Search Results

Search found 36810 results on 1473 pages for 'project management'.

Page 9/1473 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • The Use-Case Driven Approach to Change Management

    - by Lauren Clark
    In the third entry of the series on OUM and PMI’s Pulse of the Profession, we took a look at the continued importance of change management and risk management. The topic of change management and OUM’s use-case driven approach has come up in few recent conversations. So I thought I would jot down a few thoughts on how the use-case driven approach aids a project team in managing the project’s scope. The use-case model is one of several tools in OUM that is used to establish and manage the project's scope.  Because a use-case model can be understood by both business and IT project team members, it can serve as a bridge for ongoing collaboration as well as a visual diagram that encapsulates all agreed-upon functionality. This makes it a vital artifact in identifying changes to the project’s scope. Here are some of the primary benefits of using the use-case model as part of the effort for establishing and managing project scope: The use-case model quickly communicates scope in a straightforward manner. All project stakeholders can have a common foundation for the decisions regarding architecture and design and how they relate to the project's objectives. Once agreed upon, the model can be put under change control and any updates to the model can then be quickly identified as potentially affecting the project’s scope.  Changes requested or discovered later in the project can be analyzed objectively for their impact on project's budget, resources and schedule. A modular foundation for the design of the software solution can be established in Elaboration.  This permits work to be divided up effectively and executed in so that the most important and riskiest use-cases can be tackled early in the project. The use-case model helps the team make informed decisions about implementation priorities, which allows effective allocation of limited project resources.  This is very helpful in not only managing scope, but in doing iterative and incremental planning which relies heavily on the ability to identify project priorities. Bottom line is that the use-case model gives the project team solid understanding of scope early in the project.  Combine this understanding with effective project management and communication and you have an effective tool for reducing the risk of overruns in budget and/or time due to out of control scope changes. Now that you’ve had a chance to read these thoughts on the use-case model and project scope, please let me know your feedback based on your experience.

    Read the article

  • Convincing Upper Management the need of larger monitors for Developers

    - by The Rubber Duck
    The company I work for has recently hired on several developers, and there are a limited number of monitors to go around. There are two types in the office - a standard 15" (thankfully flatscreen) and a widescreen 23". No developer has a machine capable of a dual monitor setup, and the largest monitors went to the people who got here first. Three or four new senior level developers only have a 15" monitor to work on. To make matters worse, there are perhaps a total of 25-30 DBAs/Testers/Admin types in the company who all have dual screen 23" setups. We have brought the issue to management, and they refuse to take away large monitors from people who have been here for years for the sake of new employees, even if they are senior level. We have pitched the idea of testers sacrificing a large monitor for one of our small ones, but they won't go for that either. What can I say to management to illustrate the need of monitors for developers?

    Read the article

  • Open source project home page

    - by Oskar Kjellin
    I've created a software that I want to be able to market. I'd like to be able to post it on forums etc and for that I need a home page. Is there any open source C# project home pages that you can use? The functionality I'm looking for is like adding new versions (perhaps a version control from the software), downloading and user guides. So what I want is pretty basic: I want to be able to upload and let the users download. I've written this on my own as well but I guess that if there are open source projects that have done this they're probably better. This can't be such a rare problem so please lead me to some resources so that I can create my page and publish my software! :)

    Read the article

  • Project Euler 10: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 10.  As always, any feedback is welcome. # Euler 10 # http://projecteuler.net/index.php?section=problems&id=10 # The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. # Find the sum of all the primes below two million. import time start = time.time() def primes_to_max(max): primes, number = [2], 3 while number < max: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes primes = primes_to_max(2000000) print sum(primes) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 15: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 15.  As always, any feedback is welcome. # Euler 15 # http://projecteuler.net/index.php?section=problems&id=15 # Starting in the top left corner of a 2x2 grid, there # are 6 routes (without backtracking) to the bottom right # corner. How many routes are their in a 20x20 grid? import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) rows, cols = 20, 20 print factorial(rows+cols) / (factorial(rows) * factorial(cols)) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 9: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 9.  As always, any feedback is welcome. # Euler 9 # http://projecteuler.net/index.php?section=problems&id=9 # A Pythagorean triplet is a set of three natural numbers, # a b c, for which, # a2 + b2 = c2 # For example, 32 + 42 = 9 + 16 = 25 = 52. # There exists exactly one Pythagorean triplet for which # a + b + c = 1000. Find the product abc. import time start = time.time() product = 0 def pythagorean_triplet(): for a in range(1,501): for b in xrange(a+1,501): c = 1000 - a - b if (a*a + b*b == c*c): return a*b*c print pythagorean_triplet() print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 5: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 5.  As always, any feedback is welcome. # Euler 5 # http://projecteuler.net/index.php?section=problems&id=5 # 2520 is the smallest number that can be divided by each # of the numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly # divisible by all of the numbers from 1 to 20? import time start = time.time() def gcd(a, b): while b: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) print reduce(lcm, range(1, 20)) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Management - Asana / activeCollab / basecamp / alternative / none

    - by rickyduck
    I don't know whether this should be on programmers - I've been looking at the above three apps over the past few weeks just for myself and I'm in two minds. All three look good, are easy to use, and I came to this conclusion; Asana is the easiest to use ActiveCollab is the feature rich and easiest flow BaseCamp is the best UX / design But I didn't really find my workflow was any more quicker / efficient, in fact it was a bit slower and organized. Is there a realistic place for them in workflow - should programmers use them for themselves, or only when a project manager can take control of it?

    Read the article

  • Project Euler 8: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 8.  As always, any feedback is welcome. # Euler 8 # http://projecteuler.net/index.php?section=problems&id=8 # Find the greatest product of five consecutive digits # in the following 1000-digit number import time start = time.time() number = '\ 73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450' max = 0 for i in xrange(0, len(number) - 5): nums = [int(x) for x in number[i:i+5]] val = reduce(lambda agg, x: agg*x, nums) if val > max: max = val print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Kapros: A Custom-Built Workstation Featuring an In-Desk Computer

    - by Jason Fitzpatrick
    While we’ve seen our fair share of case mods, it’s infrequent we see one as polished and built-in as this custom built work station. What started as an IKEA Galant desk, ended as a stunningly executed desk-as-computer build. High gloss paint, sand-blasted plexiglass windows, custom lighting, and some quality hardware all come together in this build to yield a gorgeous setup with plenty of power and style to go around. Hit up the link below for a massive photo album build guide detailing the process from start to finish. Project Kapros: IKEA Galant PC Desk Mod [via Kotaku] How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • Project Euler 52: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 52.  Compared to Problem 51, this problem was a snap. Brute force and pretty quick… As always, any feedback is welcome. # Euler 52 # http://projecteuler.net/index.php?section=problems&id=52 # It can be seen that the number, 125874, and its double, # 251748, contain exactly the same digits, but in a # different order. # # Find the smallest positive integer, x, such that 2x, 3x, # 4x, 5x, and 6x, contain the same digits. timer_start = Time.now def contains_same_digits?(n) value = (n*2).to_s.split(//).uniq.sort.join 3.upto(6) do |i| return false if (n*i).to_s.split(//).uniq.sort.join != value end true end i = 100_000 answer = 0 while answer == 0 answer = i if contains_same_digits?(i) i+=1 end puts answer puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • How to determine number of resources to be allocated in a software project

    - by aditi
    Last day I have been interviewed and the interviwer asked me as given the outline of a project, how can we determine the number of resources to be needed for the same? I donot know to do do so? Is there any standard way of doing so? or is it based on the experience? or how.... I am pretty new in this activity and my knowledge is zero at present .... so any clear explanation with some example(simple) will help me(and people like me) to understand this. Thanks

    Read the article

  • Project Euler 2: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 2.  As always, any feedback is welcome. # Euler 2 # http://projecteuler.net/index.php?section=problems&id=2 # Find the sum of all the even-valued terms in the # Fibonacci sequence which do not exceed four million. # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. By starting with 1 # and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # Find the sum of all the even-valued terms in the # sequence which do not exceed four million. import time start = time.time() total = 0 previous = 0 i = 1 while i <= 4000000: if i % 2 == 0: total +=i # variable swapping removes the need for a temp variable i, previous = previous, previous + i print total print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 16: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 16.  As always, any feedback is welcome. # Euler 16 # http://projecteuler.net/index.php?section=problems&id=16 # 2^15 = 32768 and the sum of its digits is # 3 + 2 + 7 + 6 + 8 = 26. # What is the sum of the digits of the number 2^1000? import time start = time.time() print sum([int(i) for i in str(2**1000)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Why do large IT projects tend to fail or have big cost/schedule overruns?

    - by Pratik
    I always read about large scale transformation or integration project that are total or almost total disaster. Even if they somehow manage to succeed the cost and schedule blow out is enormous. What is the real reason behind large projects being more prone to failure. Can agile be used in these sort of projects or traditional approach is still the best. One example from Australia is the Queensland Payroll project where they changed test success criteria to deliver the project. See some more failed projects in this SO question Have you got any personal experience to share?

    Read the article

  • Project Euler 4: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 4.  As always, any feedback is welcome. # Euler 4 # http://projecteuler.net/index.php?section=problems&id=4 # Find the largest palindrome made from the product of # two 3-digit numbers. A palindromic number reads the # same both ways. The largest palindrome made from the # product of two 2-digit numbers is 9009 = 91 x 99. # Find the largest palindrome made from the product of # two 3-digit numbers. import time start = time.time() def isPalindrome(s): return s == s[::-1] max = 0 for i in xrange(100, 999): for j in xrange(i, 999): n = i * j; if (isPalindrome(str(n))): if (n > max): max = n print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 7: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 7.  As always, any feedback is welcome. # Euler 7 # http://projecteuler.net/index.php?section=problems&id=7 # By listing the first six prime numbers: 2, 3, 5, 7, # 11, and 13, we can see that the 6th prime is 13. What # is the 10001st prime number? import time start = time.time() def nthPrime(nth): primes = [2] number = 3 while len(primes) < nth: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes[nth - 1] print nthPrime(10001) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 13: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 13.  As always, any feedback is welcome. # Euler 13 # http://projecteuler.net/index.php?section=problems&id=13 # Work out the first ten digits of the sum of the # following one-hundred 50-digit numbers. import time start = time.time() number_string = '\ 37107287533902102798797998220837590246510135740250\ 46376937677490009712648124896970078050417018260538\ 74324986199524741059474233309513058123726617309629\ 91942213363574161572522430563301811072406154908250\ 23067588207539346171171980310421047513778063246676\ 89261670696623633820136378418383684178734361726757\ 28112879812849979408065481931592621691275889832738\ 44274228917432520321923589422876796487670272189318\ 47451445736001306439091167216856844588711603153276\ 70386486105843025439939619828917593665686757934951\ 62176457141856560629502157223196586755079324193331\ 64906352462741904929101432445813822663347944758178\ 92575867718337217661963751590579239728245598838407\ 58203565325359399008402633568948830189458628227828\ 80181199384826282014278194139940567587151170094390\ 35398664372827112653829987240784473053190104293586\ 86515506006295864861532075273371959191420517255829\ 71693888707715466499115593487603532921714970056938\ 54370070576826684624621495650076471787294438377604\ 53282654108756828443191190634694037855217779295145\ 36123272525000296071075082563815656710885258350721\ 45876576172410976447339110607218265236877223636045\ 17423706905851860660448207621209813287860733969412\ 81142660418086830619328460811191061556940512689692\ 51934325451728388641918047049293215058642563049483\ 62467221648435076201727918039944693004732956340691\ 15732444386908125794514089057706229429197107928209\ 55037687525678773091862540744969844508330393682126\ 18336384825330154686196124348767681297534375946515\ 80386287592878490201521685554828717201219257766954\ 78182833757993103614740356856449095527097864797581\ 16726320100436897842553539920931837441497806860984\ 48403098129077791799088218795327364475675590848030\ 87086987551392711854517078544161852424320693150332\ 59959406895756536782107074926966537676326235447210\ 69793950679652694742597709739166693763042633987085\ 41052684708299085211399427365734116182760315001271\ 65378607361501080857009149939512557028198746004375\ 35829035317434717326932123578154982629742552737307\ 94953759765105305946966067683156574377167401875275\ 88902802571733229619176668713819931811048770190271\ 25267680276078003013678680992525463401061632866526\ 36270218540497705585629946580636237993140746255962\ 24074486908231174977792365466257246923322810917141\ 91430288197103288597806669760892938638285025333403\ 34413065578016127815921815005561868836468420090470\ 23053081172816430487623791969842487255036638784583\ 11487696932154902810424020138335124462181441773470\ 63783299490636259666498587618221225225512486764533\ 67720186971698544312419572409913959008952310058822\ 95548255300263520781532296796249481641953868218774\ 76085327132285723110424803456124867697064507995236\ 37774242535411291684276865538926205024910326572967\ 23701913275725675285653248258265463092207058596522\ 29798860272258331913126375147341994889534765745501\ 18495701454879288984856827726077713721403798879715\ 38298203783031473527721580348144513491373226651381\ 34829543829199918180278916522431027392251122869539\ 40957953066405232632538044100059654939159879593635\ 29746152185502371307642255121183693803580388584903\ 41698116222072977186158236678424689157993532961922\ 62467957194401269043877107275048102390895523597457\ 23189706772547915061505504953922979530901129967519\ 86188088225875314529584099251203829009407770775672\ 11306739708304724483816533873502340845647058077308\ 82959174767140363198008187129011875491310547126581\ 97623331044818386269515456334926366572897563400500\ 42846280183517070527831839425882145521227251250327\ 55121603546981200581762165212827652751691296897789\ 32238195734329339946437501907836945765883352399886\ 75506164965184775180738168837861091527357929701337\ 62177842752192623401942399639168044983993173312731\ 32924185707147349566916674687634660915035914677504\ 99518671430235219628894890102423325116913619626622\ 73267460800591547471830798392868535206946944540724\ 76841822524674417161514036427982273348055556214818\ 97142617910342598647204516893989422179826088076852\ 87783646182799346313767754307809363333018982642090\ 10848802521674670883215120185883543223812876952786\ 71329612474782464538636993009049310363619763878039\ 62184073572399794223406235393808339651327408011116\ 66627891981488087797941876876144230030984490851411\ 60661826293682836764744779239180335110989069790714\ 85786944089552990653640447425576083659976645795096\ 66024396409905389607120198219976047599490197230297\ 64913982680032973156037120041377903785566085089252\ 16730939319872750275468906903707539413042652315011\ 94809377245048795150954100921645863754710598436791\ 78639167021187492431995700641917969777599028300699\ 15368713711936614952811305876380278410754449733078\ 40789923115535562561142322423255033685442488917353\ 44889911501440648020369068063960672322193204149535\ 41503128880339536053299340368006977710650566631954\ 81234880673210146739058568557934581403627822703280\ 82616570773948327592232845941706525094512325230608\ 22918802058777319719839450180888072429661980811197\ 77158542502016545090413245809786882778948721859617\ 72107838435069186155435662884062257473692284509516\ 20849603980134001723930671666823555245252804609722\ 53503534226472524250874054075591789781264330331690' total = 0 for i in xrange(0, 100 * 50 - 1, 50): total += int(number_string[i:i+49]) print str(total)[:10] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 6: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 6.  As always, any feedback is welcome. # Euler 6 # http://projecteuler.net/index.php?section=problems&id=6 # Find the difference between the sum of the squares of # the first one hundred natural numbers and the square # of the sum. import time start = time.time() square_of_sums = sum(range(1,101)) ** 2 sum_of_squares = reduce(lambda agg, i: agg+i**2, range(1,101)) print square_of_sums - sum_of_squares print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 20: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 20.  As always, any feedback is welcome. # Euler 20 # http://projecteuler.net/index.php?section=problems&id=20 # n! means n x (n - 1) x ... x 3 x 2 x 1 # Find the sum of digits in 100! import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) print sum([int(i) for i in str(factorial(100))]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 1: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 1.  As always, any feedback is welcome. # Euler 1 # http://projecteuler.net/index.php?section=problems&amp;id=1 # If we list all the natural numbers below 10 that are # multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of # these multiples is 23. Find the sum of all the multiples # of 3 or 5 below 1000. import time start = time.time() print sum([x for x in range(1000) if x % 3== 0 or x % 5== 0]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue') # Also cool def constraint(x): return x % 3 == 0 or x % 5 == 0 print sum(filter(constraint, range(1000)))

    Read the article

  • Project Euler 3: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 3.  As always, any feedback is welcome. # Euler 3 # http://projecteuler.net/index.php?section=problems&id=3 # The prime factors of 13195 are 5, 7, 13 and 29. # What is the largest prime factor of the number # 600851475143? import time start = time.time() def largest_prime_factor(n): max = n divisor = 2 while (n >= divisor ** 2): if n % divisor == 0: max, n = n, n / divisor else: divisor += 1 return max print largest_prime_factor(600851475143) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Motivating developers in a project perceived as **dull** ?

    - by Fanatic23
    As a manager, I can't always end up generating work that'd be cutting edge. Some of the projects do run on maintenance mode, and generate a healthy free cash flow for the company. As a developer what would it take for you to stick around in this project? I have been thinking of re-branding the work, but I could do with a lot of help here. Appreciate a single response per post. Please don't suggest an increased pay-packet, this creates more problems than it solves.

    Read the article

  • Updating and organizing class diagrams in a growing C++ project

    - by vanna
    I am working on a C++ project that is getting bigger and bigger. I do a lot of UML so it is not really hard to explain my work to co-workers. Lately though I implemented a lot of new features and I gave up updating by hand my Dia UML diagrams. I once used the class diagram of Visual Studio, which is my IDE but didn't get clear results. I need to show my work on a regular basis and I would like to be as clear as possible. Is there any tool that could generate a sort of organized map of my work (namespaces, classes, interactions, etc.) ?

    Read the article

  • Release/Change management - best aproach

    - by Bob Rivers
    I asked this question an year ago in StackOverflow and never got a good answer. Since Programmers seems to be a better place to ask it, I'll give it a try... What is the better way to work with release management? More specifically what would be the best way to release packages? For example, assuming that you have a relatively stable system, a good quality assurance process (QA), etc. How do you prefer to release new versions? Let's assume that we are talking about a mid to large "centralized" web system (no clients), in-house development. This system can be considered "vital" for a corporate operations. I have a tendency to prefer to do this by releasing packets at regular intervals, not greater than 1 to 3 months. During this period, I will include into the package,fixes and improvements and make the implementation in production environment only once. But I've seen some people who prefer to place small changes in production, but with a greater frequency. The claim of these people is that by doing so, it is easier to identify bugs that have gone through the process of QA: in a package with 10 changes and another with only 1, it is much easier to know what caused the problem in the package with just one change... What is the opinion came from you?

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >