Search Results

Search found 19881 results on 796 pages for 'log analysis'.

Page 9/796 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • log shipping of biztalk database on SQL server 2008 standard edition

    - by Manjot
    Hi, I want to do log shipping for biztalk databases on SQL server 2008 standard edition (server A) to another SQL server 2008 standard edition (server B). I was told that for biztalk, logshipping is not like standard logshipping. I was able to find 2 links: http://msdn.microsoft.com/en-us/library/cc296836%28v=BTS.10%29.aspx http://msdn.microsoft.com/en-us/library/cc296741%28v=BTS.10%29.aspx but they are not talking about SQL 2008 servers. Can anyone please help in this? Thanks in advance

    Read the article

  • Could not start the event log service on Local Computer

    - by wcpro
    I'm getting a strange error on my windows 2003 R2 - Enterprise Edition w/ service pack 2 server Could not start the event log service on Local Computer Error 1075: The dependency service does not exist or has been marked for deletion. Is there any idea as to what could be causing this or how i can remedy it?

    Read the article

  • OAS log files filling up hard drive

    - by Andrew Hampton
    We've had issues with log files for Oracle Application Server filling up the hard drive on our server. The files are in the /network/admin folder and are named server.log_XXXXX.trc and client.log_XXXXX.trc where XXXXX are 5 digits. The files are typically anywhere from 1-2MB in size but can be up to 100MB and thousands of them are created at a rate of about 5-10 per minute. Does anyone know how to disable these logs? Thanks!

    Read the article

  • Windows Event Log wrong Source column value

    - by O.O
    In the Event Viewer in Windows 7 there is a Source column that is set by my Windows Service application. The value is set to TOS and usually when a log entry is associated to my application, it has TOS as the Source column value. However, when the service fails to start (or some other kind of error occurs) I get a Source of one of the following values: Application Error Service Control Manager .NET Runtime I don't understand why the value is not always TOS Also, is it possible to force it to use TOS every time?

    Read the article

  • SQL Server 2000 -- Log Shipping reliability?

    - by Chris J
    I've been asked to look into log shipping for SQL Server 2000 (yes, 2000): something in my memory tells me that I looked at this years ago and there were question marks over it's reliability. I'm trying to google stuff, but given the age of 2000 now I've put pulled up anything to confirm this -- most seem to say they're using it without problem, so just want confirm whether I'm just being delusional, or whether there were problems, but with a fully patched SP4 box these don't exist any more. Cheers!

    Read the article

  • VNC - Is there any way to turn off logging/log files

    - by Ke
    Hi, I've looked everywhere for a solution to this. Is there any way to turn off this logging in VNC? VNC seems to be logging some large updates I'm doing in mysql and taking up my whole hard drive space. The only way to get rid of the log file is to reboot, which I would prefer not to have to do if possible. Cheers

    Read the article

  • Unix/Linux simple log parser (since, until)

    - by dpb
    Has anyone ever used/created a simple unix/linux log parser that can parse logs like the following: timestamp log_message \n Order the messages, parse the timestamp, and return: All messages Messages after a certain date (--since) Messages before a certain date (--until) Combination of --since, --until I could write something like this, but wasn't sure if there was something canned. It would fit well in some automated reporting I'm planning on doing.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Should static analysis warnings fail the CI build?

    - by Cara
    Our team is investigating various options for static analysis in our project, and have mixed opinions about whether we want our Continuous Integration build to fail because of warnings from static analysis. The argument against failing the build is that there are often exceptions to the rules, and attempting to work around them just to make the build succeed reduces productivity. A better approach would be to generate reports with the build, and regularly dedicate developer time to addressing the reported issues. The counter-argument is that it is easy for the technical debt to build up if the bugs are not addressed immediately. Also, if the build fails when a potential bug is introduced, the amount of time required to fix it is reduced. What are your thoughts?

    Read the article

  • Configuring Team System Code Analysis via a FxCop rules file

    - by Ian G
    Is there anyway to configure the code analysis rules in Visual Studio Team System to match those in an FxCop configuration file and keep them in sync automatically? Not all the developers on the team have TS so keeping the rules we are currently running in an FxCop file is required so everyone can run the same set, but it would nice for those with to be able to run them in the IDE. We're introducing static analysis to an existing project so turning on everything now isn't a useful option. (We are not using Foundation Server for source control, if that makes any difference.)

    Read the article

  • How to understand these lines in apache.log

    - by chefnelone
    I just get 19000 lines like these in the apache.log file for my site example.com. My hosting provider shut down the hosting and notified me that I need to avoid to activate my hosting again. I understand that I got a big amount of visits but I don't know how to avoid this. 88.190.47.233 - - [27/Jun/2013:09:51:34 +0200] "GET / HTTP/1.0" 403 389 "http://example.com/" "Opera/9.80 (Windows NT 6.1; U; ru) Presto/2.10.289 Version/12.02" 417 88.190.47.233 - - [27/Jun/2013:09:51:34 +0200] "GET / HTTP/1.0" 403 389 "http://example.com/" "Opera/9.80 (Windows NT 6.1; U; ru) Presto/2.10.289 Version/12.02" 417 175.44.28.155 - - [27/Jun/2013:09:51:44 +0200] "GET /en/user/register HTTP/1.1" 403 503 "http://example.com/en/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;)" 248 175.44.29.140 - - [27/Jun/2013:09:53:19 +0200] "GET /en/node/1557?page=2 HTTP/1.0" 403 517 "http://example.com/en/node/1557?page=2" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.12 Safari/535.11" 491 These are the lines from apache-error.log. There are more than 35000 lines like this. [Thu Jun 27 09:50:58 2013] [error] [client 5.39.19.183] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:51:03 2013] [error] [client 125.112.29.105] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.html denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.htm denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:51:44 2013] [error] [client 175.44.28.155] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/ [Thu Jun 27 09:53:19 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:20 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:20 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.html denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:20 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.htm denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:21 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:53:21 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:53:21 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:53:22 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:53:22 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:53:22 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:56:53 2013] [error] [client 113.246.6.147] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/ [Thu Jun 27 09:58:58 2013] [error] [client 108.62.71.180] (13)Permission denied: access to /index.php denied, referer: http://example.com/

    Read the article

  • Static source code analysis with LLVM

    - by Phong
    I recently discover the LLVM (low level virtual machine) project, and from what I have heard It can be used to performed static analysis on a source code. I would like to know if it is possible to extract the different function call through function pointer (find the caller function and the callee function) in a program. I could find the kind of information in the website so it would be really helpful if you could tell me if such an library already exist in LLVM or can you point me to the good direction on how to build it myself (existing source code, reference, tutorial, example...). EDIT: With my analysis I actually want to extract caller/callee function call. In the case of a function pointer, I would like to return a set of possible callee. both caller and callee must be define in the source code (this does not include third party function in a library).

    Read the article

  • android spectrum analysis of streaming input

    - by TheBeeKeeper
    for a school project I am trying to make an android application that, once started, will perform a spectrum analysis of live audio received from the microphone or a bluetooth headset. I know I should be using FFT, and have been looking at moonblink's open source audio analyzer ( http://code.google.com/p/moonblink/wiki/Audalyzer ) but am not familiar with android development, and his code is turning out to be too difficult for me to work with. So I suppose my questions are, are there any easier java based, or open source android apps that do spectrum analysis I can reference? Or is there any helpful information that can be given, such as; steps that need be taken to get the microphone input, put it into an fft algorithm, then display a graph of frequency and pitch over time from its output? Any help would be appreciated, thanks.

    Read the article

  • SQLAuthority News – Download Whitepaper – SQL Server Analysis Services to Hive

    - by pinaldave
    The SQL Server Analysis Service is a very interesting subject and I always have enjoyed learning about it. You can read my earlier article over here. Big Data is my new interest and I have been exploring it recently. During this weekend this blog post caught my attention and I enjoyed reading it. Big Data is the next big thing. The growth is predicted to be 60% per year till 2016. There is no single solution to the growing need of the big data available in the market right now as well there is no one solution in the business intelligence eco-system available as well. However, the need of the solution is ever increasing. I am personally Klout user. You can see my Klout profile over. I do understand what Klout is trying to achieve – a single place to measure the influence of the person. However, it works a bit mysteriously. There are plenty of social media available currently in the internet world. The biggest problem all the social media faces is that everybody opens an account but hardly people logs back in. To overcome this issue and have returned visitors Klout has come up with the system where visitors can give 5/10 K+ to other users in a particular area. Looking at all the activities Klout is doing it is indeed big consumer of the Big Data as well it is early adopter of the big data and Hadoop based system.  Klout has to 1 trillion rows of data to be analyzed as well have nearly thousand terabyte warehouse. Hive the language used for Big Data supports Ad-Hoc Queries using HiveQL there are always better solutions. The alternate solution would be using SQL Server Analysis Services (SSAS) along with HiveQL. As there is no direct method to achieve there are few common workarounds already in place. A new ODBC driver from Klout has broken through the limitation and SQL Server Relation Engine can be used as an intermediate stage before SSAS. In this white paper the same solutions have been discussed in the depth. The white paper discusses following important concepts. The Klout Big Data solution Big Data Analytics based on Analysis Services Hadoop/Hive and Analysis Services integration Limitations of direct connectivity Pass-through queries to linked servers Best practices and lessons learned This white paper discussed all the important concepts which have enabled Klout to go go to the next level with all the offerings as well helped efficiency by offering a few out of the box solutions. I personally enjoy reading this white paper and I encourage all of you to do so. SQL Server Analysis Services to Hive Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, T SQL, Technology

    Read the article

  • Windows 7 CHKDSK log - What is "Internal Info"?

    - by Ron Klein
    If I run Disk Scan (CHKDSK) on Windows 7, I get the log in the event viewer. If I look inside it, I can see some kind of a binary dump: Internal Info: 00 4f 05 00 53 4a 05 00 ec 46 09 00 00 00 00 00 .O..SJ...F...... fa 03 00 00 5c 00 00 00 00 00 00 00 00 00 00 00 ....\........... 48 93 42 00 50 01 41 00 f8 1f 41 00 00 00 41 00 H.B.P.A...A...A. Is there any meaningful information in that field, other than debug info for the programmers who developed this tool?

    Read the article

  • transaction log shipping sql server 2005 to 2008

    - by Andrew Jahn
    I have a reporting setup with SSRS on our sql server 2005 database. Because sql server 2008 is not supported by the main program which populates our database we are stuck with 2005 on our prod database. Unfortunately when I run our weekly check reports the web interface constantly times out because the server cant do the conversion to PDF. I've read that sql server 2008's SSRS is ALOT better with memory management. I was wondering if I can do some kind transact log shipping subscription publication from 2005 to 2008? Am I chasing a dream here. Currently I have to open up the ssrs project in visual studio and run the reports inside because it doesn't ever time out when doing the pdf conversion, only times out if I try to run it through the ssis web interface.

    Read the article

  • Why are there unknown URLs in router log?

    - by Martin
    I recently looked at my router log. Why are a lot of requests that I don't send originated from a computer in my home network? They do not look like 3rd-party advertisements / images embedded in a page. The request have patterns, such as: top-visitor.com/look.php www.dottip.com/search/result.php?aff=8755&req=nickelodeon+games www.placeca.com/search/result.php?aff=3778&req=wireless+cell+phone www.bb5a.com/search.php?username=3348&keywords=flights www.blazerbox.com/search.php?username=2341&keywords=colorado+springs+real+estate www.freeautosource.com/search.php?username=sun100&keywords=vehicle www.1sp2.com/search.php?username=20190&keywords=las+the+hotel+vegas www.loadgeo.com/search/result.php?aff=10357&req=winamp www.exalt123.com/portal.php?ref=seo2007 www.7catalogs.com/search.php?username=la24&keywords=shutter www.theloaninstitute.com/search.php?username=kevin&keywords=webcam www.grammt.com/search.php?username=2530&keywords=bob And there are hundreds of these requests send within a second. So what's happening?

    Read the article

  • Strange stuff in apache log

    - by aL3xa
    Hi lads, I'm building some kind of webapp, and currently the whole thing runs on my machine. I was combing down my logs, and found several "strange" log entries that made me a bit paranoid. Here goes: ***.***.***.** - - [19/Dec/2010:19:47:47 +0100] "\x99\x91g\xca\xa8" 501 1054 **.***.***.** - - [19/Dec/2010:20:14:58 +0100] "<}\xdbe\x86E\x18\xe7\x8b" 501 1054 **.**.***.*** - - [21/Dec/2010:15:28:14 +0100] "J\xaa\x9f\xa3\xdd\x9c\x81\\\xbd\xb3\xbe\xf7\xa6A\x92g'\x039\x97\xac,vC\x8d\x12\xec\x80\x06\x10\x8e\xab7e\xa9\x98\x10\xa7" 501 1054 Bloody hell... what is this?!

    Read the article

  • how can i use apache log files to recreate usage scenario

    - by daigorocub
    Recently i installed a website that had too many requests and it was too slow. Many improvements have been made to the web site code and we've also bought a new server. I want to test the new server with exactly the same requests that made the old server slow. After that, i will double the requests, make new tests and so on. These requests are logged in the apache log files. So, I can parse those files and make some kind of script to make the same requests. Of course, in this case, the requests will be made only by my computer against the server, but hey, better than nothing. Questions: - is there some app that does this already? - would you use wget? ab? python script? Thanks!

    Read the article

  • Sharepoint 2007 - Transaction log full

    - by Kenny Bones
    So I have this SharePoint 2007 site that is basically trash. I'm supposed to just toss it, but I'm in need of copying all of the data in form of traditional files and folders from certain projects. And since the transaction log is full, it's so damn slow. Even opening SharePoint takes up to 15 minutes, or it won't open at all. Copying of files is extremely slow. So I'm in need of a quick fix here. Just to be able to copy out some files and folders. I don't need to fix the problem per se. What can I do to fix it temporarily to be able to copy out the data?

    Read the article

  • strange Postfix logwatch log summary on my ubuntu vps

    - by DannyRe
    Hi I would be very thankful if someone could help me on explaining this logwatch summary of my postfix installation on my ubuntu 10.04 vps. I dont really know if this might be a normal log file because of the many authentication failed entries and foreign IP addresses. Any advise for a novice? Thx! ****** Summary ************************************************************************************* 113 SASL authentication failed 195 Miscellaneous warnings 8.419K Bytes accepted 8,621 8.419K Bytes delivered 8,621 ======== ================================================== 3 Accepted 60.00% 2 Rejected 40.00% -------- -------------------------------------------------- 5 Total 100.00% ======== ================================================== 2 5xx Reject relay denied 100.00% -------- -------------------------------------------------- 2 Total 5xx Rejects 100.00% ======== ================================================== 116 Connections 1 Connections lost (inbound) 116 Disconnections 3 Removed from queue 3 Delivered 1 Hostname verification errors ****** Detail (10) ********************************************************************************* 113 SASL authentication failed -------------------------------------------------------------- 113 92.24.80.207 host-92-24-80-207.ppp.as43234.net 113 LOGIN 113 generic failure 195 Miscellaneous warnings ------------------------------------------------------------------ 113 SASL authentication failure: cannot connect to saslauthd server: Permission denied 41 inet_protocols: IPv6 support is disabled: Address family not supported by protocol 41 inet_protocols: configuring for IPv4 support only 2 5xx Reject relay denied ----------------------------------------------------------------- 1 46.242.103.110 unknown 1 [email protected] 1 114.42.142.103 114-42-142-103.dynamic.hinet.net 1 [email protected] 1 Connections lost (inbound) -------------------------------------------------------------- 1 After RCPT 3 Delivered ------------------------------------------------------------------------------- 3 myhost.xx 1 Hostname verification errors ------------------------------------------------------------ 1 Name or service not known 1 46.242.103.110 broadband-46-242-103-110.nationalcablenetworks.ru === Delivery Delays Percentiles ============================================================ 0% 25% 50% 75% 90% 95% 98% 100%

    Read the article

  • Event Log "Wake Source" when system wakes from sleep

    - by Doltknuckle
    So I've been troubleshooting sleep timers for our systems and have run across an interesting issue. I need a way to report how long a system was awake after a number of different inputs. Now, I've discovered that the System Log tracks wake and sleep events and even tells you the times that everything happens at. The thing is doesn't tell you is what triggered the wake event. It does give you a numerical code however. Here are some examples of what I am finding. Index : 2901 EntryType : Information InstanceId : 1 Message : The system has resumed from sleep. Sleep Time: 2010-10-01T23:20:06.097488100Z Wake Time: 2010-10-03T17:41:12.796400500Z Wake Source: 0 Category : (0) CategoryNumber : 0 Source : Microsoft-Windows-Power-Troubleshooter -- Index : 2841 EntryType : Information InstanceId : 1 Message : The system has resumed from sleep. Sleep Time: 2010-10-01T19:19:37.239789600Z Wake Time: 2010-10-01T21:28:48.921200800Z Wake Source: 4HID Keyboard Device Category : (0) CategoryNumber : 0 Source : Microsoft-Windows-Power-Troubleshooter So here's my question: Does anyone know what the different numerical codes for the "Wake Source" mean? I think "0" is a magic packet and "4" is a USB device. Does anyone have any idea if there is any documentation out there on this for Windows 7? Thanks in advance

    Read the article

  • Rawr Code Clone Analysis&ndash;Part 0

    - by Dylan Smith
    Code Clone Analysis is a cool new feature in Visual Studio 11 (vNext).  It analyzes all the code in your solution and attempts to identify blocks of code that are similar, and thus candidates for refactoring to eliminate the duplication.  The power lies in the fact that the blocks of code don't need to be identical for Code Clone to identify them, it will report Exact, Strong, Medium and Weak matches indicating how similar the blocks of code in question are.   People that know me know that I'm anal enthusiastic about both writing clean code, and taking old crappy code and making it suck less. So the possibilities for this feature have me pretty excited if it works well - and thats a big if that I'm hoping to explore over the next few blog posts. I'm going to grab the Rawr source code from CodePlex (a World Of Warcraft gear calculator engine program), run Code Clone Analysis against it, then go through the results one-by-one and refactor where appropriate blogging along the way.  My goals with this blog series are twofold: Evaluate and demonstrate Code Clone Analysis Provide some concrete examples of refactoring code to eliminate duplication and improve the code-base Here are the initial results:   Code Clone Analysis has found: 129 Exact Matches 201 Strong Matches 300 Medium Matches 193 Weak Matches Also indicated is that there was a total of 45,181 potentially duplicated lines of code that could be eliminated through refactoring.  Considering the entire solution only has 109,763 lines of code, if true, the duplicates lines of code number is pretty significant. In the next post we’ll start examining some of the individual results and determine if they really do indicate a potential refactoring.

    Read the article

  • Shrinking the transaction log of a mirrored SQL Server 2005 database

    - by Peter Di Cecco
    I've been looking all over the internet and I can't find an acceptable solution to my problem, I'm wondering if there even is a solution without a compromise... I'm not a DBA, but I'm a one man team working on a huge web site with no extra funding for extra bodies, so I'm doing the best I can. Our backup plan sucks, and I'm having a really hard time improving it. Currently, there are two servers running SQL Server 2005. I have a mirrored database (no witness) that seems to be working well. I do a full backup at noon and at midnight. These get backed up to tape by our service provider nightly, and I burn the backup files to dvd weekly to keep old records on hand. Eventually I'd like to switch to log shipping, since mirroring seems kinda pointless without a witness server. The issue is that the transaction log is growing non-stop. From the research I've done, it seems that I can't truncate a log file of a mirrored database. So how do I stop the file from growing!? Based on this web page, I tried this: USE dbname GO CHECKPOINT GO BACKUP LOG dbname TO DISK='NULL' WITH NOFORMAT, INIT, NAME = N'dbnameLog Backup', SKIP, NOREWIND, NOUNLOAD GO DBCC SHRINKFILE('dbname_Log', 2048) GO But that didn't work. Everything else I've found says I need to disable the mirror before running the backup log command in order for it to work. My Question (TL;DR) How can I shrink my transaction log file without disabling the mirror?

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >