Search Results

Search found 2467 results on 99 pages for 'bits'.

Page 9/99 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • How to declare a vector or array of reducer objects in Cilk++?

    - by Jin
    Hi All, I had a problem when I am using Cilk++, an extension to C++ for parallel computing. I found that I can't declare a vector of reducer objects: typedef cilk::reducer_opadd<int> T_reducer; vector<T_reducer> bitmiss_vec; for (int i = 0; i < 24; ++i) { T_reducer r; bitmiss_vec.push_back(r); } However, when I compile the code with Cilk++, it complains at the push_back() line: cilk++ geneAttack.cilk -O1 -g -lcilkutil -o geneAttack /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h: In member function ‘void __gnu_cxx::new_allocator<_Tp>::construct(_Tp*, const _Tp&) [with _Tp = cilk::reducer_opadd<int>]’: /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_vector.h:601: instantiated from ‘void std::vector<_Tp, _Alloc>::push_back(const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’ geneAttack.cilk:667: instantiated from here /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h:229: error: ‘cilk::reducer_opadd<Type>::reducer_opadd(const cilk::reducer_opadd<Type>&) [with Type = int]’ is private /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/ext/new_allocator.h:107: error: within this context /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h: In member function ‘void std::vector<_Tp, _Alloc>::_M_insert_aux(__gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> >, const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’: /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_vector.h:605: instantiated from ‘void std::vector<_Tp, _Alloc>::push_back(const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’ geneAttack.cilk:667: instantiated from here /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h:229: error: ‘cilk::reducer_opadd<Type>::reducer_opadd(const cilk::reducer_opadd<Type>&) [with Type = int]’ is private /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/vector.tcc:252: error: within this context /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_vector.h:605: instantiated from ‘void std::vector<_Tp, _Alloc>::push_back(const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’ geneAttack.cilk:667: instantiated from here /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h:230: error: ‘cilk::reducer_opadd<Type>& cilk::reducer_opadd<Type>::operator=(const cilk::reducer_opadd<Type>&) [with Type = int]’ is private /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/vector.tcc:256: error: within this context /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h: In static member function ‘static _BI2 std::__copy_backward<_BoolType, std::random_access_iterator_tag>::__copy_b(_BI1, _BI1, _BI2) [with _BI1 = cilk::reducer_opadd<int>*, _BI2 = cilk::reducer_opadd<int>*, bool _BoolType = false]’: /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_algobase.h:465: instantiated from ‘_BI2 std::__copy_backward_aux(_BI1, _BI1, _BI2) [with _BI1 = cilk::reducer_opadd<int>*, _BI2 = cilk::reducer_opadd<int>*]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_algobase.h:474: instantiated from ‘static _BI2 std::__copy_backward_normal<<anonymous>, <anonymous> >::__copy_b_n(_BI1, _BI1, _BI2) [with _BI1 = cilk::reducer_opadd<int>*, _BI2 = cilk::reducer_opadd<int>*, bool <anonymous> = false, bool <anonymous> = false]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_algobase.h:540: instantiated from ‘_BI2 std::copy_backward(_BI1, _BI1, _BI2) [with _BI1 = cilk::reducer_opadd<int>*, _BI2 = cilk::reducer_opadd<int>*]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/vector.tcc:253: instantiated from ‘void std::vector<_Tp, _Alloc>::_M_insert_aux(__gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> >, const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_vector.h:605: instantiated from ‘void std::vector<_Tp, _Alloc>::push_back(const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’ geneAttack.cilk:667: instantiated from here /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h:230: error: ‘cilk::reducer_opadd<Type>& cilk::reducer_opadd<Type>::operator=(const cilk::reducer_opadd<Type>&) [with Type = int]’ is private /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_algobase.h:433: error: within this context /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h: In function ‘void std::_Construct(_T1*, const _T2&) [with _T1 = cilk::reducer_opadd<int>, _T2 = cilk::reducer_opadd<int>]’: /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_uninitialized.h:87: instantiated from ‘_ForwardIterator std::__uninitialized_copy_aux(_InputIterator, _InputIterator, _ForwardIterator, std::__false_type) [with _InputIterator = cilk::reducer_opadd<int>*, _ForwardIterator = cilk::reducer_opadd<int>*]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_uninitialized.h:114: instantiated from ‘_ForwardIterator std::uninitialized_copy(_InputIterator, _InputIterator, _ForwardIterator) [with _InputIterator = cilk::reducer_opadd<int>*, _ForwardIterator = cilk::reducer_opadd<int>*]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_uninitialized.h:254: instantiated from ‘_ForwardIterator std::__uninitialized_copy_a(_InputIterator, _InputIterator, _ForwardIterator, std::allocator<_Tp>) [with _InputIterator = cilk::reducer_opadd<int>*, _ForwardIterator = cilk::reducer_opadd<int>*, _Tp = cilk::reducer_opadd<int>]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/vector.tcc:275: instantiated from ‘void std::vector<_Tp, _Alloc>::_M_insert_aux(__gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> >, const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’ /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_vector.h:605: instantiated from ‘void std::vector<_Tp, _Alloc>::push_back(const _Tp&) [with _Tp = cilk::reducer_opadd<int>, _Alloc = std::allocator<cilk::reducer_opadd<int> >]’ geneAttack.cilk:667: instantiated from here /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/cilk++/reducer_opadd.h:229: error: ‘cilk::reducer_opadd<Type>::reducer_opadd(const cilk::reducer_opadd<Type>&) [with Type = int]’ is private /usr/local/cilk/bin/../lib/gcc/x86_64-unknown-linux-gnu/4.2.4/../../../../include/c++/4.2.4/bits/stl_construct.h:81: error: within this context make: *** [geneAttack] Error 1 jinchen@galactica:~/workspace/biometrics/genAttack$ make cilk++ geneAttack.cilk -O1 -g -lcilkutil -o geneAttack geneAttack.cilk: In function ‘int cilk cilk_main(int, char**)’: geneAttack.cilk:670: error: expected primary-expression before ‘,’ token geneAttack.cilk:670: error: expected primary-expression before ‘}’ token geneAttack.cilk:674: error: ‘bitmiss_vec’ was not declared in this scope make: *** [geneAttack] Error 1 The Cilk++ manule says it supports array/vector of reducers, although there are performance issues to consider: "If you create a large number of reducers (for example, an array or vector of reducers) you must be aware that there is an overhead at steal and reduce that is proportional to the number of reducers in the program. " Anyone knows what is going on? How should I declare/use vector of reducers? Thank you

    Read the article

  • OpenCV application, moving from 32bits OS to 64 bits, any known issues ?

    - by Spredzy
    Hi all, I was developing an C++ application using OpenCV2.0 under Windows 32bits OS, I recently moved to a Windows 64 bits OS and now it's not working anymore. Compilation does not recognize the *.lib set in the project properties Then when I change their name - what I think I should not be supposed to do - It crashed at my first assignment : Vector.push_back(tmp) Does anyone has an idea ?

    Read the article

  • How do you return a string from a function correctly in Dynamic C?

    - by aquanar
    I have a program I am trying to debug, but Dynamic C apparently treats strings differently than normal C does (well, character arrays, anyway). I have a function that I made to make an 8 character long (well, 10 to include the \0 ) string of 0s and 1s to show me the contents of an 8-bit char variable. (IE, I give it the number 13, it returns the string "0001101\0" ) When I use the code below, it prints out !{happy face] 6 times (well, the second one is the happy face alone for some reason), each return comes back as 0xDEAE or "!\x02. I thought it would dereference it and return the appropriate string, but it appears to just be sending the pointer and attempting to parse it. This may seem silly, but my experience was actually in C++ and Java, so going back to C brings up a few issues that were dealt with in later programming languages that I'm not entirely sure how to deal with (like the lack of string variables). How could I fix this code, or how would be a better way to do what I am trying to do (I thought maybe sending in a pointer to a character array and working on it from the function might work, but I thought I should ask to see if maybe I'm just trying to reinvent the wheel). Currently I have it set up like this: this is an excerpt from the main() display[0] = '\0'; for(i=0;i<6;i++) { sprintf(s, "%s ", *char_to_bits(buffer[i])); strcat(display, s); } DispStr(8,5, display); and this is the offending function: char *char_to_bits(char x) { char bits[16]; strcpy(bits,"00000000\0"); if (x & 0x01) bits[7]='1'; if (x & 0x02) bits[6]='1'; if (x & 0x04) bits[5]='1'; if (x & 0x08) bits[4]='1'; if (x & 0x10) bits[3]='1'; if (x & 0x20) bits[2]='1'; if (x & 0x40) bits[1]='1'; if (x & 0x80) bits[0]='1'; return bits; } and just for the sake of completion, the other function is used to output to the stdio window at a specific location: void DispStr(int x, int y, char *s) { x += 0x20; y += 0x20; printf ("\x1B=%c%c%s", x, y, s); }

    Read the article

  • How do I bit shift a long by more than 32 bits?

    - by mach7
    It seems like I should be able to perform bit shift in C/C++ by more than 32 bits provided the left operand of the shift is a long. But this doesn't seem to work, at least with the g++ compiler. Example: unsigned long A = (1L << 37) gives A = 0 which isn't what I want. Am I missing something or is this just not possible? -J

    Read the article

  • Error loading PCX image in FreeImage library

    - by khanhhh89
    I'm using FreeImage in C++ for loading texuture from the PCX image. My FreeImage code is as following: FREE_IMAGE_FORMAT fif = FIF_UNKNOWN; //pointer to the image data BYTE* bits(0); fif = FreeImage_GetFileType(m_fileName.c_str(), 0); if (FreeImage_FIFSupportsReading(fif)) dib = FreeImage_Load(fif, m_fileName.c_str()); //retrieve the image data bits = FreeImage_GetBits(dib); //get the image width and height width = FreeImage_GetWidth(dib); height = FreeImage_GetHeight(dib); My problem is the width and height variable are both 512, while the bits array is an empty string, which make the following OPENGL call corrupt: glTexImage2D(m_textureTarget, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, bits); While debugging, I notice that the "fif" variable (which contains the format of the image) is JPEG, while the Image is actually PCX. I wonder whether or not the FreeImage recognize the wrong format (from PCX to JPEG), so tha the bits array is an empty string. I hope to see your explanation about this problem. Thanks so much

    Read the article

  • How can I make a 32 bit render target with a 16 bit alpha channel in DirectX?

    - by J Junker
    I want to create a render target that is 32-bit, with 16 bits each for alpha and luminance. The closest surface formats I can find in the DirectX SDK are: D3DFMT_A8L8 // 16-bit using 8 bits each for alpha and luminance. D3DFMT_G16R16F // 32-bit float format using 16 bits for the red channel and 16 bits for the green channel. But I don't think either of these will work, since D3DFMT_A8L8 doesn't have the precision and D3DFMT_G16R16F doesn't have an alpha channel (I need a separate blend state for alpha). How can I create a render target that allows a separate blend state for luminance and alpha, with 16 bit precision on each channel, that doesn't exceed 32 bits per pixel?

    Read the article

  • Is there any sense in performing binary AND with a number where all bits are set to 1

    - by n535
    Greetings everybody. I have seen examples of such operations for so many times that I begin to think that I am getting something wrong with binary arithmetic. Is there any sense to perform the following: byte value = someAnotherByteValue & 0xFF; I don't really understand this, because it does not change anything anyway. Thanks for help. P.S. I was trying to search for information both elsewhere and here, but unsuccessfully. EDIT: Well, off course i assume that someAnotherByteValue is 8 bits long, the problem is that i don't get why so many people ( i mean professionals ) use such things in their code. For example in Jon Skeet's MiscUtil there is: uint s1 = (uint)(initial & 0xffff); where initial is int.

    Read the article

  • Is there any "standard" htonl-like function for 64 bits integers in C++ ?

    - by ereOn
    Hi, I'm working on an implementation of the memcache protocol which, at some points, uses 64 bits integer values. These values must be stored in "network byte order". I wish there was some uint64_t htonll(uint64_t value) function to do the change, but unfortunately, if it exist, I couldn't find it. So I have 1 or 2 questions: Is there any portable (Windows, Linux, AIX) standard function to do this ? If there is no such function, how would you implement it ? I have in mind a basic implementation but I don't know how to check the endianness at compile-time to make the code portable. So your help is more than welcome here ;) Thank you.

    Read the article

  • What is the smallest amount of bits you can write twin-prime calculation?

    - by HH
    A succinct example in Python, its source. Explanation about the syntactic sugar here. s=p=1;exec"if s%p*s%~-~p:print`p`+','+`p+2`\ns*=p*p;p+=2\n"*999 The smallest amount of bits is defined by the smallest amount of 4pcs of things you can see with hexdump, it is not that precise measure but well-enough until an ambiguity. $ echo 's=p=1;exec"if s%p*s%~-~p:print`p`+','+`p+2`\ns*=p*p;p+=2\n"*999' > .test $ hexdump .test | wc 5 36 200 $ hexdump .test 0000000 3d73 3d70 3b31 7865 6365 6922 2066 2573 0000010 2a70 2573 2d7e 707e 703a 6972 746e 7060 0000020 2b60 2b2c 7060 322b 5c60 736e 3d2a 2a70 0000030 3b70 2b70 323d 6e5c 2a22 3939 0a39 000003e so in this case it is 31 because the initial parts are removed.

    Read the article

  • What info is really useful in my iptables log and how do I disable the useless bits?

    - by anthony01
    In my iptables rules files, I entered this at the end: -A INPUT -j LOG --log-level 4 --log-ip-options --log-prefix "iptables: " I DROP everything besides INPUT for SSH (port 22) I have a web server and when I try to connect to it through my browser, through a forbidden port number (on purpose), I get something like that in my iptables.log Sep 24 14:05:57 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC=yy.yy.yy.yy DST=xx.xx.xx.xx LEN=64 TOS=0x00 PREC=0x00 TTL=54 ID=59351 DF PROTO=TCP SPT=63776 DPT=1999 WINDOW=65535 RES=0x00 SYN URGP=0 Sep 24 14:06:01 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC= yy.yy.yy.yy DST=xx.xx.xx.xx LEN=48 TOS=0x00 PREC=0x00 TTL=54 ID=63377 DF PROTO=TCP SPT=63776 DPT=1999 WINDOW=65535 RES=0x00 SYN URGP=0 Sep 24 14:06:09 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC=yy.yy.yy.yy DST=xx.xx.xx.xx LEN=48 TOS=0x00 PREC=0x00 TTL=54 ID=55025 DF PROTO=TCP SPT=63776 DPT=1999 WINDOW=65535 RES=0x00 SYN URGP=0 Sep 24 14:06:25 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC=yy.yy.yy.yy DST=xx.xx.xx.xx LEN=48 TOS=0x00 PREC=0x00 TTL=54 ID=54521 DF PROTO=TCP SPT=63776 DPT=1999 WINDOW=65535 RES=0x00 SYN URGP=0 Sep 24 14:06:55 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC=yy.yy.yy.yy DST=xx.xx.xx.xx LEN=100 TOS=0x00 PREC=0x00 TTL=54 ID=35050 PROTO=TCP SPT=63088 DPT=22 WINDOW=33304 RES=0x00 ACK PSH URGP=0 Sep 24 14:06:55 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC=yy.yy.yy.yy DST=xx.xx.xx.xx LEN=52 TOS=0x00 PREC=0x00 TTL=54 ID=14076 PROTO=TCP SPT=63088 DPT=22 WINDOW=33264 RES=0x00 ACK URGP=0 Sep 24 14:06:55 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC=yy.yy.yy.yy DST=xx.xx.xx.xx LEN=52 TOS=0x00 PREC=0x00 TTL=54 ID=5277 PROTO=TCP SPT=63088 DPT=22 WINDOW=33248 RES=0x00 ACK URGP=0 Sep 24 14:06:56 myserver kernel: [xx.xx] iptables: IN=eth0 OUT= MAC=aa:bb:cc SRC=yy.yy.yy.yy DST=xx.xx.xx.xx LEN=100 TOS=0x00 PREC=0x00 TTL=54 ID=25501 PROTO=TCP SPT=63088 DPT=22 WINDOW=33304 RES=0x00 ACK PSH URGP=0 As you can see, I typed xx.xx.xx.xx:1999 in my browser, and it tried to connect until it timed out. 1) There are many similar lines for just one event. Do you think I need all of them? How would I avoid duplicates? 2) The last 4 lines are for my port 22. But since I allow port 22 INPUT for my web server, why are they here? 3) Do I need info like LEN,TOS,PREC and others? I'm trying to find a page that explains them one by one, by I can't find anything.

    Read the article

  • I just wanted to DES 4096 bytes of data with a 128 bits key...

    - by badp
    ...and what the nice folks at OpenSSL gratiously provide me with is this. :) Now, since you shouldn't be guessing when using cryptography, I come here for confirmation: what is the function call I want to use? What I understood A 128 bits key is 16 byte large, so I'll need double DES (2 × 8 byte). This leaves me with only a few function calls: void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc); void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int enc); void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc); void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num); In this case, I guess the function I want to call DES_ede2_cfb64_encrypt, although I'm not so sure -- I definitely don't need padding here and I'd have to care about what ivec and num are, and how I want to generate them... What am I missing?

    Read the article

  • To use AES with 256 bits in inbuild java 1.4 api.

    - by sahil garg
    I am able to encrypt with AES 128 but with more key length it fails. code using AES 128 is as below. import java.security.*; import javax.crypto.*; import javax.crypto.spec.*; import java.io.*; /** * This program generates a AES key, retrieves its raw bytes, and * then reinstantiates a AES key from the key bytes. * The reinstantiated key is used to initialize a AES cipher for * encryption and decryption. */ public class AES { /** * Turns array of bytes into string * * @param buf Array of bytes to convert to hex string * @return Generated hex string */ public static String asHex (byte buf[]) { StringBuffer strbuf = new StringBuffer(buf.length * 2); int i; for (i = 0; i < buf.length; i++) { if (((int) buf[i] & 0xff) < 0x10) strbuf.append("0"); strbuf.append(Long.toString((int) buf[i] & 0xff, 16)); } return strbuf.toString(); } public static void main(String[] args) throws Exception { String message="This is just an example"; // Get the KeyGenerator KeyGenerator kgen = KeyGenerator.getInstance("AES"); kgen.init(128); // 192 and 256 bits may not be available // Generate the secret key specs. SecretKey skey = kgen.generateKey(); byte[] raw = skey.getEncoded(); SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES"); // Instantiate the cipher Cipher cipher = Cipher.getInstance("AES"); cipher.init(Cipher.ENCRYPT_MODE, skeySpec); byte[] encrypted =cipher.doFinal("welcome".getBytes()); System.out.println("encrypted string: " + asHex(encrypted)); cipher.init(Cipher.DECRYPT_MODE, skeySpec); byte[] original = cipher.doFinal(encrypted); String originalString = new String(original); System.out.println("Original string: " + originalString + " " + asHex(original)); } }

    Read the article

  • How to define and work with an array of bits in C?

    - by Eddy
    I want to create a very large array on which I write '0's and '1's. I'm trying to simulate a physical process called random sequential adsorption, where units of length 2, dimers, are deposited onto an n-dimensional lattice at a random location, without overlapping each other. The process stops when there is no more room left on the lattice for depositing more dimers (lattice is jammed). Initially I start with a lattice of zeroes, and the dimers are represented by a pair of '1's. As each dimer is deposited, the site on the left of the dimer is blocked, due to the fact that the dimers cannot overlap. So I simulate this process by depositing a triple of '1's on the lattice. I need to repeat the entire simulation a large number of times and then work out the average coverage %. I've already done this using an array of chars for 1D and 2D lattices. At the moment I'm trying to make the code as efficient as possible, before working on the 3D problem and more complicated generalisations. This is basically what the code looks like in 1D, simplified: int main() { /* Define lattice */ array = (char*)malloc(N * sizeof(char)); total_c = 0; /* Carry out RSA multiple times */ for (i = 0; i < 1000; i++) rand_seq_ads(); /* Calculate average coverage efficiency at jamming */ printf("coverage efficiency = %lf", total_c/1000); return 0; } void rand_seq_ads() { /* Initialise array, initial conditions */ memset(a, 0, N * sizeof(char)); available_sites = N; count = 0; /* While the lattice still has enough room... */ while(available_sites != 0) { /* Generate random site location */ x = rand(); /* Deposit dimer (if site is available) */ if(array[x] == 0) { array[x] = 1; array[x+1] = 1; count += 1; available_sites += -2; } /* Mark site left of dimer as unavailable (if its empty) */ if(array[x-1] == 0) { array[x-1] = 1; available_sites += -1; } } /* Calculate coverage %, and add to total */ c = count/N total_c += c; } For the actual project I'm doing, it involves not just dimers but trimers, quadrimers, and all sorts of shapes and sizes (for 2D and 3D). I was hoping that I would be able to work with individual bits instead of bytes, but I've been reading around and as far as I can tell you can only change 1 byte at a time, so either I need to do some complicated indexing or there is a simpler way to do it? Thanks for your answers

    Read the article

  • Ubuntu 12.04 doesn't recgonize m CPU correctly

    - by Nightshaxx
    My computer is running ubuntu 12.04 (64bit), and I have a AMD Athlon(tm) X4 760K Quad Core Processor which is about 3.8ghz (and an Radeon HD 7770 GPU). Yet, when I type in cat /proc/cpuinfo - I get: processor : 0 vendor_id : AuthenticAMD cpu family : 21 model : 19 model name : AMD Athlon(tm) X4 760K Quad Core Processor stepping : 1 microcode : 0x6001119 cpu MHz : 1800.000 cache size : 2048 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 16 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 13 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt lwp fma4 tce nodeid_msr tbm topoext perfctr_core arat cpb hw_pstate npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold bmi1 bogomips : 7599.97 TLB size : 1536 4K pages clflush size : 64 cache_alignment : 64 address sizes : 48 bits physical, 48 bits virtual power management: ts ttp tm 100mhzsteps hwpstate cpb eff_freq_ro processor : 1 vendor_id : AuthenticAMD cpu family : 21 model : 19 model name : AMD Athlon(tm) X4 760K Quad Core Processor stepping : 1 microcode : 0x6001119 cpu MHz : 1800.000 cache size : 2048 KB physical id : 0 siblings : 4 core id : 1 cpu cores : 2 apicid : 17 initial apicid : 1 fpu : yes fpu_exception : yes cpuid level : 13 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt lwp fma4 tce nodeid_msr tbm topoext perfctr_core arat cpb hw_pstate npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold bmi1 bogomips : 7599.97 TLB size : 1536 4K pages clflush size : 64 cache_alignment : 64 address sizes : 48 bits physical, 48 bits virtual power management: ts ttp tm 100mhzsteps hwpstate cpb eff_freq_ro processor : 2 vendor_id : AuthenticAMD cpu family : 21 model : 19 model name : AMD Athlon(tm) X4 760K Quad Core Processor stepping : 1 microcode : 0x6001119 cpu MHz : 1800.000 cache size : 2048 KB physical id : 0 siblings : 4 core id : 2 cpu cores : 2 apicid : 18 initial apicid : 2 fpu : yes fpu_exception : yes cpuid level : 13 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt lwp fma4 tce nodeid_msr tbm topoext perfctr_core arat cpb hw_pstate npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold bmi1 bogomips : 7599.97 TLB size : 1536 4K pages clflush size : 64 cache_alignment : 64 address sizes : 48 bits physical, 48 bits virtual power management: ts ttp tm 100mhzsteps hwpstate cpb eff_freq_ro processor : 3 vendor_id : AuthenticAMD cpu family : 21 model : 19 model name : AMD Athlon(tm) X4 760K Quad Core Processor stepping : 1 microcode : 0x6001119 cpu MHz : 1800.000 cache size : 2048 KB physical id : 0 siblings : 4 core id : 3 cpu cores : 2 apicid : 19 initial apicid : 3 fpu : yes fpu_exception : yes cpuid level : 13 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt lwp fma4 tce nodeid_msr tbm topoext perfctr_core arat cpb hw_pstate npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold bmi1 bogomips : 7599.97 TLB size : 1536 4K pages clflush size : 64 cache_alignment : 64 address sizes : 48 bits physical, 48 bits virtual power management: ts ttp tm 100mhzsteps hwpstate cpb eff_freq_ro The important part of all this being, cpu MHz : 1800.000 which indicates that I have only 1.8ghz of processing power, which is totally wrong. Is it something with drivers or Ubuntu?? Also, will windows recognize all of my processing power? Thanks! (NOTE: My cpu doesn't have intigrated graphics

    Read the article

  • Eclipse Indigo very slow on Kubuntu 12.04

    - by herom
    hello fellow ubuntu users! I have a really big problem with my Eclipse Indigo running on Kubuntu 12.04 32bit, Dell Vostro 3500, Intel(R) Core(TM) i5 CPU M480 @ 2.67 (as cat /proc/cpuinfo said). It has 4GB RAM. cat /proc/cpuinfo brings up the following: processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.85 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 2 cpu cores : 2 apicid : 4 initial apicid : 4 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.88 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 2 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 1 initial apicid : 1 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.88 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 3 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz stepping : 5 microcode : 0x2 cpu MHz : 1197.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 2 cpu cores : 2 apicid : 5 initial apicid : 5 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp lm constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 popcnt lahf_lm ida arat dts tpr_shadow vnmi flexpriority ept vpid bogomips : 5319.88 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: java -version brings the following: java version "1.7.0_04" Java(TM) SE Runtime Environment (build 1.7.0_04-b20) Java HotSpot(TM) Server VM (build 23.0-b21, mixed mode) it's the Oracle Java, not OpenJDK. I try to develop an Android application for GoogleTV and Eclipse is this slow, that it can't follow my typing (extreme lagging!!), but this issue makes it almost impossible! here is my eclipse.ini file: -startup plugins/org.eclipse.equinox.launcher_1.2.0.v20110502.jar --launcher.library plugins/org.eclipse.equinox.launcher.gtk.linux.x86_1.1.100.v20110505 -product org.eclipse.epp.package.java.product --launcher.defaultAction openFile -showsplash org.eclipse.platform --launcher.XXMaxPermSize 512m --launcher.defaultAction openFile -vmargs -Dosgi.requiredJavaVersion=1.5 -Declipse.p2.unsignedPolicy=allow -Xms256m -Xmx512m -Xss4m -XX:PermSize=128m -XX:MaxPermSize=384m -XX:CompileThreshold=5 -XX:MaxGCPauseMillis=10 -XX:MaxHeapFreeRatio=70 -XX:+CMSIncrementalPacing -XX:+UnlockExperimentalVMOptions -XX:+UseG1GC -XX:+UseFastAccessorMethods -XX:ReservedCodeCacheSize=64m -Dcom.sun.management.jmxremote has anybody faced the same problems? can anybody help me on this problem? it's really urgent as I'm sitting here at my company and am not able to do anything productive...

    Read the article

  • ORE graphics using Remote Desktop Protocol

    - by Sherry LaMonica
    Oracle R Enterprise graphics are returned as raster, or bitmap graphics. Raster images consist of tiny squares of color information referred to as pixels that form points of color to create a complete image. Plots that contain raster images render quickly in R and create small, high-quality exported image files in a wide variety of formats. However, it is a known issue that the rendering of raster images can be problematic when creating graphics using a Remote Desktop connection. Raster images do not display in the windows device using Remote Desktop under the default settings. This happens because Remote Desktop restricts the number of colors when connecting to a Windows machine to 16 bits per pixel, and interpolating raster graphics requires many colors, at least 32 bits per pixel.. For example, this simple embedded R image plot will be returned in a raster-based format using a standalone Windows machine:  R> library(ORE) R> ore.connect(user="rquser", sid="orcl", host="localhost", password="rquser", all=TRUE)  R> ore.doEval(function() image(volcano, col=terrain.colors(30))) Here, we first load the ORE packages and connect to the database instance using database login credentials. The ore.doEval function executes the R code within the database embedded R engine and returns the image back to the client R session. Over a Remote Desktop connection under the default settings, this graph will appear blank due to the restricted number of colors. Users who encounter this issue have two options to display ORE graphics over Remote Desktop: either raise Remote Desktop's Color Depth or direct the plot output to an alternate device. Option #1: Raise Remote Desktop Color Depth setting In a Remote Desktop session, all environment variables, including display variables determining Color Depth, are determined by the RCP-Tcp connection settings. For example, users can reduce the Color Depth when connecting over a slow connection. The different settings are 15 bits, 16 bits, 24 bits, or 32 bits per pixel. To raise the Remote Desktop color depth: On the Windows server, launch Remote Desktop Session Host Configuration from the Accessories menu.Under Connections, right click on RDP-Tcp and select Properties.On the Client Settings tab either uncheck LimitMaximum Color Depth or set it to 32 bits per pixel. Click Apply, then OK, log out of the remote session and reconnect.After reconnecting, the Color Depth on the Display tab will be set to 32 bits per pixel.  Raster graphics will now display as expected. For ORE users, the increased color depth results in slightly reduced performance during plot creation, but the graph will be created instead of displaying an empty plot. Option #2: Direct plot output to alternate device Plotting to a non-windows device is a good option if it's not possible to increase Remote Desktop Color Depth, or if performance is degraded when creating the graph. Several device drivers are available for off-screen graphics in R, such as postscript, pdf, and png. On-screen devices include windows, X11 and Cairo. Here we output to the Cairo device to render an on-screen raster graphic.  The grid.raster function in the grid package is analogous to other grid graphical primitives - it draws a raster image within the current plot's grid.  R> options(device = "CairoWin") # use Cairo device for plotting during the session R> library(Cairo) # load Cairo, grid and png libraries  R> library(grid) R> library(png)  R> res <- ore.doEval(function()image(volcano,col=terrain.colors(30))) # create embedded R plot  R> img <- ore.pull(res, graphics = TRUE)$img[[1]] # extract image  R> grid.raster(as.raster(readPNG(img)), interpolate = FALSE) # generate raster graph R> dev.off() # turn off first device   By default, the interpolate argument to grid.raster is TRUE, which means that what is actually drawn by R is a linear interpolation of the pixels in the original image. Setting interpolate to FALSE uses a sample from the pixels in the original image.A list of graphics devices available in R can be found in the Devices help file from the grDevices package: R> help(Devices)

    Read the article

  • Is it the address bus size or the data bus size that determines "8-bit , 16-bit ,32-bit ,64-bit " systems?

    - by learner
    My simple understanding is as follows. Memory (RAM) is composed of bits, groups of 8 which form bytes, each of which can be addressed ,and hence byte addressable memory. Address Bus stores the location of a byte of memory. If an address bus is of size 32 bits, that means it can hold upto 232 numbers and it hence can refer upto 232 bytes of memory = 4GB of memory and any memory greater than that is useless. Data bus is used to send the value to be written to/read off the memory. If I have a data bus of size 32 bits, it means a maximum of 4 bytes can be written to/read off the memory at a time. I find no relation between this size and the maximum memory size possible. But I read here that: Even though most systems are byte-addressable, it makes sense for the processor to move as much data around as possible. This is done by the data bus, and the size of the data bus is where the names 8-bit system, 16-bit system, 32-bit system, 64-bit system, etc.. come from. When the data bus is 8 bits wide, it can transfer 8 bits in a single memory operation. When the data bus is 32 bits wide (as is most common at the time of writing), at most, 32 bits can be moved in a single memory operation. This says that the size of the data bus is what gives an OS the name, 8bit, 16bit and so on. What is wrong with my understanding?

    Read the article

  • Best Processor for MediaSmart Server?

    - by Kent Boogaart
    I'm trying to figure out what the best possible processor is that I can stick in my HP MediaSmart server. I'm clueless when it comes to correlating CPUs to motherboards. I suspect it's the socket type I care about, but I worry that there's more to it. CPU-Z gives me (excerpt): Processors Information ------------------------------------------------------------------------- Processor 1 ID = 0 Number of cores 1 (max 1) Number of threads 1 (max 1) Name AMD Sempron LE-1150 Codename Sparta Specification AMD Sempron(tm) Processor LE-1150 Package Socket AM2 (940) CPUID F.F.1 Extended CPUID F.7F Brand ID 1 Core Stepping DH-G1 Technology 65 nm Core Speed 1000.0 MHz Multiplier x FSB 5.0 x 200.0 MHz HT Link speed 800.0 MHz Stock frequency 2000 MHz Instructions sets MMX (+), 3DNow! (+), SSE, SSE2, SSE3, x86-64 L1 Data cache 64 KBytes, 2-way set associative, 64-byte line size L1 Instruction cache 64 KBytes, 2-way set associative, 64-byte line size L2 cache 256 KBytes, 16-way set associative, 64-byte line size FID/VID Control yes Max FID 10.0x Max VID 1.350 V P-State FID 0x2 - VID 0x12 (5.0x - 1.100 V) P-State FID 0xA - VID 0x0C (9.0x - 1.250 V) P-State FID 0xC - VID 0x0A (10.0x - 1.300 V) K8 Thermal sensor yes K8 Revision ID 6.0 Attached device PCI device at bus 0, device 24, function 0 Attached device PCI device at bus 0, device 24, function 1 Attached device PCI device at bus 0, device 24, function 2 Attached device PCI device at bus 0, device 24, function 3 Chipset ------------------------------------------------------------------------- Northbridge SiS 761GX rev. 02 Southbridge SiS 966 rev. 59 Graphic Interface AGP AGP Revision 3.0 AGP Transfer Rate 8x AGP SBA supported, enabled Memory Type DDR2 Memory Size 2048 MBytes Channels Single Memory Frequency 200.0 MHz (CPU/5) CAS# latency (CL) 5.0 RAS# to CAS# delay (tRCD) 5 RAS# Precharge (tRP) 5 Cycle Time (tRAS) 15 Bank Cycle Time (tRC) 21 Command Rate (CR) 1T DMI ------------------------------------------------------------------------- DMI BIOS vendor Phoenix Technologies, LTD version R03 date 05/08/2008 DMI System Information manufacturer HP product MediaSmart Server version unknown serial CN68330DGH UUID A482007B-B0CC7593-DD11736A-407B7067 DMI Baseboard vendor Wistron model SJD4 revision A.0 serial unknown DMI System Enclosure manufacturer HP chassis type Desktop chassis serial unknown DMI Processor manufacturer AMD model AMD Sempron(tm) Processor LE-1150 clock speed 2000.0 MHz FSB speed 200.0 MHz multiplier 10.0x DMI Memory Controller correction 64-bit ECC Max module size 4096 MBytes DMI Memory Module designation A0 size 2048 MBytes (double bank) DMI Memory Module designation A1 DMI Memory Module designation A2 DMI Memory Module designation A3 DMI Port Connector designation PS/2 Mouse (internal) port type Mouse Port connector PS/2 connector PS/2 DMI Port Connector designation USB0 (external) port type USB DMI Physical Memory Array location Motherboard usage System Memory correction None max capacity 16384 MBytes max# of devices 4 DMI Memory Device designation A0 format DIMM type unknown total width 64 bits data width 64 bits size 2048 MBytes DMI Memory Device designation A1 format DIMM type unknown total width 64 bits data width 64 bits DMI Memory Device designation A2 format DIMM type unknown total width 64 bits data width 64 bits DMI Memory Device designation A3 format DIMM type unknown total width 64 bits data width 64 bits How do I figure out what options I have for an upgrade?

    Read the article

  • dmidecode showing more ram slots than available?

    - by Jestep
    I have some failing RAM in a server and I ran dmidecode to figure out what tyoe of RAM I needed to replace it with. The server has 6 RAM slots, 4 of which are in use. When I run dmidecode this is what I get. dmidecode 2.10 SMBIOS 2.4 present. Handle 0x001F, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: 72 bits Data Width: 64 bits Size: 2048 MB Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 00 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Handle 0x0020, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: 72 bits Data Width: 64 bits Size: 2048 MB Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 01 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Handle 0x0021, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: Unknown Data Width: Unknown Size: No Module Installed Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 02 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Handle 0x0022, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: Unknown Data Width: Unknown Size: No Module Installed Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 03 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Handle 0x0023, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: 72 bits Data Width: 64 bits Size: 2048 MB Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 10 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Handle 0x0024, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: 72 bits Data Width: 64 bits Size: 2048 MB Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 11 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Handle 0x0025, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: Unknown Data Width: Unknown Size: No Module Installed Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 12 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Handle 0x0026, DMI type 17, 27 bytes Memory Device Array Handle: 0x001E Error Information Handle: No Error Total Width: Unknown Data Width: Unknown Size: No Module Installed Form Factor: DIMM Set: 1 Locator: JXXX Bank Locator: DIMM 13 Type: DDR2 Type Detail: Synchronous Speed: 667 MHz Manufacturer: Not Specified Serial Number: Not Specified Asset Tag: Not Specified Part Number: Not Specified Does anyone know why it would show 8 slots, with 4 empty instead of 6 slots with 2 empty? Also, but my records and by other tools, the server has 16Gb and not 8Gb in it currently. grep MemTotal /proc/meminfo MemTotal: 16435808 kB The board is a Tyan S5372-LC, running CentOS 5.4 x64. Also, my error log is showing errors in bank 6. Is there any way to determine which slot bank 6 is in via: dmidecode?

    Read the article

  • What are the standard directory layouts for source code?

    - by splattered bits
    I'm in the process of proposing a new standard directory layout that will be used across all the projects in our organization. Projects can have compiled source code, setup scripts, build scripts, third-party libraries, database scripts, resources, web services, web sites, etc. This is partly inspired by discovering Maven's standard layout. Are there any other standard layouts that are generally accepted in the industry?

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >