Search Results

Search found 5046 results on 202 pages for 'satoru logic'.

Page 88/202 | < Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >

  • OpenVZ multiple networks on CTs

    - by user6733
    I have Hardware Node (HN) which has 2 physical interfaces (eth0, eth1). I'm playing with OpenVZ and want to let my containers (CTs) have access to both of those interfaces. I'm using basic configuration - venet. CTs are fine to access eth0 (public interface). But I can't get CTs to get access to eth1 (private network). I tried: # on HN vzctl set 101 --ipadd 192.168.1.101 --save vzctl enter 101 ping 192.168.1.2 # no response here ifconfig # on CT returns lo (127.0.0.1), venet0 (127.0.0.1), venet0:0 (95.168.xxx.xxx), venet0:1 (192.168.1.101) I believe that the main problem is that all packets flows through eth0 on HN (figured out using tcpdump). So the problem might be in routes on HN. Or is my logic here all wrong? I just need access to both interfaces (networks) on HN from CTs. Nothing complicated.

    Read the article

  • How do I configure hardware raid in a Poweredge 2850?

    - by Eric Fossum
    I just bought a Dell Poweredge 2850 from Craigslist and for the most part I'm happy with it's $300 price-tag, but I cannot figure out where to configure the embedded hardware raid... I've seen online you should hit <CTRL-M>, but while booting my box never says that. I have <CTRL-A> (I think) for an LSI Logic config, but that seems to just program SCSI and verify drives on my SCSI-A and SCSI-B. Anyone have a clue where this RAID config is?

    Read the article

  • Remote access and local access same hostname

    - by cpf
    Hi serverfault, I have a server in a clients network, seperated from theirs with a router/firewall, the intention is to have this server available through one hostname (example.com) My idea is to have (at least) a DNS server in the outside, to have outside (out of the clients' network) access the internal server. The problem would at that point be the internal client (PC A) My question: What would I have to do to make something like this work? Is it even possible or already done? The goal is to not have to change anything on either PC A or PC B, while both should access the same "internal server" while surfing to "example.com" Perhaps adding logic to the DNS server would work (Detect the external IP of internal client [PC A] is the same as the IP for example.com - Give the local IP as reply?) Anyhow: Thanks for helping me think on this!

    Read the article

  • Tool to test a user account and password (test login)

    - by TheCleaner
    Yeah, I can fire up a VM or remote into something and try the password...I know...but is there a tool or script that will simulate a login just enough to confirm or deny that the password is correct? Scenario: A server service account's password is "forgotten"...but we think we know what it is. I'd like to pass the credentials to something and have it kick back with "correct password" or "incorrect password". I even thought about a drive mapping script with that user account and password being passed to see if it mapped the drive successfully or not but got lost in the logic of making it work correctly...something like: -Script asks for username via msgbox -script asks for password via msgbox -script tries to map a drive to a common share that everyone has access to -script unmaps drive if successful -script returns popup msgbox stating "Correct Password" or else "Incorrect Password" Any help is appreciated...you'd think this would be a rare occurrence not requiring a tool to support it but...well....

    Read the article

  • Can not find the source of Grant permission on a folder

    - by Konrads
    I have a security mystery :) Effective permissions tab shows that a few sampled users (IT ops) have any and all rights (all boxes are ticked). The permissions show that Local Administrators group has full access and some business users have too of which the sampled users are not members of. Local Administrators group has some AD IT Ops related groups of which the sampled users, again, appear not be members. The sampled users are not members of Domain Administrators either. I've tried tracing backwards (from permissions to user) and forwards (user to permission) and could not find anything. At this point, there are two options: I've missed something and they are members of some groups. There's another way of getting full permissions. Effective Permissions are horribly wrong. Is there a way to retrieve the decision logic of Effective Permissions? Any hints, tips, ideas?

    Read the article

  • Security considerations in providing VPN access to non-company issued computers [migrated]

    - by DKNUCKLES
    There have been a few people at my office that have requested the installation of DropBox on their computers to synchronize files so they can work on them at home. I have always been wary about cloud computing, mainly because we are a Canadian company and enjoy the privacy and being outside the reach of the Patriot Act. The policy before I started was that employees with company issued notebooks could be issued a VPN account, and everyone else had to have a remote desktop connection. The theory behind this logic (as I understand it) was that we had the potential to lock down the notebooks whereas the employees home computers were outside of our grasp. We had no ability to ensure they weren't running as administrator all the time / were running AV so they were a higher risk at being infected with malware and could compromise network security. With the increase in people wanting DropBox I'm curious as to whether or not this policy is too restrictive and overly paranoid. Is it generally safe to provide VPN access to an employee without knowing what their computing environment looks like?

    Read the article

  • Url-based web site publishing on Windows Server platform

    - by Maxim V. Pavlov
    I have a Windows 2008 Enterprise SP2 server in a datacenter. It is 32bit OS. I need to be able to do a "smart" url-based web site publishing. So that with a single external IP I can publish many sites on port 80, and some firewall logic resolves, based on a requested URL, which site in IIS gets the request. Forefront TMG 2010 has this feature, but it is not supported on 32bit systems. Is there a software solution that can satissfy my need on Windows 2K8 platform? Thank you. P.S. Perhaps there is a workaround or a tweak to do what I need in IIS?

    Read the article

  • Moving files with batch files from one pc to a server, to a another pc - worried about disk corruption

    - by AnchientAnt
    I use scheduled tasks that calls a batch file, that calls more batch files to move about three files from a pc, to a server, then to multiple other pcs. It all happens very quickly, as they are small files. Are there any pitfalls for how fast these transfers happen? I'm just mildly concerned about causing some disk corruption somehow. I use logic like 1. Call MapToPc if files exist then move file to folder on server. Disconnect 2. Call SendtoPCs If files exist (the files just moved to the server) then MapToPCs Move all files Disconnect All of this happens in about 2 secs or less. edit: this on windows 7, server 2003, xp respectively

    Read the article

  • Hosting a JEE application on my own server with custom domain

    - by Joro Seksa
    I have a website which purpose is to help people build routes and use various map tools. The site is all static with lots of javascript source files which do the logic. However i want to convert this site to a JEE application and host it on my own server with tomcat container. So lets say that the application hosted on my server can be accessed on address: xxx.xxx.xxx.xxx:8084/MyApp Now lets say my domain is www.my-domain.com The question is: Is it possible to be made when i enter www.my-domain.com in the browser to load automatically xxx.xxx.xxx.xxx:8084/MyApp

    Read the article

  • Many to many self join through junction table

    - by Peter
    I have an EF model that can self-reference through an intermediary class to define a parent/child relationship. I know how to do a pure many-to-many relationship using the Map command, but for some reason going through this intermediary class is causing problems with my mappings. The intermediary class provides additional properties for the relationship. See the classes, modelBinder logic and error below: public class Equipment { [Key] public int EquipmentId { get; set; } public virtual List<ChildRecord> Parents { get; set; } public virtual List<ChildRecord> Children { get; set; } } public class ChildRecord { [Key] public int ChildId { get; set; } [Required] public int Quantity { get; set; } [Required] public Equipment Parent { get; set; } [Required] public Equipment Child { get; set; } } I've tried building the mappings in both directions, though I only keep one set in at a time: modelBuilder.Entity<ChildRecord>() .HasRequired(x => x.Parent) .WithMany(x => x.Children ) .WillCascadeOnDelete(false); modelBuilder.Entity<ChildRecord>() .HasRequired(x => x.Child) .WithMany(x => x.Parents) .WillCascadeOnDelete(false); OR modelBuilder.Entity<Equipment>() .HasMany(x => x.Parents) .WithRequired(x => x.Child) .WillCascadeOnDelete(false); modelBuilder.Entity<Equipment>() .HasMany(x => x.Children) .WithRequired(x => x.Parent) .WillCascadeOnDelete(false); Regardless of which set I use, I get the error: The foreign key component 'Child' is not a declared property on type 'ChildRecord'. Verify that it has not been explicitly excluded from the model and that it is a valid primitive property. when I try do deploy my ef model to the database. If I build it without the modelBinder logic in place then I get two ID columns for Child and two ID columns for Parent in my ChildRecord table. This makes sense since it tries to auto create the navigation properties from Equipment and doesn't know that there are already properties in ChildRecord to fulfill this need. I tried using Data Annotations on the class, and no modelBuilder code, this failed with the same error as above: [Required] [ForeignKey("EquipmentId")] public Equipment Parent { get; set; } [Required] [ForeignKey("EquipmentId")] public Equipment Child { get; set; } AND [InverseProperty("Child")] public virtual List<ChildRecord> Parents { get; set; } [InverseProperty("Parent")] public virtual List<ChildRecord> Children { get; set; } I've looked at various other answers around the internet/SO, and the common difference seems to be that I am self joining where as all the answers I can find are for two different types. Entity Framework Code First Many to Many Setup For Existing Tables Many to many relationship with junction table in Entity Framework? Creating many to many junction table in Entity Framework

    Read the article

  • How to safely operate on parameters in threads, using C++ & Pthreads?

    - by ChrisCphDK
    Hi. I'm having some trouble with a program using pthreads, where occassional crashes occur, that could be related to how the threads operate on data So I have some basic questions about how to program using threads, and memory layout: Assume that a public class function performs some operations on some strings, and returns the result as a string. The prototype of the function could be like this: std::string SomeClass::somefunc(const std::string &strOne, const std::string &strTwo) { //Error checking of strings have been omitted std::string result = strOne.substr(0,5) + strTwo.substr(0,5); return result; } Is it correct to assume that strings, being dynamic, are stored on the heap, but that a reference to the string is allocated on the stack at runtime? Stack: [Some mem addr] pointer address to where the string is on the heap Heap: [Some mem addr] memory allocated for the initial string which may grow or shrink To make the function thread safe, the function is extended with the following mutex (which is declared as private in the "SomeClass") locking: std::string SomeClass::somefunc(const std::string &strOne, const std::string &strTwo) { pthread_mutex_lock(&someclasslock); //Error checking of strings have been omitted std::string result = strOne.substr(0,5) + strTwo.substr(0,5); pthread_mutex_unlock(&someclasslock); return result; } Is this a safe way of locking down the operations being done on the strings (all three), or could a thread be stopped by the scheduler in the following cases, which I'd assume would mess up the intended logic: a. Right after the function is called, and the parameters: strOne & strTwo have been set in the two reference pointers that the function has on the stack, the scheduler takes away processing time for the thread and lets a new thread in, which overwrites the reference pointers to the function, which then again gets stopped by the scheduler, letting the first thread back in? b. Can the same occur with the "result" string: the first string builds the result, unlocks the mutex, but before returning the scheduler lets in another thread which performs all of it's work, overwriting the result etc. Or are the reference parameters / result string being pushed onto the stack while another thread is doing performing it's task? Is the safe / correct way of doing this in threads, and "returning" a result, to pass a reference to a string that will be filled with the result instead: void SomeClass::somefunc(const std::string &strOne, const std::string &strTwo, std::string result) { pthread_mutex_lock(&someclasslock); //Error checking of strings have been omitted result = strOne.substr(0,5) + strTwo.substr(0,5); pthread_mutex_unlock(&someclasslock); } The intended logic is that several objects of the "SomeClass" class creates new threads and passes objects of themselves as parameters, and then calls the function: "someFunc": int SomeClass::startNewThread() { pthread_attr_t attr; pthread_t pThreadID; if(pthread_attr_init(&attr) != 0) return -1; if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0) return -2; if(pthread_create(&pThreadID, &attr, proxyThreadFunc, this) != 0) return -3; if(pthread_attr_destroy(&attr) != 0) return -4; return 0; } void* proxyThreadFunc(void* someClassObjPtr) { return static_cast<SomeClass*> (someClassObjPtr)->somefunc("long string","long string"); } Sorry for the long description. But I hope the questions and intended purpose is clear, if not let me know and I'll elaborate. Best regards. Chris

    Read the article

  • MySQL Procedure causing Dead Lock

    - by Phanindra
    I am using MySQL server 5.1.45. And I am having a procedure with huge business logic. With less number of invocation of this procedure, my application is working fine, but when the number of invocations are getting increased this procedure is throwing Lock wait timeout exception. My Question is will Procedure creates temporary tables dynamically..? As in my procedure I am using Truncate statement which may cause to release all transactions. I am not DBA, please help me out of this.

    Read the article

  • Is there a fix for an iMac G5 annoying screen pattern issue?

    - by smountcastle
    It's probably a hardware issue, but I was hoping that someone might know of other options to try. My iMac G5 (the revision just before the built-in iSight was introduced) has developed an annoying pattern of short/wide rectangles in a pinkish hue across the screen. I've followed Apple's instructions to ensure that the logic board hasn't failed (by resetting the SMU and watching the internal LEDs light-up). I suspect either the LCD or video card has failed. Below are two screen shots, one taken by my iPhone which exhibits the problem and a snapshot taking from the faulty iMac which looks fine.

    Read the article

  • Client/Server app

    - by Knowing me knowing you
    Guys could anyone tell me what's wrong am I doing here? Below are four files Client, main, Server, main. I'm getting an error on Client side after trying to fromServer.readLine(). Error: Error in Client Software caused connection abort: recv failed package client; import java.io.*; import java.net.*; import java.util.Scanner; public class Client { private PrintWriter toServer; private BufferedReader fromServer; private Socket socket; public Client( )throws IOException { socket = new Socket("127.0.0.1",3000); } public void openStreams() throws IOException { // // InputStream is = socket.getInputStream(); // OutputStream os = socket.getOutputStream(); // fromServer = new BufferedReader(new InputStreamReader(is)); // toServer = new PrintWriter(os, true); toServer = new PrintWriter(socket.getOutputStream(),true); fromServer = new BufferedReader(new InputStreamReader(socket.getInputStream())); } public void closeStreams() throws IOException { fromServer.close(); toServer.close(); socket.close(); } public void run()throws IOException { openStreams(); String msg = ""; Scanner scanner = new Scanner(System.in); toServer.println("Hello from Client."); // msg = scanner.nextLine(); while (msg != "exit") { System.out.println(">"); // msg = scanner.nextLine(); toServer.println("msg"); String tmp = fromServer.readLine(); System.out.println("Server said: " + tmp); } closeStreams(); } } package server; import java.net.*; import java.io.*; public class Server { private ServerSocket serverSocket; private Socket socket; private PrintWriter toClient; private BufferedReader fromClient; public void run() throws IOException { System.out.println("Server is waiting for connections..."); while (true) { openStreams(); processClient(); closeStreams(); } } public void openStreams() throws IOException { serverSocket = new ServerSocket(3000); socket = serverSocket.accept(); toClient = new PrintWriter(socket.getOutputStream(),true); fromClient = new BufferedReader(new InputStreamReader(socket.getInputStream())); } public void closeStreams() throws IOException { fromClient.close(); toClient.close(); socket.close(); serverSocket.close(); } public void processClient()throws IOException { System.out.println("Connection established."); String msg = fromClient.readLine(); toClient.println("Client said " + msg); } } package client; import java.io.IOException; public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try { Client client = new Client(); client.run(); } catch(IOException e) { System.err.println("Error in Client " + e.getMessage()); } } } package server; import java.io.IOException; public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Server server = new Server(); try { server.run(); } catch(IOException e) { System.err.println("Error in Server " + e.getMessage()); } } }

    Read the article

  • How to achieve in-folder discussions with IMAP (skip SMTP send, Thunderbird)?

    - by lkraav
    Does anyone know a good way to achieve replying to a message into the same IMAP folder without sending another duplicate copy over SMTP? This is to be achieved with a conventional GUI mail client, especially Thunderbird. Goal is to have an in-folder conversation. This is possible with shared IMAP folders, with per-user Seen indices, where subscribed recipients are guaranteed to see the new messages without them arriving from internet. Thunderbird is capable of storing a copy of a reply in the same folder as original message (Account Options), which is half way there. Just pressing Save sends the message into Drafts and that is probably an even bigger patch to try to put a "draft message" into the same folder as original. All options, client, server or logic-wise are an acceptable answer, including programming i.e. patching/creating add-on for Thunderbird.

    Read the article

  • Run a specific command from a directory

    - by Cameron Kilgore
    I have a bash script where I need to run an init utility within a directory with a configuration file defined. I don't think it's possible to explicitly tell the utility to run the file as an argument, so what I need to do is go to the directory with the config file, and then run the command. I have some logic in place, but its not working -- the utility never runs. Is there any way I can tell the script to go to this directory, and then run the script? cd /var/www/testing-dev.example.co eval "standardprofile"

    Read the article

  • Two way replication

    - by Nidzaaaa
    I have a little problem... I have this case: -2 server instances -2 Databases -1 Table (5 columns) From server 1 I created publication to replicate all columns of table I have in 1. DB From server 2 I created subscription to pull all columns from table which is in server 1 DB But now, I need to publicate one columns of same table from server 2 to server 1 and also it has to be in same DB... I tried with using logic and creating publication for server 2 and subscription on server 1 but there is error appearing "You have selected the Publisher as a Subscriber and entered a subscription database that is the same as the publishing database. Select another subscription database." I hope someone understood my problem and have an answer for me, thanks in advance... p.s. Ask for more info if you need ...

    Read the article

  • How is Javascript parsed/executed in a web browser exactly?

    - by ededed
    For example when I access web server likely Javascript will execute. From there on, how will the browser parse the Javascript, or "execute" the functions, the memory used, etc. How will the browser "handle" all of that? Does it act like a compilation lexer in that it passes line by line and generates object code, or does it use the DOM, and other specifications to handle memory, etc. Also, in terms of updating the page, and alterior concurrent executions as well, such as Flash, HTML, Java, etc. Point be simplified, how does the browser handle the scripts, the memory, and the logic on page from a javascript file?

    Read the article

  • What are the reasons why outlook looses configurations?

    - by jnroche
    Can't seem to establish any logic why outlook suddenly looses its profile coniguration settings intermittently. I work for an IT Contact Centre but it hurts when someone asks me why they loose their outlook profiles suddenly, and some most of the time. I know there are lots of reasons but I'm not sure which ones are the best. Could it be that the PC in a hurge corporate organization will not be connected to the network properly so the profile gets corrupted for outlook? But they don't usually shut down the PC after office hours due to the fact that its a 24 hours operations. On top of that, when users are migrated to Windows 7 / Office 2010 and then logs on to this pc, then opens outlook, then logs off then goes back to a Windows XP PC and opens outlook 2003 the profile is again lost. Again why is this? Is there anyone out there whose facing same connection/outlook profile issues getting lost for no apparent reason?

    Read the article

  • WiX 3 Tutorial: Custom EULA License and MSI localization

    - by Mladen Prajdic
    In this part of the ongoing Wix tutorial series we’ll take a look at how to localize your MSI into different languages. We’re still the mighty SuperForm: Program that takes care of all your label color needs. :) Localizing the MSI With WiX 3.0 localizing an MSI is pretty much a simple and straightforward process. First let look at the WiX project Properties->Build. There you can see "Cultures to build" textbox. Put specific cultures to build into the testbox or leave it empty to build all of them. Cultures have to be in correct culture format like en-US, en-GB or de-DE. Next we have to tell WiX which cultures we actually have in our project. Take a look at the first post in the series about Solution/Project structure and look at the Lang directory in the project structure picture. There we have de-de and en-us subfolders each with its own localized stuff. In the subfolders pay attention to the WXL files Loc_de-de.wxl and Loc_en-us.wxl. Each one has a <String Id="LANG"> under the WixLocalization root node. By including the string with id LANG we tell WiX we want that culture built. For English we have <String Id="LANG">1033</String>, for German <String Id="LANG">1031</String> in Loc_de-de.wxl and for French we’d have to create another file Loc_fr-FR.wxl and put <String Id="LANG">1036</String>. WXL files are localization files. Any string we want to localize we have to put in there. To reference it we use loc keyword like this: !(loc.IdOfTheVariable) => !(loc.MustCloseSuperForm) This is our Loc_en-us.wxl. Note that German wxl has an identical structure but values are in German. <?xml version="1.0" encoding="utf-8"?><WixLocalization Culture="en-us" xmlns="http://schemas.microsoft.com/wix/2006/localization" Codepage="1252"> <String Id="LANG">1033</String> <String Id="ProductName">SuperForm</String> <String Id="LicenseRtf" Overridable="yes">\Lang\en-us\EULA_en-us.rtf</String> <String Id="ManufacturerName">My Company Name</String> <String Id="AppNotSupported">This application is is not supported on your current OS. Minimal OS supported is Windows XP SP2</String> <String Id="DotNetFrameworkNeeded">.NET Framework 3.5 is required. Please install the .NET Framework then run this installer again.</String> <String Id="MustCloseSuperForm">Must close SuperForm!</String> <String Id="SuperFormNewerVersionInstalled">A newer version of !(loc.ProductName) is already installed.</String> <String Id="ProductKeyCheckDialog_Title">!(loc.ProductName) setup</String> <String Id="ProductKeyCheckDialogControls_Title">!(loc.ProductName) Product check</String> <String Id="ProductKeyCheckDialogControls_Description">Plese Enter following information to perform the licence check.</String> <String Id="ProductKeyCheckDialogControls_FullName">Full Name:</String> <String Id="ProductKeyCheckDialogControls_Organization">Organization:</String> <String Id="ProductKeyCheckDialogControls_ProductKey">Product Key:</String> <String Id="ProductKeyCheckDialogControls_InvalidProductKey">The product key you entered is invalid. Please call user support.</String> </WixLocalization>   As you can see from the file we can use localization variables in other variables like we do for SuperFormNewerVersionInstalled string. ProductKeyCheckDialog* strings are to localize a custom dialog for Product key check which we’ll look at in the next post. Built in dialog text localization Under the de-de folder there’s also the WixUI_de-de.wxl file. This files contains German translations of all texts that are in WiX built in dialogs. It can be downloaded from WiX 3.0.5419.0 Source Forge site. Download the wix3-sources.zip and go to \src\ext\UIExtension\wixlib. There you’ll find already translated all WiX texts in 12 Languages. Localizing the custom EULA license Here it gets ugly. We can override the default EULA license easily by overriding WixUILicenseRtf WiX variable like this: <WixVariable Id="WixUILicenseRtf" Value="License.rtf" /> where License.rtf is the name of your custom EULA license file. The downside of this method is that you can only have one license file which means no localization for it. That’s why we need to make a workaround. License is checked on a dialog name LicenseAgreementDialog. What we have to do is overwrite that dialog and insert the functionality for localization. This is a code for LicenseAgreementDialogOverwritten.wxs, an overwritten LicenseAgreementDialog that supports localization. LicenseAcceptedOverwritten replaces the LicenseAccepted built in variable. <?xml version="1.0" encoding="UTF-8" ?><Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"> <Fragment> <UI> <Dialog Id="LicenseAgreementDialogOverwritten" Width="370" Height="270" Title="!(loc.LicenseAgreementDlg_Title)"> <Control Id="LicenseAcceptedOverwrittenCheckBox" Type="CheckBox" X="20" Y="207" Width="330" Height="18" CheckBoxValue="1" Property="LicenseAcceptedOverwritten" Text="!(loc.LicenseAgreementDlgLicenseAcceptedCheckBox)" /> <Control Id="Back" Type="PushButton" X="180" Y="243" Width="56" Height="17" Text="!(loc.WixUIBack)" /> <Control Id="Next" Type="PushButton" X="236" Y="243" Width="56" Height="17" Default="yes" Text="!(loc.WixUINext)"> <Publish Event="SpawnWaitDialog" Value="WaitForCostingDlg">CostingComplete = 1</Publish> <Condition Action="disable"> <![CDATA[ LicenseAcceptedOverwritten <> "1" ]]> </Condition> <Condition Action="enable">LicenseAcceptedOverwritten = "1"</Condition> </Control> <Control Id="Cancel" Type="PushButton" X="304" Y="243" Width="56" Height="17" Cancel="yes" Text="!(loc.WixUICancel)"> <Publish Event="SpawnDialog" Value="CancelDlg">1</Publish> </Control> <Control Id="BannerBitmap" Type="Bitmap" X="0" Y="0" Width="370" Height="44" TabSkip="no" Text="!(loc.LicenseAgreementDlgBannerBitmap)" /> <Control Id="LicenseText" Type="ScrollableText" X="20" Y="60" Width="330" Height="140" Sunken="yes" TabSkip="no"> <!-- This is original line --> <!--<Text SourceFile="!(wix.WixUILicenseRtf=$(var.LicenseRtf))" />--> <!-- To enable EULA localization we change it to this --> <Text SourceFile="$(var.ProjectDir)\!(loc.LicenseRtf)" /> <!-- In each of localization files (wxl) put line like this: <String Id="LicenseRtf" Overridable="yes">\Lang\en-us\EULA_en-us.rtf</String>--> </Control> <Control Id="Print" Type="PushButton" X="112" Y="243" Width="56" Height="17" Text="!(loc.WixUIPrint)"> <Publish Event="DoAction" Value="WixUIPrintEula">1</Publish> </Control> <Control Id="BannerLine" Type="Line" X="0" Y="44" Width="370" Height="0" /> <Control Id="BottomLine" Type="Line" X="0" Y="234" Width="370" Height="0" /> <Control Id="Description" Type="Text" X="25" Y="23" Width="340" Height="15" Transparent="yes" NoPrefix="yes" Text="!(loc.LicenseAgreementDlgDescription)" /> <Control Id="Title" Type="Text" X="15" Y="6" Width="200" Height="15" Transparent="yes" NoPrefix="yes" Text="!(loc.LicenseAgreementDlgTitle)" /> </Dialog> </UI> </Fragment></Wix>   Look at the Control with Id "LicenseText” and read the comments. We’ve changed the original license text source to "$(var.ProjectDir)\!(loc.LicenseRtf)". var.ProjectDir is the directory of the project file. The !(loc.LicenseRtf) is where the magic happens. Scroll up and take a look at the wxl localization file example. We have the LicenseRtf declared there and it’s been made overridable so developers can change it if they want. The value of the LicenseRtf is the path to our localized EULA relative to the WiX project directory. With little hacking we’ve achieved a fully localizable installer package.   The final step is to insert the extended LicenseAgreementDialogOverwritten license dialog into the installer GUI chain. This is how it’s done under the <UI> node of course.   <UI> <!-- code to be discussed in later posts –> <!-- BEGIN UI LOGIC FOR CLEAN INSTALLER --> <Publish Dialog="WelcomeDlg" Control="Next" Event="NewDialog" Value="LicenseAgreementDialogOverwritten">1</Publish> <Publish Dialog="LicenseAgreementDialogOverwritten" Control="Back" Event="NewDialog" Value="WelcomeDlg">1</Publish> <Publish Dialog="LicenseAgreementDialogOverwritten" Control="Next" Event="NewDialog" Value="ProductKeyCheckDialog">LicenseAcceptedOverwritten = "1" AND NOT OLDER_VERSION_FOUND</Publish> <Publish Dialog="InstallDirDlg" Control="Back" Event="NewDialog" Value="ProductKeyCheckDialog">1</Publish> <!-- END UI LOGIC FOR CLEAN INSTALLER –> <!-- code to be discussed in later posts --></UI> For a thing that should be simple for the end developer to do, localization can be a bit advanced for the novice WiXer. Hope this post makes the journey easier and that next versions of WiX improve this process. WiX 3 tutorial by Mladen Prajdic navigation WiX 3 Tutorial: Solution/Project structure and Dev resources WiX 3 Tutorial: Understanding main wxs and wxi file WiX 3 Tutorial: Generating file/directory fragments with Heat.exe  WiX 3 Tutorial: Custom EULA License and MSI localization WiX 3 Tutorial: Product Key Check custom action WiX 3 Tutorial: Building an updater WiX 3 Tutorial: Icons and installer pictures WiX 3 Tutorial: Creating a Bootstrapper

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • SQL SERVER – Find Max Worker Count using DMV – 32 Bit and 64 Bit

    - by pinaldave
    During several recent training courses, I found it very interesting that Worker Thread is not quite known to everyone despite the fact that it is a very important feature. At some point in the discussion, one of the attendees mentioned that we can double the Worker Thread if we double the CPU (add the same number of CPU that we have on current system). The same discussion has triggered this quick article. Here is the DMV which can be used to find out Max Worker Count SELECT max_workers_count FROM sys.dm_os_sys_info Let us run the above query on my system and find the results. As my system is 32 bit and I have two CPU, the Max Worker Count is displayed as 512. To address the previous discussion, adding more CPU does not necessarily double the Worker Count. In fact, the logic behind this simple principle is as follows: For x86 (32-bit) upto 4 logical processors  max worker threads = 256 For x86 (32-bit) more than 4 logical processors  max worker threads = 256 + ((# Procs – 4) * 8) For x64 (64-bit) upto 4 logical processors  max worker threads = 512 For x64 (64-bit) more than 4 logical processors  max worker threads = 512+ ((# Procs – 4) * 8) In addition to this, you can configure the Max Worker Thread by using SSMS. Go to Server Node >> Right Click and Select Property >> Select Process and modify setting under Worker Threads. According to Book On Line, the default Worker Thread settings are appropriate for most of the systems. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL System Table, SQL Tips and Tricks, T SQL, Technology Tagged: SQL DMV

    Read the article

  • jQuery Templates and Data Linking (and Microsoft contributing to jQuery)

    - by ScottGu
    The jQuery library has a passionate community of developers, and it is now the most widely used JavaScript library on the web today. Two years ago I announced that Microsoft would begin offering product support for jQuery, and that we’d be including it in new versions of Visual Studio going forward. By default, when you create new ASP.NET Web Forms and ASP.NET MVC projects with VS 2010 you’ll find jQuery automatically added to your project. A few weeks ago during my second keynote at the MIX 2010 conference I announced that Microsoft would also begin contributing to the jQuery project.  During the talk, John Resig -- the creator of the jQuery library and leader of the jQuery developer team – talked a little about our participation and discussed an early prototype of a new client templating API for jQuery. In this blog post, I’m going to talk a little about how my team is starting to contribute to the jQuery project, and discuss some of the specific features that we are working on such as client-side templating and data linking (data-binding). Contributing to jQuery jQuery has a fantastic developer community, and a very open way to propose suggestions and make contributions.  Microsoft is following the same process to contribute to jQuery as any other member of the community. As an example, when working with the jQuery community to improve support for templating to jQuery my team followed the following steps: We created a proposal for templating and posted the proposal to the jQuery developer forum (http://forum.jquery.com/topic/jquery-templates-proposal and http://forum.jquery.com/topic/templating-syntax ). After receiving feedback on the forums, the jQuery team created a prototype for templating and posted the prototype at the Github code repository (http://github.com/jquery/jquery-tmpl ). We iterated on the prototype, creating a new fork on Github of the templating prototype, to suggest design improvements. Several other members of the community also provided design feedback by forking the templating code. There has been an amazing amount of participation by the jQuery community in response to the original templating proposal (over 100 posts in the jQuery forum), and the design of the templating proposal has evolved significantly based on community feedback. The jQuery team is the ultimate determiner on what happens with the templating proposal – they might include it in jQuery core, or make it an official plugin, or reject it entirely.  My team is excited to be able to participate in the open source process, and make suggestions and contributions the same way as any other member of the community. jQuery Template Support Client-side templates enable jQuery developers to easily generate and render HTML UI on the client.  Templates support a simple syntax that enables either developers or designers to declaratively specify the HTML they want to generate.  Developers can then programmatically invoke the templates on the client, and pass JavaScript objects to them to make the content rendered completely data driven.  These JavaScript objects can optionally be based on data retrieved from a server. Because the jQuery templating proposal is still evolving in response to community feedback, the final version might look very different than the version below. This blog post gives you a sense of how you can try out and use templating as it exists today (you can download the prototype by the jQuery core team at http://github.com/jquery/jquery-tmpl or the latest submission from my team at http://github.com/nje/jquery-tmpl).  jQuery Client Templates You create client-side jQuery templates by embedding content within a <script type="text/html"> tag.  For example, the HTML below contains a <div> template container, as well as a client-side jQuery “contactTemplate” template (within the <script type="text/html"> element) that can be used to dynamically display a list of contacts: The {{= name }} and {{= phone }} expressions are used within the contact template above to display the names and phone numbers of “contact” objects passed to the template. We can use the template to display either an array of JavaScript objects or a single object. The JavaScript code below demonstrates how you can render a JavaScript array of “contact” object using the above template. The render() method renders the data into a string and appends the string to the “contactContainer” DIV element: When the page is loaded, the list of contacts is rendered by the template.  All of this template rendering is happening on the client-side within the browser:   Templating Commands and Conditional Display Logic The current templating proposal supports a small set of template commands - including if, else, and each statements. The number of template commands was deliberately kept small to encourage people to place more complicated logic outside of their templates. Even this small set of template commands is very useful though. Imagine, for example, that each contact can have zero or more phone numbers. The contacts could be represented by the JavaScript array below: The template below demonstrates how you can use the if and each template commands to conditionally display and loop the phone numbers for each contact: If a contact has one or more phone numbers then each of the phone numbers is displayed by iterating through the phone numbers with the each template command: The jQuery team designed the template commands so that they are extensible. If you have a need for a new template command then you can easily add new template commands to the default set of commands. Support for Client Data-Linking The ASP.NET team recently submitted another proposal and prototype to the jQuery forums (http://forum.jquery.com/topic/proposal-for-adding-data-linking-to-jquery). This proposal describes a new feature named data linking. Data Linking enables you to link a property of one object to a property of another object - so that when one property changes the other property changes.  Data linking enables you to easily keep your UI and data objects synchronized within a page. If you are familiar with the concept of data-binding then you will be familiar with data linking (in the proposal, we call the feature data linking because jQuery already includes a bind() method that has nothing to do with data-binding). Imagine, for example, that you have a page with the following HTML <input> elements: The following JavaScript code links the two INPUT elements above to the properties of a JavaScript “contact” object that has a “name” and “phone” property: When you execute this code, the value of the first INPUT element (#name) is set to the value of the contact name property, and the value of the second INPUT element (#phone) is set to the value of the contact phone property. The properties of the contact object and the properties of the INPUT elements are also linked – so that changes to one are also reflected in the other. Because the contact object is linked to the INPUT element, when you request the page, the values of the contact properties are displayed: More interesting, the values of the linked INPUT elements will change automatically whenever you update the properties of the contact object they are linked to. For example, we could programmatically modify the properties of the “contact” object using the jQuery attr() method like below: Because our two INPUT elements are linked to the “contact” object, the INPUT element values will be updated automatically (without us having to write any code to modify the UI elements): Note that we updated the contact object above using the jQuery attr() method. In order for data linking to work, you must use jQuery methods to modify the property values. Two Way Linking The linkBoth() method enables two-way data linking. The contact object and INPUT elements are linked in both directions. When you modify the value of the INPUT element, the contact object is also updated automatically. For example, the following code adds a client-side JavaScript click handler to an HTML button element. When you click the button, the property values of the contact object are displayed using an alert() dialog: The following demonstrates what happens when you change the value of the Name INPUT element and click the Save button. Notice that the name property of the “contact” object that the INPUT element was linked to was updated automatically: The above example is obviously trivially simple.  Instead of displaying the new values of the contact object with a JavaScript alert, you can imagine instead calling a web-service to save the object to a database. The benefit of data linking is that it enables you to focus on your data and frees you from the mechanics of keeping your UI and data in sync. Converters The current data linking proposal also supports a feature called converters. A converter enables you to easily convert the value of a property during data linking. For example, imagine that you want to represent phone numbers in a standard way with the “contact” object phone property. In particular, you don’t want to include special characters such as ()- in the phone number - instead you only want digits and nothing else. In that case, you can wire-up a converter to convert the value of an INPUT element into this format using the code below: Notice above how a converter function is being passed to the linkFrom() method used to link the phone property of the “contact” object with the value of the phone INPUT element. This convertor function strips any non-numeric characters from the INPUT element before updating the phone property.  Now, if you enter the phone number (206) 555-9999 into the phone input field then the value 2065559999 is assigned to the phone property of the contact object: You can also use a converter in the opposite direction also. For example, you can apply a standard phone format string when displaying a phone number from a phone property. Combining Templating and Data Linking Our goal in submitting these two proposals for templating and data linking is to make it easier to work with data when building websites and applications with jQuery. Templating makes it easier to display a list of database records retrieved from a database through an Ajax call. Data linking makes it easier to keep the data and user interface in sync for update scenarios. Currently, we are working on an extension of the data linking proposal to support declarative data linking. We want to make it easy to take advantage of data linking when using a template to display data. For example, imagine that you are using the following template to display an array of product objects: Notice the {{link name}} and {{link price}} expressions. These expressions enable declarative data linking between the SPAN elements and properties of the product objects. The current jQuery templating prototype supports extending its syntax with custom template commands. In this case, we are extending the default templating syntax with a custom template command named “link”. The benefit of using data linking with the above template is that the SPAN elements will be automatically updated whenever the underlying “product” data is updated.  Declarative data linking also makes it easier to create edit and insert forms. For example, you could create a form for editing a product by using declarative data linking like this: Whenever you change the value of the INPUT elements in a template that uses declarative data linking, the underlying JavaScript data object is automatically updated. Instead of needing to write code to scrape the HTML form to get updated values, you can instead work with the underlying data directly – making your client-side code much cleaner and simpler. Downloading Working Code Examples of the Above Scenarios You can download this .zip file to get with working code examples of the above scenarios.  The .zip file includes 4 static HTML page: Listing1_Templating.htm – Illustrates basic templating. Listing2_TemplatingConditionals.htm – Illustrates templating with the use of the if and each template commands. Listing3_DataLinking.htm – Illustrates data linking. Listing4_Converters.htm – Illustrates using a converter with data linking. You can un-zip the file to the file-system and then run each page to see the concepts in action. Summary We are excited to be able to begin participating within the open-source jQuery project.  We’ve received lots of encouraging feedback in response to our first two proposals, and we will continue to actively contribute going forward.  These features will hopefully make it easier for all developers (including ASP.NET developers) to build great Ajax applications. Hope this helps, Scott P.S. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu]

    Read the article

  • A Week of DNN – March 19, 2010

    - by Rob Chartier
    DotNetNuke 5.3.0 Released! New Features Templated User Profiles - User profile pages are now publicly viewable, and layout is controlled by the Admin. Photo field in User Profile - Users can upload a photo to their profile.  We also added support for User Specific data storage.  User Messaging - Users can send direct messages to other system users.  This also includes an out-of-the-box asynchronous, provider based, message platform.  You will see more of this in future releases. Search Engine Sitemap Provider - The sitemap now allows module admins to plug in sitemap logic for individual modules. Taxonomy Manager - Administrators can create flat or hierarchical taxonomies that can be shared and used across modules.  Supporting SEO and Social features at the core is an important piece for DotNetNuke moving forward. (Last Minute Update: 5.3.1 will be released with some last minute updates early next week) DotNetNuke as a Scalable Content management System (CMS) Power, Reliability & Feature Richness – DotNetNuke an Open Source Framework How to Search Engine Optimize dotnetnuke dotnetnuke Training Video – Setting DNN Security DotNetNuke Module Template [CS] (Free) XsltDb - DotNetNuke XSLT module with database and ajax support (Free) Create a non-Award Winning DotNetNuke Skin (part 1, part 2, part 3) Test Driven example module nearly refactored to Web Forms MVP Ajax Search v1.0.0 Released! (Live Demo) Tutorials: Backup DNN, Restore DNN, Move DNN from Backup (By Mitchel Sellers) A tag cloud based on the new 5.3 Taxonomy Engage: Tell-a-Friend 1.1 released (FREE module)  549 DotNetNuke Videos: DNN Creative Magazine Issue 54 Out Now  http://www.dotnetnuke.com/Community/Forums/tabid/795/forumid/112/threadid/355615/scope/posts/Default.aspx

    Read the article

  • AJI Report #19 | Scott K Davis and his son Tommy on Gamification and Programming for Kids

    - by Jeff Julian
    We are very excited about this show. John and Jeff sat down with Scott Davis and his son Tommy to talk about Gamification and Programming for Kids. Tommy is nine years old and the Iowa Code Camp was his second time presenting. Scott and Tommy introduce a package called Scratch that was developed by MIT to teach kids about logic and interacting with programming using sprites. Tommy's favorite experience with programming right now is Lego Mindstorms because of the interaction with the Legos and the development. Most adults when they get started with development also got started with interacting more with the physical machines. The next generation is given amazing tools, but the tools tend to be sealed and the physical interaction is not there. With some of these alternative hobby platforms like Legos, Arduino, and .NET Micro Framework, kids can write some amazing application and see their code work with physical movement and interaction with devices and sensors. In the second half of this podcast, Scott talks about how companies can us Gamification to prompt employees to interact with software and processes in the organization. We see gamification throughout the consumer space and you need to do is open up the majority of the apps on our phones or tablets and there is some interaction point to give the user a reward for using the tool. Scott gets into his product Qonqr which is described as the board game Risk and Foursquare together. Scott gets into the different mindsets of gamers (Bartle Index) and how you can use these mindsets to get the most out of your team through gamification techniques. Listen to the Show Site: http://scottkdavis.com/ Twitter: @ScottKDavis LinkedIn: ScottKDavis Scratch: http://scratch.mit.edu/ Lego Mindstorms: http://mindstorms.lego.com/ Bartle Test: Wikipedia Gamification: Wikipedia

    Read the article

< Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >