Search Results

Search found 25093 results on 1004 pages for 'console output'.

Page 92/1004 | < Previous Page | 88 89 90 91 92 93 94 95 96 97 98 99  | Next Page >

  • Why is my shadowmap all white?

    - by Berend
    I was trying out a shadowmap. But all my shadow is white. I think there is some problem with my homogeneous component. Can anybody help me? The rest of my code is written in xna Here is the hlsl code I used float4x4 xWorld; float4x4 xView; float4x4 xProjection; struct VertexToPixel { float4 Position : POSITION; float4 ScreenPos : TEXCOORD1; float Depth : TEXCOORD2; }; struct PixelToFrame { float4 Color : COLOR0; }; //------- Technique: ShadowMap -------- VertexToPixel MyVertexShader(float4 inPos: POSITION0, float3 inNormal: NORMAL0) { VertexToPixel Output = (VertexToPixel)0; float4x4 preViewProjection = mul(xView, xProjection); float4x4 preWorldViewProjection = mul(xWorld, preViewProjection); Output.Position =mul(inPos, mul(xWorld, preViewProjection)); Output.Depth = Output.Position.z / Output.Position.w; Output.ScreenPos = Output.Position; return Output; } float4 MyPixelShader(VertexToPixel PSIn) : COLOR0 { PixelToFrame Output = (PixelToFrame)0; Output.Color = PSIn.ScreenPos.z/PSIn.ScreenPos.w; return Output.Color; } technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 MyVertexShader(); PixelShader = compile ps_2_0 MyPixelShader(); } }

    Read the article

  • How do I fix the HDMI/DVI display output with Intel HD 4000 Graphics in 12.04?

    - by YumYumYum
    I have an Alienware Dell PC with Intel HD 4000 Graphics (Ivy Bridge) as verified by the output of lspci | grep VGA posted below. 00:02.0 VGA compatible controller: Intel Corporation Ivy Bridge Graphics Controller (rev 09) The PC only has HDMI and DVI display outputs and using the HDMI output I am only being offered abnormal resolutions. As you can see below it does not even list HDMI1 or DVI1 but just only a fallback. $ export DISPLAY=:0.0 && xrandr xrandr: Failed to get size of gamma for output default Screen 0: minimum 640 x 480, current 1360 x 768, maximum 1360 x 768 default connected 1360x768+0+0 0mm x 0mm 1360x768 0.0* 1024x768 0.0 800x600 0.0 640x480 0.0 How can I fix this? Does it just need to be configured differently or will I need to use a newer kernel (as Intel Graphics drivers are included in the kernel)? Follow up: kernel to latest Step 1: Go to: http://kernel.ubuntu.com/~kernel-ppa/mainline/ Go to last: http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/ Download: http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-headers-3.6.0-030600rc3-generic_3.6.0-030600rc3.201208221735_amd64.deb http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-headers-3.6.0-030600rc3_3.6.0-030600rc3.201208221735_all.deb http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-image-3.6.0-030600rc3-generic_3.6.0-030600rc3.201208221735_amd64.deb http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-image-extra-3.6.0-030600rc3-generic_3.6.0-030600rc3.201208221735_amd64.deb Step 2: sudo dpkg -i linux*.deb Step 3: reboot which shows that i have Ubuntu 12.04 with latest $ uname -a Linux sun-Alienware-X51 3.6.0-030600rc3-generic #201208221735 SMP Wed Aug 22 21:36:32 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux But still same problem remain.

    Read the article

  • How can I have sound output before logging in?

    - by ??O?????
    I have a machine (Ubuntu 11.10) that I would like to have it play audio (typically through an amplifier), but the machine should be headless (where its final placement will be). I will control what is played through ssh. However, there is no sound output until I login to the graphical console. At first I thought it was an issue with pulseaudio, so I promptly removed it to use the default ALSA, but I have the same issues. I ssh to the machine, I run alsamixer and get the typical cannot open mixer: No such file or directory error (while /proc/asound/cards display correctly what I have). If I login on the graphical console, alsamixer works fine in the ssh session, and I have sound output. I logout, and then alsamixer stops working. So something runs (Xsession perhaps?) when I login that enables sound output, and gets disabled when I logout. I remember in older versions of Ubuntu, there was a drum roll when the machine showed the login screen; that is not the case anymore. Perhaps if I somehow can enable that drum roll, I'll have fixed my problem too. In any case, the question I ask is what the title says.

    Read the article

  • Method binding to base method in external library can't handle new virtual methods "between"

    - by Berg
    Lets say I have a library, version 1.0.0, with the following contents: public class Class1 { public virtual void Test() { Console.WriteLine( "Library:Class1 - Test" ); Console.WriteLine( "" ); } } public class Class2 : Class1 { } and I reference this library in a console application with the following contents: class Program { static void Main( string[] args ) { var c3 = new Class3(); c3.Test(); Console.ReadKey(); } } public class Class3 : ClassLibrary1.Class2 { public override void Test() { Console.WriteLine("Console:Class3 - Test"); base.Test(); } } Running the program will output the following: Console:Class3 - Test Library:Class1 - Test If I build a new version of the library, version 2.0.0, looking like this: public class Class1 { public virtual void Test() { Console.WriteLine( "Library:Class1 - Test V2" ); Console.WriteLine( "" ); } } public class Class2 : Class1 { public override void Test() { Console.WriteLine("Library:Class2 - Test V2"); base.Test(); } } and copy this version to the bin folder containing my console program and run it, the results are: Console:Class3 - Test Library:Class1 - Test V2 I.e, the Class2.Test method is never executed, the base.Test call in Class3.Test seems to be bound to Class1.Test since Class2.Test didn't exist when the console program was compiled. This was very surprising to me and could be a big problem in situations where you deploy new versions of a library without recompiling applications. Does anyone else have experience with this? Are there any good solutions? This makes it tempting to add empty overrides that just calls base in case I need to add some code at that level in the future...

    Read the article

  • using threads in menu options

    - by vbNewbie
    I have an app that has a console menu with 2/3 selections. One process involves uploading a file and performing a lengthy search process on its contents, whilst another process involves SQL queries and is an interactive process with the user. I wish to use threads to allow one process to run and the menu to offer the option for the second process to run. However you cannot run the first process twice. I have created threads and corrected some compilation errors but the threading options are not working correctly. Any help appreciated. main... Dim tm As Thread = New Thread(AddressOf loadFile) Dim ts As Thread = New Thread(AddressOf reports) .... While Not response.Equals("3") Try Console.Write("Enter choice: ") response = Console.ReadLine() Console.WriteLine() If response.Equals("1") Then Console.WriteLine("Thread 1 doing work") tm.SetApartmentState(ApartmentState.STA) tm.IsBackground = True tm.Start() response = String.Empty ElseIf response.Equals("2") Then Console.WriteLine("Starting a second Thread") ts.Start() response = String.Empty End If ts.Join() tm.Join() Catch ex As Exception errormessage = ex.Message End Try End While I realize that a form based will be easier to implement with perhaps just calling different forms to handle the processes.But I really dont have that option now since the console app will be added to api later. But here are my two processes from the menu functions. Also not sure what to do with the boolean variabel again as suggested below. Private Sub LoadFile() Dim dialog As New OpenFileDialog Dim response1 As String = Nothing Dim filepath As String = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) dialog.InitialDirectory = filepath If dialog.ShowDialog() = DialogResult.OK Then fileName = dialog.FileName ElseIf DialogResult.Cancel Then Exit Sub End If Console.ResetColor() Console.Write("Begin Search -- Discovery Search, y or n? ") response1 = Console.ReadLine() If response1 = "y" Then Search() ElseIf response1 = "n" Then Console.Clear() main() End If isRunning = False End Sub and the second one Private Shared Sub report() Dim rptGen As New SearchBlogDiscovery.rptGeneration Console.WriteLine("Tread Process started") rptGen.main() Console.WriteLine("Thread Process ended") isRunning = False End Sub

    Read the article

  • Apache runs in console but not as a service?

    - by danspants
    I have an apache 2.2 server running Django. We have a network drive T: which we need constant access to within our Django app. When running Apache as a service, we cannot access this drive, as far as any django code is concerned the drive does not exist. If I add... <Directory "t:/"> Options Indexes FollowSymLinks MultiViews AllowOverride None Order allow,deny allow from all </Directory> to the httpd.conf file the service no longer runs, but I can start apache as a console and it works fine, Django can find the network drive and all is well. Why is there a difference between the console and the service? Should there be a difference? I have the service using my own log on so in theory it should have the same access as I do. I'm keen to keep it running as a service as it's far less obtrusive when I'm working on the server (unless there's a way to hide the console?). Any help would be most appreciated.

    Read the article

  • How do I get sound output on HDMI without the need to start X?

    - by Magnus Hoff
    I have a headless machine connected to my sound system, and I am using it to run a music playing daemon that I control over the network. (Among other things) However, I can't seem to be able to have sound come out of my speakers without running X. I am running pulse audio in a system wide instance and my daemon is not running within X. Nevertheless, when my daemon is playing music without me hearing it, I can fix it by running startx in an unrelated session. After X starts, I can hear the sound. The sound disappears again if I kill the X server. Interestingly/annoyingly, the sound also stops after X has been running for a few minutes. This could possibly be because of a screen saver of some sort, but I haven't been able to verify or falsify this theory. So my current workaround is to ssh into the box whenever I want music and startx, and restart it every fifteen minutes or so. I'd like to do better. I have been able to verify the following: Adjustments in alsamixer have no effect on this problem. The relevant output channel is never muted In alsamixer, I can see no difference between when the sound is working and when it isn't Nothing is muted in pactl list There is no difference in the output from pactl list between before starting X and after it's started. (Except the identifier of the pactl instance connected to pulse, which is different each time you run pactl) The user running the music daemon is a member of the groups audio, pulse and pulse-access The music daemon program does not report any error messages and acts as if it is playing the music like it should Some form of dbus daemon is running. ps aux|grep dbus reports dbus-daemon --system --fork --activation=upstart before and after I have started X Some details about my hardware: Motherboard: http://www.asus.com/Motherboards/AT5IONTI_DELUXE/ Sound chip: Nvidia GPU 0b HDMI/DP (from alsamixer) Using HDMI for output (Machine also has an Intel Realtek ALC887 that I am not using) Output of lsmod: Module Size Used by deflate 12617 0 zlib_deflate 27139 1 deflate ctr 13201 0 twofish_generic 16635 0 twofish_x86_64_3way 25287 0 twofish_x86_64 12907 1 twofish_x86_64_3way twofish_common 20919 3 twofish_generic,twofish_x86_64_3way,twofish_x86_64 camellia 29348 0 serpent 29125 0 blowfish_generic 12530 0 blowfish_x86_64 21466 0 blowfish_common 16739 2 blowfish_generic,blowfish_x86_64 cast5 25112 0 des_generic 21415 0 xcbc 12815 0 rmd160 16744 0 bnep 18281 2 rfcomm 47604 12 sha512_generic 12796 0 crypto_null 12918 0 parport_pc 32866 0 af_key 36389 0 ppdev 17113 0 binfmt_misc 17540 1 nfsd 281980 2 ext2 73795 1 nfs 436929 1 lockd 90326 2 nfsd,nfs fscache 61529 1 nfs auth_rpcgss 53380 2 nfsd,nfs nfs_acl 12883 2 nfsd,nfs sunrpc 255224 16 nfsd,nfs,lockd,auth_rpcgss,nfs_acl btusb 18332 2 vesafb 13844 2 pl2303 17957 1 ath3k 12961 0 bluetooth 180153 24 bnep,rfcomm,btusb,ath3k snd_hda_codec_hdmi 32474 4 nvidia 11308613 0 ftdi_sio 40679 1 usbserial 47113 6 pl2303,ftdi_sio psmouse 97485 0 snd_hda_codec_realtek 224173 1 snd_hda_intel 33719 5 snd_hda_codec 127706 3 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel serio_raw 13211 0 snd_seq_midi 13324 0 snd_hwdep 17764 1 snd_hda_codec snd_pcm 97275 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec snd_rawmidi 30748 1 snd_seq_midi snd_seq_midi_event 14899 1 snd_seq_midi snd_seq 61929 2 snd_seq_midi,snd_seq_midi_event snd_timer 29990 2 snd_pcm,snd_seq snd_seq_device 14540 3 snd_seq_midi,snd_rawmidi,snd_seq snd 79041 20 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device asus_atk0110 18078 0 mac_hid 13253 0 jc42 13948 0 soundcore 15091 1 snd snd_page_alloc 18529 2 snd_hda_intel,snd_pcm coretemp 13554 0 i2c_i801 17570 0 lp 17799 0 parport 46562 3 parport_pc,ppdev,lp r8169 62154 0 Any ideas? What does X do that's so important?

    Read the article

  • C#/.NET Little Wonders: The Nullable static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today we’re going to look at an interesting Little Wonder that can be used to mitigate what could be considered a Little Pitfall.  The Little Wonder we’ll be examining is the System.Nullable static class.  No, not the System.Nullable<T> class, but a static helper class that has one useful method in particular that we will examine… but first, let’s look at the Little Pitfall that makes this wonder so useful. Little Pitfall: Comparing nullable value types using <, >, <=, >= Examine this piece of code, without examining it too deeply, what’s your gut reaction as to the result? 1: int? x = null; 2:  3: if (x < 100) 4: { 5: Console.WriteLine("True, {0} is less than 100.", 6: x.HasValue ? x.ToString() : "null"); 7: } 8: else 9: { 10: Console.WriteLine("False, {0} is NOT less than 100.", 11: x.HasValue ? x.ToString() : "null"); 12: } Your gut would be to say true right?  It would seem to make sense that a null integer is less than the integer constant 100.  But the result is actually false!  The null value is not less than 100 according to the less-than operator. It looks even more outrageous when you consider this also evaluates to false: 1: int? x = null; 2:  3: if (x < int.MaxValue) 4: { 5: // ... 6: } So, are we saying that null is less than every valid int value?  If that were true, null should be less than int.MinValue, right?  Well… no: 1: int? x = null; 2:  3: // um... hold on here, x is NOT less than min value? 4: if (x < int.MinValue) 5: { 6: // ... 7: } So what’s going on here?  If we use greater than instead of less than, we see the same little dilemma: 1: int? x = null; 2:  3: // once again, null is not greater than anything either... 4: if (x > int.MinValue) 5: { 6: // ... 7: } It turns out that four of the comparison operators (<, <=, >, >=) are designed to return false anytime at least one of the arguments is null when comparing System.Nullable wrapped types that expose the comparison operators (short, int, float, double, DateTime, TimeSpan, etc.).  What’s even odder is that even though the two equality operators (== and !=) work correctly, >= and <= have the same issue as < and > and return false if both System.Nullable wrapped operator comparable types are null! 1: DateTime? x = null; 2: DateTime? y = null; 3:  4: if (x <= y) 5: { 6: Console.WriteLine("You'd think this is true, since both are null, but it's not."); 7: } 8: else 9: { 10: Console.WriteLine("It's false because <=, <, >, >= don't work on null."); 11: } To make matters even more confusing, take for example your usual check to see if something is less than, greater to, or equal: 1: int? x = null; 2: int? y = 100; 3:  4: if (x < y) 5: { 6: Console.WriteLine("X is less than Y"); 7: } 8: else if (x > y) 9: { 10: Console.WriteLine("X is greater than Y"); 11: } 12: else 13: { 14: // We fall into the "equals" assumption, but clearly null != 100! 15: Console.WriteLine("X is equal to Y"); 16: } Yes, this code outputs “X is equal to Y” because both the less-than and greater-than operators return false when a Nullable wrapped operator comparable type is null.  This violates a lot of our assumptions because we assume is something is not less than something, and it’s not greater than something, it must be equal.  So keep in mind, that the only two comparison operators that work on Nullable wrapped types where at least one is null are the equals (==) and not equals (!=) operators: 1: int? x = null; 2: int? y = 100; 3:  4: if (x == y) 5: { 6: Console.WriteLine("False, x is null, y is not."); 7: } 8:  9: if (x != y) 10: { 11: Console.WriteLine("True, x is null, y is not."); 12: } Solution: The Nullable static class So we’ve seen that <, <=, >, and >= have some interesting and perhaps unexpected behaviors that can trip up a novice developer who isn’t expecting the kinks that System.Nullable<T> types with comparison operators can throw.  How can we easily mitigate this? Well, obviously, you could do null checks before each check, but that starts to get ugly: 1: if (x.HasValue) 2: { 3: if (y.HasValue) 4: { 5: if (x < y) 6: { 7: Console.WriteLine("x < y"); 8: } 9: else if (x > y) 10: { 11: Console.WriteLine("x > y"); 12: } 13: else 14: { 15: Console.WriteLine("x == y"); 16: } 17: } 18: else 19: { 20: Console.WriteLine("x > y because y is null and x isn't"); 21: } 22: } 23: else if (y.HasValue) 24: { 25: Console.WriteLine("x < y because x is null and y isn't"); 26: } 27: else 28: { 29: Console.WriteLine("x == y because both are null"); 30: } Yes, we could probably simplify this logic a bit, but it’s still horrendous!  So what do we do if we want to consider null less than everything and be able to properly compare Nullable<T> wrapped value types? The key is the System.Nullable static class.  This class is a companion class to the System.Nullable<T> class and allows you to use a few helper methods for Nullable<T> wrapped types, including a static Compare<T>() method of the. What’s so big about the static Compare<T>() method?  It implements an IComparer compatible comparison on Nullable<T> types.  Why do we care?  Well, if you look at the MSDN description for how IComparer works, you’ll read: Comparing null with any type is allowed and does not generate an exception when using IComparable. When sorting, null is considered to be less than any other object. This is what we probably want!  We want null to be less than everything!  So now we can change our logic to use the Nullable.Compare<T>() static method: 1: int? x = null; 2: int? y = 100; 3:  4: if (Nullable.Compare(x, y) < 0) 5: { 6: // Yes! x is null, y is not, so x is less than y according to Compare(). 7: Console.WriteLine("x < y"); 8: } 9: else if (Nullable.Compare(x, y) > 0) 10: { 11: Console.WriteLine("x > y"); 12: } 13: else 14: { 15: Console.WriteLine("x == y"); 16: } Summary So, when doing math comparisons between two numeric values where one of them may be a null Nullable<T>, consider using the System.Nullable.Compare<T>() method instead of the comparison operators.  It will treat null less than any value, and will avoid logic consistency problems when relying on < returning false to indicate >= is true and so on. Tweet   Technorati Tags: C#,C-Sharp,.NET,Little Wonders,Little Pitfalls,Nulalble

    Read the article

  • Converting Creole to HTML, PDF, DOCX, ..

    - by Marko Apfel
    Challenge We documented a project on Github with the Wiki there. For most articles we used Creole as markup language. Now we have to deliver a lot of the content to our client in an usual format like PDF or DOCX. So we need a automatism to extract all relevant content, merge it together and convert the stuff to a new format. Problem One of the most popular toolsets to convert between several formats is Pandoc. But unfortunally Pandoc does not support Creole (see the converting matrix). Approach So we need an intermediate step: Converting from Creole to a supported Pandoc format. Creolo/c is a Creole to Html converter and does exactly what we need. After converting our Creole content to Html we could use Pandoc for all the subsequent tasks. Solution Getting the Creole stuff First at all we need the Creole content on our locale machines. This is easy. Because the Github Wiki themselves is a Git repository we could clone it to our machine. In the working copy we see now all the files and the suffix gives us the hint for the markup language. Converting and Merging Creole content to Html Because we would like all content from several Creole files in one HTML file, we have to convert and merge all the input files to one output file. Creole/c has an option (-b) to generate only the Html-stuff below a Html <Body>-tag. And this is hook for us to start. We have to create manually the additional preluding Html-tags (<html>, <head>, ..), then we merge all needed Creole content to our output file and last we add the closing tags. This could be done straightforward with a little bit old DOS magic: REM === Generate the intro tags === ECHO ^<html^> > %TMP%\output.html ECHO ^<head^> >> %TMP%\output.html ECHO ^<meta name="generator" content="creole/c"^> >> %TMP%\output.html ECHO ^</head^> >> %TMP%\output.html ECHO ^<body^> >> %TMP%\output.html REM === Mix in all interesting Creole stuff with creole/c === .\Creole-C\bin\creole.exe -b .\..\datamodel+overview.creole >> %TMP%\output.html .\Creole-C\bin\creole.exe -b .\..\datamodel+domain+CvdCaptureMode.creole >> %TMP%\output.html .\Creole-C\bin\creole.exe -b .\..\datamodel+domain+CvdDamageReducingActivity.creole >> %TMP%\output.html .\Creole-C\bin\creole.exe -b .\..\datamodel+lookup+IncidentDamageCodes.creole >> %TMP%\output.html .\Creole-C\bin\creole.exe -b .\..\datamodel+table+Attachments.creole >> %TMP%\output.html .\Creole-C\bin\creole.exe -b .\..\datamodel+table+TrafficLights.creole >> %TMP%\output.html REM === Generate the outro tags === ECHO ^</body^> >> %TMP%\output.html ECHO ^</html^> >> %TMP%\output.html REM === Convert the Html file to Docx with Pandoc === .\Pandoc\bin\pandoc.exe -o .\Database-Schema.docx %TMP%\output.html Some explanation for this The first ECHO call creates the file. Therefore the beginning <html> tag is send via > to a temporary working file. All following calls add content to the existing file via >>. The tag-characters < and > must be escaped. This is done by the caret sign (^). We use a file in the default temporary folder (%TMP%) to avoid writing in our current folders. (better for continuous integration) Both toolsets (Creole/c and Pandoc) are copied to a versioned tools folder in the Wiki. This is committable and no problem after pushing – Github does not do anything with it. In this folder is also the batch (Export-Docx.bat) for all the steps. Pandoc recognizes the conversion by the suffixes of the file names. So it is enough to specify only the input and output files.

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • How do I pipe terminal standard output (stdout) to the clipboard?

    - by Insperatus
    For example, Say I want to list the contents of a folder and directly paste them into a chat window for a friend to see. I realize I could do ls > filename.txt to create a file (filename.txt) with those contents; I'd then have to open or print the file and manually select and copy the text block (which can be annoying/tedious.) I clearly could also select and copy the output of ls directly from within the terminal window. It would be much faster/easier to simply pipe standard output to the clipboard. What terminal command allows me to do this?

    Read the article

  • Visual C# 2010 express... displaying console output??

    - by ClarkeyBoy
    Hi, I am currently creating a customer application for a local company. I have a datagridview linked to the customers table, and I am trying to link it up so that updates, inserts and deletions are handled correctly. I am very new to c# so I am starting with the basics (like about 2 days ago I knew nothing - I know vb.net, Java and several other languages though..). Anywho from what I understand anything output through Debug.WriteLine should only appear when in debug mode (common sense really) but anything output through Concole.WriteLine should appear whether or not in debug mode. However I have checked the immediate and output windows and nothing is being output when in normal mode. Does anyone have any idea why this is?? Thanks in advance, Richard

    Read the article

  • What is the correct way to handle debug output in Java?

    - by Federico Zancan
    As my current Java projects grow bigger and bigger, I feel a likewise growing need to insert debug output in several points of my code. To enable or disable this feature appropriately, depending on the opening or closure of the test sessions, I usually put a private static final boolean DEBUG = false at the beginning of the classes my tests are inspecting, and trivially use it this way (for example): public MyClass { private static final boolean DEBUG = false; ... some code ... public void myMethod(String s) { if (DEBUG) { System.out.println(s); } } } and the like. But that doesn't bliss me out, because of course it works but there could be too many classes in which to set DEBUG to true, if you are not staring at just a couple of them. Conversely, I (like - I think - many others) wouldn't love to put the whole application in debug mode, as the amount of text being output could be overwhelming. So, is there a correct way to architecturally handle such situation or the most correct way is to use the DEBUG class member?

    Read the article

  • Rate My Script: Finding Flash Files Embedded in Office Files

    - by Shaun Johnson
    Can anyone improve on this? Requires Sysinternals Strings date /T >N:\output.txt net use z: /delete net use z: \\svr-002\rmstudentwork @cd /d "z:\" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.xls | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.ppt | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.doc | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.xlsx | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.pptx | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.docx | findstr \.swf >> "N:\output.txt" date /T >>N:\output.txt net use z: /delete /yes >>N:\output.txt net use z: \\svr-003\rmstudentwork "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.xls | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.ppt | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.doc | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.xlsx | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.pptx | findstr \.swf >> "N:\output.txt" "N:\Scripts and Reg Frags\FindEmbededFlashFiles\strings.exe" -s *.docx | findstr \.swf >> "N:\output.txt" net use z: /delete /yes Basically it mounts a share as a network drive then runs through the share looking for swf files inside office documents.

    Read the article

  • How do you repair an "input/output error" in an NTFS partition?

    - by Calixte
    I replaced a buggy Windows Vista installation with Ubuntu. All works fine except that the mais harddrive where I had all my files are now inaccessible. Here is the eror message I get: Error mounting: mount exited with exit code 13: ntfs_attr_pread_i: ntfs_pread failed: Input/output error Failed to read NTFS $Bitmap: Input/output error NTFS is either inconsistent, or there is a hardware fault, or it's a SoftRAID/FakeRAID hardware. In the first case run chkdsk /f on Windows then reboot into Windows twice. The usage of the /f parameter is very important! If the device is a SoftRAID/FakeRAID then first activate it and mount a different device under the /dev/mapper/ directory, (e.g. /dev/mapper/nvidia_eahaabcc1). Please see the 'dmraid' documentation for more details Is it necessarily a hardware problem? If not, is there a way to repair the HD from Ubuntu?

    Read the article

  • Design pattern: static function call with input/output containers?

    - by Pavlo Dyban
    I work for a company in software research department. We use algorithms from our real software and wrap them so that we can use them for prototyping. Every time an algorithm interface changes, we need to adapt our wrappers respectively. Recently all algorithms have been refactored in such a manner that instead of accepting many different inputs and returning outputs via referenced parameters, they now accept one input data container and one output data container (the latter is passed by reference). Algorithm interface is limited to a static function call like that: class MyAlgorithm{ static bool calculate(MyAlgorithmInput input, MyAlgorithmOutput &output); } This is actually a very powerful design, though I have never seen it in a C++ programming environment before. Changes in the number of parameters and their data types are now encapsulated and they don't change the algorithm callback. In the latest algorithm which I have developed I used the same scheme. Now I want to know if this is a popular design pattern and what it is called.

    Read the article

  • Is there any guarantee about the graphical output of different GPUs in DirectX?

    - by cloudraven
    Let's say that I run the same game in two different computers with different GPUs. If for example they are both certified for DirectX 10. Is there a guarantee that the output for a given program (game) is going to be the same regardless the manufacturer or model of the GPU? I am assuming the configurable settings are exactly the same in both cases. I heard that it is not the case for DirectX 9 and older, but that it is true for DirectX 10. If someone could provide a source confirming or denying it, it would be great. Also what is the guarantee offered. Will the output be exactly the same or just perceptually the same to the human eye?

    Read the article

  • The device is not ready

    - by hmloo
    When you retrieve the drive info using the DriveInfo class, if you don't use the IsReady property to test whether a drive is ready, it will throw error as "The device is not ready". so you must use IsReady property to determines if the drive is ready to be queried, written to, or read from. The following code example demonstrates querying information for all drives on current system. using System; using System.IO; class Test { public static void Main() { DriveInfo[] allDrives = DriveInfo.GetDrives(); foreach (DriveInfo d in allDrives) { Console.WriteLine("Drive {0}", d.Name); Console.WriteLine(" File type: {0}", d.DriveType); if (d.IsReady == true) { Console.WriteLine(" Volume label: {0}", d.VolumeLabel); Console.WriteLine(" File system: {0}", d.DriveFormat); Console.WriteLine( " Available space to current user:{0, 15} bytes", d.AvailableFreeSpace); Console.WriteLine( " Total available space: {0, 15} bytes", d.TotalFreeSpace); Console.WriteLine( " Total size of drive: {0, 15} bytes ", d.TotalSize); } } } }

    Read the article

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • How to get the output of a php script executed by a piped mail?

    - by xun2
    I've configured an email address to pipe (forward) all emails to /path/to/script.php I thought I'll receive the output of the script as an email reply but it doesn't work. How can I get the output of the script and send a reply email with the output as the email content? (*) I know I can use mail() inside the script but I don't have permissions to edit the script, and I can't copy the script because it's being updated from time to time.

    Read the article

  • Ubuntu - why would /var/log/dmesg stop updating after boot? does not show panic/cpu_hung errors which the console shows

    - by Tom G
    So I have an Ubuntu 10.04 install VM on a host. Latest 2.6.38-15-server kernel . /var/log/dmesg displays only the bootup but will stop recording after that. It will not show the trace/cpu_hung errors I am trying to troubleshoot. /var/log/dmesg.0 , dmesg.1 nothing - I did a string search for the text that displays on the console during the crash and NOTHING gets logged anywhere in /var/log/* . I have to call into the provider and ask them to take a screenshot of the console since nothing shows in dmesg. Why would /var/log/dmesg not record kernel panics, or such?

    Read the article

  • Why does newline come before space in the output of hexdump?

    - by ??????? ???????????
    Printing these characters in the "Canonical" format gives the output that I expect, while the default format throws me off. $ echo " " |hexdump # Reversed? 0000000 0a20 0000002 $ echo -n " " |hexdump # Ok, fair enough. 0000000 0020 $ echo " " |hexdump -C # Canonical 00000000 20 0a | .| 00000002 With a different string, such as "123" the output is even more confusing: $ echo "123" |hexdump 0000000 3231 0a33 0000004 The output here does not seem "reversed", but rather shuffled. Would anyone care to explain (briefly) what is going on here?

    Read the article

  • How do I connect to the serial console port os a Sunfire 280R?

    - by DrStalker
    We have a Sunfire 280R (old SPARC/Solaris server) that is refusing to come up after being relocated. We're trying to connect to the serial console port, but all we get is random gibberish on the screen. We've tried both connecting with a DB25DB9 adapter and using a DB-25-RJ45 adapter with a cisco RJ45-DB9 adapter to a windows laptop. We're configuring the laptop to 9600 baud, 8 bit, 1 stop bit, no parity. We've tried both no flow control and Xon/Xoff. We get the same results hooking up to the serial port on a working SPARC server, so it's probably something in our setup rather than a fault with the server. How do we get access to to serial console so we can work out what is stopping this box from getting to the network? Is there a special sun adapter we need to get/make to get the serial link working?

    Read the article

  • How can I both pipe and display output in Windows' command line?

    - by Bob
    I have a process I need to run within a batch file. This process produces some output. I need to both display this output to the screen and send (pipe) it to another program. The bash method uses tee: echo 'ee' | tee /dev/tty | foo Is there an equivalent for Windows? I am happy to use PowerShell if necessary. There are tee ports for Windows, but there does not appear to be an equivalent for /dev/tty, which complicates matters. The specific use-case here: I have a program (launch4j) that I need to run, displaying output to the user. At the same time, I need to be able to detect success or failure in the script. Unfortunately, this program does not set an exit code, and I cannot force it to do so. My current workaround involves piping to find, to search the output (launch4j config.xml | find "Successfully created") - however, that swallows the output I need to display. Therefore, I need some way to both display to the screen and send the ouput to a command - and this command should be able to set ERRORLEVEL (it cannot run asynchronously).

    Read the article

  • Does a USB to RJ-45 console cable exist?

    - by Carl Flippin
    I am aware of the RJ-45 to DB9 adapter commonly used on cisco routers to access console. I am aware of the USB to DB9 adapters to allow laptops without serial to get a serial port. I am looking for a USB to RJ-45 adapter so I don't have to chain two adapters together. I have searched everywhere but even the pre-packaged solutions seem to have the two adapters chained together. Does such a thing exist? If it doesn't is there some technical reason it cannot? It seems like a manufacturer would just have to wire the DB9 end of the USB adapter differently and it would work just fine plugged straight into the console port of the router.

    Read the article

< Previous Page | 88 89 90 91 92 93 94 95 96 97 98 99  | Next Page >