Search Results

Search found 6805 results on 273 pages for 'variables'.

Page 89/273 | < Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >

  • Passing multiple simple POST Values to ASP.NET Web API

    - by Rick Strahl
    A few weeks backs I posted a blog post  about what does and doesn't work with ASP.NET Web API when it comes to POSTing data to a Web API controller. One of the features that doesn't work out of the box - somewhat unexpectedly -  is the ability to map POST form variables to simple parameters of a Web API method. For example imagine you have this form and you want to post this data to a Web API end point like this via AJAX: <form> Name: <input type="name" name="name" value="Rick" /> Value: <input type="value" name="value" value="12" /> Entered: <input type="entered" name="entered" value="12/01/2011" /> <input type="button" id="btnSend" value="Send" /> </form> <script type="text/javascript"> $("#btnSend").click( function() { $.post("samples/PostMultipleSimpleValues?action=kazam", $("form").serialize(), function (result) { alert(result); }); }); </script> or you might do this more explicitly by creating a simple client map and specifying the POST values directly by hand:$.post("samples/PostMultipleSimpleValues?action=kazam", { name: "Rick", value: 1, entered: "12/01/2012" }, $("form").serialize(), function (result) { alert(result); }); On the wire this generates a simple POST request with Url Encoded values in the content:POST /AspNetWebApi/samples/PostMultipleSimpleValues?action=kazam HTTP/1.1 Host: localhost User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; rv:15.0) Gecko/20100101 Firefox/15.0.1 Accept: application/json Connection: keep-alive Content-Type: application/x-www-form-urlencoded; charset=UTF-8 X-Requested-With: XMLHttpRequest Referer: http://localhost/AspNetWebApi/FormPostTest.html Content-Length: 41 Pragma: no-cache Cache-Control: no-cachename=Rick&value=12&entered=12%2F10%2F2011 Seems simple enough, right? We are basically posting 3 form variables and 1 query string value to the server. Unfortunately Web API can't handle request out of the box. If I create a method like this:[HttpPost] public string PostMultipleSimpleValues(string name, int value, DateTime entered, string action = null) { return string.Format("Name: {0}, Value: {1}, Date: {2}, Action: {3}", name, value, entered, action); }You'll find that you get an HTTP 404 error and { "Message": "No HTTP resource was found that matches the request URI…"} Yes, it's possible to pass multiple POST parameters of course, but Web API expects you to use Model Binding for this - mapping the post parameters to a strongly typed .NET object, not to single parameters. Alternately you can also accept a FormDataCollection parameter on your API method to get a name value collection of all POSTed values. If you're using JSON only, using the dynamic JObject/JValue objects might also work. ModelBinding is fine in many use cases, but can quickly become overkill if you only need to pass a couple of simple parameters to many methods. Especially in applications with many, many AJAX callbacks the 'parameter mapping type' per method signature can lead to serious class pollution in a project very quickly. Simple POST variables are also commonly used in AJAX applications to pass data to the server, even in many complex public APIs. So this is not an uncommon use case, and - maybe more so a behavior that I would have expected Web API to support natively. The question "Why aren't my POST parameters mapping to Web API method parameters" is already a frequent one… So this is something that I think is fairly important, but unfortunately missing in the base Web API installation. Creating a Custom Parameter Binder Luckily Web API is greatly extensible and there's a way to create a custom Parameter Binding to provide this functionality! Although this solution took me a long while to find and then only with the help of some folks Microsoft (thanks Hong Mei!!!), it's not difficult to hook up in your own projects. It requires one small class and a GlobalConfiguration hookup. Web API parameter bindings allow you to intercept processing of individual parameters - they deal with mapping parameters to the signature as well as converting the parameters to the actual values that are returned. Here's the implementation of the SimplePostVariableParameterBinding class:public class SimplePostVariableParameterBinding : HttpParameterBinding { private const string MultipleBodyParameters = "MultipleBodyParameters"; public SimplePostVariableParameterBinding(HttpParameterDescriptor descriptor) : base(descriptor) { } /// <summary> /// Check for simple binding parameters in POST data. Bind POST /// data as well as query string data /// </summary> public override Task ExecuteBindingAsync(ModelMetadataProvider metadataProvider, HttpActionContext actionContext, CancellationToken cancellationToken) { // Body can only be read once, so read and cache it NameValueCollection col = TryReadBody(actionContext.Request); string stringValue = null; if (col != null) stringValue = col[Descriptor.ParameterName]; // try reading query string if we have no POST/PUT match if (stringValue == null) { var query = actionContext.Request.GetQueryNameValuePairs(); if (query != null) { var matches = query.Where(kv => kv.Key.ToLower() == Descriptor.ParameterName.ToLower()); if (matches.Count() > 0) stringValue = matches.First().Value; } } object value = StringToType(stringValue); // Set the binding result here SetValue(actionContext, value); // now, we can return a completed task with no result TaskCompletionSource<AsyncVoid> tcs = new TaskCompletionSource<AsyncVoid>(); tcs.SetResult(default(AsyncVoid)); return tcs.Task; } private object StringToType(string stringValue) { object value = null; if (stringValue == null) value = null; else if (Descriptor.ParameterType == typeof(string)) value = stringValue; else if (Descriptor.ParameterType == typeof(int)) value = int.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(Int32)) value = Int32.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(Int64)) value = Int64.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(decimal)) value = decimal.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(double)) value = double.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(DateTime)) value = DateTime.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(bool)) { value = false; if (stringValue == "true" || stringValue == "on" || stringValue == "1") value = true; } else value = stringValue; return value; } /// <summary> /// Read and cache the request body /// </summary> /// <param name="request"></param> /// <returns></returns> private NameValueCollection TryReadBody(HttpRequestMessage request) { object result = null; // try to read out of cache first if (!request.Properties.TryGetValue(MultipleBodyParameters, out result)) { // parsing the string like firstname=Hongmei&lastname=Ge result = request.Content.ReadAsFormDataAsync().Result; request.Properties.Add(MultipleBodyParameters, result); } return result as NameValueCollection; } private struct AsyncVoid { } }   The ExecuteBindingAsync method is fired for each parameter that is mapped and sent for conversion. This custom binding is fired only if the incoming parameter is a simple type (that gets defined later when I hook up the binding), so this binding never fires on complex types or if the first type is not a simple type. For the first parameter of a request the Binding first reads the request body into a NameValueCollection and caches that in the request.Properties collection. The request body can only be read once, so the first parameter request reads it and then caches it. Subsequent parameters then use the cached POST value collection. Once the form collection is available the value of the parameter is read, and the value is translated into the target type requested by the Descriptor. SetValue writes out the value to be mapped. Once you have the ParameterBinding in place, the binding has to be assigned. This is done along with all other Web API configuration tasks at application startup in global.asax's Application_Start:GlobalConfiguration.Configuration.ParameterBindingRules .Insert(0, (HttpParameterDescriptor descriptor) => { var supportedMethods = descriptor.ActionDescriptor.SupportedHttpMethods; // Only apply this binder on POST and PUT operations if (supportedMethods.Contains(HttpMethod.Post) || supportedMethods.Contains(HttpMethod.Put)) { var supportedTypes = new Type[] { typeof(string), typeof(int), typeof(decimal), typeof(double), typeof(bool), typeof(DateTime) }; if (supportedTypes.Where(typ => typ == descriptor.ParameterType).Count() > 0) return new SimplePostVariableParameterBinding(descriptor); } // let the default bindings do their work return null; });   The ParameterBindingRules.Insert method takes a delegate that checks which type of requests it should handle. The logic here checks whether the request is POST or PUT and whether the parameter type is a simple type that is supported. Web API calls this delegate once for each method signature it tries to map and the delegate returns null to indicate it's not handling this parameter, or it returns a new parameter binding instance - in this case the SimplePostVariableParameterBinding. Once the parameter binding and this hook up code is in place, you can now pass simple POST values to methods with simple parameters. The examples I showed above should now work in addition to the standard bindings. Summary Clearly this is not easy to discover. I spent quite a bit of time digging through the Web API source trying to figure this out on my own without much luck. It took Hong Mei at Micrsoft to provide a base example as I asked around so I can't take credit for this solution :-). But once you know where to look, Web API is brilliantly extensible to make it relatively easy to customize the parameter behavior. I'm very stoked that this got resolved  - in the last two months I've had two customers with projects that decided not to use Web API in AJAX heavy SPA applications because this POST variable mapping wasn't available. This might actually change their mind to still switch back and take advantage of the many great features in Web API. I too frequently use plain POST variables for communicating with server AJAX handlers and while I could have worked around this (with untyped JObject or the Form collection mostly), having proper POST to parameter mapping makes things much easier. I said this in my last post on POST data and say it again here: I think POST to method parameter mapping should have been shipped in the box with Web API, because without knowing about this limitation the expectation is that simple POST variables map to parameters just like query string values do. I hope Microsoft considers including this type of functionality natively in the next version of Web API natively or at least as a built-in HttpParameterBinding that can be just added. This is especially true, since this binding doesn't affect existing bindings. Resources SimplePostVariableParameterBinding Source on GitHub Global.asax hookup source Mapping URL Encoded Post Values in  ASP.NET Web API© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • ASP.NET Web API and Simple Value Parameters from POSTed data

    - by Rick Strahl
    In testing out various features of Web API I've found a few oddities in the way that the serialization is handled. These are probably not super common but they may throw you for a loop. Here's what I found. Simple Parameters from Xml or JSON Content Web API makes it very easy to create action methods that accept parameters that are automatically parsed from XML or JSON request bodies. For example, you can send a JavaScript JSON object to the server and Web API happily deserializes it for you. This works just fine:public string ReturnAlbumInfo(Album album) { return album.AlbumName + " (" + album.YearReleased.ToString() + ")"; } However, if you have methods that accept simple parameter types like strings, dates, number etc., those methods don't receive their parameters from XML or JSON body by default and you may end up with failures. Take the following two very simple methods:public string ReturnString(string message) { return message; } public HttpResponseMessage ReturnDateTime(DateTime time) { return Request.CreateResponse<DateTime>(HttpStatusCode.OK, time); } The first one accepts a string and if called with a JSON string from the client like this:var client = new HttpClient(); var result = client.PostAsJsonAsync<string>(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, "Hello World").Result; which results in a trace like this: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 13Expect: 100-continueConnection: Keep-Alive "Hello World" produces… wait for it: null. Sending a date in the same fashion:var client = new HttpClient(); var result = client.PostAsJsonAsync<DateTime>(http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime, new DateTime(2012, 1, 1)).Result; results in this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 30Expect: 100-continueConnection: Keep-Alive "\/Date(1325412000000-1000)\/" (yes still the ugly MS AJAX date, yuk! This will supposedly change by RTM with Json.net used for client serialization) produces an error response: The parameters dictionary contains a null entry for parameter 'time' of non-nullable type 'System.DateTime' for method 'System.Net.Http.HttpResponseMessage ReturnDateTime(System.DateTime)' in 'AspNetWebApi.Controllers.AlbumApiController'. An optional parameter must be a reference type, a nullable type, or be declared as an optional parameter. Basically any simple parameters are not parsed properly resulting in null being sent to the method. For the string the call doesn't fail, but for the non-nullable date it produces an error because the method can't handle a null value. This behavior is a bit unexpected to say the least, but there's a simple solution to make this work using an explicit [FromBody] attribute:public string ReturnString([FromBody] string message) andpublic HttpResponseMessage ReturnDateTime([FromBody] DateTime time) which explicitly instructs Web API to read the value from the body. UrlEncoded Form Variable Parsing Another similar issue I ran into is with POST Form Variable binding. Web API can retrieve parameters from the QueryString and Route Values but it doesn't explicitly map parameters from POST values either. Taking our same ReturnString function from earlier and posting a message POST variable like this:var formVars = new Dictionary<string,string>(); formVars.Add("message", "Some Value"); var content = new FormUrlEncodedContent(formVars); var client = new HttpClient(); var result = client.PostAsync(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, content).Result; which produces this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/x-www-form-urlencodedHost: rasxpsContent-Length: 18Expect: 100-continue message=Some+Value When calling ReturnString:public string ReturnString(string message) { return message; } unfortunately it does not map the message value to the message parameter. This sort of mapping unfortunately is not available in Web API. Web API does support binding to form variables but only as part of model binding, which binds object properties to the POST variables. Sending the same message as in the previous example you can use the following code to pick up POST variable data:public string ReturnMessageModel(MessageModel model) { return model.Message; } public class MessageModel { public string Message { get; set; }} Note that the model is bound and the message form variable is mapped to the Message property as would other variables to properties if there were more. This works but it's not very dynamic. There's no real easy way to retrieve form variables (or query string values for that matter) in Web API's Request object as far as I can discern. Well only if you consider this easy:public string ReturnString() { var formData = Request.Content.ReadAsAsync<FormDataCollection>().Result; return formData.Get("message"); } Oddly FormDataCollection does not allow for indexers to work so you have to use the .Get() method which is rather odd. If you're running under IIS/Cassini you can always resort to the old and trusty HttpContext access for request data:public string ReturnString() { return HttpContext.Current.Request.Form["message"]; } which works fine and is easier. It's kind of a bummer that HttpRequestMessage doesn't expose some sort of raw Request object that has access to dynamic data - given that it's meant to serve as a generic REST/HTTP API that seems like a crucial missing piece. I don't see any way to read query string values either. To me personally HttpContext works, since I don't see myself using self-hosted code much.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var john = new Person("John Galt", 50); console.log(john.toString()); var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • Understanding the static keyword

    - by user985482
    I have some experience in developing with Java, Javascript and PHP. I am reading Microsoft Visual C# 2010 Step by Step which I feel it is a very good book on introducing you to the C# language. I seem to be having problems in understanding the static keyword. From what I understand this far if a class is declared static all methods and variable have to be static. The main method always is a static method so in the class that the main method exists all variables and methods are declared static if you have to call them in the main method. Also I have noticed that in order to call a static method from another class you do not need to create an object of that you can use the class name. What are the advantages of declaring static variables and methods? When should I declare static variable and methods?

    Read the article

  • Modified Strategy Design Pattern

    - by Samuel Walker
    I've started looking into Design Patterns recently, and one thing I'm coding would suit the Strategy pattern perfectly, except for one small difference. Essentially, some (but not all) of my algorithms, need an extra parameter or two passed to them. So I'll either need to pass them an extra parameter when I invoke their calculate method or store them as variables inside the ConcreteAlgorithm class, and be able to update them before I call the algorithm. Is there a design pattern for this need / How could I implement this while sticking to the Strategy Pattern? I've considered passing the client object to all the algorithms, and storing the variables in there, then using that only when the particular algorithm needs it. However, I think this is both unwieldy, and defeats the point of the strategy pattern. Just to be clear I'm implementing in Java, and so don't have the luxury of optional parameters (which would solve this nicely).

    Read the article

  • Shader inputs in a general purpose engine

    - by dreta
    I'm not familiar with SDKs like Unity or UDK that much, so i can't check this offhand. Do general purpose engines allow users to create custom uniform variables? The way i see it, and the way i have implemented it in an engine i'm writing to learn 3D, is that there is a "set" of uniforms provided by the engine and if you want to write a custom shader then you utilize uniforms you need to create a wanted effect. Now, the thing is, first of all i'm not an artist, second of all, i didn't have a chance to create complex scenes yet. So my question is, is it common practice to define variables that the engine provides and only allow the user to work with what they're given? Allowing users to add custom programs and use them where they want is not hard, but i have issues imagining how you'd go about doing the same for uniforms.

    Read the article

  • WebCenter Content shared folders for clustering

    - by Kyle Hatlestad
    When configuring a WebCenter Content (WCC) cluster, one of the things which makes it unique from some other WebLogic Server applications is its requirement for a shared file system.  This is actually not any different then 10g and previous versions of UCM when it ran directly on a JVM.  And while it is simple enough to say it needs a shared file system, there are some crucial details in how those directories are configured. And if they aren't followed, you may result in some unwanted behavior. This blog post will go into the details on how exactly the file systems should be split and what options are required. Beyond documents being stored on the file system and/or database and metadata being stored in the database along with other structured data, there is other information being read and written to on the file system.  Information such as user profile preferences, workflow item state information, metadata profiles, and other details are stored in files.  In addition, for certain processes within WCC, each of the nodes needs to know what the other nodes are doing so they don’t step on each other.  WCC keeps track of this through the use of lock files on the file system.  Because of this, each node of the WCC must have access to the same file system just as they have access to the same database. WCC uses its own locking mechanism using files, so it also needs to have access to those files without file attribute caching and without locking being done by the client (node).  If one of the nodes accesses a certain status file and it happens to be cached, that node might attempt to run a process which another node is already working on.  Or if a particular file is locked by one of the node clients, this could interfere with access by another node.  Unfortunately, when disabling file attribute caching on the file share, this can impact performance.  So it is important to only disable caching and locking on the particular folders which require it.  When configuring WebCenter Content after deploying the domain, it asks for 3 different directories: Content Server Instance Folder, Native File Repository Location, and Weblayout Folder.  And starting in PS5, it now asks for the User Profile Folder. Even if you plan on storing the content in the database, you still need to establish a Native File (Vault) and Weblayout directories.  These will be used for handling temporary files, cached files, and files used to deliver the UI. For these directories, the only folder which needs to have the file attribute caching and locking disabled is the ‘Content Server Instance Folder’.  So when establishing this share through NFS or a clustered file system, be sure to specify those options. For instance, if creating the share through NFS, use the ‘noac’ and ‘nolock’ options for the mount options. For the other directories, caching and locking should be enabled to provide best performance to those locations.   These directory path configurations are contained within the <domain dir>\ucm\cs\bin\intradoc.cfg file: #Server System PropertiesIDC_Id=UCM_server1 #Server Directory Variables IdcHomeDir=/u01/fmw/Oracle_ECM1/ucm/idc/ FmwDomainConfigDir=/u01/fmw/user_projects/domains/base_domain/config/fmwconfig/ AppServerJavaHome=/u01/jdk/jdk1.6.0_22/jre/ AppServerJavaUse64Bit=true IntradocDir=/mnt/share_no_cache/base_domain/ucm/cs/ VaultDir=/mnt/share_with_cache/ucm/cs/vault/ WeblayoutDir=/mnt/share_with_cache/ucm/cs/weblayout/ #Server Classpath variables #Additional Variables #NOTE: UserProfilesDir is only available in PS5 – 11.1.1.6.0UserProfilesDir=/mnt/share_with_cache/ucm/cs/data/users/profiles/ In addition to these folder configurations, it’s also recommended to move node-specific folders to local disk to avoid unnecessary traffic to the shared directory.  So on each node, go to <domain dir>\ucm\cs\bin\intradoc.cfg and add these additional configuration entries: VaultTempDir=<domain dir>/ucm/<cs>/vault/~temp/ TraceDirectory=<domain dir>/servers/<UCM_serverN>/logs/EventDirectory=<domain dir>/servers/<UCM_serverN>/logs/event/ And of course, don’t forget the cluster-specific configuration values to add as well.  These can be added through Admin Server -> General Configuration -> Additional Configuration Variables or directly in the <IntradocDir>/config/config.cfg file: ArchiverDoLocks=true DisableSharedCacheChecking=true ServiceAllowRetry=true    (use only with Oracle RAC Database)PublishLockTimeout=300000  (time can vary depending on publishing time and number of nodes) For additional information and details on clustering configuration, I highly recommend reviewing document [1209496.1] on the support site.  In addition, there is a great step-by-step guide on setting up a WebCenter Content cluster [1359930.1].

    Read the article

  • ODI 11g - Dynamic and Flexible Code Generation

    - by David Allan
    ODI supports conditional branching at execution time in its code generation framework. This is a little used, little known, but very powerful capability - this let's one piece of template code behave dynamically based on a runtime variable's value for example. Generally knowledge module's are free of any variable dependency. Using variable's within a knowledge module for this kind of dynamic capability is a valid use case - definitely in the highly specialized area. The example I will illustrate is much simpler - how to define a filter (based on mapping here) that may or may not be included depending on whether at runtime a certain value is defined for a variable. I define a variable V_COND, if I set this variable's value to 1, then I will include the filter condition 'EMP.SAL > 1' otherwise I will just use '1=1' as the filter condition. I use ODIs substitution tags using a special tag '<$' which is processed just prior to execution in the runtime code - so this code is included in the ODI scenario code and it is processed after variables are substituted (unlike the '<?' tag).  So the lines below are not equal ... <$ if ( "#V_COND".equals("1")  ) { $> EMP.SAL > 1 <$ } else { $> 1 = 1 <$ } $> <? if ( "#V_COND".equals("1")  ) { ?> EMP.SAL > 1 <? } else { ?> 1 = 1 <? } ?> When the <? code is evaluated the code is executed without variable substitution - so we do not get the desired semantics, must use the <$ code. You can see the jython (java) code in red is the conditional if statement that drives whether the 'EMP.SAL > 1' or '1=1' is included in the generated code. For this illustration you need at least the ODI 11.1.1.6 release - with the vanilla 11.1.1.5 release it didn't work for me (may be patches?). As I mentioned, normally KMs don't have dependencies on variables - since any users must then have these variables defined etc. but it does afford a lot of runtime flexibility if such capabilities are required - something to keep in mind, definitely.

    Read the article

  • Is it appropriate for a class to only be a collection of information with no logic?

    - by qegal
    Say I have a class Person that has instance variables age, weight, and height, and another class Fruit that has instance variables sugarContent and texture. The Person class has no methods save setters and getters, while the Fruit class has both setters and getters and logic methods like calculateSweetness. Is the Fruit class the type of class that is better practice than the Person class. What I mean by this is that the Person class seems like it doesn't have much purpose; it exists solely to organize data, while the Fruit class organizes data and actually contains methods for logic.

    Read the article

  • Synchronization between game logic thread and rendering thread

    - by user782220
    How does one separate game logic and rendering? I know there seem to already be questions on here asking exactly that but the answers are not satisfactory to me. From what I understand so far the point of separating them into different threads is so that game logic can start running for the next tick immediately instead of waiting for the next vsync where rendering finally returns from the swapbuffer call its been blocking on. But specifically what data structures are used to prevent race conditions between the game logic thread and the rendering thread. Presumably the rendering thread needs access to various variables to figure out what to draw, but game logic could be updating these same variables. Is there a de facto standard technique for handling this problem. Maybe like copy the data needed by the rendering thread after every execution of the game logic. Whatever the solution is will the overhead of synchronization or whatever be less than just running everything single threaded?

    Read the article

  • problem using pydoc in python

    - by rohanag
    I'm using pydoc in python 2.7.3 to generate documentation for a file called PreProcessingAPI.py which contains a class called PreProcessingAPI In PreProcessingAPI.py, I have the following import in the beginning of the file: from __future__ import division from re import * from nltk.stem import porter The problem is, in the documentation generated by pydoc, nltk.stem.porter is shown as a Module. There is also a DATA heading with all sorts of variables I do not know about. Is there a way to avoid these variables and avoid showing nltk.stem.porter in the modules? I'm running the following command to generate documentation python pydoc.py -w PreProcessingAPI.py I've put the file pydoc.py in the directory containing my file. Here is the file generated: https://www.dropbox.com/s/4rb6ut99o25mwly/PreProcessingAPI.html

    Read the article

  • Calculating instantaneous speed and acceleration for a simple Car software model

    - by Dylan
    I am trying to model a speedometer and tachometer for a simple software model of a car dashboard. I want this to be relatively simple, so for my purposes I won't likely simulate variables such as drag (or, assume that drag is a constant). But I would like to know the general formulas for: 1) Calculating the RPM, depending on a position of a graphical slider representing the accelerator. 2) Using this information to find the instantaneous speed (or, magnitude of instantaneous velocity?). I am not sure, in the case of 2), what other independent variables I need to consider. Do I need to consider the frequency of rotation of the wheels (assuming a fixed radius), in addition to the RPM? If anyone can give me a rough explanation plus relevant formulas, or alternatively direct me to other trusted resources online (I have had a hard time sifting through info and determining the accuracy), it would be much appreciated.

    Read the article

  • Multiple values for a specif custom variable in Google Analytics

    - by Nicola Pacini
    we're trying to get rid of a this question : would it be possible to setup more than one value in a custom variable in Google Analytics, at page level ? Eg: _gaq.push(['_setCustomVar',3,'Tag','Custom Variables',3]); We'd like to track most popular tags on a web site who publishes news, articles and stuff. Contents are categorized (each content belongs to one category) and tagged (1 or more tags for each article). So, we'd like to apply this code: _gaq.push(['_setCustomVar',3,'Tag','Custom Variables',3]); _gaq.push(['_setCustomVar',3,'Tag','Google Analytics',3]); in a page that shows an article with these two tags assigned. What do you think? Honestly I didn't find anything in documentation from Google and some other example sites. Many thanks! Nicola

    Read the article

  • Is Java easy decompilation a factor worth considering

    - by Sandra G
    We are considering the programming language for a desktop application with extended GUI use (tables, windows) and heavy database use. We considered Java for use however the fact that it can be decompiled back very easily into source code is holding us back. There are of course many obfuscators available however they are just that: obfuscators. The only obfuscation worth doing we got was stripping function and variables names into meaningless letters and numbers so that at least stealing code and renaming it back into something meaningful is too much work and we are 100% sure it is not reversible back in any automated way. However as it concerns to protecting internals (like password hashes or sensible variables content) we found obfuscators really lacking. Is there any way to make Java applications as hard to decode as .exe counterparts? And is it a factor to consider when deciding whether to develop in Java a desktop application?

    Read the article

  • Javascript Closures - What are the negatives?

    - by vol7ron
    Question: There seem to be many benefits to Closures, but what are the negatives (memory leakage? obfuscation problems? bandwidth increasage?)? Additionally, is my understanding of Closures correct? Finally, once closures are created, can they be destroyed? I've been reading a little bit about Javascript Closures. I hope someone a little more knowledgeable will guide my assertions, correcting me where wrong. Benefits of Closures: Encapsulate the variables to a local scope, by using an internal function. The anonymity of the function is insignificant. What I've found helpful is to do some basic testing, regarding local/global scope: <script type="text/javascript"> var global_text = ""; var global_count = 0; var global_num1 = 10; var global_num2 = 20; var global_num3 = 30; function outerFunc() { var local_count = local_count || 0; alert("global_num1: " + global_num1); // global_num1: undefined var global_num1 = global_num1 || 0; alert("global_num1: " + global_num1); // global_num1: 0 alert("global_num2: " + global_num2); // global_num2: 20 global_num2 = global_num2 || 0; // (notice) no definition with 'var' alert("global_num2: " + global_num2); // global_num2: 20 global_num2 = 0; alert("local_count: " + local_count); // local_count: 0 function output() { global_num3++; alert("local_count: " + local_count + "\n" + "global_count: " + global_count + "\n" + "global_text: " + global_text ); local_count++; } local_count++; global_count++; return output; } var myFunc = outerFunc(); myFunc(); /* Outputs: ********************** * local_count: 1 * global_count: 1 * global_text: **********************/ global_text = "global"; myFunc(); /* Outputs: ********************** * local_count: 2 * global_count: 1 * global_text: global **********************/ var local_count = 100; myFunc(); /* Outputs: ********************** * local_count: 3 * global_count: 1 * global_text: global **********************/ alert("global_num1: " + global_num1); // global_num1: 10 alert("global_num2: " + global_num2); // global_num2: 0 alert("global_num3: " + global_num3); // global_num3: 33 </script> Interesting things I took out of it: The alerts in outerFunc are only called once, which is when the outerFunc call is assigned to myFunc (myFunc = outerFunc()). This assignment seems to keep the outerFunc open, in what I would like to call a persistent state. Everytime myFunc is called, the return is executed. In this case, the return is the internal function. Something really interesting is the localization that occurs when defining local variables. Notice the difference in the first alert between global_num1 and global_num2, even before the variable is trying to be created, global_num1 is considered undefined because the 'var' was used to signify a local variable to that function. -- This has been talked about before, in the order of operation for the Javascript engine, it's just nice to see this put to work. Globals can still be used, but local variables will override them. Notice before the third myFunc call, a global variable called local_count is created, but it as no effect on the internal function, which has a variable that goes by the same name. Conversely, each function call has the ability to modify global variables, as noticed by global_var3. Post Thoughts: Even though the code is straightforward, it is cluttered by alerts for you guys, so you can plug and play. I know there are other examples of closures, many of which use anonymous functions in combination with looping structures, but I think this is good for a 101-starter course to see the effects. The one thing I'm concerned with is the negative impact closures will have on memory. Because it keeps the function environment open, it is also keeping those variables stored in memory, which may/may not have performance implications, especially regarding DOM traversals and garbage collection. I'm also not sure what kind of role this will play in terms of memory leakage and I'm not sure if the closure can be removed from memory by a simple "delete myFunc;." Hope this helps someone, vol7ron

    Read the article

  • What is required for a scope in an injection framework?

    - by johncarl
    Working with libraries like Seam, Guice and Spring I have become accustomed to dealing with variables within a scope. These libraries give you a handful of scopes and allow you to define your own. This is a very handy pattern for dealing with variable lifecycles and dependency injection. I have been trying to identify where scoping is the proper solution, or where another solution is more appropriate (context variable, singleton, etc). I have found that if the scope lifecycle is not well defined it is very difficult and often failure prone to manage injections in this way. I have searched on this topic but have found little discussion on the pattern. Is there some good articles discussing where to use scoping and what are required/suggested prerequisites for scoping? I interested in both reference discussion or your view on what is required or suggested for a proper scope implementation. Keep in mind that I am referring to scoping as a general idea, this includes things like globally scoped singletons, request or session scoped web variable, conversation scopes, and others. Edit: Some simple background on custom scopes: Google Guice custom scope Some definitions relevant to above: “scoping” - A set of requirements that define what objects get injected at what time. A simple example of this is Thread scope, based on a ThreadLocal. This scope would inject a variable based on what thread instantiated the class. Here's an example of this: “context variable” - A repository passed from one object to another holding relevant variables. Much like scoping this is a more brute force way of accessing variables based on the calling code. Example: methodOne(Context context){ methodTwo(context); } methodTwo(Context context){ ... //same context as method one, if called from method one } “globally scoped singleton” - Following the singleton pattern, there is one object per application instance. This applies to scopes because there is a basic lifecycle to this object: there is only one of these objects instantiated. Here's an example of a JSR330 Singleton scoped object: @Singleton public void SingletonExample{ ... } usage: public class One { @Inject SingeltonExample example1; } public class Two { @Inject SingeltonExample example2; } After instantiation: one.example1 == two.example2 //true;

    Read the article

  • stud ubuntu howto?

    - by Matt H
    I've just been looking at the stud init script as I thought perhaps I'm meant to create a stud.conf inside /etc/stud However, in looking through the init script it would apppear that it loads stud.conf variables into the current environment. This of course fails for some reason and you get a bunch of errors. Worse still, stud source code doesn't work with environment variables. Can someone tell me how you're actually meant to set up stud with init script as it would appear to be completely broken. Maybe I can just disable the init script and call stud from rc.local?

    Read the article

  • JavaScript Class Patterns &ndash; In CoffeeScript

    - by Liam McLennan
    Recently I wrote about JavaScript class patterns, and in particular, my favourite class pattern that uses closure to provide encapsulation. A class to represent a person, with a name and an age, looks like this: var Person = (function() { // private variables go here var name,age; function constructor(n, a) { name = n; age = a; } constructor.prototype = { toString: function() { return name + " is " + age + " years old."; } }; return constructor; })(); var john = new Person("John Galt", 50); console.log(john.toString()); Today I have been experimenting with coding for node.js in CoffeeScript. One of the first things I wanted to do was to try and implement my class pattern in CoffeeScript and then see how it compared to CoffeeScript’s built-in class keyword. The above Person class, implemented in CoffeeScript, looks like this: # JavaScript style class using closure to provide private methods Person = (() -> [name,age] = [{},{}] constructor = (n, a) -> [name,age] = [n,a] null constructor.prototype = toString: () -> "name is #{name} age is #{age} years old" constructor )() I am satisfied with how this came out, but there are a few nasty bits. To declare the two private variables in javascript is as simple as var name,age; but in CoffeeScript I have to assign a value, hence [name,age] = [{},{}]. The other major issue occurred because of CoffeeScript’s implicit function returns. The last statement in any function is returned, so I had to add null to the end of the constructor to get it to work. The great thing about the technique just presented is that it provides encapsulation ie the name and age variables are not visible outside of the Person class. CoffeeScript classes do not provide encapsulation, but they do provide nicer syntax. The Person class using native CoffeeScript classes is: # CoffeeScript style class using the class keyword class CoffeePerson constructor: (@name, @age) -> toString: () -> "name is #{@name} age is #{@age} years old" felix = new CoffeePerson "Felix Hoenikker", 63 console.log felix.toString() So now I have a trade-off: nice syntax against encapsulation. I think I will experiment with both strategies in my project and see which works out better.

    Read the article

  • Database Rebuild

    - by Robert May
    I promised I’d have a simpler mechanism for rebuilding the database.  Below is a complete MSBuild targets file for rebuilding the database from scratch.  I don’t know if I’ve explained the rational for this.  The reason why you’d WANT to do this is so that each developer has a clean version of the database on their local machine.  This also includes the continuous integration environment.  Basically, you can do whatever you want to the database without fear, and in a minute or two, have a completely rebuilt database structure. DBDeploy (including the KTSC build task for dbdeploy) is used in this script to do change tracking on the database itself.  The MSBuild ExtensionPack is used in this target file.  You can get an MSBuild DBDeploy task here. There are two database scripts that you’ll see below.  First is the task for creating an admin (dbo) user in the system.  This script looks like the following: USE [master] GO If not Exists (select Name from sys.sql_logins where name = '$(User)') BEGIN CREATE LOGIN [$(User)] WITH PASSWORD=N'$(Password)', DEFAULT_DATABASE=[$(DatabaseName)], CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF END GO EXEC master..sp_addsrvrolemember @loginame = N'$(User)', @rolename = N'sysadmin' GO USE [$(DatabaseName)] GO CREATE USER [$(User)] FOR LOGIN [$(User)] GO ALTER USER [$(User)] WITH DEFAULT_SCHEMA=[dbo] GO EXEC sp_addrolemember N'db_owner', N'$(User)' GO The second creates the changelog table.  This script can also be found in the dbdeploy.net install\scripts directory. CREATE TABLE changelog ( change_number INTEGER NOT NULL, delta_set VARCHAR(10) NOT NULL, start_dt DATETIME NOT NULL, complete_dt DATETIME NULL, applied_by VARCHAR(100) NOT NULL, description VARCHAR(500) NOT NULL ) GO ALTER TABLE changelog ADD CONSTRAINT Pkchangelog PRIMARY KEY (change_number, delta_set) GO Finally, Here’s the targets file. <Projectxmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0" DefaultTargets="Update">   <PropertyGroup>     <DatabaseName>TestDatabase</DatabaseName>     <Server>localhost</Server>     <ScriptDirectory>.\Scripts</ScriptDirectory>     <RebuildDirectory>.\Rebuild</RebuildDirectory>     <TestDataDirectory>.\TestData</TestDataDirectory>     <DbDeploy>.\DBDeploy</DbDeploy>     <User>TestUser</User>     <Password>TestPassword</Password>     <BCP>bcp</BCP>     <BCPOptions>-S$(Server) -U$(User) -P$(Password) -N -E -k</BCPOptions>     <OutputFileName>dbDeploy-output.sql</OutputFileName>     <UndoFileName>dbDeploy-output-undo.sql</UndoFileName>     <LastChangeToApply>99999</LastChangeToApply>   </PropertyGroup>     <ImportProject="$(MSBuildExtensionsPath)\ExtensionPack\4.0\MSBuild.ExtensionPack.tasks"/>   <UsingTask TaskName="Ktsc.Build.DBDeploy" AssemblyFile="$(DbDeploy)\Ktsc.Build.dll"/>   <ItemGroup>     <VariableInclude="DatabaseName">       <Value>$(DatabaseName)</Value>     </Variable>     <VariableInclude="Server">       <Value>$(Server)</Value>     </Variable>     <VariableInclude="User">       <Value>$(User)</Value>     </Variable>     <VariableInclude="Password">       <Value>$(Password)</Value>     </Variable>   </ItemGroup>     <TargetName="Rebuild">     <!--Take the database offline to disconnect any users. Requires that the current user is an admin of the sql server machine.-->     <MSBuild.ExtensionPack.SqlServer.SqlCmd Variables="@(Variable)" Database="$(DatabaseName)" TaskAction="Execute" CommandLineQuery ="ALTER DATABASE $(DatabaseName) SET OFFLINE WITH ROLLBACK IMMEDIATE"/>         <!--Bring it back online.  If you don't, the database files won't be deleted.-->     <MSBuild.ExtensionPack.Sql2008.DatabaseTaskAction="SetOnline" DatabaseItem="$(DatabaseName)"/>     <!--Delete the database, removing the existing files.-->     <MSBuild.ExtensionPack.Sql2008.DatabaseTaskAction="Delete" DatabaseItem="$(DatabaseName)"/>     <!--Create the new database in the default database path location.-->     <MSBuild.ExtensionPack.Sql2008.DatabaseTaskAction="Create" DatabaseItem="$(DatabaseName)" Force="True"/>         <!--Create admin user-->     <MSBuild.ExtensionPack.SqlServer.SqlCmd TaskAction="Execute" Server="(local)" Database="$(DatabaseName)" InputFiles="$(RebuildDirectory)\0002 Create Admin User.sql" Variables="@(Variable)" />     <!--Create the dbdeploy changelog.-->     <MSBuild.ExtensionPack.SqlServer.SqlCmd TaskAction="Execute" Server="(local)" Database="$(DatabaseName)" LogOn="$(User)" Password="$(Password)" InputFiles="$(RebuildDirectory)\0003 Create Changelog.sql" Variables="@(Variable)" />     <CallTarget Targets="Update;ImportData"/>     </Target>    <TargetName="Update" DependsOnTargets="CreateUpdateScript">     <MSBuild.ExtensionPack.SqlServer.SqlCmd TaskAction="Execute" Server="(local)" Database="$(DatabaseName)" LogOn="$(User)" Password="$(Password)" InputFiles="$(OutputFileName)" Variables="@(Variable)" />   </Target>   <TargetName="CreateUpdateScript">     <ktsc.Build.DBDeploy DbType="mssql"                                        DbConnection="User=$(User);Password=$(Password);Data Source=$(Server);Initial Catalog=$(DatabaseName);"                                        Dir="$(ScriptDirectory)"                                        OutputFile="..\$(OutputFileName)"                                        UndoOutputFile="..\$(UndoFileName)"                                        LastChangeToApply="$(LastChangeToApply)"/>   </Target>     <TargetName="ImportData">     <ItemGroup>       <TestData Include="$(TestDataDirectory)\*.dat"/>     </ItemGroup>     <ExecCommand="$(BCP) $(DatabaseName).dbo.%(TestData.Filename) in&quot;%(TestData.Identity)&quot;$(BCPOptions)"/>   </Target> </Project> Technorati Tags: MSBuild

    Read the article

  • Programming Language, Turing Completeness and Turing Machine

    - by Amumu
    A programming language is said to be Turing Completeness if it can successfully simulate a universal TM. Let's take functional programming language for example. In functional programming, function has highest priority over anything. You can pass functions around like any primitives or objects. This is called first class function. In functional programming, your function does not produce side effect i.e. output strings onto screen, change the state of variables outside of its scope. Each function has a copy of its own objects if the objects are passed from the outside, and the copied objects are returned once the function finishes its job. Each function written purely in functional style is completely independent to anything outside of it. Thus, the complexity of the overall system is reduced. This is referred as referential transparency. In functional programming, each function can have its local variables kept its values even after the function exits. This is done by the garbage collector. The value can be reused the next time the function is called again. This is called memoization. A function usually should solve only one thing. It should model only one algorithm to answer a problem. Do you think that a function in a functional language with above properties simulate a Turing Machines? Functions (= algorithms = Turing Machines) are able to be passed around as input and returned as output. TM also accepts and simulate other TMs Memoization models the set of states of a Turing Machine. The memorized variables can be used to determine states of a TM (i.e. which lines to execute, what behavior should it take in a give state ...). Also, you can use memoization to simulate your internal tape storage. In language like C/C++, when a function exits, you lose all of its internal data (unless you store it elsewhere outside of its scope). The set of symbols are the set of all strings in a programming language, which is the higher level and human-readable version of machine code (opcode) Start state is the beginning of the function. However, with memoization, start state can be determined by memoization or if you want, switch/if-else statement in imperative programming language. But then, you can't Final accepting state when the function returns a value, or rejects if an exception happens. Thus, the function (= algorithm = TM) is decidable. Otherwise, it's undecidable. I'm not sure about this. What do you think? Is my thinking true on all of this? The reason I bring function in functional programming because I think it's closer to the idea of TM. What experience with other programming languages do you have which make you feel the idea of TM and the ideas of Computer Science in general? Can you specify how you think?

    Read the article

  • OOP private method parameters coding style

    - by Jake
    After coding for many years as a solo programmer, I have come to feel that most of the time there are many benefits to write private member functions with all of the used member variables included in the parameter list, especially development stage. This allow me to check at one look what member variables are used and also allow me to supply other values for tests and debugging. Also, a change in code by removing a particular member variable can break many functions. In this case however, the private function remains isolated am I can still call it using other values without fixing the function. Is this a bad idea afterall, especially in a team environment? Is it like redundant or confusing, or are there better ways?

    Read the article

  • Shouldn't storage classes be taught early in a C class or book?

    - by Adam Mendoza
    Shouldn't storage classes be taught early in a C class or book? I notice that a lot of books, even some of the better ones, covert it toward and end of the book and some books just add it as an appendix. I would teach it together with variables. This is so foundational and I think unfortunately many do not make it that far in a book. Now that auto has a different meaning (vs being optional) it may confuse people that didn't realize it has always been there. for example: C Programming: A Modern Approach 18.2 Storage Classes 401 Properties of Variables 401 The auto Storage Class 402 The static Storage Class 403 The extern Storage Class 404 The register Storage Class 405 The Storage Class of a Function 406 Summary 407

    Read the article

  • Algorithmic Forecasting and Pattern Recognition

    - by Ryan King
    Say a user could enter project data into my software. Each project has 2 variables "size" and "work" and they're related but the relationship is not known. Is there a way to programmatically determine the relationship between the variables based on previous data and forecast the amount of work provided if only given the size of the project in the future? For Example, say the user had manually entered the following projects. Project 1 - Size:1, Work: 4 Project 2 - Size:2, Work: 7 Project 3 - Size:3, Work: 10 Project 4 - Size:4, Work: x What should I look into to be able to programmatically determine, that Work = Size*3+1 and therefor be able to say that x=13?

    Read the article

< Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >