Search Results

Search found 5861 results on 235 pages for 'rich pixel vector'.

Page 87/235 | < Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >

  • Providing *implicit* conversion operator for template specialization

    - by Neil G
    I have a templated sparse_vector<T> class, and I am also using Boost UBLAS. How would I provide implicit conversions between sparse_vector<double> and boost::numeric::ublas::compressed_vector<double>? I would also like to provide similar conversions between std::vector<double> and boost::numeric::ublas::vector<double>. (I am using gcc 4.4 with C++0x enabled.)

    Read the article

  • Does Boost work with IntervalZero RTX 2009?

    - by cs-79
    Hi all Rtx experts, Have anyone implemented hard real-time app on IntervalZero Rtx environment using Boost libraries? I wish to use the Boost `unordered` data structures instead of solely relying on STL::Vector. Or Array/Vector is the only data structure supported by Rtx? * Off topic question: Can we use STL::String instead of char pointer for string in Rtx? Thanks.

    Read the article

  • C++ stl collections or linked lists

    - by Lucas
    I'm developing a OpenGL based simulation in C++. I'm optmizing my code now and i see throughout the code the frequently use of std:list and std:vector. What is the more performatic: to continue using C++ stl data structs or a pointer based linked list? The main operation that involve std::list and std::vector is open a iterator and loop through all items in the data structs and apply some processing

    Read the article

  • What is wrong with this C++ Code ?

    - by mr.bio
    Hi .. i am a beginner and i have a problem : this code doesnt compile : main.cpp: #include <stdlib.h> #include "readdir.h" #include "mysql.h" #include "readimage.h" int main(int argc, char** argv) { if (argc>1){ readdir(argv[1]); // test(); return (EXIT_SUCCESS); } std::cout << "Bitte Pfad angeben !" << std::endl ; return (EXIT_FAILURE); } readimage.cpp #include <Magick++.h> #include <iostream> #include <vector> using namespace Magick; using namespace std; void readImage(std::vector<string> &filenames) { for (unsigned int i = 0; i < filenames.size(); ++i) { try { Image img("binary/" + filenames.at(i)); for (unsigned int y = 1; y < img.rows(); y++) { for (unsigned int x = 1; x < img.columns(); x++) { ColorRGB rgb(img.pixelColor(x, y)); // cout << "x: " << x << " y: " << y << " : " << rgb.red() << endl; } } cout << "done " << i << endl; } catch (Magick::Exception & error) { cerr << "Caught Magick++ exception: " << error.what() << endl; } } } readimage.h #ifndef _READIMAGE_H #define _READIMAGE_H #include <Magick++.h> #include <iostream> #include <vector> #include <string> using namespace Magick; using namespace std; void readImage(vector<string> &filenames) #endif /* _READIMAGE_H */ If want to compile it with this code : g++ main.cpp Magick++-config --cflags --cppflags --ldflags --libs readimage.cpp i get this error message : main.cpp:5: error: expected initializer before ‘int’ i have no clue , why ? :( Can somebody help me ? :)

    Read the article

  • R - indirectly calling a matrix using a string

    - by Boris Senderovich
    Example: There is a matrix of data called VE There is a vector of string where the first element is the string VE. I need to indirectly call the string and be able to access data. For example if I need the 6th column of matrix VE then I want to do: Vector[1][,6] Essentially I need R to start reading those string as if they are the matrix names that are already in this page. I need this syntax to be dynamic because I am putting it in a loop.

    Read the article

  • Quaternion Cameras and projectile vectors

    - by Tom J Nowell
    In our software we have a camera based on mouse movement, and a quarternion at its heart. We want to fire projectiles from this position, which we can do, however we want to use the camera to aim. The projectile takes a vector which it will add to its position each game frame. How do we acquire such a vector from a given camera/quaternion?

    Read the article

  • Perfect Forwarding to async lambda

    - by Alexander Kondratskiy
    I have a function template, where I want to do perfect forwarding into a lambda that I run on another thread. Here is a minimal test case which you can directly compile: #include <thread> #include <future> #include <utility> #include <iostream> #include <vector> /** * Function template that does perfect forwarding to a lambda inside an * async call (or at least tries to). I want both instantiations of the * function to work (one for lvalue references T&, and rvalue reference T&&). * However, I cannot get the code to compile when calling it with an lvalue. * See main() below. */ template <typename T> std::string accessValueAsync(T&& obj) { std::future<std::string> fut = std::async(std::launch::async, [](T&& vec) mutable { return vec[0]; }, std::forward<T>(obj)); return fut.get(); } int main(int argc, char const *argv[]) { std::vector<std::string> lvalue{"Testing"}; // calling with what I assume is an lvalue reference does NOT compile std::cout << accessValueAsync(lvalue) << std::endl; // calling with rvalue reference compiles std::cout << accessValueAsync(std::move(lvalue)) << std::endl; // I want both to compile. return 0; } For the non-compiling case, here is the last line of the error message which is intelligible: main.cpp|13 col 29| note: no known conversion for argument 1 from ‘std::vector<std::basic_string<char> >’ to ‘std::vector<std::basic_string<char> >&’ I have a feeling it may have something to do with how T&& is deduced, but I can't pinpoint the exact point of failure and fix it. Any suggestions? Thank you! EDIT: I am using gcc 4.7.0 just in case this could be a compiler issue (probably not)

    Read the article

  • Best way to have common class shared by both C++ and Ruby?

    - by shuttle87
    I am currently working on a project where a team of us are designing a game, all of us are proficient in ruby and some (but not all) of us are proficient in c++. Initially we made the backend in ruby but we ported it to c++ for more speed. The c++ port of the backend has exactly the same features and algorithms as the original ruby code. However we still have a bunch of code in ruby that does useful things but we want it to now get the data from the c++ classes. Our first thought was that we could save some of the data structures in something like XML or redis and call that, but some of the developers don't like that idea. We don't need anything particularly complex data structures to be passed between the different parts of the code, just tuples, strings and ints. Is there any way of integrating the ruby code so that it can call the c++ stuff natively? Will we need to embed code? Will we have to make a ruby extension? If so are there any good resources/tutorials you could suggest? For example say we have this code in the c++ backend: class The_game{ private: bool printinfo; //print the player diagnostic info at the beginning if true int numplayers; std::vector<Player*> players; string current_action; int action_is_on; // the index of the player in the players array that the action is now on //more code here public: Table(std::vector<Player *> in_players, std::vector<Statistics *> player_stats ,const int in_numplayers); ~Table(); void play_game(); History actions_history; }; class History{ private: int action_sequence_number; std::vector<Action*> hand_actions; public: void print_history(); void add_action(Action* the_action_to_be_added); int get_action_sequence_number(){ return action_sequence_number;} bool history_actions_are_equal(); int last_action_size(int street,int number_of_actions_ago); History(); ~History(); }; Is there any way to natively call something in the actions_history via The_game object in ruby? (The objects in the original ruby code all had the same names and functionality) By this I mean: class MyRubyClass def method1(arg1) puts arg1 self.f() # ... but still available puts cpp_method.the_current_game.actions_history.get_action_sequence_number() end # Constructor: def initialize(arg) puts "In constructor with arg #{arg}" #get the c++ object here and call it cpp_method end end Is this possible? Any advice or suggestions are appreciated.

    Read the article

  • Matlab - Find point of intersection between two vectors

    - by Silv3rSurf
    I have a very simple matlab question. What is the easiest way to find the point of intersection between two vectors. I am not familiar with the various matlab fuctions -- it seems like there should be one for this. For example if I have one vector from (0,0) to (6,6) and another vector from (0,6) to (6,0), I need to determine that they intersect at (3,3) Thanks.

    Read the article

  • length between 2 values

    - by alex
    In R, what is the most efficient way to count the length between 2 values. for example, i have vector x , which are all randomly choose from 1 to 100, how can i find out the length between the first"2" and first"40", x=(1,2,3,4,5,6,7,40,1,2,3,21,4,1,23,4,43,23,4,12,3,43,5,36,3,45,12,31,3,4,23,41,23,5,53,45,3,7,6,36) for this vector, the answer should be 5 and 6

    Read the article

  • How do I calculate the average direction of two vectors

    - by Mike Broughton
    Hi, I am writing and opengl based iphone app and would like to allow a user to translate around a view based on the direction that they move two fingers on the screen. For one finger I know I could just calculate the vector from the start position to the current position of the users finger and then find the unit vector of this to get just the direction, but I don't know how I would do this for two fingers, I don't think adding the components of the vectors and calculating the average would work so I'm pretty much stuck... thanks in advance

    Read the article

  • Set required attribute of two h:selectManyCheckbox

    - by BRabbit27
    I have two h:selectManyCheckBox with the required attribute set to true. What I want is that the required attribute of both of the components work together. Only display the error message if and only if both of the selected items list are empty. Right now my problem is that the message displays if either one of them is empty. Here's my code: <rich:panel> <f:facet name="header"> <h:outputText value="Actualización de catálogos"/> </f:facet> <h:panelGrid columns="4"> <h:outputLabel for="actualizarCatalogoPEC" value="Actualizar catálogos PEC"/> <h:selectBooleanCheckbox id="actualizarCatalogoPEC" value="#{administrationBean.actualizaTodosPecChecked}"> <f:ajax event="click" render="todosCatalogosPEC"/> </h:selectBooleanCheckbox> <h:outputLabel for="actualizarCatalogoSAGARPA" value="Actualizar catálogos SAGARPA"/> <h:selectBooleanCheckbox id="actualizarCatalogoSAGARPA" value="#{administrationBean.actualizaTodosSagarpaChecked}"> <f:ajax event="click" render="todosCatalogosSAGARPA"/> </h:selectBooleanCheckbox> <a4j:outputPanel id="todosCatalogosPEC"> <h:selectManyCheckbox id="selectCatalogosPEC" disabled="#{administrationBean.actualizaTodosPecChecked}" required="true" value="#{administrationBean.catalogosPecSeleccionados}" requiredMessage="Seleccione al menos un catálogo" layout="pageDirection"> <f:selectItems value="#{administrationBean.catalogosPecOptions}"/> </h:selectManyCheckbox> </a4j:outputPanel> <h:panelGroup/> <a4j:outputPanel id="todosCatalogosSAGARPA"> <h:selectManyCheckbox id="selectCatalogosSAGARPA" disabled="#{administrationBean.actualizaTodosSagarpaChecked}" required="true" value="#{administrationBean.catalogosSagarpaSeleccionados}" requiredMessage="Seleccione al menos un catálogo" layout="pageDirection" > <f:selectItems value="#{administrationBean.catalogosSagarpaOptions}"/> </h:selectManyCheckbox> </a4j:outputPanel> <h:panelGroup/> <rich:message id="messageCatalogosPEC" for="selectCatalogosPEC"/> <h:panelGroup/> <rich:message id="messageCatalogosSAGARPA" for="selectCatalogosSAGARPA"/> <h:panelGroup/> <a4j:commandButton value="Actualizar catálogos" render="messageCatalogosPEC" action="#{administrationBean.doActualizaCatalogos}"/> </h:panelGrid> </rich:panel> Cheers

    Read the article

  • Can IDL create a contour plot colorbar like this?

    - by Carthage
    At the bottom of this image, you'll see a nice colorbar that matches the colors of the graph correctly: http://stribog.cc.umanitoba.ca/ceos/20100517_00z_prod/ I couldn't find anything that created a color bar with exactly the colors I wanted, it always seemed to involve a spectrum that included colors I didn't use. I have a vector of colors I use for my data. Is there I way I can use that vector to create a color bar with only those colors?

    Read the article

  • Best way to render Tesselated Objects (OpenGL)

    - by user146780
    I'm using the GLUTesselator for Polygons. Right now the vertex callback does glvertex2f and gltex2f. Would it be better simply to collect the verticies from the vertex callback in a std::vector then use gldrawarrays()? Or would this actually be less efficient since it has to put the verts and texture coordinates in a vector? Thanks

    Read the article

  • Best Java thread-safe locking mechanism for collections?

    - by Simon
    What would be the least-slow thread-safe mechanism for controlling multiple accesses to a collection in Java? I am adding objects to the top of a collection and i am very unsure what would be the best performing collection. Would it be a vector or a queue? I originally thought an ArrayList would be fast but i ran some experiments and it was very slow. EDIT: In my insertion testing a Vector delared using volatile seems to be the fastest?

    Read the article

  • Split a binary file into chunks c++

    - by L4nce0
    I've been bashing my head against trying to first divide up a file into chunks, for the purpose of sending over sockets. I can read / write a file easily without splitting it into chunks. The code below runs, works, kinda. It will write a textfile and has a garbage character. Which if this was just for txt, no problem. Jpegs aren't working with said garbage. Been at it for a few days, so I've done my research, and it's time to get some help. I do want to stick strictly to binary readers, as this need to handle any file. I've seen a lot of slick examples out there. (none of them worked for me with jpgs) Mostly something along the lines of while(file)... I subscribe to the, if you know the size, use a for-loop, not a while-loop camp. Thank you for the help!! vector<char*> readFile(const char* fn){ vector<char*> v; ifstream::pos_type size; char * memblock; ifstream file; file.open(fn,ios::in|ios::binary|ios::ate); if (file.is_open()) { size = fileS(fn); file.seekg (0, ios::beg); int bs = size/3; // arbitrary. Actual program will use the socket send size int ws = 0; int i = 0; for(i = 0; i < size; i+=bs){ if(i+bs > size) ws = size%bs; else ws = bs; memblock = new char [ws]; file.read (memblock, ws); v.push_back(memblock); } } else{ exit(-4); } return v; } int main(int argc, char **argv) { vector<char*> v = readFile("foo.txt"); ofstream myFile ("bar.txt", ios::out | ios::binary); for(vector<char*>::iterator it = v.begin(); it!=v.end(); ++it ){ myFile.write(*it,strlen(*it)); } }

    Read the article

  • Where does ASP.NET Web API Fit?

    - by Rick Strahl
    With the pending release of ASP.NET MVC 4 and the new ASP.NET Web API, there has been a lot of discussion of where the new Web API technology fits in the ASP.NET Web stack. There are a lot of choices to build HTTP based applications available now on the stack - we've come a long way from when WebForms and Http Handlers/Modules where the only real options. Today we have WebForms, MVC, ASP.NET Web Pages, ASP.NET AJAX, WCF REST and now Web API as well as the core ASP.NET runtime to choose to build HTTP content with. Web API definitely squarely addresses the 'API' aspect - building consumable services - rather than HTML content, but even to that end there are a lot of choices you have today. So where does Web API fit, and when doesn't it? But before we get into that discussion, let's talk about what a Web API is and why we should care. What's a Web API? HTTP 'APIs' (Microsoft's new terminology for a service I guess)  are becoming increasingly more important with the rise of the many devices in use today. Most mobile devices like phones and tablets run Apps that are using data retrieved from the Web over HTTP. Desktop applications are also moving in this direction with more and more online content and synching moving into even traditional desktop applications. The pending Windows 8 release promises an app like platform for both the desktop and other devices, that also emphasizes consuming data from the Cloud. Likewise many Web browser hosted applications these days are relying on rich client functionality to create and manipulate the browser user interface, using AJAX rather than server generated HTML data to load up the user interface with data. These mobile or rich Web applications use their HTTP connection to return data rather than HTML markup in the form of JSON or XML typically. But an API can also serve other kinds of data, like images or other binary files, or even text data and HTML (although that's less common). A Web API is what feeds rich applications with data. ASP.NET Web API aims to service this particular segment of Web development by providing easy semantics to route and handle incoming requests and an easy to use platform to serve HTTP data in just about any content format you choose to create and serve from the server. But .NET already has various HTTP Platforms The .NET stack already includes a number of technologies that provide the ability to create HTTP service back ends, and it has done so since the very beginnings of the .NET platform. From raw HTTP Handlers and Modules in the core ASP.NET runtime, to high level platforms like ASP.NET MVC, Web Forms, ASP.NET AJAX and the WCF REST engine (which technically is not ASP.NET, but can integrate with it), you've always been able to handle just about any kind of HTTP request and response with ASP.NET. The beauty of the raw ASP.NET platform is that it provides you everything you need to build just about any type of HTTP application you can dream up from low level APIs/custom engines to high level HTML generation engine. ASP.NET as a core platform clearly has stood the test of time 10+ years later and all other frameworks like Web API are built on top of this ASP.NET core. However, although it's possible to create Web APIs / Services using any of the existing out of box .NET technologies, none of them have been a really nice fit for building arbitrary HTTP based APIs. Sure, you can use an HttpHandler to create just about anything, but you have to build a lot of plumbing to build something more complex like a comprehensive API that serves a variety of requests, handles multiple output formats and can easily pass data up to the server in a variety of ways. Likewise you can use ASP.NET MVC to handle routing and creating content in various formats fairly easily, but it doesn't provide a great way to automatically negotiate content types and serve various content formats directly (it's possible to do with some plumbing code of your own but not built in). Prior to Web API, Microsoft's main push for HTTP services has been WCF REST, which was always an awkward technology that had a severe personality conflict, not being clear on whether it wanted to be part of WCF or purely a separate technology. In the end it didn't do either WCF compatibility or WCF agnostic pure HTTP operation very well, which made for a very developer-unfriendly environment. Personally I didn't like any of the implementations at the time, so much so that I ended up building my own HTTP service engine (as part of the West Wind Web Toolkit), as have a few other third party tools that provided much better integration and ease of use. With the release of Web API for the first time I feel that I can finally use the tools in the box and not have to worry about creating and maintaining my own toolkit as Web API addresses just about all the features I implemented on my own and much more. ASP.NET Web API provides a better HTTP Experience ASP.NET Web API differentiates itself from the previous Microsoft in-box HTTP service solutions in that it was built from the ground up around the HTTP protocol and its messaging semantics. Unlike WCF REST or ASP.NET AJAX with ASMX, it’s a brand new platform rather than bolted on technology that is supposed to work in the context of an existing framework. The strength of the new ASP.NET Web API is that it combines the best features of the platforms that came before it, to provide a comprehensive and very usable HTTP platform. Because it's based on ASP.NET and borrows a lot of concepts from ASP.NET MVC, Web API should be immediately familiar and comfortable to most ASP.NET developers. Here are some of the features that Web API provides that I like: Strong Support for URL Routing to produce clean URLs using familiar MVC style routing semantics Content Negotiation based on Accept headers for request and response serialization Support for a host of supported output formats including JSON, XML, ATOM Strong default support for REST semantics but they are optional Easily extensible Formatter support to add new input/output types Deep support for more advanced HTTP features via HttpResponseMessage and HttpRequestMessage classes and strongly typed Enums to describe many HTTP operations Convention based design that drives you into doing the right thing for HTTP Services Very extensible, based on MVC like extensibility model of Formatters and Filters Self-hostable in non-Web applications  Testable using testing concepts similar to MVC Web API is meant to handle any kind of HTTP input and produce output and status codes using the full spectrum of HTTP functionality available in a straight forward and flexible manner. Looking at the list above you can see that a lot of functionality is very similar to ASP.NET MVC, so many ASP.NET developers should feel quite comfortable with the concepts of Web API. The Routing and core infrastructure of Web API are very similar to how MVC works providing many of the benefits of MVC, but with focus on HTTP access and manipulation in Controller methods rather than HTML generation in MVC. There’s much improved support for content negotiation based on HTTP Accept headers with the framework capable of detecting automatically what content the client is sending and requesting and serving the appropriate data format in return. This seems like such a little and obvious thing, but it's really important. Today's service backends often are used by multiple clients/applications and being able to choose the right data format for what fits best for the client is very important. While previous solutions were able to accomplish this using a variety of mixed features of WCF and ASP.NET, Web API combines all this functionality into a single robust server side HTTP framework that intrinsically understands the HTTP semantics and subtly drives you in the right direction for most operations. And when you need to customize or do something that is not built in, there are lots of hooks and overrides for most behaviors, and even many low level hook points that allow you to plug in custom functionality with relatively little effort. No Brainers for Web API There are a few scenarios that are a slam dunk for Web API. If your primary focus of an application or even a part of an application is some sort of API then Web API makes great sense. HTTP ServicesIf you're building a comprehensive HTTP API that is to be consumed over the Web, Web API is a perfect fit. You can isolate the logic in Web API and build your application as a service breaking out the logic into controllers as needed. Because the primary interface is the service there's no confusion of what should go where (MVC or API). Perfect fit. Primary AJAX BackendsIf you're building rich client Web applications that are relying heavily on AJAX callbacks to serve its data, Web API is also a slam dunk. Again because much if not most of the business logic will probably end up in your Web API service logic, there's no confusion over where logic should go and there's no duplication. In Single Page Applications (SPA), typically there's very little HTML based logic served other than bringing up a shell UI and then filling the data from the server with AJAX which means the business logic required for data retrieval and data acceptance and validation too lives in the Web API. Perfect fit. Generic HTTP EndpointsAnother good fit are generic HTTP endpoints that to serve data or handle 'utility' type functionality in typical Web applications. If you need to implement an image server, or an upload handler in the past I'd implement that as an HTTP handler. With Web API you now have a well defined place where you can implement these types of generic 'services' in a location that can easily add endpoints (via Controller methods) or separated out as more full featured APIs. Granted this could be done with MVC as well, but Web API seems a clearer and more well defined place to store generic application services. This is one thing I used to do a lot of in my own libraries and Web API addresses this nicely. Great fit. Mixed HTML and AJAX Applications: Not a clear Choice  For all the commonality that Web API and MVC share they are fundamentally different platforms that are independent of each other. A lot of people have asked when does it make sense to use MVC vs. Web API when you're dealing with typical Web application that creates HTML and also uses AJAX functionality for rich functionality. While it's easy to say that all 'service'/AJAX logic should go into a Web API and all HTML related generation into MVC, that can often result in a lot of code duplication. Also MVC supports JSON and XML result data fairly easily as well so there's some confusion where that 'trigger point' is of when you should switch to Web API vs. just implementing functionality as part of MVC controllers. Ultimately there's a tradeoff between isolation of functionality and duplication. A good rule of thumb I think works is that if a large chunk of the application's functionality serves data Web API is a good choice, but if you have a couple of small AJAX requests to serve data to a grid or autocomplete box it'd be overkill to separate out that logic into a separate Web API controller. Web API does add overhead to your application (it's yet another framework that sits on top of core ASP.NET) so it should be worth it .Keep in mind that MVC can generate HTML and JSON/XML and just about any other content easily and that functionality is not going away, so just because you Web API is there it doesn't mean you have to use it. Web API is not a full replacement for MVC obviously either since there's not the same level of support to feed HTML from Web API controllers (although you can host a RazorEngine easily enough if you really want to go that route) so if you're HTML is part of your API or application in general MVC is still a better choice either alone or in combination with Web API. I suspect (and hope) that in the future Web API's functionality will merge even closer with MVC so that you might even be able to mix functionality of both into single Controllers so that you don't have to make any trade offs, but at the moment that's not the case. Some Issues To think about Web API is similar to MVC but not the Same Although Web API looks a lot like MVC it's not the same and some common functionality of MVC behaves differently in Web API. For example, the way single POST variables are handled is different than MVC and doesn't lend itself particularly well to some AJAX scenarios with POST data. Code Duplication I already touched on this in the Mixed HTML and Web API section, but if you build an MVC application that also exposes a Web API it's quite likely that you end up duplicating a bunch of code and - potentially - infrastructure. You may have to create authentication logic both for an HTML application and for the Web API which might need something different altogether. More often than not though the same logic is used, and there's no easy way to share. If you implement an MVC ActionFilter and you want that same functionality in your Web API you'll end up creating the filter twice. AJAX Data or AJAX HTML On a recent post's comments, David made some really good points regarding the commonality of MVC and Web API's and its place. One comment that caught my eye was a little more generic, regarding data services vs. HTML services. David says: I see a lot of merit in the combination of Knockout.js, client side templates and view models, calling Web API for a responsive UI, but sometimes late at night that still leaves me wondering why I would no longer be using some of the nice tooling and features that have evolved in MVC ;-) You know what - I can totally relate to that. On the last Web based mobile app I worked on, we decided to serve HTML partials to the client via AJAX for many (but not all!) things, rather than sending down raw data to inject into the DOM on the client via templating or direct manipulation. While there are definitely more bytes on the wire, with this, the overhead ended up being actually fairly small if you keep the 'data' requests small and atomic. Performance was often made up by the lack of client side rendering of HTML. Server rendered HTML for AJAX templating gives so much better infrastructure support without having to screw around with 20 mismatched client libraries. Especially with MVC and partials it's pretty easy to break out your HTML logic into very small, atomic chunks, so it's actually easy to create small rendering islands that can be used via composition on the server, or via AJAX calls to small, tight partials that return HTML to the client. Although this is often frowned upon as to 'heavy', it worked really well in terms of developer effort as well as providing surprisingly good performance on devices. There's still plenty of jQuery and AJAX logic happening on the client but it's more manageable in small doses rather than trying to do the entire UI composition with JavaScript and/or 'not-quite-there-yet' template engines that are very difficult to debug. This is not an issue directly related to Web API of course, but something to think about especially for AJAX or SPA style applications. Summary Web API is a great new addition to the ASP.NET platform and it addresses a serious need for consolidation of a lot of half-baked HTTP service API technologies that came before it. Web API feels 'right', and hits the right combination of usability and flexibility at least for me and it's a good fit for true API scenarios. However, just because a new platform is available it doesn't meant that other tools or tech that came before it should be discarded or even upgraded to the new platform. There's nothing wrong with continuing to use MVC controller methods to handle API tasks if that's what your app is running now - there's very little to be gained by upgrading to Web API just because. But going forward Web API clearly is the way to go, when building HTTP data interfaces and it's good to see that Microsoft got this one right - it was sorely needed! Resources ASP.NET Web API AspConf Ask the Experts Session (first 5 minutes) © Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Convert png sequence to x264 with ffmpeg

    - by Thucydides411
    I am trying to convert a series of pngs into an mp4 video. I am using ffmpeg, and want to encode the video with the x264 codec. Using the command ffmpeg -y -r 30 -b 1800k -i _tmp%04d.png -vcodec libx264 out.mp4 I get the following warning message Incompatible pixel format 'bgra' for codec 'libx264', auto-selecting format 'yuv420p' My understanding is that there is an alpha channel in the pngs, which the x264 encoder cannot handle. Is there a way to get around this problem? Is there, for example, a way to get the encoder to ignore the alpha channel (my pngs don't actually have any transparent elements)? I'm aware that I could batch convert the pngs beforehand to strip the alpha channel, but the sequence of images is produced by another program, and having to preprocess the images each time I make a video would be less than optimal. Edit: After stripping the alpha channel from each frame using the command convert in.png -background white -flatten +matte out.png ffmpeg gives the warning message Incompatible pixel format 'pal8' for codec 'libx264', auto-selecting format 'yuv420p' so still no dice.

    Read the article

  • ffmpeg open webcam using YUYV but i want MJPEG

    - by Pavel
    I need ffmpeg to open webcam (logitech c910) in MJPEG mode, because the webcam can give ~24 using MJPEG "protocol" and only ~10 fps using the YUYV. Can i choose between them using ffmpeg command line? xx@(none) ~ $ v4l2-ctl --list-formats ioctl: VIDIOC_ENUM_FMT Index : 0 Type : Video Capture Pixel Format: 'YUYV' Name : YUV 4:2:2 (YUYV) Index : 1 Type : Video Capture Pixel Format: 'MJPG' (compressed) Name : MJPEG My current command line: ffmpeg -y -f alsa -i hw:3,0 -f video4linux2 -r 20 -s 1280x720 -i /dev/video0 -acodec libfaac -ab 128k -vcodec libx264 /tmp/web.avi ffmpeg produces corrupted h264 stream when i record from webcam, but normal h264 strem when i record from x11grab. Another codecs (mjpeg, mpeg4) works well with webcam... But this is another story.

    Read the article

  • Media Information for Constant and Variable bit rate of Video files

    - by cpx
    What is this Maximum bit rate for a .mp4 format file whose bit rate mode is Constant? Media information displayed for MP4 (Using MediaInfo Tool) ID : 1 Format : AVC Format/Info : Advanced Video Codec Format profile : [email protected] Format settings, CABAC : No Format settings, ReFrames : 1 frame Codec ID : avc1 Codec ID/Info : Advanced Video Coding Bit rate mode : Constant Bit rate : 1 500 Kbps Maximum bit rate : 3 961 Kbps Display aspect ratio : 4:3 Frame rate mode : Constant Frame rate : 29.970 fps Color space : YUV Chroma subsampling : 4:2:0 Bit depth : 8 bits Scan type : Progressive Bits/(Pixel*Frame) : 0.163 In this case where the bit rate mode is set to Variable, is the Bit rate field where the value is displayed as 309 is its average bit rate? Media information displayed for M4V (Using MediaInfo Tool) ID : 1 Format : AVC Format/Info : Advanced Video Codec Format profile : [email protected] Format settings, CABAC : No Format settings, ReFrames : 1 frame Codec ID : avc1 Codec ID/Info : Advanced Video Coding Bit rate mode : Variable Bit rate : 309 Kbps Display aspect ratio : 16:9 Frame rate mode : Variable Frame rate : 23.976 fps Minimum frame rate : 23.810 fps Maximum frame rate : 24.390 fps Color space : YUV Chroma subsampling : 4:2:0 Bit depth : 8 bits Scan type : Progressive Bits/(Pixel*Frame) : 0.229 Writing library : x264 core 120

    Read the article

  • Extracting the layer transparency into an editable layer mask in Photoshop

    - by last-child
    Is there any simple way to extract the "baked in" transparency in a layer and turn it into a layer mask in Photoshop? To take a simple example: Let's say that I paint a few strokes with a semi-transparent brush, or paste in a .png-file with an alpha channel. The rgb color values and the alpha value for each pixel are now all contained in the layer-image itself. I would like to be able to edit the alpha values as a layer mask, so that the layer image is solid and contains only the RGB values for each pixel. Is this possible, and in that case how? Thanks. EDIT: To clarify - I'm not really after the transparency values in themselves, but in the separation of rgb values and alpha values. That means that the layer must become a solid, opaque image with a mask.

    Read the article

< Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >