Search Results

Search found 11675 results on 467 pages for 'parallel testing'.

Page 94/467 | < Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >

  • Simulating a missing gem in Ruby unit tests

    - by ktex
    Is there any way to simulate the absence of a gem for certain unit tests, short of actually uninstalling and then reinstalling the gem during testing? I am writing a command line utility, and want to make sure that my tests cover cases where a user may not have all of the gems that I support. For instance, I am using fsevents — a Leopard-specific package for monitoring filesystem events — that will never be present on other systems, as well as a growl gem that's purely optional.

    Read the article

  • Do you do unit tests for non production code?

    - by Ikaso
    I am interested in the following scenario specifically. Suppose you have team that writes production code and a team that writes automatic tests. The team that writes automatic tests has a dedicated framework intended to write the automatic tests. Should the testing team write unit tests for their framework although the framework is not used in production?

    Read the article

  • Unit tests and fixtures

    - by Wizzard
    We have a bunch of unit tests which test a lot of webpages and REST API services. Currently when our tests run it pulls from these pages live but this can take ages to run sometimes, and it also feels like the tests should be testing more of our code - not just relying on them being up and responding (if that makes sense..). Is it better practice to save a valid api response and with the unit tests load this in during setup? Thoughts?

    Read the article

  • How to manage IoC containers in tests?

    - by frosty
    I'm very new to testing and IoC containers and have two projects: MySite.Website (MVC) MySite.WebsiteTest Currently I have an IoC container in my website. Should I recreate another IoC container for my test? Or is there a way to use the IoC in both?

    Read the article

  • Building a life-critical System using Agile

    - by Ben Breen
    Looking at the general trend of comments in my question about Building an Aircraft using Agile, the biggest problem other than cost appears to be safety. Do people feel that it is not possible to build a safe system (or prove it is safe) using agile? Doesn’t all the iterative testing mitigate this? Is it likely that a piece of software developed using agile will never be as reliable as counterparts such as waterfall?

    Read the article

  • How deep are your unit tests?

    - by John Nolan
    The thing I've found about TDD is that its takes time to get your tests set up and being naturally lazy I always want to write as little code as possible. The first thing I seem do is test my constructor has set all the properties but is this overkill? My question is to what level of granularity do you write you unit tests at? ..and is there a case of testing too much?

    Read the article

  • Why aren't my JQuery .ajax requests being made in parallel?

    - by Ryan Olson
    I am trying to make two ajax requests in parallel using jQuery like this: var sources = ["source1", "source2"]; $(sources).each(function() { var source = this; $.ajax({ async: true, type: "POST", data: {post: "data", in: "here"}, url: "/my/url/" + source, success: function(data) { process_result(data); } }); }); I got the basic structure from this question, but my requests still aren't being made in parallel. "source1" takes a while to complete, and I can see on the server that the second request isn't made until the first is completed. As far as I can tell, I don't have any other active requests, so I don't think it's a problem with the maximum number of parallel requests for the browser. Am I missing something else here?

    Read the article

  • Windows Mobile Hopper Test Tool, FocusApp

    - by jan
    Hi recently I finished my WM6 Pro.6.1 application and happily learned that to put it into marketplace, it has to pass some tests. -Application Verifier -Microsoft Hopper Test Tool for Windows Mobile 6.0, 6.1, and 6.5 I use VS 2008 and windows mobile 6.1 and I couldnt run none of these tests, Hopeer tool has a FocusApp c++ application which I must build and run before testing, but its a VS 2005 project and I couldnt run it on VS 200..and without it I can't test anything. any ideas how can I build that for VS2008?

    Read the article

  • Which parallel sorting algorithm has the best average case performance?

    - by Craig P. Motlin
    Sorting takes O(n log n) in the serial case. If we have O(n) processors we would hope for a linear speedup. O(log n) parallel algorithms exist but they have a very high constant. They also aren't applicable on commodity hardware which doesn't have anywhere near O(n) processors. With p processors, reasonable algorithms should take O(n/p log n/p) time. In the serial case, quick sort has the best runtime complexity on average. A parallel quick sort algorithm is easy to implement (see here and here). However it doesn't perform well since the very first step is to partition the whole collection on a single core. I have found information on many parallel sort algorithms but so far I have not seen anything pointing to a clear winner. I'm looking to sort lists of 1 million to 100 million elements in a JVM language running on 8 to 32 cores.

    Read the article

  • Creating Tests at Runtime

    - by James Thigpen
    Are there any .NET testing frameworks which allow dynamic creation of tests without having to deal with a hokey Attribute syntax? Something like: foreach (var t in tests) { TestFx.Run(t.Name, t.TestDelegate); } But with the test reporting as you would expect... I could do something like this with RowTests et al, but that seems hokey.

    Read the article

  • How can I use foreach and fork together to do something in parallel?

    - by kaushalmodi
    This question is not UVM specific but the example that I am working on is UVM related. I have an array of agents in my UVM environment and I would like to launch a sequence on all of them in parallel. If I do the below: foreach (env.agt[i]) begin seq.start(env.agt[i].sqr); end , the sequence seq first executes on env.agt[0].sqr. Once that gets over, it then executes on env.agt[1].sqr and so on. I want to implement a foreach-fork statement so that seq is executed in parallel on all agt[i] sequencers. No matter how I order the fork-join and foreach, I am not able to achieve that. Can you please help me get that parallel sequence launching behavior? Thanks.

    Read the article

  • how can protected members of base class be accessed during unit test?

    - by amateur
    I am creating a unit test in mstest with rhino mocks. I have a class A that inherits class B. I am testing class A and create an instance of it for my test. The class it inherits, "B", has some protected methods and protected properties that I would like to access for the benefit of my tests. For example, validate that a protected property on my base class has the expected value. Any ideas how I might access these protected properties of class B during my test?

    Read the article

  • Is there an in memory database that supports the DATE function?

    - by Chris J
    Hi, I am doing some unit testing for a DAO that works with postgresql. Some of the SQL queries that my DAO uses involve the DATE function. Is there an in-memory database that supports functions similar to the ones that postgresql does? Currently I am looking for support for the DATE function however, I obviously can see myself using other functions in the future.

    Read the article

  • Looking for WebAii Framework free edition online - before the Telerik merge

    - by jdk
    Art of Test produced a nice UI testing tool for free -- WebAii Framework-- that I've been using to add client-side DOM unit tests to my projects. Recently they merged with Telerik and it's now a commercial product. From free to $1500 is suddenly very expensive. Does anybody know if the community edition is still available, or even the last free version is available for download? At least I can finish off with that.

    Read the article

  • How do I verify my EF4 Code-Only mappings?

    - by Tomas Lycken
    In NHibernate, there is a method doing something like ThisOrThat.VeryfyMappings() (I don't know the exact definition of it since it was a while ago I last tried NHibernate...) I recall seeing a blog post somewhere where the author showed how to do some similar testing in Entity Framework 4, but now I cant find it. So, how do I test my EF4 Code-Only mappings?

    Read the article

  • Application test recommendation

    - by Polaris
    I never use unitests in my apps . I know that exists many technologies for testing .NET based application. (For example NUnit). Which of this tools more comfortable and more understandable to use. Please can you show the good articles where can I find information about unitests and understand key situation where I must use them?

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • How to write a test for accounts controller for forms authenticate

    - by Anil Ali
    Trying to figure out how to adequately test my accounts controller. I am having problem testing the successful logon scenario. Issue 1) Am I missing any other tests.(I am testing the model validation attributes separately) Issue 2) Put_ReturnsOverviewRedirectToRouteResultIfLogonSuccessAndNoReturnUrlGiven() and Put_ReturnsRedirectResultIfLogonSuccessAndReturnUrlGiven() test are not passing. I have narrowed it down to the line where i am calling _membership.validateuser(). Even though during my mock setup of the service i am stating that i want to return true whenever validateuser is called, the method call returns false. Here is what I have gotten so far AccountController.cs [HandleError] public class AccountController : Controller { private IMembershipService _membershipService; public AccountController() : this(null) { } public AccountController(IMembershipService membershipService) { _membershipService = membershipService ?? new AccountMembershipService(); } [HttpGet] public ActionResult LogOn() { return View(); } [HttpPost] public ActionResult LogOn(LogOnModel model, string returnUrl) { if (ModelState.IsValid) { if (_membershipService.ValidateUser(model.UserName,model.Password)) { if (!String.IsNullOrEmpty(returnUrl)) { return Redirect(returnUrl); } return RedirectToAction("Index", "Overview"); } ModelState.AddModelError("*", "The user name or password provided is incorrect."); } return View(model); } } AccountServices.cs public interface IMembershipService { bool ValidateUser(string userName, string password); } public class AccountMembershipService : IMembershipService { public bool ValidateUser(string userName, string password) { throw new System.NotImplementedException(); } } AccountControllerFacts.cs public class AccountControllerFacts { public static AccountController GetAccountControllerForLogonSuccess() { var membershipServiceStub = MockRepository.GenerateStub<IMembershipService>(); var controller = new AccountController(membershipServiceStub); membershipServiceStub .Stub(x => x.ValidateUser("someuser", "somepass")) .Return(true); return controller; } public static AccountController GetAccountControllerForLogonFailure() { var membershipServiceStub = MockRepository.GenerateStub<IMembershipService>(); var controller = new AccountController(membershipServiceStub); membershipServiceStub .Stub(x => x.ValidateUser("someuser", "somepass")) .Return(false); return controller; } public class LogOn { [Fact] public void Get_ReturnsViewResultWithDefaultViewName() { // Arrange var controller = GetAccountControllerForLogonSuccess(); // Act var result = controller.LogOn(); // Assert Assert.IsType<ViewResult>(result); Assert.Empty(((ViewResult)result).ViewName); } [Fact] public void Put_ReturnsOverviewRedirectToRouteResultIfLogonSuccessAndNoReturnUrlGiven() { // Arrange var controller = GetAccountControllerForLogonSuccess(); var user = new LogOnModel(); // Act var result = controller.LogOn(user, null); var redirectresult = (RedirectToRouteResult) result; // Assert Assert.IsType<RedirectToRouteResult>(result); Assert.Equal("Overview", redirectresult.RouteValues["controller"]); Assert.Equal("Index", redirectresult.RouteValues["action"]); } [Fact] public void Put_ReturnsRedirectResultIfLogonSuccessAndReturnUrlGiven() { // Arrange var controller = GetAccountControllerForLogonSuccess(); var user = new LogOnModel(); // Act var result = controller.LogOn(user, "someurl"); var redirectResult = (RedirectResult) result; // Assert Assert.IsType<RedirectResult>(result); Assert.Equal("someurl", redirectResult.Url); } [Fact] public void Put_ReturnsViewIfInvalidModelState() { // Arrange var controller = GetAccountControllerForLogonFailure(); var user = new LogOnModel(); controller.ModelState.AddModelError("*","Invalid model state."); // Act var result = controller.LogOn(user, "someurl"); var viewResult = (ViewResult) result; // Assert Assert.IsType<ViewResult>(result); Assert.Empty(viewResult.ViewName); Assert.Same(user,viewResult.ViewData.Model); } [Fact] public void Put_ReturnsViewIfLogonFailed() { // Arrange var controller = GetAccountControllerForLogonFailure(); var user = new LogOnModel(); // Act var result = controller.LogOn(user, "someurl"); var viewResult = (ViewResult) result; // Assert Assert.IsType<ViewResult>(result); Assert.Empty(viewResult.ViewName); Assert.Same(user,viewResult.ViewData.Model); Assert.Equal(false,viewResult.ViewData.ModelState.IsValid); } } }

    Read the article

  • Run unit tests in Jenkins / Hudson in automated fashion from dev to build server

    - by Kevin Donde
    We are currently running a Jenkins (Hudson) CI server to build and package our .net web projects and database projects. Everything is working great but I want to start writing unit tests and then only passing the build if the unit tests pass. We are using the built in msbuild task to build the web project. With the following arguments ... MsBuild Version .NET 4.0 MsBuild Build File ./WebProjectFolder/WebProject.csproj Command Line Arguments ./target:Rebuild /p:Configuration=Release;DeployOnBuild=True;PackageLocation=".\obj\Release\WebProject.zip";PackageAsSingleFile=True We need to run automated tests over our code that run automatically when we build on our machines (post build event possibly) but also run when Jenkins does a build for that project. If you run it like this it doesn't build the unit tests project because the web project doesn't reference the test project. The test project would reference the web project but I'm pretty sure that would be butchering our automated builds as they exist primarily to build and package our deployments. Running these tests should be a step in that automated build and package process. Options ... Create two Jenkins jobs. one to run the tests ... if the tests pass another build is triggered which builds and packages the web project. Put the post build event on the test project. Build the solution instead of the project (make sure the solution contains the required tests) and put post build events on any test projects that would run the nunit console to run the tests. Then use the command line to copy all the required files from each of the bin and content directories into a package. Just build the test project in jenkins instead of the web project in jenkins. The test project would reference the web project (depending on what you're testing) and build it. Problems ... There's two jobs and not one. Two things to debug not one. One to see if the tests passed and one to build and compile the web project. The tests could pass but the build could fail if its something that isn't used by what you're testing ... This requires us to know exactly what goes into the build. Right now msbuild does it all for us. If you have multiple teams working on a project everytime an extra folder is created you have to worry about the possibly brittle command line statements. This seems like a corruption of our main purpose here. The tests should be a step in this process not the overriding most important thing in this process. I'm also not 100% sure that a triggered build is the same as a normal build does it do all the same things as a normal build. Move all the correct files in the same way move them all into the same directories etc. Initial problem. We want to run our tests whenever our main project is built. But adding a post build event to the web project that runs against the test project doesn't work because the web project doesn't reference the test project and won't trigger a build of this project. I could go on ... but that's enough ... We've spent about a week trying to make this work nicely but haven't succeeded. Feel free to edit this if you feel you can get a better response ...

    Read the article

  • Any task-control algorithms programming practices?

    - by NumberFour
    Hi, I was just wondering if there's any field which concerns the task-control programming (or at least that's the way I call it). For a better explanation of task-control consider the following scenario: An application (master-thread) waits for a command - which might be a particular action or a set of actions the application should perform. When a command is received the master-thread creates a task (= spawns an independent thread which actually does the action) and adds a record in it's task-list - thus keeping track of the time of execution, thread handle, task priority...etc. The master-thread awaits for any other incoming commands while taking care of all the tasks - e.g: kills tasks running too long, prioritizes tasks with higher priorities, kills a task on a request of another task, limits the number of currently running tasks, allows task scheduling, cleans finished tasks (threads) and so on. The model is pretty similar to what we can see in OS dealing with running processes. Are there any good practices programming such task-models or is there some theoretical work done in this field? Maybe my question is too generalized, but at least I wanted to know whether there are any experiences working on such models or if there's a better approach. Thanks for any answers.

    Read the article

  • Why aren't we programming on the GPU???

    - by Chris
    So I finally took the time to learn CUDA and get it installed and configured on my computer and I have to say, I'm quite impressed! Here's how it does rendering the Mandelbrot set at 1280 x 678 pixels on my home PC with a Q6600 and a GeForce 8800GTS (max of 1000 iterations): Maxing out all 4 CPU cores with OpenMP: 2.23 fps Running the same algorithm on my GPU: 104.7 fps And here's how fast I got it to render the whole set at 8192 x 8192 with a max of 1000 iterations: Serial implemetation on my home PC: 81.2 seconds All 4 CPU cores on my home PC (OpenMP): 24.5 seconds 32 processors on my school's super computer (MPI with master-worker): 1.92 seconds My home GPU (CUDA): 0.310 seconds 4 GPUs on my school's super computer (CUDA with static domain decomposition): 0.0547 seconds So here's my question - if we can get such huge speedups by programming the GPU instead of the CPU, why is nobody doing it??? I can think of so many things we could speed up like this, and yet I don't know of many commercial apps that are actually doing it. Also, what kinds of other speedups have you seen by offloading your computations to the GPU?

    Read the article

< Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >