Search Results

Search found 12044 results on 482 pages for 'foreach loop'.

Page 98/482 | < Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >

  • Question about Modal Dialog in Gtk application

    - by michael
    Hi, In Gtk application, there is 1 main loop which listens for events (e.g. mouse click, keyboard, etc). And when a modal dialog popup, the main loop is blocked until user clicks 'OK' in the dialog, right? (i.e. nothing will happen when user clicks on the main window). Is that correct? My question is how can firefox did its modal dialog so that it can: 1. when 1 have 2 Firefox windows 2. one of them has a modal dialog 3. other one is still interactive If both window shares the same gtk main loop, how is that possible? Please help me understanding this. Thank you.

    Read the article

  • What's an easy way of storing an array of numbers in Javascript that I can add/remove from?

    - by SLC
    In C# I would create a List then I could add and remove numbers very easily. Does identical functionality exist in Javascript, or do I have to write my own methods to search and remove items using a loop? var NumberList = []; NumberList.Add(17); NumberList.Add(25); NumberList.Remove(17); etc. I know I can use .push to add a number, so I guess it's really how to remove an individual number without using a loop that I'm looking for. edit: of course, if there's no other way then I'll use a loop!:)

    Read the article

  • Either .each do or .all isn't working how I think it should

    - by user1299656
    So whenever someone rates a shop, I want the Shop model to calculate its new average rating and store that in the database (instead of calculating the average every time someone looks at it). So I wrote the segment of code that follows, and it doesn't work. The loop always iterates exactly once, no matter how many shop_ratings in the database exist that have the shop's id as their shop_id. I played around with it a bit and found that every time a new rating is submitted the function is called successfully, but it only runs the loop once and sets the average to what the first rating was. I don't know if the "query" that sets the ratings variable is wrong or if it's the loop that's wrong. class Shop < ActiveRecord::Base has_many :shop_ratings attr_accessible :name, :latitude, :longitude validates_presence_of :name validates_presence_of :latitude validates_presence_of :longitude def distance_to(lat, long) return (self.longitude - long) + (self.latitude - lat) end def find_average total = 0 count = 0 ratings = ShopRating.all(:conditions => {:shop_id => id}) ratings.each do |submission| total = total + submission.rating count = count + 1 end update_attribute :average_rating, total/count end end

    Read the article

  • how to exit recursive math formula and still get an answer

    - by calccrypto
    i wrote this python code, which from wolfram alpha says that its supposed to return the factorial of any positive value (i probably messed up somewhere), integer or not: from math import * def double_factorial(n): if int(n) == n: n = int(n) if [0,1].__contains__(n): return 1 a = (n&1) + 2 b = 1 while a<=n: b*=a a+= 2 return float(b) else: return factorials(n/2) * 2**(n/2) *(pi/2)**(.25 *(-1+cos(n * pi))) def factorials(n): return pi**(.5 * sin(n*pi)**2) * 2**(-n + .25 * (-1 + cos(2*n*pi))) * double_factorial(2*n) the problem is , say i input pi to 6 decimal places. 2*n will not become a float with 0 as its decimals any time soon, so the equation turns out to be pi**(.5 * sin(n*pi)**2) * 2**(-n + .25 * (-1 + cos(2*n*pi))) * double_factorial(loop(loop(loop(...))))) how would i stop the recursion and still get the answer? ive had suggestions to add an index to the definitions or something, but the problem is, if the code stops when it reaches an index, there is still no answer to put back into the previous "nests" or whatever you call them

    Read the article

  • How can i initialize an array without knowing it size?

    - by Sara
    I have a situation where i have to apply a criteria on an input array and reuturn another array as output which will have smaller size based upon the filtering criteria. Now problem is i do not know the size of filtered results, so i can not initialize the array with specific value. And i do not want it to be large size will null values because i am using array.length; later on. One way is to first loop the original input array and set a counter, and then make another loop with that counter length and initialize and fill this array[]. But is there anyway to do the job in just one loop?

    Read the article

  • Is it a good idea to apply some basic macros to simplify code in a large project?

    - by DoctorT
    I've been working on a foundational c++ library for some time now, and there are a variety of ideas I've had that could really simplify the code writing and managing process. One of these is the concept of introducing some macros to help simplify statements that appear very often, but are a bit more complicated than should be necessary. For example, I've come up with this basic macro to simplify the most common type of for loop: #define loop(v,n) for(unsigned long v=0; v<n; ++v) This would enable you to replace those clunky for loops you see so much of: for (int i = 0, i < max_things; i++) With something much easier to write, and even slightly more efficient: loop (i, max_things) Is it a good idea to use conventions like this? Are there any problems you might run into with different types of compilers? Would it just be too confusing for someone unfamiliar with the macro(s)?

    Read the article

  • Asign Id's dynamically to DOM elements with javascript.

    - by jnkrois
    Hello everybody, I just have a quick question about how to generate id's on-the-fly for HTML elements. So far I've tried a few things, I started with a "for" loop, I already know how many elements I have to generate Id's for, in this case I have an "ul" with 6 "li". My "for" loop is as follows: var items = $("ul li").length; for(var i = 0; i <= items; i++){ $("ul li").attr("id", "number" + i); } "number" would be the new id concatenated with "i", so I get a different Id for each "li". As you can probably tell, this does not work, because I end up with the same Id for each "li": in this case I get <li id="number6">... </li> for all the "li" elments in the "ul". I tried a "while" loop and ".each()" with jQuery but I get the exact same thing. Any help would be appreciated.

    Read the article

  • Thread Jobs in Java

    - by Bragaadeesh
    Hi, I want to spawn 200 threads simultaneously in Java. What I'm doing right now is running into a loop and creating 200 threads and starting them. After these 200 gets completed, I want to spawn another 200 set of threads and so on. The gist here is that the first 200 threads I spawned need to be FINISHED before spawning the next set. I tried the code below, but its not working for(int i=0;i<200;i++){ Thread myThread = new Thread(runnableInstance); myThread.start(); } for(int i=0;i<200;i++){ Thread myThread = new Thread(runnableInstance); myThread.start(); } Note: I have intentionally put the for loop Twice, but the desired effect I intend is not happening simply because the second for loop is executed before the first set of threads end their execution. Please advise

    Read the article

  • Return multiple results using dynamic sql (postgresql 8.2)

    - by precose
    I want to loop through schemas and get a result set that looks like this: Count 5 834 345 34 984 However, I can't get it to return anything using dynamic sql...I've tried everything but 8.2 is being a real pain. Here is my function: CREATE OR REPLACE FUNCTION dwh.adam_test4() RETURNS void LANGUAGE plpgsql AS $function$ DECLARE myschema text; rec RECORD; BEGIN FOR myschema IN select distinct c.table_schema, d.p_id from information_schema.tables t inner join information_schema.columns c on (t.table_schema = t.table_schema and t.table_name = c.table_name) join dwh.sgmt_clients d on c.table_schema = lower(d.userid) where c.table_name = 'fact_members' and c.column_name = 'debit_card' and t.table_schema NOT LIKE 'pg_%' and t.table_schema NOT IN ('information_schema', 'ad_delivery', 'dwh', 'users', 'wand', 'ttd') order by table_schema LOOP EXECUTE 'select count(ucic) from '|| myschema || '.' ||'fact_members where debit_card = ''yes''' into rec; RETURN rec; END LOOP; END $function$

    Read the article

  • Dynamically changing databases in SQL Server 2000

    - by spuppett
    At work we have a number of databases that we need to do the same operations on. I would like to write 1 SP that would loop over operations and set the database at the beginning of the loop (example to follow). I've tried sp_executesql('USE ' + @db_id) but that only sets the DB for the scope of that stored procedure. I don't really want to loop with hard coded database names because we need to do similar things in many different places and it's tough to remember where things need to change if we add another DB. Any thoughts Example: DECLARE zdb_loop CURSOR FAST_FORWARD FOR SELECT distinct db_id from DBS order by db_id OPEN zdb_loop FETCH NEXT FROM zdb_loop INTO @db_id WHILE @@FETCH_STATUS = 0 BEGIN USE @db_id --Do stuff against 3 or 4 different DBs FETCH NEXT FROM zdb_loop INTO @db_id END CLOSE zdb_loop DEALLOCATE zdb_loop

    Read the article

  • Recursively determine average value

    - by theva
    I have to calculate an average value of my simulation. The simulation is ongoing and I want (for each iteration) to print the current average value. How do I do that? I tried the code below (in the loop), but I do not think that the right value is calculated... int average = 0; int newValue; // Continuously updated value. if(average == 0) { average = newValue; } average = (average + newValue)/2; I also taught about store each newValue in an array and for each iteration summarize the whole array and do the calculation. However, I don't think that's a good solution, because the loop is an infinity loop so I can't really determine the size of the array. There is also a possibility that I am thinking too much and that the code above is actually correct, but I don't think so...

    Read the article

  • Writing a script for reading many .csv files with similar filenames

    - by wahalulu
    I have several .csv files with similar filenames except a numeric month (i.e. 03_data.csv, 04_data.csv, 05_data.csv, etc.) that I'd like to read into R. I have two questions: Is there a function in R similar to MATLAB's varname and assignin that will let me create/declare a variable name within a function or loop that will allow me to read the respective .csv file - i.e. 03_data.csv into 03_data data.frame, etc.? I want to write a quick loop to do this because the filenames are similar. As an alternative, is it better to create one dataframe with the first file and then append the rest using a for loop? How would I do that?

    Read the article

  • What is better: to delete pointer or set it with a new value?

    - by user63898
    Hi simple question in c++ , say i have a loop and i have function that returns pointer to item so i have to define inner loop pointer so my question is what to do with the pointer inside the loop , delete it ? or to set it with new value is good for example: for(int i =0;i<count();i++) { ptrTmp* ptr = getItemPtr(); // do somthing with the ptr ... // what to do here ? to delete the poinetr or not? delete ptr; // ?? }

    Read the article

  • in c++ what is bettr to delete poiner or set it with new value?

    - by user63898
    Hi simple question in c++ , say i have a loop and i have function that returns pointer to item so i have to define inner loop pointer so my question is what to do with the pointer inside the loop , delete it ? or to set it with new value is good for example: for(int i =0;i<count();i++) { ptrTmp* ptr = getItemPtr(); // do somthing with the ptr ... // what to do here ? to delete the poinetr or not? delete ptr; // ?? }

    Read the article

  • Auto blocking attacking IP address

    - by dong
    This is to share my PowerShell code online. I original asked this question on MSDN forum (or TechNet?) here: http://social.technet.microsoft.com/Forums/en-US/winserversecurity/thread/f950686e-e3f8-4cf2-b8ec-2685c1ed7a77 In short, this is trying to find attacking IP address then add it into Firewall block rule. So I suppose: 1, You are running a Windows Server 2008 facing the Internet. 2, You need to have some port open for service, e.g. TCP 21 for FTP; TCP 3389 for Remote Desktop. You can see in my code I’m only dealing with these two since that’s what I opened. You can add further port number if you like, but the way to process might be different with these two. 3, I strongly suggest you use STRONG password and follow all security best practices, this ps1 code is NOT for adding security to your server, but reduce the nuisance from brute force attack, and make sys admin’s life easier: i.e. your FTP log won’t hold megabytes of nonsense, your Windows system log will not roll back and only can tell you what happened last month. 4, You are comfortable with setting up Windows Firewall rules, in my code, my rule has a name of “MY BLACKLIST”, you need to setup a similar one, and set it to BLOCK everything. 5, My rule is dangerous because it has the risk to block myself out as well. I do have a backup plan i.e. the DELL DRAC5 so that if that happens, I still can remote console to my server and reset the firewall. 6, By no means the code is perfect, the coding style, the use of PowerShell skills, the hard coded part, all can be improved, it’s just that it’s good enough for me already. It has been running on my server for more than 7 MONTHS. 7, Current code still has problem, I didn’t solve it yet, further on this point after the code. :)    #Dong Xie, March 2012  #my simple code to monitor attack and deal with it  #Windows Server 2008 Logon Type  #8: NetworkCleartext, i.e. FTP  #10: RemoteInteractive, i.e. RDP    $tick = 0;  "Start to run at: " + (get-date);    $regex1 = [regex] "192\.168\.100\.(?:101|102):3389\s+(\d+\.\d+\.\d+\.\d+)";  $regex2 = [regex] "Source Network Address:\t(\d+\.\d+\.\d+\.\d+)";    while($True) {   $blacklist = @();     "Running... (tick:" + $tick + ")"; $tick+=1;    #Port 3389  $a = @()  netstat -no | Select-String ":3389" | ? { $m = $regex1.Match($_); `    $ip = $m.Groups[1].Value; if ($m.Success -and $ip -ne "10.0.0.1") {$a = $a + $ip;} }  if ($a.count -gt 0) {    $ips = get-eventlog Security -Newest 1000 | Where-Object {$_.EventID -eq 4625 -and $_.Message -match "Logon Type:\s+10"} | foreach { `      $m = $regex2.Match($_.Message); $ip = $m.Groups[1].Value; $ip; } | Sort-Object | Tee-Object -Variable list | Get-Unique    foreach ($ip in $a) { if ($ips -contains $ip) {      if (-not ($blacklist -contains $ip)) {        $attack_count = ($list | Select-String $ip -SimpleMatch | Measure-Object).count;        "Found attacking IP on 3389: " + $ip + ", with count: " + $attack_count;        if ($attack_count -ge 20) {$blacklist = $blacklist + $ip;}      }      }    }  }      #FTP  $now = (Get-Date).AddMinutes(-5); #check only last 5 mins.     #Get-EventLog has built-in switch for EventID, Message, Time, etc. but using any of these it will be VERY slow.  $count = (Get-EventLog Security -Newest 1000 | Where-Object {$_.EventID -eq 4625 -and $_.Message -match "Logon Type:\s+8" -and `              $_.TimeGenerated.CompareTo($now) -gt 0} | Measure-Object).count;  if ($count -gt 50) #threshold  {     $ips = @();     $ips1 = dir "C:\inetpub\logs\LogFiles\FPTSVC2" | Sort-Object -Property LastWriteTime -Descending `       | select -First 1 | gc | select -Last 200 | where {$_ -match "An\+error\+occured\+during\+the\+authentication\+process."} `        | Select-String -Pattern "(\d+\.\d+\.\d+\.\d+)" | select -ExpandProperty Matches | select -ExpandProperty value | Group-Object `        | where {$_.Count -ge 10} | select -ExpandProperty Name;       $ips2 = dir "C:\inetpub\logs\LogFiles\FTPSVC3" | Sort-Object -Property LastWriteTime -Descending `       | select -First 1 | gc | select -Last 200 | where {$_ -match "An\+error\+occured\+during\+the\+authentication\+process."} `        | Select-String -Pattern "(\d+\.\d+\.\d+\.\d+)" | select -ExpandProperty Matches | select -ExpandProperty value | Group-Object `        | where {$_.Count -ge 10} | select -ExpandProperty Name;     $ips += $ips1; $ips += $ips2; $ips = $ips | where {$_ -ne "10.0.0.1"} | Sort-Object | Get-Unique;         foreach ($ip in $ips) {       if (-not ($blacklist -contains $ip)) {        "Found attacking IP on FTP: " + $ip;        $blacklist = $blacklist + $ip;       }     }  }        #Firewall change <# $current = (netsh advfirewall firewall show rule name="MY BLACKLIST" | where {$_ -match "RemoteIP"}).replace("RemoteIP:", "").replace(" ","").replace("/255.255.255.255",""); #inside $current there is no \r or \n need remove. foreach ($ip in $blacklist) { if (-not ($current -match $ip) -and -not ($ip -like "10.0.0.*")) {"Adding this IP into firewall blocklist: " + $ip; $c= 'netsh advfirewall firewall set rule name="MY BLACKLIST" new RemoteIP="{0},{1}"' -f $ip, $current; Invoke-Expression $c; } } #>    foreach ($ip in $blacklist) {    $fw=New-object –comObject HNetCfg.FwPolicy2; # http://blogs.technet.com/b/jamesone/archive/2009/02/18/how-to-manage-the-windows-firewall-settings-with-powershell.aspx    $myrule = $fw.Rules | where {$_.Name -eq "MY BLACKLIST"} | select -First 1; # Potential bug here?    if (-not ($myrule.RemoteAddresses -match $ip) -and -not ($ip -like "10.0.0.*"))      {"Adding this IP into firewall blocklist: " + $ip;         $myrule.RemoteAddresses+=(","+$ip);      }  }    Wait-Event -Timeout 30 #pause 30 secs    } # end of top while loop.   Further points: 1, I suppose the server is listening on port 3389 on server IP: 192.168.100.101 and 192.168.100.102, you need to replace that with your real IP. 2, I suppose you are Remote Desktop to this server from a workstation with IP: 10.0.0.1. Please replace as well. 3, The threshold for 3389 attack is 20, you don’t want to block yourself just because you typed your password wrong 3 times, you can change this threshold by your own reasoning. 4, FTP is checking the log for attack only to the last 5 mins, you can change that as well. 5, I suppose the server is serving FTP on both IP address and their LOG path are C:\inetpub\logs\LogFiles\FPTSVC2 and C:\inetpub\logs\LogFiles\FPTSVC3. Change accordingly. 6, FTP checking code is only asking for the last 200 lines of log, and the threshold is 10, change as you wish. 7, the code runs in a loop, you can set the loop time at the last line. To run this code, copy and paste to your editor, finish all the editing, get it to your server, and open an CMD window, then type powershell.exe –file your_powershell_file_name.ps1, it will start running, you can Ctrl-C to break it. This is what you see when it’s running: This is when it detected attack and adding the firewall rule: Regarding the design of the code: 1, There are many ways you can detect the attack, but to add an IP into a block rule is no small thing, you need to think hard before doing it, reason for that may include: You don’t want block yourself; and not blocking your customer/user, i.e. the good guy. 2, Thus for each service/port, I double check. For 3389, first it needs to show in netstat.exe, then the Event log; for FTP, first check the Event log, then the FTP log files. 3, At three places I need to make sure I’m not adding myself into the block rule. –ne with single IP, –like with subnet.   Now the final bit: 1, The code will stop working after a while (depends on how busy you are attacked, could be weeks, months, or days?!) It will throw Red error message in CMD, don’t Panic, it does no harm, but it also no longer blocking new attack. THE REASON is not confirmed with MS people: the COM object to manage firewall, you can only give it a list of IP addresses to the length of around 32KB I think, once it reaches the limit, you get the error message. 2, This is in fact my second solution to use the COM object, the first solution is still in the comment block for your reference, which is using netsh, that fails because being run from CMD, you can only throw it a list of IP to 8KB. 3, I haven’t worked the workaround yet, some ideas include: wrap that RemoteAddresses setting line with error checking and once it reaches the limit, use the newly detected IP to be the list, not appending to it. This basically reset your block rule to ground zero and lose the previous bad IPs. This does no harm as it sounds, because given a certain period has passed, any these bad IPs still not repent and continue the attack to you, it only got 30 seconds or 20 guesses of your password before you block it again. And there is the benefit that the bad IP may turn back to the good hands again, and you are not blocking a potential customer or your CEO’s home pc because once upon a time, it’s a zombie. Thus the ZEN of blocking: never block any IP for too long. 4, But if you insist to block the ugly forever, my other ideas include: You call MS support, ask them how can we set an arbitrary length of IP addresses in a rule; at least from my experiences at the Forum, they don’t know and they don’t care, because they think the dynamic blocking should be done by some expensive hardware. Or, from programming perspective, you can create a new rule once the old is full, then you’ll have MY BLACKLIST1, MY  BLACKLIST2, MY BLACKLIST3, … etc. Once in a while you can compile them together and start a business to sell your blacklist on the market! Enjoy the code! p.s. (PowerShell is REALLY REALLY GREAT!)

    Read the article

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • TFS 2010 SDK: Smart Merge - Programmatically Create your own Merge Tool

    - by Tarun Arora
    Technorati Tags: Team Foundation Server 2010,TFS SDK,TFS API,TFS Merge Programmatically,TFS Work Items Programmatically,TFS Administration Console,ALM   The information available in the Merge window in Team Foundation Server 2010 is very important in the decision making during the merging process. However, at present the merge window shows very limited information, more that often you are interested to know the work item, files modified, code reviewer notes, policies overridden, etc associated with the change set. Our friends at Microsoft are working hard to change the game again with vNext, but because at present the merge window is a model window you have to cancel the merge process and go back one after the other to check the additional information you need. If you can relate to what i am saying, you will enjoy this blog post! I will show you how to programmatically create your own merging window using the TFS 2010 API. A few screen shots of the WPF TFS 2010 API – Custom Merging Application that we will be creating programmatically, Excited??? Let’s start coding… 1. Get All Team Project Collections for the TFS Server You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetAllTeamProjectCollections() 2: { 3: TfsConfigurationServer configurationServer = 4: TfsConfigurationServerFactory. 5: GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 6: 7: CatalogNode catalogNode = configurationServer.CatalogNode; 8: return catalogNode.QueryChildren(new Guid[] 9: { CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: } 2. Get All Team Projects for the selected Team Project Collection You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetTeamProjects(string instanceId) 2: { 3: ReadOnlyCollection<CatalogNode> teamProjects = null; 4: 5: TfsConfigurationServer configurationServer = 6: TfsConfigurationServerFactory.GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 7: 8: CatalogNode catalogNode = configurationServer.CatalogNode; 9: var teamProjectCollections = catalogNode.QueryChildren(new Guid[] {CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: 12: foreach (var teamProjectCollection in teamProjectCollections) 13: { 14: if (string.Compare(teamProjectCollection.Resource.Properties["InstanceId"], instanceId, true) == 0) 15: { 16: teamProjects = teamProjectCollection.QueryChildren(new Guid[] { CatalogResourceTypes.TeamProject }, false, 17: CatalogQueryOptions.None); 18: } 19: } 20: 21: return teamProjects; 22: } 3. Get All Branches with in a Team Project programmatically I will be passing the name of the Team Project for which i want to retrieve all the branches. When consuming the ‘Version Control Service’ you have the method QueryRootBranchObjects, you need to pass the recursion type => none, one, full. Full implies you are interested in all branches under that root branch. 1: public static List<BranchObject> GetParentBranch(string projectName) 2: { 3: var branches = new List<BranchObject>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<teamProjectName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var allBranches = versionControl.QueryRootBranchObjects(RecursionType.Full); 9: 10: foreach (var branchObject in allBranches) 11: { 12: if (branchObject.Properties.RootItem.Item.ToUpper().Contains(projectName.ToUpper())) 13: { 14: branches.Add(branchObject); 15: } 16: } 17: 18: return branches; 19: } 4. Get All Branches associated to the Parent Branch Programmatically Now that we have the parent branch, it is important to retrieve all child branches of that parent branch. Lets see how we can achieve this using the TFS API. 1: public static List<ItemIdentifier> GetChildBranch(string parentBranch) 2: { 3: var branches = new List<ItemIdentifier>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var i = new ItemIdentifier(parentBranch); 9: var allBranches = 10: versionControl.QueryBranchObjects(i, RecursionType.None); 11: 12: foreach (var branchObject in allBranches) 13: { 14: foreach (var childBranche in branchObject.ChildBranches) 15: { 16: branches.Add(childBranche); 17: } 18: } 19: 20: return branches; 21: } 5. Get Merge candidates between two branches Programmatically Now that we have the parent and the child branch that we are interested to perform a merge between we will use the method ‘GetMergeCandidates’ in the namespace ‘Microsoft.TeamFoundation.VersionControl.Client’ => http://msdn.microsoft.com/en-us/library/bb138934(v=VS.100).aspx 1: public static MergeCandidate[] GetMergeCandidates(string fromBranch, string toBranch) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetMergeCandidates(fromBranch, toBranch, RecursionType.Full); 7: } 6. Get changeset details Programatically Now that we have the changeset id that we are interested in, we can get details of the changeset. The Changeset object contains the properties => http://msdn.microsoft.com/en-us/library/microsoft.teamfoundation.versioncontrol.client.changeset.aspx - Changes: Gets or sets an array of Change objects that comprise this changeset. - CheckinNote: Gets or sets the check-in note of the changeset. - Comment: Gets or sets the comment of the changeset. - PolicyOverride: Gets or sets the policy override information of this changeset. - WorkItems: Gets an array of work items that are associated with this changeset. 1: public static Changeset GetChangeSetDetails(int changeSetId) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetChangeset(changeSetId); 7: } 7. Possibilities In future posts i will try and extend this idea to explore further possibilities, but few features that i am sure will further help during the merge decision making process would be, - View changed files - Compare modified file with current/previous version - Merge Preview - Last Merge date Any other features that you can think of?

    Read the article

  • Improving HTML scrapper efficiency with pcntl_fork()

    - by Michael Pasqualone
    With the help from two previous questions, I now have a working HTML scrapper that feeds product information into a database. What I am now trying to do is improve efficiently by wrapping my brain around with getting my scrapper working with pcntl_fork. If I split my php5-cli script into 10 separate chunks, I improve total runtime by a large factor so I know I am not i/o or cpu bound but just limited by the linear nature of my scraping functions. Using code I've cobbled together from multiple sources, I have this working test: <?php libxml_use_internal_errors(true); ini_set('max_execution_time', 0); ini_set('max_input_time', 0); set_time_limit(0); $hrefArray = array("http://slashdot.org", "http://slashdot.org", "http://slashdot.org", "http://slashdot.org"); function doDomStuff($singleHref,$childPid) { $html = new DOMDocument(); $html->loadHtmlFile($singleHref); $xPath = new DOMXPath($html); $domQuery = '//div[@id="slogan"]/h2'; $domReturn = $xPath->query($domQuery); foreach($domReturn as $return) { $slogan = $return->nodeValue; echo "Child PID #" . $childPid . " says: " . $slogan . "\n"; } } $pids = array(); foreach ($hrefArray as $singleHref) { $pid = pcntl_fork(); if ($pid == -1) { die("Couldn't fork, error!"); } elseif ($pid > 0) { // We are the parent $pids[] = $pid; } else { // We are the child $childPid = posix_getpid(); doDomStuff($singleHref,$childPid); exit(0); } } foreach ($pids as $pid) { pcntl_waitpid($pid, $status); } // Clear the libxml buffer so it doesn't fill up libxml_clear_errors(); Which raises the following questions: 1) Given my hrefArray contains 4 urls - if the array was to contain say 1,000 product urls this code would spawn 1,000 child processes? If so, what is the best way to limit the amount of processes to say 10, and again 1,000 urls as an example split the child work load to 100 products per child (10 x 100). 2) I've learn that pcntl_fork creates a copy of the process and all variables, classes, etc. What I would like to do is replace my hrefArray variable with a DOMDocument query that builds the list of products to scrape, and then feeds them off to child processes to do the processing - so spreading the load across 10 child workers. My brain is telling I need to do something like the following (obviously this doesn't work, so don't run it): <?php libxml_use_internal_errors(true); ini_set('max_execution_time', 0); ini_set('max_input_time', 0); set_time_limit(0); $maxChildWorkers = 10; $html = new DOMDocument(); $html->loadHtmlFile('http://xxxx'); $xPath = new DOMXPath($html); $domQuery = '//div[@id=productDetail]/a'; $domReturn = $xPath->query($domQuery); $hrefsArray[] = $domReturn->getAttribute('href'); function doDomStuff($singleHref) { // Do stuff here with each product } // To figure out: Split href array into $maxChilderWorks # of workArray1, workArray2 ... workArray10. $pids = array(); foreach ($workArray(1,2,3 ... 10) as $singleHref) { $pid = pcntl_fork(); if ($pid == -1) { die("Couldn't fork, error!"); } elseif ($pid > 0) { // We are the parent $pids[] = $pid; } else { // We are the child $childPid = posix_getpid(); doDomStuff($singleHref); exit(0); } } foreach ($pids as $pid) { pcntl_waitpid($pid, $status); } // Clear the libxml buffer so it doesn't fill up libxml_clear_errors(); But what I can't figure out is how to build my hrefsArray[] in the master/parent process only and feed it off to the child process. Currently everything I've tried causes loops in the child processes. I.e. my hrefsArray gets built in the master, and in each subsequent child process. I am sure I am going about this all totally wrong, so would greatly appreciate just general nudge in the right direction.

    Read the article

  • Adding multiple data importers support to web applications

    - by DigiMortal
    I’m building web application for customer and there is requirement that users must be able to import data in different formats. Today we will support XLSX and ODF as import formats and some other formats are waiting. I wanted to be able to add new importers on the fly so I don’t have to deploy web application again when I add new importer or change some existing one. In this posting I will show you how to build generic importers support to your web application. Importer interface All importers we use must have something in common so we can easily detect them. To keep things simple I will use interface here. public interface IMyImporter {     string[] SupportedFileExtensions { get; }     ImportResult Import(Stream fileStream, string fileExtension); } Our interface has the following members: SupportedFileExtensions – string array of file extensions that importer supports. This property helps us find out what import formats are available and which importer to use with given format. Import – method that does the actual importing work. Besides file we give in as stream we also give file extension so importer can decide how to handle the file. It is enough to get started. When building real importers I am sure you will switch over to abstract base class. Importer class Here is sample importer that imports data from Excel and Word documents. Importer class with no implementation details looks like this: public class MyOpenXmlImporter : IMyImporter {     public string[] SupportedFileExtensions     {         get { return new[] { "xlsx", "docx" }; }     }     public ImportResult Import(Stream fileStream, string extension)     {         // ...     } } Finding supported import formats in web application Now we have importers created and it’s time to add them to web application. Usually we have one page or ASP.NET MVC controller where we need importers. To this page or controller we add the following method that uses reflection to find all classes that implement our IMyImporter interface. private static string[] GetImporterFileExtensions() {     var types = from a in AppDomain.CurrentDomain.GetAssemblies()                 from t in a.GetTypes()                 where t.GetInterfaces().Contains(typeof(IMyImporter))                 select t;       var extensions = new Collection<string>();     foreach (var type in types)     {         var instance = (IMyImporter)type.InvokeMember(null,                        BindingFlags.CreateInstance, null, null, null);           foreach (var extension in instance.SupportedFileExtensions)         {             if (extensions.Contains(extension))                 continue;               extensions.Add(extension);         }     }       return extensions.ToArray(); } This code doesn’t look nice and is far from optimal but it works for us now. It is possible to improve performance of web application if we cache extensions and their corresponding types to some static dictionary. We have to fill it only once because our application is restarted when something changes in bin folder. Finding importer by extension When user uploads file we need to detect the extension of file and find the importer that supports given extension. We add another method to our page or controller that uses reflection to return us importer instance or null if extension is not supported. private static IMyImporter GetImporterForExtension(string extensionToFind) {     var types = from a in AppDomain.CurrentDomain.GetAssemblies()                 from t in a.GetTypes()                 where t.GetInterfaces().Contains(typeof(IMyImporter))                 select t;     foreach (var type in types)     {         var instance = (IMyImporter)type.InvokeMember(null,                        BindingFlags.CreateInstance, null, null, null);           if (instance.SupportedFileExtensions.Contains(extensionToFind))         {             return instance;         }     }       return null; } Here is example ASP.NET MVC controller action that accepts uploaded file, finds importer that can handle file and imports data. Again, this is sample code I kept minimal to better illustrate how things work. public ActionResult Import(MyImporterModel model) {     var file = Request.Files[0];     var extension = Path.GetExtension(file.FileName).ToLower();     var importer = GetImporterForExtension(extension.Substring(1));     var result = importer.Import(file.InputStream, extension);     if (result.Errors.Count > 0)     {         foreach (var error in result.Errors)             ModelState.AddModelError("file", error);           return Import();     }     return RedirectToAction("Index"); } Conclusion That’s it. Using couple of ugly methods and one simple interface we were able to add importers support to our web application. Example code here is not perfect but it works. It is possible to cache mappings between file extensions and importer types to some static variable because changing of these mappings means that something is changed in bin folder of web application and web application is restarted in this case anyway.

    Read the article

  • A* PathFinding Poor Performance

    - by RedShft
    After debugging for a few hours, the algorithm seems to be working. Right now to check if it works i'm checking the end node position to the currentNode position when the while loop quits. So far the values look correct. The problem is, the farther I get from the NPC, who is current stationary, the worse the performance gets. It gets to a point where the game is unplayable less than 10 fps. My current PathGraph is 2500 nodes, which I believe is pretty small, right? Any ideas on how to improve performance? struct Node { bool walkable; //Whether this node is blocked or open vect2 position; //The tile's position on the map in pixels int xIndex, yIndex; //The index values of the tile in the array Node*[4] connections; //An array of pointers to nodes this current node connects to Node* parent; int gScore; int hScore; int fScore; } class AStar { private: SList!Node openList; SList!Node closedList; //Node*[4] connections; //The connections of the current node; Node currentNode; //The current node being processed Node[] Path; //The path found; const int connectionCost = 10; Node start, end; ////////////////////////////////////////////////////////// void AddToList(ref SList!Node list, ref Node node ) { list.insert( node ); } void RemoveFrom(ref SList!Node list, ref Node node ) { foreach( elem; list ) { if( node.xIndex == elem.xIndex && node.yIndex == elem.yIndex ) { auto a = find( list[] , elem ); list.linearRemove( take(a, 1 ) ); } } } bool IsInList( SList!Node list, ref Node node ) { foreach( elem; list ) { if( node.xIndex == elem.xIndex && node.yIndex == elem.yIndex ) return true; } return false; } void ClearList( SList!Node list ) { list.clear; } void SetParentNode( ref Node parent, ref Node child ) { child.parent = &parent; } void SetStartAndEndNode( vect2 vStart, vect2 vEnd, Node[] PathGraph ) { int startXIndex, startYIndex; int endXIndex, endYIndex; startXIndex = cast(int)( vStart.x / 32 ); startYIndex = cast(int)( vStart.y / 32 ); endXIndex = cast(int)( vEnd.x / 32 ); endYIndex = cast(int)( vEnd.y / 32 ); foreach( node; PathGraph ) { if( node.xIndex == startXIndex && node.yIndex == startYIndex ) { start = node; } if( node.xIndex == endXIndex && node.yIndex == endYIndex ) { end = node; } } } void SetStartScores( ref Node start ) { start.gScore = 0; start.hScore = CalculateHScore( start, end ); start.fScore = CalculateFScore( start ); } Node GetLowestFScore() { Node lowest; lowest.fScore = 10000; foreach( elem; openList ) { if( elem.fScore < lowest.fScore ) lowest = elem; } return lowest; } //This function current sets the program into an infinite loop //I still need to debug to figure out why the parent nodes aren't correct void GeneratePath() { while( currentNode.position != start.position ) { Path ~= currentNode; currentNode = *currentNode.parent; } } void ReversePath() { Node[] temp; for(int i = Path.length - 1; i >= 0; i-- ) { temp ~= Path[i]; } Path = temp.dup; } public: //@FIXME It seems to find the path, but now performance is terrible void FindPath( vect2 vStart, vect2 vEnd, Node[] PathGraph ) { openList.clear; closedList.clear; SetStartAndEndNode( vStart, vEnd, PathGraph ); SetStartScores( start ); AddToList( openList, start ); while( currentNode.position != end.position ) { currentNode = GetLowestFScore(); if( currentNode.position == end.position ) break; else { RemoveFrom( openList, currentNode ); AddToList( closedList, currentNode ); for( int i = 0; i < currentNode.connections.length; i++ ) { if( currentNode.connections[i] is null ) continue; else { if( IsInList( closedList, *currentNode.connections[i] ) && currentNode.gScore < currentNode.connections[i].gScore ) { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; } else if( IsInList( openList, *currentNode.connections[i] ) && currentNode.gScore < currentNode.connections[i].gScore ) { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; } else { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; AddToList( openList, *currentNode.connections[i] ); } } } } } writeln( "Current Node Position: ", currentNode.position ); writeln( "End Node Position: ", end.position ); if( currentNode.position == end.position ) { writeln( "Current Node Parent: ", currentNode.parent ); //GeneratePath(); //ReversePath(); } } Node[] GetPath() { return Path; } } This is my first attempt at A* so any help would be greatly appreciated.

    Read the article

  • Perl - Reading .txt files line-by-line and using compare function (printing non-matches only once)

    - by Kurt W
    I am really struggling and have spent about two full days on this banging my head against receiving the same result every time I run this perl script. I have a Perl script that connects to a vendor tool and stores data for ~26 different elements within @data. There is a foreach loop for @data that breaks the 26 elements into $e-{'element1'), $e-{'element2'), $e-{'element3'), $e-{'element4'), etc. etc. etc. I am also reading from the .txt files within a directory (line-by-line) and comparing the server names that exist within the text files with what exists in $e-{'element4'}. The Problem: Matches are working perfectly and only printing one line for each of the 26 elements when there is a match, however non-matches are producing one line for every entry within the .txt files (37 in all). So if there are 100 entries (each entry having 26 elements) stored within @data, then there are 100 x 37 entries being printed. So for every non-match in the: if ($e-{'element4'} eq '6' && $_ =~ /$e-{element7}/i) statement below, I am receiving a print out saying that there is not a match. 37 entries for the same identical 26 elements (because there are 37 total entries in all of the .txt files). The Goal: I need to print out only 1 line for each unique entry (a unique entry being $e-{element1} thru $e-{element26}). It is already printing one 1 line for matches, but it is printing out 37 entries when there is not a match. I need to treat matches and non-matches differently. Code: foreach my $e (@data) { # Open the .txt files stored within $basePath and use for comparison: opendir(DIRC, $basePath . "/") || die ("cannot open directory"); my @files=(readdir(DIRC)); my @MPG_assets = grep(/(.*?).txt/, @files); # Loop through each system name found and compare it with the data in SC for a match: foreach(@MPG_assets) { $filename = $_; open (MPGFILES, $basePath . "/" . $filename) || die "canot open the file"; while(<MPGFILES>) { if ($e->{'element4'} eq '6' && $_ =~ /$e->{'element7'}/i) { ## THIS SECTION WORKS PERFECTLY AND ONLY PRINTS MATCHES WHERE $_ ## (which contains the servernames (1 per line) in the .txt files) ## EQUALS $e->{'element7'}. print $e->{'element1'} . "\n"; print $e->{'element2'} . "\n"; print $e->{'element3'} . "\n"; print $e->{'element4'} . "\n"; print $e->{'element5'} . "\n"; # ... print $e->{'element26'} . "\n"; } else { ## **THIS SECTION DOES NOT WORK**. FOR EVERY NON-MATCH, THERE IS A ## LINE PRINTED WITH 26 IDENTICAL ELEMENTS BECAUSE ITS LOOPING THRU ## THE 37 LINES IN THE *.TXT FILES. print $e->{'element1'} . "\n"; print $e->{'element2'} . "\n"; print $e->{'element3'} . "\n"; print $e->{'element4'} . "\n"; print $e->{'element5'} . "\n"; # ... print $e->{'element26'} . "\n"; } # End of 'if ($e->{'element4'} eq..' statement } # End of while loop } # End of 'foreach(@MPG_assets)' } # End of 'foreach my $e (@data)' I think I need something to identical unique elements and define what fields make up a unique element but honestly I have tried everything I know. If you would be so kind to provide actual code fixes, that would be wonderful because I am headed to production with this script quite soon. Also. I am looking for code (ideally) that is very human-readable because I will need to document it so others can understand. Please let me know if you need additional information.

    Read the article

  • Programação paralela no .NET Framework 4 – Parte I

    - by anobre
    Introdução O avanço de tecnologia nos últimos anos forneceu, a baixo custo, acesso  a workstations com inúmeros CPUs. Facilmente encontramos hoje máquinas clientes com 2, 4 e até 8 núcleos, sem considerar os “super-servidores” com até 36 processadores :) Da wikipedia: A Unidade central de processamento (CPU, de acordo com as iniciais em inglês) ou o processador é a parte de um sistema de computador que executa as instruções de um programa de computador, e é o elemento primordial na execução das funções de um computador. Este termo tem sido usado na indústria de computadores pelo menos desde o início dos anos 1960[1]. A forma, desenho e implementação de CPUs têm mudado dramaticamente desde os primeiros exemplos, mas o seu funcionamento fundamental permanece o mesmo. Fazendo uma analogia, seria muito interessante delegarmos tarefas no mundo real que podem ser executadas independentemente a pessoas diferentes, atingindo desta forma uma  maior performance / produtividade na sua execução. A computação paralela se baseia na idéia que um problema maior pode ser dividido em problemas menores, sendo resolvidos de forma paralela. Este pensamento é utilizado há algum tempo por HPC (High-performance computing), e através das facilidades dos últimos anos, assim como a preocupação com consumo de energia, tornaram esta idéia mais atrativa e de fácil acesso a qualquer ambiente. No .NET Framework A plataforma .NET apresenta um runtime, bibliotecas e ferramentas para fornecer uma base de acesso fácil e rápido à programação paralela, sem trabalhar diretamente com threads e thread pool. Esta série de posts irá apresentar todos os recursos disponíveis, iniciando os estudos pela TPL, ou Task Parallel Library. Task Parallel Library A TPL é um conjunto de tipos localizados no namespace System.Threading e System.Threading.Tasks, a partir da versão 4 do framework. A partir da versão 4 do framework, o TPL é a maneira recomendada para escrever código paralelo e multithreaded. http://msdn.microsoft.com/en-us/library/dd460717(v=VS.100).aspx Task Parallelism O termo “task parallelism”, ou em uma tradução live paralelismo de tarefas, se refere a uma ou mais tarefas sendo executadas de forma simultanea. Considere uma tarefa como um método. A maneira mais fácil de executar tarefas de forma paralela é o código abaixo: Parallel.Invoke(() => TrabalhoInicial(), () => TrabalhoSeguinte()); O que acontece de verdade? Por trás nos panos, esta instrução instancia de forma implícita objetos do tipo Task, responsável por representar uma operação assíncrona, não exatamente paralela: public class Task : IAsyncResult, IDisposable É possível instanciar Tasks de forma explícita, sendo uma alternativa mais complexa ao Parallel.Invoke. var task = new Task(() => TrabalhoInicial()); task.Start(); Outra opção de instanciar uma Task e já executar sua tarefa é: var t = Task<int>.Factory.StartNew(() => TrabalhoInicialComValor());var t2 = Task<int>.Factory.StartNew(() => TrabalhoSeguinteComValor()); A diferença básica entre as duas abordagens é que a primeira tem início conhecido, mais utilizado quando não queremos que a instanciação e o agendamento da execução ocorra em uma só operação, como na segunda abordagem. Data Parallelism Ainda parte da TPL, o Data Parallelism se refere a cenários onde a mesma operação deva ser executada paralelamente em elementos de uma coleção ou array, através de instruções paralelas For e ForEach. A idéia básica é pegar cada elemento da coleção (ou array) e trabalhar com diversas threads concomitantemente. A classe-chave para este cenário é a System.Threading.Tasks.Parallel // Sequential version foreach (var item in sourceCollection) { Process(item); } // Parallel equivalent Parallel.ForEach(sourceCollection, item => Process(item)); Complicado né? :) Demonstração Acesse aqui um vídeo com exemplos (screencast). Cuidado! Apesar da imensa vontade de sair codificando, tome cuidado com alguns problemas básicos de paralelismo. Neste link é possível conhecer algumas situações. Abraços.

    Read the article

  • Take,Skip and Reverse Operator in Linq

    - by Jalpesh P. Vadgama
    I have found three more new operators in Linq which is use full in day to day programming stuff. Take,Skip and Reverse. Here are explanation of operators how it works. Take Operator: Take operator will return first N number of element from entities. Skip Operator: Skip operator will skip N number of element from entities and then return remaining elements as a result. Reverse Operator: As name suggest it will reverse order of elements of entities. Here is the examples of operators where i have taken simple string array to demonstrate that. C#, using GeSHi 1.0.8.6 using System; using System.Collections.Generic; using System.Linq; using System.Text;     namespace ConsoleApplication1 {     class Program     {         static void Main(string[] args)         {             string[] a = { "a", "b", "c", "d" };                           Console.WriteLine("Take Example");             var TkResult = a.Take(2);             foreach (string s in TkResult)             {                 Console.WriteLine(s);             }               Console.WriteLine("Skip Example");             var SkResult = a.Skip(2);             foreach (string s in SkResult)             {                 Console.WriteLine(s);             }               Console.WriteLine("Reverse Example");             var RvResult = a.Reverse();             foreach (string s in RvResult)             {                 Console.WriteLine(s);             }                       }     } } Parsed in 0.020 seconds at 44.65 KB/s Here is the output as expected. hope this will help you.. Technorati Tags: Linq,Linq-To-Sql,ASP.NET,C#.NET

    Read the article

< Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >