; // Precompiled JSPs need access to this package. permission java.lang.RuntimePermission "accessClassInPackage.org.apache.jasper.runtime"; permission java.lang.RuntimePermission "accessClassInPackage.org.apache.jasper.runtime.*"; // Precompiled JSPs need access to this system property. permission java.util.PropertyPermission "org.apache.jasper.runtime.BodyContentImpl.LIMIT_BUFFER", "read"; };

    Read the article

  • Enabling Kerberos Authentication for Reporting Services

    - by robcarrol
    Recently, I’ve helped several customers with Kerberos authentication problems with Reporting Services and Analysis Services, so I’ve decided to write this blog post and pull together some useful resources in one place (there are 2 whitepapers in particular that I found invaluable configuring Kerberos authentication, and these can be found in the references section at the bottom of this post). In most of these cases, the problem has manifested itself with the Login failed for User ‘NT Authority\Anonymous’ (“double-hop”) error. By default, Reporting Services uses Windows Integrated Authentication, which includes the Kerberos and NTLM protocols for network authentication. Additionally, Windows Integrated Authentication includes the negotiate security header, which prompts the client to select Kerberos or NTLM for authentication. The client can access reports which have the appropriate permissions by using Kerberos for authentication. Servers that use Kerberos authentication can impersonate those clients and use their security context to access network resources. You can configure Reporting Services to use both Kerberos and NTLM authentication; however this may lead to a failure to authenticate. With negotiate, if Kerberos cannot be used, the authentication method will default to NTLM. When negotiate is enabled, the Kerberos protocol is always used except when: Clients/servers that are involved in the authentication process cannot use Kerberos. The client does not provide the information necessary to use Kerberos. An in-depth discussion of Kerberos authentication is beyond the scope of this post, however when users execute reports that are configured to use Windows Integrated Authentication, their logon credentials are passed from the report server to the server hosting the data source. Delegation needs to be set on the report server and Service Principle Names (SPNs) set for the relevant services. When a user processes a report, the request must go through a Web server on its way to a database server for processing. Kerberos authentication enables the Web server to request a service ticket from the domain controller; impersonate the client when passing the request to the database server; and then restrict the request based on the user’s permissions. Each time a server is required to pass the request to another server, the same process must be used. Kerberos authentication is supported in both native and SharePoint integrated mode, but I’ll focus on native mode for the purpose of this post (I’ll explain configuring SharePoint integrated mode and Kerberos authentication in a future post). Configuring Kerberos avoids the authentication failures due to double-hop issues. These double-hop errors occur when a users windows domain credentials can’t be passed to another server to complete the user’s request. In the case of my customers, users were executing Reporting Services reports that were configured to query Analysis Services cubes on a separate machine using Windows Integrated security. The double-hop issue occurs as NTLM credentials are valid for only one network hop, subsequent hops result in anonymous authentication. The client attempts to connect to the report server by making a request from a browser (or some other application), and the connection process begins with authentication. With NTLM authentication, client credentials are presented to Computer 2. However Computer 2 can’t use the same credentials to access Computer 3 (so we get the Anonymous login error). To access Computer 3 it is necessary to configure the connection string with stored credentials, which is what a number of customers I have worked with have done to workaround the double-hop authentication error. However, to get the benefits of Windows Integrated security, a better solution is to enable Kerberos authentication. Again, the connection process begins with authentication. With Kerberos authentication, the client and the server must demonstrate to one another that they are genuine, at which point authentication is successful and a secure client/server session is established. In the illustration above, the tiers represent the following: Client tier (computer 1): The client computer from which an application makes a request. Middle tier (computer 2): The Web server or farm where the client’s request is directed. Both the SharePoint and Reporting Services server(s) comprise the middle tier (but we’re only concentrating on native deployments just now). Back end tier (computer 3): The Database/Analysis Services server/Cluster where the requested data is stored. In order to enable Kerberos authentication for Reporting Services it’s necessary to configure the relevant SPNs, configure trust for delegation for server accounts, configure Kerberos with full delegation and configure the authentication types for Reporting Services. Service Principle Names (SPNs) are unique identifiers for services and identify the account’s type of service. If an SPN is not configured for a service, a client account will be unable to authenticate to the servers using Kerberos. You need to be a domain administrator to add an SPN, which can be added using the SetSPN utility. For Reporting Services in native mode, the following SPNs need to be registered --SQL Server Service SETSPN -S mssqlsvc/servername:1433 Domain\SQL For named instances, or if the default instance is running under a different port, then the specific port number should be used. --Reporting Services Service SETSPN -S http/servername Domain\SSRS SETSPN -S http/servername.domain.com Domain\SSRS The SPN should be set for the NETBIOS name of the server and the FQDN. If you access the reports using a host header or DNS alias, then that should also be registered SETSPN -S http/www.reports.com Domain\SSRS --Analysis Services Service SETSPN -S msolapsvc.3/servername Domain\SSAS Next, you need to configure trust for delegation, which refers to enabling a computer to impersonate an authenticated user to services on another computer: Location Description Client 1. The requesting application must support the Kerberos authentication protocol. 2. The user account making the request must be configured on the domain controller. Confirm that the following option is not selected: Account is sensitive and cannot be delegated. Servers 1. The service accounts must be trusted for delegation on the domain controller. 2. The service accounts must have SPNs registered on the domain controller. If the service account is a domain user account, the domain administrator must register the SPNs. In Active Directory Users and Computers, verify that the domain user accounts used to access reports have been configured for delegation (the ‘Account is sensitive and cannot be delegated’ option should not be selected): We then need to configure the Reporting Services service account and computer to use Kerberos with full delegation:   We also need to do the same for the SQL Server or Analysis Services service accounts and computers (depending on what type of data source you are connecting to in your reports). Finally, and this is the part that sometimes gets over-looked, we need to configure the authentication type correctly for reporting services to use Kerberos authentication. This is configured in the Authentication section of the RSReportServer.config file on the report server. <Authentication> <AuthenticationTypes>           <RSWindowsNegotiate/> </AuthenticationTypes> <EnableAuthPersistence>true</EnableAuthPersistence> </Authentication> This will enable Kerberos authentication for Internet Explorer. For other browsers, see the link below. The report server instance must be restarted for these changes to take effect. Once these changes have been made, all that’s left to do is test to make sure Kerberos authentication is working properly by running a report from report manager that is configured to use Windows Integrated authentication (either connecting to Analysis Services or SQL Server back-end). Resources: Manage Kerberos Authentication Issues in a Reporting Services Environment http://download.microsoft.com/download/B/E/1/BE1AABB3-6ED8-4C3C-AF91-448AB733B1AF/SSRSKerberos.docx Configuring Kerberos Authentication for Microsoft SharePoint 2010 Products http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23176 How to: Configure Windows Authentication in Reporting Services http://msdn.microsoft.com/en-us/library/cc281253.aspx RSReportServer Configuration File http://msdn.microsoft.com/en-us/library/ms157273.aspx#Authentication Planning for Browser Support http://msdn.microsoft.com/en-us/library/ms156511.aspx

    Read the article

  • Mixed-mode C++/CLI crashing: heap corruption in atexit (static destructor registration)

    - by thaimin
    I am working on deploying a program and the codebase is a mixture of C++/CLI and C#. The C++/CLI comes in all flavors: native, mixed (/clr), and safe (/clr:safe). In my development environment I create a DLL of all the C++/CLI code and reference that from the C# code (EXE). This method works flawlessly. For my releases that I want to release a single executable (simply stating that "why not just have a DLL and EXE separate?" is not acceptable). So far I have succeeded in compiling the EXE with all the different sources. However, when I run it I get the "XXXX has stopped working" dialog with options to Check online, Close and Debug. The problem details are as follows: Problem Event Name: APPCRASH Fault Module Name: StackHash_8d25 Fault Module Version: 6.1.7600.16559 Fault Module Timestamp: 4ba9b29c Exception Code: c0000374 Exception Offset: 000cdc9b OS Version: 6.1.7600.2.0.0.256.48 Locale ID: 1033 Additional Information 1: 8d25 Additional Information 2: 8d25552d834e8c143c43cf1d7f83abb8 Additional Information 3: 7450 Additional Information 4: 74509ce510cd821216ce477edd86119c If I debug and send it to Visual Studio, it reports: Unhandled exception at 0x77d2dc9b in XXX.exe: A heap has been corrupted Choosing break results in it stopping at ntdll.dll!77d2dc9b() with no additional information. If I tell Visual Studio to continue, the program starts up fine and seems to work without incident, probably since a debugger is now attached. What do you make of this? How do I avoid this heap corruption? The program seems to work fine except for this. My abridged compilation script is as follows (I have omitted my error checking for brevity): @set TARGET=x86 @set TARGETX=x86 @set OUT=%TARGETX% @call "%VS90COMNTOOLS%\..\..\VC\vcvarsall.bat" %TARGET% @set WIMGAPI=C:\Program Files\Windows AIK\SDKs\WIMGAPI\%TARGET% set CL=/Zi /nologo /W4 /O2 /GS /EHa /MD /MP /D NDEBUG /D _UNICODE /D UNICODE /D INTEGRATED /Fd%OUT%\ /Fo%OUT%\ set INCLUDE=%WIMGAPI%;%INCLUDE% set LINK=/nologo /LTCG /CLRIMAGETYPE:IJW /MANIFEST:NO /MACHINE:%TARGETX% /SUBSYSTEM:WINDOWS,6.0 /OPT:REF /OPT:ICF /DEFAULTLIB:msvcmrt.lib set LIB=%WIMGAPI%;%LIB% set CSC=/nologo /w:4 /d:INTEGRATED /o+ /target:module :: Compiling resources omitted @set CL_NATIVE=/c /FI"stdafx-native.h" @set CL_MIXED=/c /clr /LN /FI"stdafx-mixed.h" @set CL_PURE=/c /clr:safe /LN /GL /FI"stdafx-pure.h" @set NATIVE=... @set MIXED=... @set PURE=... cl %CL_NATIVE% %NATIVE% cl %CL_MIXED% %MIXED% cl %CL_PURE% %PURE% link /LTCG /NOASSEMBLY /DLL /OUT:%OUT%\core.netmodule %OUT%\*.obj csc %CSC% /addmodule:%OUT%\core.netmodule /out:%OUT%\GUI.netmodule /recurse:*.cs link /FIXED /ENTRY:GUI.Program.Main /OUT:%OUT%\XXX.exe ^ /ASSEMBLYRESOURCE:%OUT%\core.resources,XXX.resources,PRIVATE /ASSEMBLYRESOURCE:%OUT%\GUI.resources,GUI.resources,PRIVATE ^ /ASSEMBLYMODULE:%OUT%\core.netmodule %OUT%\gui.res %OUT%\*.obj %OUT%\GUI.netmodule Update 1 Upon compiling this with debug symbols and trying again, I do in fact get more information. The call stack is: msvcr90d.dll!_msize_dbg(void * pUserData, int nBlockUse) Line 1511 + 0x30 bytes msvcr90d.dll!_dllonexit_nolock(int (void)* func, void (void)* * * pbegin, void (void)* * * pend) Line 295 + 0xd bytes msvcr90d.dll!__dllonexit(int (void)* func, void (void)* * * pbegin, void (void)* * * pend) Line 273 + 0x11 bytes XXX.exe!_onexit(int (void)* func) Line 110 + 0x1b bytes XXX.exe!atexit(void (void)* func) Line 127 + 0x9 bytes XXX.exe!`dynamic initializer for 'Bytes::Null''() Line 7 + 0xa bytes mscorwks.dll!6cbd1b5c() [Frames below may be incorrect and/or missing, no symbols loaded for mscorwks.dll] ... The line of my code that 'causes' this (dynamic initializer for Bytes::Null) is: Bytes Bytes::Null; In the header that is declared as: class Bytes { public: static Bytes Null; } I also tried doing a global extern in the header like so: extern Bytes Null; // header Bytes Null; // cpp file Which failed in the same way. It seems that the CRT atexit function is responsible, being inadvertently required due to the static initializer. Fix As Ben Voigt pointed out the use of any CRT functions (including native static initializers) requires proper initialization of the CRT (which happens in mainCRTStartup, WinMainCRTStartup, or _DllMainCRTStartup). I have added a mixed C++/CLI file that has a C++ main or WinMain: using namespace System; [STAThread] // required if using an STA COM objects (such as drag-n-drop or file dialogs) int main() { // or "int __stdcall WinMain(void*, void*, wchar_t**, int)" for GUI applications array<String^> ^args_orig = Environment::GetCommandLineArgs(); int l = args_orig->Length - 1; // required to remove first argument (program name) array<String^> ^args = gcnew array<String^>(l); if (l > 0) Array::Copy(args_orig, 1, args, 0, l); return XXX::CUI::Program::Main(args); // return XXX::GUI::Program::Main(args); } After doing this, the program now gets a little further, but still has issues (which will be addressed elsewhere): When the program is solely in C# it works fine, along with whenever it is just calling C++/CLI methods, getting C++/CLI properties, and creating managed C++/CLI objects Events added by C# into the C++/CLI code never fire (even though they should) One other weird error is that an exception happens is a InvalidCastException saying can't cast from X to X (where X is the same as X...) However since the heap corruption is fixed (by getting the CRT initialized) the question is done.

    Read the article

  • CodePlex Daily Summary for Saturday, March 27, 2010

    CodePlex Daily Summary for Saturday, March 27, 2010New ProjectsAlter gear SQL index Management: SQL Index management displays a list of indexes available for the chosen database and allows you to select an individual / group of indexes to be r...ASP League Ladder System: An ASP ladder / league system for online gaming league or real life leagues also.Augmented Reality Strategy Simulator: Augmented Reality Strategy Simulator is a software suite to promote computer aided strategy planning. Sports team can visualize their strategy usin...Boo syntax highlighting for Visual Studio 2010: Simple syntax hightlighting VSX add-in for Boo language in Visual Studio 2010.easySan: easySan zur einfachen Mitgliedsverwaltung im BRKFsUnit: FsUnit makes unit-testing with F# more enjoyable. It adds a special syntax to your favorite .NET testing framework.Laughing Dog XNA Framework: Laughing Dog is a simple to use, component based 2D framework for XNA game development. At present it is very early in development and as such is f...miniTodo: WPFでMVVMの練習にてきとうに作ったTODOアプリ 実用は無理です。My Common Library on .NET with CSharp: My Common Library on .NET with CSharp, it conclude database assecc, encrypt string, data caching, StringUtility, thank you for your view.Native code wrapping using c# : fsutil sparse commands: Ever thought about creating HUGE FILES for future use but felt bad for the wasted memory? Well, SPARSE FILES are the ANSWER! This FSUTIL SPARSE CO...Open SOA Platform: A centralized system for administering applications throught a SOA Enterprise Service Bus: Runtime environment (PROD, DEV, ...) , application and s...P-DBMS: Network and Database ProjectPraiseSight: PraiseSight is supposed to become a practical tool for churches to catalog an present their songs, lyrics and presentations on a beamer. The soluti...Pretty Good Frontend: Pretty Good Frontend is a sample frontend for ConfigMgr (SCCM) 2007 and MDT 2010 Zero Touch. S3Appender (Appender for Log4Net that Uses Amazon S3 For Storing Log Files): The S3Appender is a log4net appender that stores log events in either a MemoryStream or FileStream and sends them to S3 based on time intervals and...sEmit: sEmit (sms emitter) is an application written in C# which was built to send text messages. The project was founded in May 2009 by cansik. It works ...Silverlight RIA Tools: A tool set that generates a full RIA Solutions in Silverlightthommo cannon: Cannon for shooting down ThommosTianjin Polytechnic University Online Judge: Online Judge System Built on Microsoft technologies. Vision & Scope: A distributed OJ Solution on Windows and Cloud. Technologies used or planed...Tinare: Tinare is an byte encryption and decryption alogrithm. The input key is a string password.TinyPlug: Small Plugin Manager, written in C# Allows a project to define supported interfaces, and at runtime add plugins which support (inherit) these in...Utility niconv helps to convert text from one encoding to another: .NET implementation of GUN iconv console converter utility. The niconv program converts text from one encoding to another encoding. In the future r...WareFeed - Software Business Analytics: WareFeed is a simple but effective Software Business Analytics tool written in PHP and compatible others languages such as .NET, Java or Python. It...Y36API1: Semestralni projekt na Y36APINew ReleasesAlter gear SQL index Management: Setup 1.0.0: setup for first alpha releaseASP League Ladder System: ASPLeagueRelease_0_4_1: Release v 0.41Augmented Reality Strategy Simulator: Augmented Reality Strategy Simulator: Version 1.0 InstallerAutoAudit: AutoAudit 1.10e: Version 1.10e will be the final iteration of version 1 development. Version 2 will begin adding switches and options. Pleae email your suggestio...Boo syntax highlighting for Visual Studio 2010: Boo syntax VS 2010 - alpha: First release TODO: Multiline comments!Chargify.NET: Chargify.NET 0.6: Updated library, using Metered Components and updated Product information.Composer: V1.0.326.1000 Alpha: Initial Alpha release. Should be stable, with minor issues.CoNatural Components: CoNatural Components 1.6: Code fixes: Created helper classes to generate source code for type mapper/materializer. Fixed issue in optimized type materializer when loading ...CRM External View: 1.2: New Features in v1.2 release Password protected views. No more using Web Data Access role from v1. Filtering capabilities Caching for performan...Designit Video Embed Package: Release 1.1.0 beta1: You can now either have the video embeded directly in the template or have a preview in template that opens the video in a lightbox window.FsUnit: FsUnit 0.9.0 for NUnit: This release is for F# 2.0 and NUnit 2.5+.Laughing Dog XNA Framework: Laughing Dog 0.0.1: Laughing Dog - Alpla - v 0.0.1 First released version of the Laughing Dog framework.LiveUpload to Facebook: LiveUpload to Facebook 3.2: Version 3.2Become a fan on Facebook! Features Quickly and easily upload your photos and videos to Facebook, including any people tags added in Win...MapWindow6: MapWindow 6.0 msi March 26: This version adds the Join feature for creating a new "featureset" with attributes that are joined with attributes from a Excel data label named 'D...Mobile Broadband Logging Monitor: Mobile Broadband Logging Monitor 1.2.2: This edition supports: Newer and older editions of Birdstep Technology's EasyConnect HUAWEI Mobile Partner MWConn User defined location for s...Multiplayer Quiz: Release 1_6_351_0: A beta release of the next version. Please leave any errors in discussions or comments.Native code wrapping using c# : fsutil sparse commands: Fsutil sparse file native code - c sharp wrapper: Project Description A C# code wrapping a native code-Sparse files1 The code is about SPARSE files- the abillity to create huge files (for future us...Nice Libraries: 1.30 build 50325.01: Release 1.30 build 50325.01Pretty Good Frontend: Pretty Good Frontend binaries v1.0: This is the first public release of the Pretty Good Frontend binariesPylor: Pylor 0.1 alpha: This is the very first published version. I hope I can put a sample project soon.Quick Performance Monitor: Version 1.1 refresh: There was a typo or two in the sample batch file. Corrected now.Rapidshare Episode Downloader: RED v0.8.3: 0.8.1 introduced the ability to advance to the next episode. In 0.8.2 a bug was found that if episode number is less then 10, then the preceding 0...RapidWebDev - .NET Enterprise Software Development Infrastructure: RapidWebDev 1.52: RapidWebDev is an infrastructure helps to develop enterprise software solutions in Microsoft .NET easily and productively. This is the release vers...thommo cannon: game: gamethommo cannon: setup: setupthommo cannon: test: testTinare: Tinare DLL: Tinare DLL is a dynamic-link library written in C# which provides the functions to encrypt and decrypt a byte stream with tinare.WeatherBar: WeatherBar 2.1 [No Installation]: Minor changes to release 2.0 (http://weatherbar.codeplex.com/releases/view/42490). Fixed the bug that caused an exception to be thrown if the user...Most Popular ProjectsMetaSharpRawrWBFS ManagerASP.NET Ajax LibrarySilverlight ToolkitMicrosoft SQL Server Product Samples: DatabaseAJAX Control ToolkitLiveUpload to FacebookWindows Presentation Foundation (WPF)ASP.NETMost Active ProjectsRawrjQuery Library for SharePoint Web ServicesBlogEngine.NETMicrosoft Biology FoundationFarseer Physics Enginepatterns & practices: Composite WPF and SilverlightLINQ to TwitterTable2ClassFluent Ribbon Control SuiteNB_Store - Free DotNetNuke Ecommerce Catalog Module

    Read the article

  • New ways for backup, recovery and restore of Essbase Block Storage databases – part 2 by Bernhard Kinkel

    - by Alexandra Georgescu
    After discussing in the first part of this article new options in Essbase for the general backup and restore, this second part will deal with the also rather new feature of Transaction Logging and Replay, which was released in version 11.1, enhancing existing restore options. Tip: Transaction logging and replay cannot be used for aggregate storage databases. Please refer to the Oracle Hyperion Enterprise Performance Management System Backup and Recovery Guide (rel. 11.1.2.1). Even if backups are done on a regular, frequent base, subsequent data entries, loads or calculations would not be reflected in a restored database. Activating Transaction Logging could fill that gap and provides you with an option to capture these post-backup transactions for later replay. The following table shows, which are the transactions that could be logged when Transaction Logging is enabled: In order to activate its usage, corresponding statements could be added to the Essbase.cfg file, using the TRANSACTIONLOGLOCATION command. The complete syntax reads: TRANSACTIONLOGLOCATION [ appname [ dbname]] LOGLOCATION NATIVE ?ENABLE | DISABLE Where appname and dbname are optional parameters giving you the chance in combination with the ENABLE or DISABLE command to set Transaction Logging for certain applications or databases or to exclude them from being logged. If only an appname is specified, the setting applies to all databases in that particular application. If appname and dbname are not defined, all applications and databases would be covered. LOGLOCATION specifies the directory to which the log is written, e.g. D:\temp\trlogs. This directory must already exist or needs to be created before using it for log information being written to it. NATIVE is a reserved keyword that shouldn’t be changed. The following example shows how to first enable logging on a more general level for all databases in the application Sample, followed by a disabling statement on a more granular level for only the Basic database in application Sample, hence excluding it from being logged. TRANSACTIONLOGLOCATION Sample Hyperion/trlog/Sample NATIVE ENABLE TRANSACTIONLOGLOCATION Sample Basic Hyperion/trlog/Sample NATIVE DISABLE Tip: After applying changes to the configuration file you must restart the Essbase server in order to initialize the settings. A maybe required replay of logged transactions after restoring a database can be done only by administrators. The following options are available: In Administration Services selecting Replay Transactions on the right-click menu on the database: Here you can select to replay transactions logged after the last replay request was originally executed or after the time of the last restored backup (whichever occurred later) or transactions logged after a specified time. Or you can replay transactions selectively based on a range of sequence IDs, which can be accessed using Display Transactions on the right-click menu on the database: These sequence ID s (0, 1, 2 … 7 in the screenshot below) are assigned to each logged transaction, indicating the order in which the transaction was performed. This helps to ensure the integrity of the restored data after a replay, as the replay of transactions is enforced in the same order in which they were originally performed. So for example a calculation originally run after a data load cannot be replayed before having replayed the data load first. After a transaction is replayed, you can replay only transactions with a greater sequence ID. For example, replaying the transaction with sequence ID of 4 includes all preceding transactions, while afterwards you can only replay transactions with a sequence ID of 5 or greater. Tip: After restoring a database from a backup you should always completely replay all logged transactions, which were executed after the backup, before executing new transactions. But not only the transaction information itself needs to be logged and stored in a specified directory as described above. During transaction logging, Essbase also creates archive copies of data load and rules files in the following default directory: ARBORPATH/app/appname/dbname/Replay These files are then used during the replay of a logged transaction. By default Essbase archives only data load and rules files for client data loads, but in order to specify the type of data to archive when logging transactions you can use the command TRANSACTIONLOGDATALOADARCHIVE as an additional entry in the Essbase.cfg file. The syntax for the statement is: TRANSACTIONLOGDATALOADARCHIVE [appname [dbname]] [OPTION] While to the [appname [dbname]] argument the same applies like before for TRANSACTIONLOGLOCATION, the valid values for the OPTION argument are the following: Make the respective setting for which files copies should be logged, considering from which location transactions are usually taking place. Selecting the NONE option prevents Essbase from saving the respective files and the data load cannot be replayed. In this case you must first manually load the data before you can replay the transactions. Tip: If you use server or SQL data and the data and rules files are not archived in the Replay directory (for example, you did not use the SERVER or SERVER_CLIENT option), Essbase replays the data that is actually in the data source at the moment of the replay, which may or may not be the data that was originally loaded. You can find more detailed information in the following documents: Oracle Hyperion Enterprise Performance Management System Backup and Recovery Guide (rel. 11.1.2.1) Oracle Essbase Online Documentation (rel. 11.1.2.1)) Enterprise Performance Management System Documentation (including previous releases) Or on the Oracle Technology Network. If you are also interested in other new features and smart enhancements in Essbase or Hyperion Planning stay tuned for coming articles or check our training courses and web presentations. You can find general information about offerings for the Essbase and Planning curriculum or other Oracle-Hyperion products here; (please make sure to select your country/region at the top of this page) or in the OU Learning paths section, where Planning, Essbase and other Hyperion products can be found under the Fusion Middleware heading (again, please select the right country/region). Or drop me a note directly: [email protected]. About the Author: Bernhard Kinkel started working for Hyperion Solutions as a Presales Consultant and Consultant in 1998 and moved to Hyperion Education Services in 1999. He joined Oracle University in 2007 where he is a Principal Education Consultant. Based on these many years of working with Hyperion products he has detailed product knowledge across several versions. He delivers both classroom and live virtual courses. His areas of expertise are Oracle/Hyperion Essbase, Oracle Hyperion Planning and Hyperion Web Analysis. Disclaimer: All methods and features mentioned in this article must be considered and tested carefully related to your environment, processes and requirements. As guidance please always refer to the available software documentation. This article does not recommend or advise any explicit action or change, hence the author cannot be held responsible for any consequences due to the use or implementation of these features.

    Read the article

  • GoogleAppEngine : ClassNotFoundException : javax.jdo.metadata.ComponentMetadata

    - by James.Elsey
    I'm trying to deploy my application to a locally running GoogleAppEngine development server, but I'm getting the following stack trace when I start the server Apr 23, 2010 9:03:33 PM com.google.apphosting.utils.jetty.JettyLogger warn WARNING: Nested in org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'clientDao' defined in ServletContext resource [/WEB-INF/applicationContext.xml]: Cannot resolve reference to bean 'entityManagerFactory' while setting bean property 'entityManagerFactory'; nested exception is org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'entityManagerFactory' defined in ServletContext resource [/WEB-INF/applicationContext.xml]: Invocation of init method failed; nested exception is java.lang.NoClassDefFoundError: javax/jdo/metadata/ComponentMetadata: java.lang.ClassNotFoundException: javax.jdo.metadata.ComponentMetadata at java.net.URLClassLoader$1.run(URLClassLoader.java:217) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:205) at java.lang.ClassLoader.loadClass(ClassLoader.java:319) at com.google.appengine.tools.development.IsolatedAppClassLoader.loadClass(IsolatedAppClassLoader.java:151) at java.lang.ClassLoader.loadClass(ClassLoader.java:264) at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:332) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:264) at javax.jdo.JDOHelper$18.run(JDOHelper.java:2009) at javax.jdo.JDOHelper$18.run(JDOHelper.java:2007) at java.security.AccessController.doPrivileged(Native Method) at javax.jdo.JDOHelper.forName(JDOHelper.java:2006) at javax.jdo.JDOHelper.invokeGetPersistenceManagerFactoryOnImplementation(JDOHelper.java:1155) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:803) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:698) at org.datanucleus.jpa.EntityManagerFactoryImpl.initialisePMF(EntityManagerFactoryImpl.java:482) at org.datanucleus.jpa.EntityManagerFactoryImpl.<init>(EntityManagerFactoryImpl.java:255) at org.datanucleus.store.appengine.jpa.DatastoreEntityManagerFactory.<init>(DatastoreEntityManagerFactory.java:68) at org.datanucleus.store.appengine.jpa.DatastorePersistenceProvider.createContainerEntityManagerFactory(DatastorePersistenceProvider.java:45) at org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean.createNativeEntityManagerFactory(LocalContainerEntityManagerFactoryBean.java:224) at org.springframework.orm.jpa.AbstractEntityManagerFactoryBean.afterPropertiesSet(AbstractEntityManagerFactoryBean.java:291) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1369) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1335) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:473) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveReference(BeanDefinitionValueResolver.java:269) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveValueIfNecessary(BeanDefinitionValueResolver.java:104) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyPropertyValues(AbstractAutowireCapableBeanFactory.java:1245) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:1010) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:472) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:429) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:728) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:380) at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler.java:530) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.java:1218) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java:500) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:40) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java:117) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:40) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java:117) at org.mortbay.jetty.Server.doStart(Server.java:217) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:40) at com.google.appengine.tools.development.JettyContainerService.startContainer(JettyContainerService.java:181) at com.google.appengine.tools.development.AbstractContainerService.startup(AbstractContainerService.java:116) at com.google.appengine.tools.development.DevAppServerImpl.start(DevAppServerImpl.java:217) at com.google.appengine.tools.development.DevAppServerMain$StartAction.apply(DevAppServerMain.java:162) at com.google.appengine.tools.util.Parser$ParseResult.applyArgs(Parser.java:48) at com.google.appengine.tools.development.DevAppServerMain.<init>(DevAppServerMain.java:113) at com.google.appengine.tools.development.DevAppServerMain.main(DevAppServerMain.java:89) The server is running at http://localhost:1234/ I'm a little confused over this, since I have the same application running locally on GlassFish/MySQL. All I have done is to swap in the relevant jar files, and change the persistence.xml. My applicationContext.xml looks as follows : <context:annotation-config/> <bean id="clientDao" class="com.jameselsey.salestracker.dao.jpa.JpaDaoClient"> <property name="entityManagerFactory" ref="entityManagerFactory"/> </bean> <bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"/> <bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager"> <property name="entityManagerFactory" ref="entityManagerFactory" /> </bean> <bean id="org.springframework.context.annotation.internalPersistenceAnnotationProcessor" class="com.jameselsey.salestracker.util.GaeFixInternalPersistenceAnnotationProcessor" /> <bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/> <tx:annotation-driven/> <bean id="clientService" class="com.jameselsey.salestracker.service.ClientService"/> </beans> My JPA DAO looks like this public class JpaDao extends JpaDaoSupport { protected <T> List<T> findAll(Class<T> clazz) { return getJpaTemplate().find("select c from " + clazz.getName() + " c"); } protected <T> T findOne(String jpql, Map params) { List<T> results = getJpaTemplate().findByNamedParams(jpql, params); if(results.isEmpty()) { return null; } if(results.size() > 1) { throw new IncorrectResultSizeDataAccessException(1, results.size()); } return results.get(0); } } And an example implemented method looks like this : @Override public Client getClientById(Integer clientId) { String jpql = "SELECT c " + "FROM com.jameselsey.salestracker.domain.Client c " + "WHERE c.id = " + clientId; return (Client) getJpaTemplate().find(jpql).get(0); } Like I say, this works ok on Glassfish/MySQL, is it possible this error could be a red herring to something else?

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • MySQL Syslog Audit Plugin

    - by jonathonc
    This post shows the construction process of the Syslog Audit plugin that was presented at MySQL Connect 2012. It is based on an environment that has the appropriate development tools enabled including gcc,g++ and cmake. It also assumes you have downloaded the MySQL source code (5.5.16 or higher) and have compiled and installed the system into the /usr/local/mysql directory ready for use.  The information provided below is designed to show the different components that make up a plugin, and specifically an audit type plugin, and how it comes together to be used within the MySQL service. The MySQL Reference Manual contains information regarding the plugin API and how it can be used, so please refer there for more detailed information. The code in this post is designed to give the simplest information necessary, so handling every return code, managing race conditions etc is not part of this example code. Let's start by looking at the most basic implementation of our plugin code as seen below: /*    Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.    Author:  Jonathon Coombes    Licence: GPL    Description: An auditing plugin that logs to syslog and                 can adjust the loglevel via the system variables. */ #include <stdio.h> #include <string.h> #include <mysql/plugin_audit.h> #include <syslog.h> There is a commented header detailing copyright/licencing and meta-data information and then the include headers. The two important include statements for our plugin are the syslog.h plugin, which gives us the structures for syslog, and the plugin_audit.h include which has details regarding the audit specific plugin api. Note that we do not need to include the general plugin header plugin.h, as this is done within the plugin_audit.h file already. To implement our plugin within the current implementation we need to add it into our source code and compile. > cd /usr/local/src/mysql-5.5.28/plugin > mkdir audit_syslog > cd audit_syslog A simple CMakeLists.txt file is created to manage the plugin compilation: MYSQL_ADD_PLUGIN(audit_syslog audit_syslog.cc MODULE_ONLY) Run the cmake  command at the top level of the source and then you can compile the plugin using the 'make' command. This results in a compiled audit_syslog.so library, but currently it is not much use to MySQL as there is no level of api defined to communicate with the MySQL service. Now we need to define the general plugin structure that enables MySQL to recognise the library as a plugin and be able to install/uninstall it and have it show up in the system. The structure is defined in the plugin.h file in the MySQL source code.  /*   Plugin library descriptor */ mysql_declare_plugin(audit_syslog) {   MYSQL_AUDIT_PLUGIN,           /* plugin type                    */   &audit_syslog_descriptor,     /* descriptor handle               */   "audit_syslog",               /* plugin name                     */   "Author Name",                /* author                          */   "Simple Syslog Audit",        /* description                     */   PLUGIN_LICENSE_GPL,           /* licence                         */   audit_syslog_init,            /* init function     */   audit_syslog_deinit,          /* deinit function */   0x0001,                       /* plugin version                  */   NULL,                         /* status variables        */   NULL,                         /* system variables                */   NULL,                         /* no reserves                     */   0,                            /* no flags                        */ } mysql_declare_plugin_end; The general plugin descriptor above is standard for all plugin types in MySQL. The plugin type is defined along with the init/deinit functions and interface methods into the system for sharing information, and various other metadata information. The descriptors have an internally recognised version number so that plugins can be matched against the api on the running server. The other details are usually related to the type-specific methods and structures to implement the plugin. Each plugin has a type-specific descriptor as well which details how the plugin is implemented for the specific purpose of that plugin type. /*   Plugin type-specific descriptor */ static struct st_mysql_audit audit_syslog_descriptor= {   MYSQL_AUDIT_INTERFACE_VERSION,                        /* interface version    */   NULL,                                                 /* release_thd function */   audit_syslog_notify,                                  /* notify function      */   { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |                     MYSQL_AUDIT_CONNECTION_CLASSMASK }  /* class mask           */ }; In this particular case, the release_thd function has not been defined as it is not required. The important method for auditing is the notify function which is activated when an event occurs on the system. The notify function is designed to activate on an event and the implementation will determine how it is handled. For the audit_syslog plugin, the use of the syslog feature sends all events to the syslog for recording. The class mask allows us to determine what type of events are being seen by the notify function. There are currently two major types of event: 1. General Events: This includes general logging, errors, status and result type events. This is the main one for tracking the queries and operations on the database. 2. Connection Events: This group is based around user logins. It monitors connections and disconnections, but also if somebody changes user while connected. With most audit plugins, the principle behind the plugin is to track changes to the system over time and counters can be an important part of this process. The next step is to define and initialise the counters that are used to track the events in the service. There are 3 counters defined in total for our plugin - the # of general events, the # of connection events and the total number of events.  static volatile int total_number_of_calls; /* Count MYSQL_AUDIT_GENERAL_CLASS event instances */ static volatile int number_of_calls_general; /* Count MYSQL_AUDIT_CONNECTION_CLASS event instances */ static volatile int number_of_calls_connection; The init and deinit functions for the plugin are there to be called when the plugin is activated and when it is terminated. These offer the best option to initialise the counters for our plugin: /*  Initialize the plugin at server start or plugin installation. */ static int audit_syslog_init(void *arg __attribute__((unused))) {     openlog("mysql_audit:",LOG_PID|LOG_PERROR|LOG_CONS,LOG_USER);     total_number_of_calls= 0;     number_of_calls_general= 0;     number_of_calls_connection= 0;     return(0); } The init function does a call to openlog to initialise the syslog functionality. The parameters are the service to log under ("mysql_audit" in this case), the syslog flags and the facility for the logging. Then each of the counters are initialised to zero and a success is returned. If the init function is not defined, it will return success by default. /*  Terminate the plugin at server shutdown or plugin deinstallation. */ static int audit_syslog_deinit(void *arg __attribute__((unused))) {     closelog();     return(0); } The deinit function will simply close our syslog connection and return success. Note that the syslog functionality is part of the glibc libraries and does not require any external factors.  The function names are what we define in the general plugin structure, so these have to match otherwise there will be errors. The next step is to implement the event notifier function that was defined in the type specific descriptor (audit_syslog_descriptor) which is audit_syslog_notify. /* Event notifier function */ static void audit_syslog_notify(MYSQL_THD thd __attribute__((unused)), unsigned int event_class, const void *event) { total_number_of_calls++; if (event_class == MYSQL_AUDIT_GENERAL_CLASS) { const struct mysql_event_general *event_general= (const struct mysql_event_general *) event; number_of_calls_general++; syslog(audit_loglevel,"%lu: User: %s Command: %s Query: %s\n", event_general->general_thread_id, event_general->general_user, event_general->general_command, event_general->general_query ); } else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS) { const struct mysql_event_connection *event_connection= (const struct mysql_event_connection *) event; number_of_calls_connection++; syslog(audit_loglevel,"%lu: User: %s@%s[%s] Event: %d Status: %d\n", event_connection->thread_id, event_connection->user, event_connection->host, event_connection->ip, event_connection->event_subclass, event_connection->status ); } }   In the case of an event, the notifier function is called. The first step is to increment the total number of events that have occurred in our database.The event argument is then cast into the appropriate event structure depending on the class type, of general event or connection event. The event type counters are incremented and details are sent via the syslog() function out to the system log. There are going to be different line formats and information returned since the general events have different data compared to the connection events, even though some of the details overlap, for example, user, thread id, host etc. On compiling the code now, there should be no errors and the resulting audit_syslog.so can be loaded into the server and ready to use. Log into the server and type: mysql> INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so'; This will install the plugin and will start updating the syslog immediately. Note that the audit plugin attaches to the immediate thread and cannot be uninstalled while that thread is active. This means that you cannot run the UNISTALL command until you log into a different connection (thread) on the server. Once the plugin is loaded, the system log will show output such as the following: Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: show tables Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: show tables Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: select * from t1 Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: select * from t1 It appears that two of each event is being shown, but in actuality, these are two separate event types - the result event and the status event. This could be refined further by changing the audit_syslog_notify function to handle the different event sub-types in a different manner.  So far, it seems that the logging is working with events showing up in the syslog output. The issue now is that the counters created earlier to track the number of events by type are not accessible when the plugin is being run. Instead there needs to be a way to expose the plugin specific information to the service and vice versa. This could be done via the information_schema plugin api, but for something as simple as counters, the obvious choice is the system status variables. This is done using the standard structure and the declaration: /*  Plugin status variables for SHOW STATUS */ static struct st_mysql_show_var audit_syslog_status[]= {   { "Audit_syslog_total_calls",     (char *) &total_number_of_calls,     SHOW_INT },   { "Audit_syslog_general_events",     (char *) &number_of_calls_general,     SHOW_INT },   { "Audit_syslog_connection_events",     (char *) &number_of_calls_connection,     SHOW_INT },   { 0, 0, SHOW_INT } };   The structure is simply the name that will be displaying in the mysql service, the address of the associated variables, and the data type being used for the counter. It is finished with a blank structure to show that there are no more variables. Remember that status variables may have the same name for variables from other plugin, so it is considered appropriate to add the plugin name at the start of the status variable name to avoid confusion. Looking at the status variables in the mysql client shows something like the following: mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 2     | | Audit_syslog_total_calls       | 3     | +--------------------------------+-------+ 3 rows in set (0.00 sec) The final connectivity piece for the plugin is to allow the interactive change of the logging level between the plugin and the system. This requires the ability to send changes via the mysql service through to the plugin. This is done using the system variables interface and defining a single variable to keep track of the active logging level for the facility. /* Plugin system variables for SHOW VARIABLES */ static MYSQL_SYSVAR_STR(loglevel, audit_loglevel,                         PLUGIN_VAR_RQCMDARG,                         "User can specify the log level for auditing",                         audit_loglevel_check, audit_loglevel_update, "LOG_NOTICE"); static struct st_mysql_sys_var* audit_syslog_sysvars[] = {     MYSQL_SYSVAR(loglevel),     NULL }; So now the system variable 'loglevel' is defined for the plugin and associated to the global variable 'audit_loglevel'. The check or validation function is defined to make sure that no garbage values are attempted in the update of the variable. The update function is used to save the new value to the variable. Note that the audit_syslog_sysvars structure is defined in the general plugin descriptor to associate the link between the plugin and the system and how much they interact. Next comes the implementation of the validation function and the update function for the system variable. It is worth noting that if you have a simple numeric such as integers for the variable types, the validate function is often not required as MySQL will handle the automatic check and validation of simple types. /* longest valid value */ #define MAX_LOGLEVEL_SIZE 100 /* hold the valid values */ static const char *possible_modes[]= { "LOG_ERROR", "LOG_WARNING", "LOG_NOTICE", NULL };  static int audit_loglevel_check(     THD*                        thd,    /*!< in: thread handle */     struct st_mysql_sys_var*    var,    /*!< in: pointer to system                                         variable */     void*                       save,   /*!< out: immediate result                                         for update function */     struct st_mysql_value*      value)  /*!< in: incoming string */ {     char buff[MAX_LOGLEVEL_SIZE];     const char *str;     const char **found;     int length;     length= sizeof(buff);     if (!(str= value->val_str(value, buff, &length)))         return 1;     /*         We need to return a pointer to a locally allocated value in "save".         Here we pick to search for the supplied value in an global array of         constant strings and return a pointer to one of them.         The other possiblity is to use the thd_alloc() function to allocate         a thread local buffer instead of the global constants.     */     for (found= possible_modes; *found; found++)     {         if (!strcmp(*found, str))         {             *(const char**)save= *found;             return 0;         }     }     return 1; } The validation function is simply to take the value being passed in via the SET GLOBAL VARIABLE command and check if it is one of the pre-defined values allowed  in our possible_values array. If it is found to be valid, then the value is assigned to the save variable ready for passing through to the update function. static void audit_loglevel_update(     THD*                        thd,        /*!< in: thread handle */     struct st_mysql_sys_var*    var,        /*!< in: system variable                                             being altered */     void*                       var_ptr,    /*!< out: pointer to                                             dynamic variable */     const void*                 save)       /*!< in: pointer to                                             temporary storage */ {     /* assign the new value so that the server can read it */     *(char **) var_ptr= *(char **) save;     /* assign the new value to the internal variable */     audit_loglevel= *(char **) save; } Since all the validation has been done already, the update function is quite simple for this plugin. The first part is to update the system variable pointer so that the server can read the value. The second part is to update our own global plugin variable for tracking the value. Notice that the save variable is passed in as a void type to allow handling of various data types, so it must be cast to the appropriate data type when assigning it to the variables. Looking at how the latest changes affect the usage of the plugin and the interaction within the server shows: mysql> show global variables like "audit%"; +-----------------------+------------+ | Variable_name         | Value      | +-----------------------+------------+ | audit_syslog_loglevel | LOG_NOTICE | +-----------------------+------------+ 1 row in set (0.00 sec) mysql> set global audit_syslog_loglevel="LOG_ERROR"; Query OK, 0 rows affected (0.00 sec) mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 11    | | Audit_syslog_total_calls       | 12    | +--------------------------------+-------+ 3 rows in set (0.00 sec) mysql> show global variables like "audit%"; +-----------------------+-----------+ | Variable_name         | Value     | +-----------------------+-----------+ | audit_syslog_loglevel | LOG_ERROR | +-----------------------+-----------+ 1 row in set (0.00 sec)   So now we have a plugin that will audit the events on the system and log the details to the system log. It allows for interaction to see the number of different events within the server details and provides a mechanism to change the logging level interactively via the standard system methods of the SET command. A more complex auditing plugin may have more detailed code, but each of the above areas is what will be involved and simply expanded on to add more functionality. With the above skeleton code, it is now possible to create your own audit plugins to implement your own auditing requirements. If, however, you are not of the coding persuasion, then you could always consider the option of the MySQL Enterprise Audit plugin that is available to purchase.

    Read the article

  • NHibernate 2 Beginner's Guide Review

    - by Ricardo Peres
    OK, here's the review I promised a while ago. This is a beginner's introduction to NHibernate, so if you have already some experience with NHibernate, you will notice it lacks a lot of concepts and information. It starts with a good description of NHibernate and why would we use it. It goes on describing basic mapping scenarios having primary keys generated with the HiLo or Identity algorithms, without actually explaining why would we choose one over the other. As for mapping, the book talks about XML mappings and provides a simple example of Fluent NHibernate, comparing it to its XML counterpart. When it comes to relations, it covers one-to-many/many-to-one and many-to-many, not one-to-one relations, but only talks briefly about lazy loading, which is, IMO, an important concept. Only Bags are described, not any of the other collection types. The log4net configuration description gets it's own chapter, which I find excessive. The chapter on configuration merely lists the most common properties for configuring NHibernate, both in XML and in code. Querying only talks about loading by ID (using Get, not Load) and using Criteria API, on which a paging example is presented as well as some common filtering options (property equals/like/between to, no examples on conjunction/disjunction, however). There's a chapter fully dedicated to ASP.NET, which explains how we can use NHibernate in web applications. It basically talks about ASP.NET concepts, though. Following it, another chapter explains how we can build our own ASP.NET providers using NHibernate (Membership, Role). The available entity generators for NHibernate are referred and evaluated on a chapter of their own, the list is fine (CodeSmith, nhib-gen, AjGenesis, Visual NHibernate, MyGeneration, NGen, NHModeler, Microsoft T4 (?) and hbm2net), examples are provided whenever possible, however, I have some problems with some of the evaluations: for example, Visual NHibernate scores 5 out of 5 on Visual Studio integration, which simply does not exist! I suspect the author means to say that it can be launched from inside Visual Studio, but then, what can't? Finally, there's a chapter I really don't understand. It seems like a bag where a lot of things are thrown in, like NHibernate Burrow (which actually isn't explained at all), Blog.Net components, CSS template conversion and web.config settings related to the maximum request length for file uploads and ending with XML configuration, with the help of GhostDoc. Like I said, the book is only good for absolute beginners, it does a fair job in explaining the very basics, but lack a lot of not-so-basic concepts. Among other things, it lacks: Inheritance mapping strategies (table per class hierarchy, table per class, table per concrete class) Load versus Get usage Other usefull ISession methods First level cache (Identity Map pattern) Other collection types other that Bag (Set, List, Map, IdBag, etc Fetch options User Types Filters Named queries LINQ examples HQL examples And that's it! I hope you find this review useful. The link to the book site is https://www.packtpub.com/nhibernate-2-x-beginners-guide/book

    Read the article

  • VSDB to SSDT Part 2 : SQL Server 2008 Server Project &hellip; with SSDT

    - by Etienne Giust
    With Visual Studio 2012 and the use of SSDT technology, there is only one type of database project : SQL Server Database Project. With Visual Studio 2010, we used to have SQL Server 2008 Server Project which we used to define server-level objects, mostly logins and linked servers. A convenient wizard allowed for creation of this type of projects. It does not exists anymore. Here is how to create an equivalent of the SQL Server 2008 Server Project  with Visual Studio 2012: Create a new SQL Server Database Project : it will be created empty Create a new SQL Schema Compare ( SQL menu item > Schema Compare > New Schema Comparison ) As a source, select any database on the SQL server you want to mimic Set the target to be your newly Database Project In the Schema Compare options (cog-like icon), Object Types pane, set the options as below. You might want to tweak those and select only the object types you want. Then, run the comparison, review and select your changes and apply them to the project.

    Read the article

  • Online video tutorials for HTML 5

    - by Albers
    Here are some of the best introductory HTML5 videos I have found online/for free. Mix 2011: HTML5 for Skeptics - Scott Stansfield channel9.msdn.com/Events/MIX/MIX11/EXT21 Filling the HTML5 Gaps with Polyfills and Shims - Ray Bango channel9.msdn.com/Events/MIX/MIX11/HTM04 50 Performance Tricks to Make Your HTML5 Web Sites Faster - Jason Weber channel9.msdn.com/Events/MIX/MIX11/HTM01 TechEd 2011 HTML5 and CSS3 Techniques You Can Use Today - Todd Anglin channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DEV334 Google IO HTML5 Showcase for Web Developers: The Wow and the How www.youtube.com/watch?v=WlwY6_W4VG8 css-tricks localStorage for Forms - Chris Coyier css-tricks.com/video-screencasts/96-localstorage-for-forms/ Best Practices with Dynamic Content - Chris Coyier This one talks about Hash Tags - take a look at the History API too css-tricks.com/video-screencasts/85-best-practices-dynamic-content/ localStorage for Forms - Chris Coyier css-tricks.com/video-screencasts/96-localstorage-for-forms/ Overview of HTML5 Forms Types, Attributes, and Elements - Chris Coyier css-tricks.com/video-screencasts/99-overview-of-html5-forms-types-attributes-and-elements/ Bruce Lawson - HTML5: Who, What, When, Why www.ubelly.com/2011/10/bruce-lawson-html5-who-what-when-why/ Bruce Lawson is an evangelist for Opera, and in this video he provides an overview including the history & philosophy of HTML5.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

< Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >