Search Results

Search found 7490 results on 300 pages for 'algorithm analysis'.

Page 89/300 | < Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >

  • Capturing time intervals when somebody was online? How would you impement this feature?

    - by Kirzilla
    Hello, Our aim is to build timelines saying about periods of time when user was online. (It really doesn't matter what user we are talking about and where he was online) To get information about onliners we can call API method, someservice.com/api/?call=whoIsOnline whoIsOnline method will give us a list of users currently online. But there is no API method to get information about who IS NOT online. So, we should build our timelines using information we got from whoIsOnline. Of course there will be a measurement error (we can't track information in realtime). Let's suppose that we will call whoIsOnline method every 2 minutes (yes, we will run our script by cron every 2 minutes). For example, calling whoIsOnline at 08:00 will return Peter_id Michal_id Andy_id calling whoIsOnline at 08:02 will return Michael_id Andy_id George_id As you can see, Peter has gone offline, but we have new onliner - George. Available instruments are Db(MySQL) / text files / key-value storage (Redis/memcache); feel free to choose any of them (or even all of them). So, we have to get information like this George_id was online... 12 May: 08:02-08:30, 12:40-12:46, 20:14-22:36 11 May: 09:10-12:30, 21:45-23:00 10 May: was not online And now question... How would you store information to implement such timelines? How would you query/calculate information about periods of time when user was online? Additional information.. You cannot update information about offline users, only users who are "currently" online. Solution should be flexible: timeline information could be represented relating to any timezone. We should keep information only for last 7 days. Every user seen online is automatically getting his own identifier in our database. Uff.. it was really hard for me to write it because my English is pretty bad, but I hope my question will be clear for you. Thank you.

    Read the article

  • submatrix from a matrix

    - by Grv
    A matrix is of size n*n and it consists only 0 and 1 find the largest submatrix that consists of 1's only eg 10010 11100 11001 11110 largest sub matrix will be of 3*2 from row 2 to row 4 please answer with best space and time complexity

    Read the article

  • recursively implementing 'minimum number of coins' in python

    - by user5198
    This problem is same as asked in here. Given a list of coins, their values (c1, c2, c3, ... cj, ...), and the total sum i. Find the minimum number of coins the sum of which is i (we can use as many coins of one type as we want), or report that it's not possible to select coins in such a way that they sum up to S. I"m just introduced to dynamic programming yesterday and I tried to make a code for it. # Optimal substructure: C[i] = 1 + min_j(C[i-cj]) cdict = {} def C(i, coins): if i <= 0: return 0 if i in cdict: return cdict[i] else: answer = 1 + min([C(i - cj, coins) for cj in coins]) cdict[i] = answer return answer Here, C[i] is the optimal solution for amount of money 'i'. And available coins are {c1, c2, ... , cj, ...} for the program, I've increased the recursion limit to avoid maximum recursion depth exceeded error. But, this program gives the right answer only someones and when a solution is not possible, it doesn't indicate that. What is wrong with my code and how to correct it?

    Read the article

  • Mathematical attack on the Digital Signature Algorithm

    - by drelihan
    Does anybody know the mathematics behind an attack on DSA where modulus p has p-1 made up of only small factors. In reality, this would not happen as the key generator would guarantee that this is not so. There is much information on the web on generating good input paramters for DSA so that it is hard to crack but no information on how you find X if modulus p has p-1 made up of only small factors.

    Read the article

  • Suggestions for duplicate file finder algorithm (using C)

    - by Andrei Ciobanu
    Hello, I wanted to write a program that test if two files are duplicates (have exactly the same content). First I test if the files have the same sizes, and if they have i start to compare their contents. My first idea, was to "split" the files into fixed size blocks, then start a thread for every block, fseek to startup character of every block and continue the comparisons in parallel. When a comparison from a thread fails, the other working threads are canceled, and the program exits out of the thread spawning loop. The code looks like this: dupf.h #ifndef __NM__DUPF__H__ #define __NM__DUPF__H__ #define NUM_THREADS 15 #define BLOCK_SIZE 8192 /* Thread argument structure */ struct thread_arg_s { const char *name_f1; /* First file name */ const char *name_f2; /* Second file name */ int cursor; /* Where to seek in the file */ }; typedef struct thread_arg_s thread_arg; /** * 'arg' is of type thread_arg. * Checks if the specified file blocks are * duplicates. */ void *check_block_dup(void *arg); /** * Checks if two files are duplicates */ int check_dup(const char *name_f1, const char *name_f2); /** * Returns a valid pointer to a file. * If the file (given by the path/name 'fname') cannot be opened * in 'mode', the program is interrupted an error message is shown. **/ FILE *safe_fopen(const char *name, const char *mode); #endif dupf.c #include <errno.h> #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include "dupf.h" FILE *safe_fopen(const char *fname, const char *mode) { FILE *f = NULL; f = fopen(fname, mode); if (f == NULL) { char emsg[255]; sprintf(emsg, "FOPEN() %s\t", fname); perror(emsg); exit(-1); } return (f); } void *check_block_dup(void *arg) { const char *name_f1 = NULL, *name_f2 = NULL; /* File names */ FILE *f1 = NULL, *f2 = NULL; /* Streams */ int cursor = 0; /* Reading cursor */ char buff_f1[BLOCK_SIZE], buff_f2[BLOCK_SIZE]; /* Character buffers */ int rchars_1, rchars_2; /* Readed characters */ /* Initializing variables from 'arg' */ name_f1 = ((thread_arg*)arg)->name_f1; name_f2 = ((thread_arg*)arg)->name_f2; cursor = ((thread_arg*)arg)->cursor; /* Opening files */ f1 = safe_fopen(name_f1, "r"); f2 = safe_fopen(name_f2, "r"); /* Setup cursor in files */ fseek(f1, cursor, SEEK_SET); fseek(f2, cursor, SEEK_SET); /* Initialize buffers */ rchars_1 = fread(buff_f1, 1, BLOCK_SIZE, f1); rchars_2 = fread(buff_f2, 1, BLOCK_SIZE, f2); if (rchars_1 != rchars_2) { /* fread failed to read the same portion. * program cannot continue */ perror("ERROR WHEN READING BLOCK"); exit(-1); } while (rchars_1-->0) { if (buff_f1[rchars_1] != buff_f2[rchars_1]) { /* Different characters */ fclose(f1); fclose(f2); pthread_exit("notdup"); } } /* Close streams */ fclose(f1); fclose(f2); pthread_exit("dup"); } int check_dup(const char *name_f1, const char *name_f2) { int num_blocks = 0; /* Number of 'blocks' to check */ int num_tsp = 0; /* Number of threads spawns */ int tsp_iter = 0; /* Iterator for threads spawns */ pthread_t *tsp_threads = NULL; thread_arg *tsp_threads_args = NULL; int tsp_threads_iter = 0; int thread_c_res = 0; /* Thread creation result */ int thread_j_res = 0; /* Thread join res */ int loop_res = 0; /* Function result */ int cursor; struct stat buf_f1; struct stat buf_f2; if (name_f1 == NULL || name_f2 == NULL) { /* Invalid input parameters */ perror("INVALID FNAMES\t"); return (-1); } if (stat(name_f1, &buf_f1) != 0 || stat(name_f2, &buf_f2) != 0) { /* Stat fails */ char emsg[255]; sprintf(emsg, "STAT() ERROR: %s %s\t", name_f1, name_f2); perror(emsg); return (-1); } if (buf_f1.st_size != buf_f2.st_size) { /* File have different sizes */ return (1); } /* Files have the same size, function exec. is continued */ num_blocks = (buf_f1.st_size / BLOCK_SIZE) + 1; num_tsp = (num_blocks / NUM_THREADS) + 1; cursor = 0; for (tsp_iter = 0; tsp_iter < num_tsp; tsp_iter++) { loop_res = 0; /* Create threads array for this spawn */ tsp_threads = malloc(NUM_THREADS * sizeof(*tsp_threads)); if (tsp_threads == NULL) { perror("TSP_THREADS ALLOC FAILURE\t"); return (-1); } /* Create arguments for every thread in the current spawn */ tsp_threads_args = malloc(NUM_THREADS * sizeof(*tsp_threads_args)); if (tsp_threads_args == NULL) { perror("TSP THREADS ARGS ALLOCA FAILURE\t"); return (-1); } /* Initialize arguments and create threads */ for (tsp_threads_iter = 0; tsp_threads_iter < NUM_THREADS; tsp_threads_iter++) { if (cursor >= buf_f1.st_size) { break; } tsp_threads_args[tsp_threads_iter].name_f1 = name_f1; tsp_threads_args[tsp_threads_iter].name_f2 = name_f2; tsp_threads_args[tsp_threads_iter].cursor = cursor; thread_c_res = pthread_create( &tsp_threads[tsp_threads_iter], NULL, check_block_dup, (void*)&tsp_threads_args[tsp_threads_iter]); if (thread_c_res != 0) { perror("THREAD CREATION FAILURE"); return (-1); } cursor+=BLOCK_SIZE; } /* Join last threads and get their status */ while (tsp_threads_iter-->0) { void *thread_res = NULL; thread_j_res = pthread_join(tsp_threads[tsp_threads_iter], &thread_res); if (thread_j_res != 0) { perror("THREAD JOIN FAILURE"); return (-1); } if (strcmp((char*)thread_res, "notdup")==0) { loop_res++; /* Closing other threads and exiting by condition * from loop. */ while (tsp_threads_iter-->0) { pthread_cancel(tsp_threads[tsp_threads_iter]); } } } free(tsp_threads); free(tsp_threads_args); if (loop_res > 0) { break; } } return (loop_res > 0) ? 1 : 0; } The function works fine (at least for what I've tested). Still, some guys from #C (freenode) suggested that the solution is overly complicated, and it may perform poorly because of parallel reading on hddisk. What I want to know: Is the threaded approach flawed by default ? Is fseek() so slow ? Is there a way to somehow map the files to memory and then compare them ?

    Read the article

  • big O notation algorithm

    - by niggersak
    Use big-O notation to classify the traditional grade school algorithms for addition and multiplication. That is, if asked to add two numbers each having N digits, how many individual additions must be performed? If asked to multiply two N-digit numbers, how many individual multiplications are required? . Suppose f is a function that returns the result of reversing the string of symbols given as its input, and g is a function that returns the concatenation of the two strings given as its input. If x is the string hrwa, what is returned by g(f(x),x)? Explain your answer - don't just provide the result!

    Read the article

  • How to use Haar wavelet to detect LINES on an image?

    - by Ole Jak
    So I have Image like this I want to get something like this (I hevent drawn all lines I want but I hope you can get my idea) I want to use SURF ( (Speeded Up Robust Features) is a robust image descriptor, first presented by Herbert Bay et al. in 2006 ) or something that is based on sums of 2D Haar wavelet responses and makes an efficient use of integral images for finding all straight lines on image. I want to get relative to picture pixel coords start and end points of lines. So on this picture to find all lines between tiles and thouse 2 black lines on top. Is there any such Code Example (with lines search capability) to start from? I love C and C++ but any other readable code will probably work for me=)

    Read the article

  • How to detect a Triangle gesture with kinect?

    - by Akhilesh Mishra
    I am trying to implement a gesture recognition system which interprets the geometric gestures user makes and draws it on screen, I have some idea of how circle can be recognized, however i have no clue how to get started with triangle recognition. the data I have is X and Y coordinates of all points the gesture passed through. I get this data by tracking right hand. I found something online called Hough Transform , which is used for detecting lines but i am not sure whether it will work for discrete collection of points, Any ideas folks?

    Read the article

  • Pong: How does the paddle know where the ball will hit?

    - by Roflcoptr
    After implementing Pacman and Snake I'm implementing the next very very classic game: Pong. The implementation is really simple, but I just have one little problem remaining. When one of the paddle (I'm not sure if it is called paddle) is controlled by the computer, I have trouble to position it at the correct position. The ball has a current position, a speed (which for now is constant) and a direction angle. So I could calculate the position where it will hit the side of the computer controlled paddle. And so Icould position the paddle right there. But however in the real game, there is a probability that the computer's paddle will miss the ball. How can I implement this probability? If I only use a probability of lets say 0.5 that the computer's paddle will hit the ball, the problem is solved, but I think it isn't that simple. From the original game I think the probability depends on the distance between the current paddle position and the position the ball will hit the border. Does anybody have any hints how exactly this is calculated?

    Read the article

  • Algorithm for Negating Sentences

    - by Kevin Dolan
    I was wondering if anyone was familiar with any attempts at algorithmic sentence negation. For example, given a sentence like "This book is good" provide any number of alternative sentences meaning the opposite like "This book is not good" or even "This book is bad". Obviously, accomplishing this with a high degree of accuracy would probably be beyond the scope of current NLP, but I'm sure there has been some work on the subject. If anybody knows of any work, care to point me to some papers?

    Read the article

  • Stack and queue operations on the same array.

    - by Passonate Learner
    Hi. I've been thinking about a program logic, but I cannot draw a conclusion to my problem. Here, I've implemented stack and queue operations to a fixed array. int A[1000]; int size=1000; int top; int front; int rear; bool StackIsEmpty() { return (top==0); } bool StackPush( int x ) { if ( top >= size ) return false; A[top++] = x; return true; } int StackTop( ) { return A[top-1]; } bool StackPop() { if ( top <= 0 ) return false; A[--top] = 0; return true; } bool QueueIsEmpty() { return (front==rear); } bool QueuePush( int x ) { if ( rear >= size ) return false; A[rear++] = x; return true; } int QueueFront( ) { return A[front]; } bool QueuePop() { if ( front >= rear ) return false; A[front++] = 0; return true; } It is presumed(or obvious) that the bottom of the stack and the front of the queue is pointing at the same location, and vice versa(top of the stack points the same location as rear of the queue). For example, integer 1 and 2 is inside an array in order of writing. And if I call StackPop(), the integer 2 will be popped out, and if I call QueuePop(), the integer 1 will be popped out. My problem is that I don't know what happens if I do both stack and queue operations on the same array. The example above is easy to work out, because there are only two values involved. But what if there are more than 2 values involved? For example, if I call StackPush(1); QueuePush(2); QueuePush(4); StackPop(); StackPush(5); QueuePop(); what values will be returned in the order of bottom(front) from the final array? I know that if I code a program, I would receive a quick answer. But the reason I'm asking this is because I want to hear a logical explanations from a human being, not a computer.

    Read the article

  • How to get predecessor and successors from an adjacency matrix

    - by NickTFried
    Hi I am am trying to complete an assignment, where it is ok to consult the online community. I have to create a graph class that ultimately can do Breadth First Search and Depth First Search. I have been able to implement those algorithms successfully however another requirement is to be able to get the successors and predecessors and detect if two vertices are either predecessors or successors for each other. I'm having trouble thinking of a way to do this. I will post my code below, if anyone has any suggestions it would be greatly appreciated. import java.util.ArrayList; import java.util.Iterator; import java.util.LinkedList; import java.util.Queue; import java.util.Stack; public class Graph<T> { public Vertex<T> root; public ArrayList<Vertex<T>> vertices=new ArrayList<Vertex<T>>(); public int[][] adjMatrix; int size; private ArrayList<Vertex<T>> dfsArrList; private ArrayList<Vertex<T>> bfsArrList; public void setRootVertex(Vertex<T> n) { this.root=n; } public Vertex<T> getRootVertex() { return this.root; } public void addVertex(Vertex<T> n) { vertices.add(n); } public void removeVertex(int loc){ vertices.remove(loc); } public void addEdge(Vertex<T> start,Vertex<T> end) { if(adjMatrix==null) { size=vertices.size(); adjMatrix=new int[size][size]; } int startIndex=vertices.indexOf(start); int endIndex=vertices.indexOf(end); adjMatrix[startIndex][endIndex]=1; adjMatrix[endIndex][startIndex]=1; } public void removeEdge(Vertex<T> v1, Vertex<T> v2){ int startIndex=vertices.indexOf(v1); int endIndex=vertices.indexOf(v2); adjMatrix[startIndex][endIndex]=1; adjMatrix[endIndex][startIndex]=1; } public int countVertices(){ int ver = vertices.size(); return ver; } /* public boolean isPredecessor( Vertex<T> a, Vertex<T> b){ for() return true; }*/ /* public boolean isSuccessor( Vertex<T> a, Vertex<T> b){ for() return true; }*/ public void getSuccessors(Vertex<T> v1){ } public void getPredessors(Vertex<T> v1){ } private Vertex<T> getUnvisitedChildNode(Vertex<T> n) { int index=vertices.indexOf(n); int j=0; while(j<size) { if(adjMatrix[index][j]==1 && vertices.get(j).visited==false) { return vertices.get(j); } j++; } return null; } public Iterator<Vertex<T>> bfs() { Queue<Vertex<T>> q=new LinkedList<Vertex<T>>(); q.add(this.root); printVertex(this.root); root.visited=true; while(!q.isEmpty()) { Vertex<T> n=q.remove(); Vertex<T> child=null; while((child=getUnvisitedChildNode(n))!=null) { child.visited=true; bfsArrList.add(child); q.add(child); } } clearVertices(); return bfsArrList.iterator(); } public Iterator<Vertex<T>> dfs() { Stack<Vertex<T>> s=new Stack<Vertex<T>>(); s.push(this.root); root.visited=true; printVertex(root); while(!s.isEmpty()) { Vertex<T> n=s.peek(); Vertex<T> child=getUnvisitedChildNode(n); if(child!=null) { child.visited=true; dfsArrList.add(child); s.push(child); } else { s.pop(); } } clearVertices(); return dfsArrList.iterator(); } private void clearVertices() { int i=0; while(i<size) { Vertex<T> n=vertices.get(i); n.visited=false; i++; } } private void printVertex(Vertex<T> n) { System.out.print(n.label+" "); } }

    Read the article

  • B-Tree Revision

    - by stan
    Hi, If we are looking for line intersections (horizontal and vertical lines only) and we have n lines with half of them vertical and no intersections then Sorting the list of line end points on y value will take N log N using mergesort Each insert delete and search of our data structue (assuming its a b-tree) will be < log n so the total search time will be N log N What am i missing here, if the time to sort using mergesort takes a time of N log N and insert and delete takes a time of < log n are we dropping the constant factor to give an overal time of N log N. If not then how comes < log n goes missing in total ONotation run time? Thanks

    Read the article

  • Return a number between 0 and 4

    - by munchine
    How do I return a number between 0 and 4, depending the input number? For example if I pass it number 23 it will return 3. The number set should look like 0 5 10 15 20 .. 1 6 11 16 21 .. 2 7 12 17 22 .. 3 8 13 18 23 .. 4 9 14 19 24 What's the math for this?

    Read the article

  • C++: building iterator from bits

    - by gruszczy
    I have a bitmap and would like to return an iterator of positions of set bits. Right now I just walk the whole bitmap and if bit is set, then I provide next position. I believe this could be done more effectively: for example build statically array for each combination of bits in single byte and return vector of positions. This can't be done for a whole int, because array would be too big. But maybe there are some better solutions? Do you know any smart algorithms for this?

    Read the article

  • How does Batcher Merge work at a high level?

    - by Mike
    I'm trying to grasp the concept of a Batcher Sort. However, most resources I've found online focus on proof entirely or on low-level pseudocode. Before I look at proofs, I'd like to understand how Batcher Sort works. Can someone give a high level overview of how Batcher Sort works(particularly the merge) without overly verbose pseudocode(I want to get the idea behind the Batcher Sort, not implement it)? Thanks!

    Read the article

  • randomized quicksort: probability of two elements comparison?

    - by bantu
    I am reading "Probability and Computing" by M.Mitzenmacher, E.Upfal and I have problems understanding how the probability of comparison of two elements is calculated. Input: the list (y1,y2,...,YN) of numbers. We are looking for pivot element. Question: what is probability that two elements yi and yj (ji) will be compared? Answer (from book): yi and yj will be compared if either yi or yj will be selected as pivot in first draw from sequence (yi,yi+1,...,yj-1,yj). So the probablity is: 2/(y-i+1). The problem for me is initial claim: for example, picking up yi in the first draw from the whole list will cause the comparison with yj (and vice-versa) and the probability is 2/n. So, rather the "reverse" claim is true -- none of the (yi+1,...,yj-1) elements can be selected beforeyi or yj, but the "pool" size is not fixed (in first draw it is n for sure, but on the second it is smaller). Could someone please explain this, how the authors come up with such simplified conclusion? Thank you in advance

    Read the article

  • Efficiently storing a list of prime numbers

    - by eSKay
    This article says: Every prime number can be expressed as 30k±1, 30k±7, 30k±11, or 30k±13 for some k. That means we can use eight bits per thirty numbers to store all the primes; a million primes can be compressed to 33,334 bytes "That means we can use eight bits per thirty numbers to store all the primes" This "eight bits per thirty numbers" would be for k, correct? But each k value will not necessarily take-up just one bit. Shouldn't it be eight k values instead? "a million primes can be compressed to 33,334 bytes" I am not sure how this is true. We need to indicate two things: VALUE of k (can be arbitrarily large) STATE from one of the eight states (-13,-11,-7,-1,1,7,11,13) I am not following how 33,334 bytes was arrived at, but I can say one thing: as the prime numbers become larger and larger in value, we will need more space to store the value of k. How, then can we fix it at 33,334 bytes?

    Read the article

< Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >