Search Results

Search found 14548 results on 582 pages for 'const reference'.

Page 92/582 | < Previous Page | 88 89 90 91 92 93 94 95 96 97 98 99  | Next Page >

  • Problem with combination boost::exception and boost::variant

    - by Rick
    Hello all, I have strange problem with two-level variant struct when boost::exception is included. I have following code snippet: #include <boost/variant.hpp> #include <boost/exception/all.hpp> typedef boost::variant< int > StoredValue; typedef boost::variant< StoredValue > ExpressionItem; inline std::ostream& operator << ( std::ostream & os, const StoredValue& stvalue ) { return os;} inline std::ostream& operator << ( std::ostream & os, const ExpressionItem& stvalue ) { return os; } When I try to compile it, I have following error: boost/exception/detail/is_output_streamable.hpp(45): error C2593: 'operator <<' is ambiguous test.cpp(11): could be 'std::ostream &operator <<(std::ostream &,const ExpressionItem &)' [found using argument-dependent lookup] test.cpp(8): or 'std::ostream &operator <<(std::ostream &,const StoredValue &)' [found using argument-dependent lookup] 1> while trying to match the argument list '(std::basic_ostream<_Elem,_Traits>, const boost::error_info<Tag,T>)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> and 1> [ 1> Tag=boost::tag_original_exception_type, 1> T=const type_info * 1> ] Code snippet is simplified as much as possible, in the real code are structures much more complicated and each variant has five sub-types. When i remove #include and try following test snippet, program is compiled correctly: void TestVariant() { ExpressionItem test; std::stringstream str; str << test; } Could someone please advise me how to define operators << in order to function even when using boost::Exception ? Thanks and regards Rick

    Read the article

  • Boost Regex throwing an error

    - by Srinivasa Varadan
    Hi ALL, I have the following error when I try to compile my code in g+ compiler using eclipse In function `ZSt19__iterator_categoryIPKSsENSt15iterator_traitsIT_E17iterator_categoryERKS3_': C:/Program Files (x86)/mingw/bin/../lib/gcc/mingw32/3.4.5/../../../../include/c++/3.4.5/bits/stl_algobase.h:(.text$_ZN5boost11basic_regexIcNS_12regex_traitsIcNS_16cpp_regex_traitsIcEEEEE6assignEPKcS7_j[boost::basic_regex<char, boost::regex_traits<char, boost::cpp_regex_traits<char> > >::assign(char const*, char const*, unsigned int)]+0x22): undefined reference to `boost::basic_regex<char, boost::regex_traits<char, boost::cpp_regex_traits<char> > >::do_assign(char const*, char const*, unsigned int)' collect2: ld returned 1 exit status Build error occurred, build is stopped All I have done is this statement boost::regex re("\s+"); along with the header #inlucde Could you kindly tell me how to proceed ?

    Read the article

  • Storing member function pointers of derived classes in map

    - by Kiran Mohan
    Hello, I am trying to implement a factory for two classes Circle, Square both of which inherits from Shape. class Shape { public: virtual static Shape * getInstance() = 0; }; class Circle : public Shape { public: static const std::string type; Shape * getInstance() { return new Circle; } }; const std::string Circle::type = "Circle"; class Square : public Shape { public: static const std::string type; Shape * getInstance() { return new Square; } }; const std::string Square::type = "Square"; I want to now create a map with key as shape type (string) and value as a function pointer to getInstance() of the corresponding derived class. Is it possible? Thanks, Kiran

    Read the article

  • Why do pure virtual base classes get direct access to static data members while derived instances do

    - by Shamster
    I've created a simple pair of classes. One is pure virtual with a static data member, and the other is derived from the base, as follows: #include <iostream> template <class T> class Base { public: Base (const T _member) { member = _member; } static T member; virtual void Print () const = 0; }; template <class T> T Base<T>::member; template <class T> void Base<T>::Print () const { std::cout << "Base: " << member << std::endl; } template <class T> class Derived : public Base<T> { public: Derived (const T _member) : Base<T>(_member) { } virtual void Print () const { std::cout << "Derived: " << this->member << std::endl; } }; I've found from this relationship that when I need access to the static data member in the base class, I can call it with direct access as if it were a regular, non-static class member. i.e. - the Base::Print() method does not require a this- modifier. However, the derived class does require the this-member indirect access syntax. I don't understand why this is. Both class methods are accessing the same static data, so why does the derived class need further specification? A simple call to test it is: int main () { Derived<double> dd (7.0); dd.Print(); return 0; } which prints the expected "Derived: 7"

    Read the article

  • Accelerated C++, problem 5-6 (copying values from inside a vector to the front)

    - by Darel
    Hello, I'm working through the exercises in Accelerated C++ and I'm stuck on question 5-6. Here's the problem description: (somewhat abbreviated, I've removed extraneous info.) 5-6. Write the extract_fails function so that it copies the records for the passing students to the beginning of students, and then uses the resize function to remove the extra elements from the end of students. (students is a vector of student structures. student structures contain an individual student's name and grades.) More specifically, I'm having trouble getting the vector.insert function to properly copy the passing student structures to the start of the vector students. Here's the extract_fails function as I have it so far (note it doesn't resize the vector yet, as directed by the problem description; that should be trivial once I get past my current issue.) // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } The code compiles and runs, but the students vector isn't adding any student structures to its front. My program's output displays that the students vector is unchanged. Here's my complete source code, followed by a sample input file (I redirect input from the console by typing " < grades" after the compiled program name at the command prompt.) #include <iostream> #include <string> #include <algorithm> // to get the declaration of `sort' #include <stdexcept> // to get the declaration of `domain_error' #include <vector> // to get the declaration of `vector' //driver program for grade partitioning examples using std::cin; using std::cout; using std::endl; using std::string; using std::domain_error; using std::sort; using std::vector; using std::max; using std::istream; struct Student_info { std::string name; double midterm, final; std::vector<double> homework; }; bool compare(const Student_info&, const Student_info&); std::istream& read(std::istream&, Student_info&); std::istream& read_hw(std::istream&, std::vector<double>&); double median(std::vector<double>); double grade(double, double, double); double grade(double, double, const std::vector<double>&); double grade(const Student_info&); bool fgrade(const Student_info&); void extract_fails(vector<Student_info>& v); int main() { vector<Student_info> vs; Student_info s; string::size_type maxlen = 0; while (read(cin, s)) { maxlen = max(maxlen, s.name.size()); vs.push_back(s); } sort(vs.begin(), vs.end(), compare); extract_fails(vs); // display the new, modified vector - it should be larger than // the input vector, due to some student structures being // added to the front of the vector. cout << "count: " << vs.size() << endl << endl; vector<Student_info>::iterator it = vs.begin(); while (it != vs.end()) cout << it++->name << endl; return 0; } // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } bool compare(const Student_info& x, const Student_info& y) { return x.name < y.name; } istream& read(istream& is, Student_info& s) { // read and store the student's name and midterm and final exam grades is >> s.name >> s.midterm >> s.final; read_hw(is, s.homework); // read and store all the student's homework grades return is; } // read homework grades from an input stream into a `vector<double>' istream& read_hw(istream& in, vector<double>& hw) { if (in) { // get rid of previous contents hw.clear(); // read homework grades double x; while (in >> x) hw.push_back(x); // clear the stream so that input will work for the next student in.clear(); } return in; } // compute the median of a `vector<double>' // note that calling this function copies the entire argument `vector' double median(vector<double> vec) { typedef vector<double>::size_type vec_sz; vec_sz size = vec.size(); if (size == 0) throw domain_error("median of an empty vector"); sort(vec.begin(), vec.end()); vec_sz mid = size/2; return size % 2 == 0 ? (vec[mid] + vec[mid-1]) / 2 : vec[mid]; } // compute a student's overall grade from midterm and final exam grades and homework grade double grade(double midterm, double final, double homework) { return 0.2 * midterm + 0.4 * final + 0.4 * homework; } // compute a student's overall grade from midterm and final exam grades // and vector of homework grades. // this function does not copy its argument, because `median' does so for us. double grade(double midterm, double final, const vector<double>& hw) { if (hw.size() == 0) throw domain_error("student has done no homework"); return grade(midterm, final, median(hw)); } double grade(const Student_info& s) { return grade(s.midterm, s.final, s.homework); } // predicate to determine whether a student failed bool fgrade(const Student_info& s) { return grade(s) < 60; } Sample input file: Moo 100 100 100 100 100 100 100 100 Fail1 45 55 65 80 90 70 65 60 Moore 75 85 77 59 0 85 75 89 Norman 57 78 73 66 78 70 88 89 Olson 89 86 70 90 55 73 80 84 Peerson 47 70 82 73 50 87 73 71 Baker 67 72 73 40 0 78 55 70 Davis 77 70 82 65 70 77 83 81 Edwards 77 72 73 80 90 93 75 90 Fail2 55 55 65 50 55 60 65 60 Thanks to anyone who takes the time to look at this!

    Read the article

  • operator+ overload returning object causing memory leaks, C++

    - by lampshade
    The problem i think is with returing an object when i overload the + operator. I tried returning a reference to the object, but doing so does not fix the memory leak. I can comment out the two statements: dObj = dObj + dObj2; and cObj = cObj + cObj2; to free the program of memory leaks. Somehow, the problem is with returning an object after overloading the + operator. #include <iostream> #include <vld.h> using namespace std; class Animal { public : Animal() {}; virtual void eat() = 0 {}; virtual void walk() = 0 {}; }; class Dog : public Animal { public : Dog(const char * name, const char * gender, int age); Dog() : name(NULL), gender(NULL), age(0) {}; virtual ~Dog(); Dog operator+(const Dog &dObj); private : char * name; char * gender; int age; }; class MyClass { public : MyClass() : action(NULL) {}; void setInstance(Animal &newInstance); void doSomething(); private : Animal * action; }; Dog::Dog(const char * name, const char * gender, int age) : // allocating here, for data passed in ctor name(new char[strlen(name)+1]), gender(new char[strlen(gender)+1]), age(age) { if (name) { size_t length = strlen(name) +1; strcpy_s(this->name, length, name); } else name = NULL; if (gender) { size_t length = strlen(gender) +1; strcpy_s(this->gender, length, gender); } else gender = NULL; if (age) { this->age = age; } } Dog::~Dog() { delete name; delete gender; age = 0; } Dog Dog::operator+(const Dog &dObj) { Dog d; d.age = age + dObj.age; return d; } void MyClass::setInstance(Animal &newInstance) { action = &newInstance; } void MyClass::doSomething() { action->walk(); action->eat(); } int main() { MyClass mObj; Dog dObj("Scruffy", "Male", 4); // passing data into ctor Dog dObj2("Scooby", "Male", 6); mObj.setInstance(dObj); // set the instance specific to the object. mObj.doSomething(); // something happens based on which object is passed in dObj = dObj + dObj2; // invoke the operator+ return 0; }

    Read the article

  • (static initialization order?!) problems with factory pattern

    - by smerlin
    Why does following code raise an exception (in createObjects call to map::at) alternativly the code (and its output) can be viewed here intererestingly the code works as expected if the commented lines are uncommented with both microsoft and gcc compiler (see here), this even works with initMap as ordinary static variable instead of static getter. The only reason for this i can think of is that the order of initialization of the static registerHelper_ object (factory_helper_)and the std::map object (initMap) are wrong, however i cant see how that could happen, because the map object is constructed on first usage and thats in factory_helper_ constructor, so everything should be alright shouldnt it ? I am even more suprised that those doNothing() lines fix the issue, because that call to doNothing() would happen after the critical section (which currently fails) is passed anyway. EDIT: debugging showed, that without the call to factory_helper_.doNothing(), the constructor of factory_helper_ is never called. #include <iostream> #include <string> #include <map> #define FACTORY_CLASS(classtype) \ extern const char classtype##_name_[] = #classtype; \ class classtype : FactoryBase<classtype,classtype##_name_> namespace detail_ { class registerHelperBase { public: registerHelperBase(){} protected: static std::map<std::string, void * (*)(void)>& getInitMap() { static std::map<std::string, void * (*)(void)>* initMap = 0; if(!initMap) initMap= new std::map<std::string, void * (*)(void)>(); return *initMap; } }; template<class TParent, const char* ClassName> class registerHelper_ : registerHelperBase { static registerHelper_ help_; public: //void doNothing(){} registerHelper_(){ getInitMap()[std::string(ClassName)]=&TParent::factory_init_; } }; template<class TParent, const char* ClassName> registerHelper_<TParent,ClassName> registerHelper_<TParent,ClassName>::help_; } class Factory : detail_::registerHelperBase { private: Factory(); public: static void* createObject(const std::string& objclassname) { return getInitMap().at(objclassname)(); } }; template <class TClass, const char* ClassName> class FactoryBase { private: static detail_::registerHelper_<FactoryBase<TClass,ClassName>,ClassName> factory_helper_; static void* factory_init_(){ return new TClass();} public: friend class detail_::registerHelper_<FactoryBase<TClass,ClassName>,ClassName>; FactoryBase(){ //factory_helper_.doNothing(); } virtual ~FactoryBase(){}; }; template <class TClass, const char* ClassName> detail_::registerHelper_<FactoryBase<TClass,ClassName>,ClassName> FactoryBase<TClass,ClassName>::factory_helper_; FACTORY_CLASS(Test) { public: Test(){} }; int main(int argc, char** argv) { try { Test* test = (Test*) Factory::createObject("Test"); } catch(const std::exception& ex) { std::cerr << "caught std::exception: "<< ex.what() << std::endl; } #ifdef _MSC_VER system("pause"); #endif return 0; }

    Read the article

  • Custom QGraphicsItems not compiling and give object is is private error

    - by bahree
    Hi, I am trying to create a Custom QGraphicsItem button as shown by Fred here. The code which he posted can be found here. The problem is when I try and compile the code I get the following two errors: /usr/include/qt4/QtGui/qgraphicsitem.h ‘QGraphicsItem::QGraphicsItem(const QGraphicsItem&)’ is private /usr/include/qt4/QtCore/qobject.h ‘QObject::QObject(const QObject&)’ is private Here is the code snippet which essentially is the same as that in the sample above. The error is on the class deceleration. class MyButton : public QObject, public QGraphicsItem { Q_OBJECT Q_INTERFACES(QGraphicsItem) public: MyButton(QGraphicsItem *parent = 0); MyButton(const QString normal, const QString pressed = "", QGraphicsItem *parent = 0); .... } Interestingly the other sample as shown here works fine. The sample code for that can be found here. Any idea what is wrong? Thanks in advance.

    Read the article

  • Constants by another name

    - by Dave DeLong
    First off, I've seen this question and understand why the following code doesn't work. That is not my question. I have a constant, which is declared like; //Constants.h extern NSString * const MyConstant; //Constants.m NSString * const MyConstant = @"MyConstant"; However, in certain contexts, it's more useful to have this constant have a much more descriptive name, like MyReallySpecificConstant. I was hoping to do: //SpecificConstants.h extern NSString * const MyReallySpecificConstant; //SpecificConstants.m #import "Constants.h" NSString * const MyReallySpecificConstant = MyConstant; Obviously I cannot do this (which is explained in the linked question above). My question is: How else (besides something like #define MyReallySpecificConstant MyConstant) can I provide a single constant under multiple names?

    Read the article

  • WITH_OBJECT_HEADERS enabled GC from Dalvik?

    - by Wonil
    Hello, As I know Dalvik VM does not support generational GC as default. But, I found "WITH_OBJECT_HEADERS" compilation flag which could be related with generational GC from HeapInternal.h file. typedef struct DvmHeapChunk { #if WITH_OBJECT_HEADERS u4 header; const Object *parent; const Object *parentOld; const Object *markFinger; const Object *markFingerOld; u2 birthGeneration; u2 markCount; u2 scanCount; u2 oldMarkGeneration; u2 markGeneration; u2 oldScanGeneration; u2 scanGeneration; #endif Does anyone try to build Dalvik with this option enabled? Do you know anything about generational GC support from Dalvik? Regards, Wonil.

    Read the article

  • Operator== in derived class never gets called.

    - by Robin Welch
    Can someone please put me out of my misery with this? I'm trying to figure out why a derived operator== never gets called in a loop. To simplify the example, here's my Base and Derived class: class Base { // ... snipped bool operator==( const Base& other ) const { return name_ == other.name_; } }; class Derived : public Base { // ... snipped bool operator==( const Derived& other ) const { return ( static_cast<const Base&>( *this ) == static_cast<const Base&>( other ) ? age_ == other.age_ : false ); }; Now when I instantiate and compare like this ... Derived p1("Sarah", 42); Derived p2("Sarah", 42); bool z = ( p1 == p2 ); ... all is fine. Here the operator== from Derived gets called, but when I loop over a list, comparing items in a list of pointers to Base objects ... list<Base*> coll; coll.push_back( new Base("fred") ); coll.push_back( new Derived("sarah", 42) ); // ... snipped // Get two items from the list. Base& obj1 = **itr; Base& obj2 = **itr2; cout << obj1.asString() << " " << ( ( obj1 == obj2 ) ? "==" : "!=" ) << " " << obj2.asString() << endl; Here asString() (which is virtual and not shown here for brevity) works fine, but obj1 == obj2 always calls the Base operator== even if the two objects are Derived. I know I'm going to kick myself when I find out what's wrong, but if someone could let me down gently it would be much appreciated.

    Read the article

  • Implementation/interface inheritance design question.

    - by Neil G
    I would like to get the stackoverflow community's opinion on the following three design patterns. The first is implementation inheritance; the second is interface inheritance; the third is a middle ground. My specific question is: Which is best? implementation inheritance: class Base { X x() const = 0; void UpdateX(A a) { y_ = g(a); } Y y_; } class Derived: Base { X x() const { return f(y_); } } interface inheritance: class Base { X x() const = 0; void UpdateX(A a) = 0; } class Derived: Base { X x() const { return x_; } void UpdateX(A a) { x_ = f(g(a)); } X x_; } middle ground: class Base { X x() const { return x_; } void UpdateX(A a) = 0; X x_; } class Derived: Base { void UpdateX(A a) { x_ = f(g(a)); } } I know that many people prefer interface inheritance to implementation inheritance. However, the advantage of the latter is that with a pointer to Base, x() can be inlined and the address of x_ can be statically calculated.

    Read the article

  • Having issues with initializing character array

    - by quandrum
    Ok, this is for homework about hashtables, but this is the simple stuff I thought I was able to do from earlier classes, and I'm tearing my hair out. The professor is not being responsive enough, so I thought I'd try here. We have a hashtable of stock objects.The stock objects are created like so: stock("IBM", "International Business Machines", 2573, date(date::MAY, 23, 1967)) my constructor looks like: stock::stock(char const * const symbol, char const * const name, int sharePrice, date priceDate): symbol(NULL), name(NULL), sharePrice(sharePrice), dateOfPrice(priceDate) { setSymbol(symbol); setName(name); } and setSymbol looks like this: (setName is indentical): void stock::setSymbol(const char* symbol) { if (this->symbol) delete [] this->symbol; this->symbol = new char[strlen(symbol)+1]; strcpy(this->symbol,symbol); } and it refuses to allocate on the line this->symbol = new char[strlen(symbol)+1]; with a std::bad_alloc. name and symbol are declared char * name; char * symbol; I feel like this is exactly how I've done it in previous code.I'm sure it's something silly with pointers. Can anyone help?

    Read the article

  • Compilation errors calling find_if using a functor

    - by Jim Wong
    We are having a bit of trouble using find_if to search a vector of pairs for an entry in which the first element of the pair matches a particular value. To make this work, we have defined a trivial functor whose operator() takes a pair as input and compares the first entry against a string. Unfortunately, when we actually add a call to find_if using an instance of our functor constructed using a temporary string value, the compiler produces a raft of error messages. Oddly (to me, anyway), if we replace the temporary with a string that we've created on the stack, things seem to work. Here's what the code (including both versions) looks like: typedef std::pair<std::string, std::string> MyPair; typedef std::vector<MyPair> MyVector; struct MyFunctor: std::unary_function <const MyPair&, bool> { explicit MyFunctor(const std::string& val) : m_val(val) {} bool operator() (const MyPair& p) { return p.first == m_val; } const std::string m_val; }; bool f(const char* s) { MyFunctor f(std::string(s)); // ERROR // std::string str(s); // MyFunctor f(str); // OK MyVector vec; MyVector::const_iterator i = std::find_if(vec.begin(), vec.end(), f); return i != vec.end(); } And here's what the most interesting error message looks like: /usr/include/c++/4.2.1/bits/stl_algo.h:260: error: conversion from ‘std::pair, std::allocator , std::basic_string, std::allocator ’ to non-scalar type ‘std::string’ requested Because we have a workaround, we're mostly curious as to why the first form causes problems. I'm sure we're missing something, but we haven't been able to figure out what it is.

    Read the article

  • MS Detours Library, detouring non win api function

    - by flavour404
    Hi, I want to use the windows detours library to detour a non win api function. The function is part of the Qt library (QtGui4.dll). I am wondering how I would set up the function signature for : void QPainter::drawText ( const QPointF & position, const QString & text ) I had a go with this and it received my usual share of errors, a little explanation of requirements would be interesting as well: void (QPainter * real_drawText)(const QPointF & position, const QString & text) = drawText This is what they look like for TextOut, under the windows API: BOOL (WINAPI * Real_TextOut)(HDC a0, int a1, int a2, LPCWSTR a3, int a4) = TextOutW; BOOL WINAPI Mine_TextOut(HDC hdc,int X,int Y,LPCWSTR text,int textLen) { BOOL rv = Real_TextOut(hdc, X, Y, text, textLen); HWND hWindow = WindowFromDC(hdc); SendTextMessage(hWindow, text); return rv; } Thanks.

    Read the article

  • dynamic lib can't find static lib

    - by renyufei
    env: gcc version 4.4.1 (Ubuntu 4.4.1-4ubuntu9) app: Bin(main) calls dynamic lib(testb.so), and testb.so contains a static lib(libtesta.a). file list: main.c test.h a.c b.c then compile as: gcc -o testa.o -c a.c ar -r libtesta.a testa.o gcc -shared -fPIC -o testb.so b.c gcc -o main main.c -L. -ltesta -ldl then compile success, but runs an error: ./main: symbol lookup error: ./testb.so: undefined symbol: print code as follows: test.h #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <string.h> #include <dlfcn.h> int printa(const char *msg); int printb(const char *msg); a.c #include "test.h" int printa(const char *msg) { printf("\tin printa\n"); printf("\t%s\n", msg); } b.c #include "test.h" int printb(const char *msg) { printf("in printb\n"); printa("called by printb\n"); printf("%s\n", msg); } main.c #include "test.h" int main(int argc, char **argv) { void *handle; int (*dfn)(const char *); printf("before dlopen\n"); handle = dlopen("./testb.so", RTLD_LOCAL | RTLD_LAZY); printf("after dlopen\n"); if (handle == NULL) { printf("dlopen fail: [%d][%s][%s]\n", \ errno, strerror(errno), dlerror()); exit(EXIT_FAILURE); } printf("before dlsym\n"); dfn = dlsym(handle, "printb"); printf("after dlsym\n"); if (dfn == NULL) { printf("dlsym fail: [%d][%s][%s]\n", \ errno, strerror(errno), dlerror()); exit(EXIT_FAILURE); } printf("before dfn\n"); dfn("printb func\n"); printf("after dfn\n"); exit(EXIT_SUCCESS); }

    Read the article

  • Access violation using LocalAlloc()

    - by PaulH
    I have a Visual Studio 2008 Windows Mobile 6 C++ application that is using an API that requires the use of LocalAlloc(). To make my life easier, I created an implementation of a standard allocator that uses LocalAlloc() internally: /// Standard library allocator implementation using LocalAlloc and LocalReAlloc /// to create a dynamically-sized array. /// Memory allocated by this allocator is never deallocated. That is up to the /// user. template< class T, int max_allocations > class LocalAllocator { public: typedef T value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; pointer address( reference r ) const { return &r; }; const_pointer address( const_reference r ) const { return &r; }; LocalAllocator() throw() : c_( NULL ) { }; /// Attempt to allocate a block of storage with enough space for n elements /// of type T. n>=1 && n<=max_allocations. /// If memory cannot be allocated, a std::bad_alloc() exception is thrown. pointer allocate( size_type n, const void* /*hint*/ = 0 ) { if( NULL == c_ ) { c_ = LocalAlloc( LPTR, sizeof( T ) * n ); } else { HLOCAL c = LocalReAlloc( c_, sizeof( T ) * n, LHND ); if( NULL == c ) LocalFree( c_ ); c_ = c; } if( NULL == c_ ) throw std::bad_alloc(); return reinterpret_cast< T* >( c_ ); }; /// Normally, this would release a block of previously allocated storage. /// Since that's not what we want, this function does nothing. void deallocate( pointer /*p*/, size_type /*n*/ ) { // no deallocation is performed. that is up to the user. }; /// maximum number of elements that can be allocated size_type max_size() const throw() { return max_allocations; }; private: /// current allocation point HLOCAL c_; }; // class LocalAllocator My application is using that allocator implementation in a std::vector< #define MAX_DIRECTORY_LISTING 512 std::vector< WIN32_FIND_DATA, LocalAllocator< WIN32_FIND_DATA, MAX_DIRECTORY_LISTING > > file_list; WIN32_FIND_DATA find_data = { 0 }; HANDLE find_file = ::FindFirstFile( folder.c_str(), &find_data ); if( NULL != find_file ) { do { // access violation here on the 257th item. file_list.push_back( find_data ); } while ( ::FindNextFile( find_file, &find_data ) ); ::FindClose( find_file ); } // data submitted to the API that requires LocalAlloc()'d array of WIN32_FIND_DATA structures SubmitData( &file_list.front() ); On the 257th item added to the vector<, the application crashes with an access violation: Data Abort: Thread=8e1b0400 Proc=8031c1b0 'rapiclnt' AKY=00008001 PC=03f9e3c8(coredll.dll+0x000543c8) RA=03f9ff04(coredll.dll+0x00055f04) BVA=21ae0020 FSR=00000007 First-chance exception at 0x03f9e3c8 in rapiclnt.exe: 0xC0000005: Access violation reading location 0x01ae0020. LocalAllocator::allocate is called with an n=512 and LocalReAlloc() succeeds. The actual Access Violation exception occurs within the std::vector< code after the LocalAllocator::allocate call: 0x03f9e3c8 0x03f9ff04 > MyLib.dll!stlp_std::priv::__copy_trivial(const void* __first = 0x01ae0020, const void* __last = 0x01b03020, void* __result = 0x01b10020) Line: 224, Byte Offsets: 0x3c C++ MyLib.dll!stlp_std::vector<_WIN32_FIND_DATAW,LocalAllocator<_WIN32_FIND_DATAW,512> >::_M_insert_overflow(_WIN32_FIND_DATAW* __pos = 0x01b03020, _WIN32_FIND_DATAW& __x = {...}, stlp_std::__true_type& __formal = {...}, unsigned int __fill_len = 1, bool __atend = true) Line: 112, Byte Offsets: 0x5c C++ MyLib.dll!stlp_std::vector<_WIN32_FIND_DATAW,LocalAllocator<_WIN32_FIND_DATAW,512> >::push_back(_WIN32_FIND_DATAW& __x = {...}) Line: 388, Byte Offsets: 0xa0 C++ MyLib.dll!Foo(unsigned long int cbInput = 16, unsigned char* pInput = 0x01a45620, unsigned long int* pcbOutput = 0x1dabfbbc, unsigned char** ppOutput = 0x1dabfbc0, IRAPIStream* __formal = 0x00000000) Line: 66, Byte Offsets: 0x1e4 C++ If anybody can point out what I may be doing wrong, I would appreciate it. Thanks, PaulH

    Read the article

  • Partial template specialization for more than one typename

    - by Matt Joiner
    In the following code, I want to consider functions (Ops) that have void return to instead be considered to return true. The type Retval, and the return value of Op are always matching. I'm not able to discriminate using the type traits shown here, and attempts to create a partial template specialization based on Retval have failed due the presence of the other template variables, Op and Args. How do I specialize only some variables in a template specialization without getting errors? Is there any other way to alter behaviour based on the return type of Op? template <typename Retval, typename Op, typename... Args> Retval single_op_wrapper( Retval const failval, char const *const opname, Op const op, Cpfs &cpfs, Args... args) { try { CallContext callctx(cpfs, opname); Retval retval; if (std::is_same<bool, Retval>::value) { (callctx.*op)(args...); retval = true; } else { retval = (callctx.*op)(args...); } assert(retval != failval); callctx.commit(cpfs); return retval; } catch (CpfsError const &exc) { cpfs_errno_set(exc.fserrno); LOGF(Info, "Failed with %s", cpfs_errno_str(exc.fserrno)); } return failval; }

    Read the article

  • how to cout a vector of structs (that's a class member, using extraction operator)

    - by Julz
    hi, i'm trying to simply cout the elements of a vector using an overloaded extraction operator. the vector contians Point, which is just a struct containing two doubles. the vector is a private member of a class called Polygon, so heres my Point.h #ifndef POINT_H #define POINT_H #include <iostream> #include <string> #include <sstream> struct Point { double x; double y; //constructor Point() { x = 0.0; y = 0.0; } friend std::istream& operator >>(std::istream& stream, Point &p) { stream >> std::ws; stream >> p.x; stream >> p.y; return stream; } friend std::ostream& operator << (std::ostream& stream, Point &p) { stream << p.x << p.y; return stream; } }; #endif my Polygon.h #ifndef POLYGON_H #define POLYGON_H #include "Segment.h" #include <vector> class Polygon { //insertion operator needs work friend std::istream & operator >> (std::istream &inStream, Polygon &vertStr); // extraction operator friend std::ostream & operator << (std::ostream &outStream, const Polygon &vertStr); public: //Constructor Polygon(const std::vector<Point> &theVerts); //Default Constructor Polygon(); //Copy Constructor Polygon(const Polygon &polyCopy); //Accessor/Modifier methods inline std::vector<Point> getVector() const {return vertices;} //Return number of Vector elements inline int sizeOfVect() const {return vertices.size();} //add Point elements to vector inline void setVertices(const Point &theVerts){vertices.push_back (theVerts);} private: std::vector<Point> vertices; }; and Polygon.cc using namespace std; #include "Polygon.h" // Constructor Polygon::Polygon(const vector<Point> &theVerts) { vertices = theVerts; } //Default Constructor Polygon::Polygon(){} istream & operator >> (istream &inStream, Polygon::Polygon &vertStr) { inStream >> ws; inStream >> vertStr; return inStream; } // extraction operator ostream & operator << (ostream &outStream, const Polygon::Polygon &vertStr) { outStream << vertStr.vertices << endl; return outStream; } i figure my Point insertion/extraction is right, i can insert and cout using it and i figure i should be able to just...... cout << myPoly[i] << endl; in my driver? (in a loop) or even... cout << myPoly[0] << endl; without a loop? i've tried all sorts of myPoly.at[i]; myPoly.vertices[i]; etc etc also tried all veriations in my extraction function outStream << vertStr.vertices[i] << endl; within loops, etc etc. when i just create a... vector<Point> myVect; in my driver i can just... cout << myVect.at(i) << endl; no problems. tried to find an answer for days, really lost and not through lack of trying!!! thanks in advance for any help. please excuse my lack of comments and formatting also there's bits and pieces missing but i really just need an answer to this problem thanks again

    Read the article

  • What's pcap_pkthdr there for?

    - by httpinterpret
    Code snippet from here: void packet_handler(u_char *param, const struct pcap_pkthdr *header, const u_char *pkt_data) { .... /* retireve the position of the ip header */ ih = (ip_header *) (pkt_data + 14); //length of ethernet header .... What's const struct pcap_pkthdr *header for, when do we need it, how is it populated (since there is no such info in the packet itself as below)?

    Read the article

  • What's the C strategy to "imitate" a C++ template ?

    - by Andrei Ciobanu
    After reading some examples on stackoverflow, and following some of the answers for my previous questions (1), I've eventually come with a "strategy" for this. I've come to this: 1) Have a declare section in the .h file. Here I will define the data-structure, and the accesing interface. Eg.: /** * LIST DECLARATION. (DOUBLE LINKED LIST) */ #define NM_TEMPLATE_DECLARE_LIST(type) \ typedef struct nm_list_elem_##type##_s { \ type data; \ struct nm_list_elem_##type##_s *next; \ struct nm_list_elem_##type##_s *prev; \ } nm_list_elem_##type ; \ typedef struct nm_list_##type##_s { \ unsigned int size; \ nm_list_elem_##type *head; \ nm_list_elem_##type *tail; \ int (*cmp)(const type e1, const type e2); \ } nm_list_##type ; \ \ nm_list_##type *nm_list_new_##type##_(int (*cmp)(const type e1, \ const type e2)); \ \ (...other functions ...) 2) Wrap the functions in the interface inside MACROS: /** * LIST INTERFACE */ #define nm_list(type) \ nm_list_##type #define nm_list_elem(type) \ nm_list_elem_##type #define nm_list_new(type,cmp) \ nm_list_new_##type##_(cmp) #define nm_list_delete(type, list, dst) \ nm_list_delete_##type##_(list, dst) #define nm_list_ins_next(type,list, elem, data) \ nm_list_ins_next_##type##_(list, elem, data) (...others...) 3) Implement the functions: /** * LIST FUNCTION DEFINITIONS */ #define NM_TEMPLATE_DEFINE_LIST(type) \ nm_list_##type *nm_list_new_##type##_(int (*cmp)(const type e1, \ const type e2)) \ {\ nm_list_##type *list = NULL; \ list = nm_alloc(sizeof(*list)); \ list->size = 0; \ list->head = NULL; \ list->tail = NULL; \ list->cmp = cmp; \ }\ void nm_list_delete_##type##_(nm_list_##type *list, \ void (*destructor)(nm_list_elem_##type elem)) \ { \ type data; \ while(nm_list_size(list)){ \ data = nm_list_rem_##type(list, tail); \ if(destructor){ \ destructor(data); \ } \ } \ nm_free(list); \ } \ (...others...) In order to use those constructs, I have to create two files (let's call them templates.c and templates.h) . In templates.h I will have to NM_TEMPLATE_DECLARE_LIST(int), NM_TEMPLATE_DECLARE_LIST(double) , while in templates.c I will need to NM_TEMPLATE_DEFINE_LIST(int) , NM_TEMPLATE_DEFINE_LIST(double) , in order to have the code behind a list of ints, doubles and so on, generated. By following this strategy I will have to keep all my "template" declarations in two files, and in the same time, I will need to include templates.h whenever I need the data structures. It's a very "centralized" solution. Do you know other strategy in order to "imitate" (at some point) templates in C++ ? Do you know a way to improve this strategy, in order to keep things in more decentralized manner, so that I won't need the two files: templates.c and templates.h ?

    Read the article

  • Silencing GCC warnings when using an "Uncopyable" class

    - by Kazade
    I have several classes that I don't want to be copyable, some of these classes have pointer data members. To make these classes uncopyable I privately inherit the following class template: template <class T> class Uncopyable { protected: Uncopyable() {} virtual ~Uncopyable() {} private: Uncopyable(const Uncopyable &); T & operator=(const T&); }; Which I used like so: class Entity : private Uncopyable<Entity> { } This works fine, however when I compile with -Weffc++ I still get the following warning: class Entity has pointer data members but does not override Entity(const Entity&) or operator=(const Entity&) Why is it still giving me this warning?

    Read the article

  • boost::enable_if class template method

    - by aaa
    I got class with template methods that looks at this: struct undefined {}; template<typename T> struct is_undefined : mpl::false_ {}; template<> struct is_undefined<undefined> : mpl::true_ {}; template<class C> struct foo { template<class F, class V> typename boost::disable_if<is_undefined<C> >::type apply(const F &f, const V &variables) { } template<class F, class V> typename boost::enable_if<is_undefined<C> >::type apply(const F &f, const V &variables) { } }; apparently, both templates are instantiated, resulting in compile time error. is instantiation of template methods different from instantiation of free functions? I have fixed this differently, but I would like to know what is up. Thank you

    Read the article

  • C++ Class Access Specifier Verbosity

    - by PolyTex
    A "traditional" C++ class (just some random declarations) might resemble the following: class Foo { public: Foo(); explicit Foo(const std::string&); ~Foo(); enum FooState { Idle, Busy, Unknown }; FooState GetState() const; bool GetBar() const; void SetBaz(int); private: struct FooPartialImpl; void HelperFunction1(); void HelperFunction2(); void HelperFunction3(); FooPartialImpl* m_impl; // smart ptr FooState m_state; bool m_bar; int m_baz; }; I always found this type of access level specification ugly and difficult to follow if the original programmer didn't organize his "access regions" neatly. Taking a look at the same snippet in a Java/C# style, we get: class Foo { public: Foo(); public: explicit Foo(const std::string&); public: ~Foo(); public: enum FooState { Idle, Busy, Unknown }; public: FooState GetState() const; public: bool GetBar() const; public: void SetBaz(int); private: struct FooPartialImpl; private: void HelperFunction1(); private: void HelperFunction2(); private: void HelperFunction3(); private: FooPartialImpl* m_impl; // smart ptr private: FooState m_state; private: bool m_bar; private: int m_baz; }; In my opinion, this is much easier to read in a header because the access specifier is right next to the target, and not a bunch of lines away. I found this especially true when working with header-only template code that wasn't separated into the usual "*.hpp/*.inl" pair. In that scenario, the size of the function implementations overpowered this small but important information. My question is simple and stems from the fact that I've never seen anyone else actively do this in their C++ code. Assuming that I don't have a "Class View" capable IDE, are there any obvious drawbacks to using this level of verbosity? Any other style recommendations are welcome!

    Read the article

  • C++ string sort like a human being?

    - by Walter Nissen
    I would like to sort alphanumeric strings the way a human being would sort them. I.e., "A2" comes before "A10", and "a" certainly comes before "Z"! Is there any way to do with without writing a mini-parser? Ideally it would also put "A1B1" before "A1B10". I see the question "Natural (human alpha-numeric) sort in Microsoft SQL 2005" with a possible answer, but it uses various library functions, as does "Sorting Strings for Humans with IComparer". Below is a test case that currently fails: #include <set> #include <iterator> #include <iostream> #include <vector> #include <cassert> template <typename T> struct LexicographicSort { inline bool operator() (const T& lhs, const T& rhs) const{ std::ostringstream s1,s2; s1 << toLower(lhs); s2 << toLower(rhs); bool less = s1.str() < s2.str(); std::cout<<s1.str()<<" "<<s2.str()<<" "<<less<<"\n"; return less; } inline std::string toLower(const std::string& str) const { std::string newString(""); for (std::string::const_iterator charIt = str.begin(); charIt!=str.end();++charIt) { newString.push_back(std::tolower(*charIt)); } return newString; } }; int main(void) { const std::string reference[5] = {"ab","B","c1","c2","c10"}; std::vector<std::string> referenceStrings(&(reference[0]), &(reference[5])); //Insert in reverse order so we know they get sorted std::set<std::string,LexicographicSort<std::string> > strings(referenceStrings.rbegin(), referenceStrings.rend()); std::cout<<"Items:\n"; std::copy(strings.begin(), strings.end(), std::ostream_iterator<std::string>(std::cout, "\n")); std::vector<std::string> sortedStrings(strings.begin(), strings.end()); assert(sortedStrings == referenceStrings); }

    Read the article

< Previous Page | 88 89 90 91 92 93 94 95 96 97 98 99  | Next Page >