Search Results

Search found 478 results on 20 pages for 'warehouse'.

Page 1/20 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Az OTP Bank az Oracle Warehouse Builder-t használja

    - by Fekete Zoltán
    Az Oracle.com-on az ügyfél sikertörténetek között az imént jelent meg a következo dokumentum: OTP Bank Data Warehouse Development Team Improves Service Level and Lowers Reporting Lead Time for Business Fields by 80%, azaz az OTP Bank az adattárház fejlesztéshez az Oracle Warehouse Builder ETL-ELT eszközt használja. AZ OTP Bank Tranzakciós Adattárház fejleszto csapata magasabb minoségi szintre emelte a belso megrendeloknek nyújtott szoltáltatásait, amely egyik eredménye, hogy 80%-al csökkentette az üzletágak közötti riportolási folyamatok átfutási idotartamát. A magyar nyelvu sikertörténet innen töltheto le. A legfontosabb eredmények az OWB kapcsán: - ETL folyamatok sztenderdizációján keresztül elért adatminoség javulás, OWB - Oracle Business Intelligence EE: az üzleti területek és az IT fejlesztés közötti együttmoködés hatékonyabb - sztenderdizált ETL és riportolási folyamatok: - fix jelentés készletek hatására tudatos üzleti metaadat kezelés - egységes terminológia - komplex banki folyamatok pontos ismerete: üzleti területek és IT fejlesztok számára - hatékony banki együttmoködés - a megrendeléstol az adatpublikációig tartó folyamatok idotartama lecsökkent - az ad-hoc riportok elkészítése a korábbi 1,5 hétrol 80%-al, átlagosan 2 munkanapra csökkent

    Read the article

  • SQL Rally Pre-Con: Data Warehouse Modeling – Making the Right Choices

    - by Davide Mauri
    As you may have already learned from my old post or Adam’s or Kalen’s posts, there will be two SQL Rally in North Europe. In the Stockholm SQL Rally, with my friend Thomas Kejser, I’ll be delivering a pre-con on Data Warehouse Modeling: Data warehouses play a central role in any BI solution. It's the back end upon which everything in years to come will be created. For this reason, it must be rock solid and yet flexible at the same time. To develop such a data warehouse, you must have a clear idea of its architecture, a thorough understanding of the concepts of Measures and Dimensions, and a proven engineered way to build it so that quality and stability can go hand-in-hand with cost reduction and scalability. In this workshop, Thomas Kejser and Davide Mauri will share all the information they learned since they started working with data warehouses, giving you the guidance and tips you need to start your BI project in the best way possible?avoiding errors, making implementation effective and efficient, paving the way for a winning Agile approach, and helping you define how your team should work so that your BI solution will stand the test of time. You'll learn: Data warehouse architecture and justification Agile methodology Dimensional modeling, including Kimball vs. Inmon, SCD1/SCD2/SCD3, Junk and Degenerate Dimensions, and Huge Dimensions Best practices, naming conventions, and lessons learned Loading the data warehouse, including loading Dimensions, loading Facts (Full Load, Incremental Load, Partitioned Load) Data warehouses and Big Data (Hadoop) Unit testing Tracking historical changes and managing large sizes With all the Self-Service BI hype, Data Warehouse is become more and more central every day, since if everyone will be able to analyze data using self-service tools, it’s better for him/her to rely on correct, uniform and coherent data. Already 50 people registered from the workshop and seats are limited so don’t miss this unique opportunity to attend to this workshop that is really a unique combination of years and years of experience! http://www.sqlpass.org/sqlrally/2013/nordic/Agenda/PreconferenceSeminars.aspx See you there!

    Read the article

  • Data Warehouse Workshop

    - by Davide Mauri
    I’m really really pleased to announce that it’s possible to register to the Data Warehouse Workshop that I and Thomas Kejser developed togheter.  Several months ago we decided to join forces in order to create a workshop that would contain not only the theoretical stuff, but also the experience we both have and all the best practices and lesson learned that can make the difference between a success and a failure when building a Data Warehouse. The first sheduled date is 7 February in Kista (Sweden): http://www.eventzilla.net/web/event?eventid=2138965081 and until 30th November there is the Super Early Bird to save more the 100€ (150$). The workshop will be very similar to the one I delivered at PASS Summit summit, with some extra technical stuff since it’s one hour longer. In addition to that for this first version both me and Thomas will be present, so it’s a great change  to make sure you super-charge your DW/BI project with insights that aren’t available anywhere else! If you’re into the BI field and you live in Europe, don’t miss this opportunity!

    Read the article

  • SQL Server Management Data Warehouse - quick tour on setting health monitoring policies

    - by ssqa.net
    Profiler, Perfmon, DMVs & scripts are legendary tools for a DBA to monitor the SQL arena. In line with these tools SQL Server 2008 throws a powerful stream with policy based management (PBM) framework & management data warehouse (MDW) methods, which is a relational database that contains the data that is collected from a server that is a data collection target. This data is used to generate the reports for the System Data collection sets, and can also be used to create custom reports. .....(read more)

    Read the article

  • SQL SERVER – Guest Post – Architecting Data Warehouse – Niraj Bhatt

    - by pinaldave
    Niraj Bhatt works as an Enterprise Architect for a Fortune 500 company and has an innate passion for building / studying software systems. He is a top rated speaker at various technical forums including Tech·Ed, MCT Summit, Developer Summit, and Virtual Tech Days, among others. Having run a successful startup for four years Niraj enjoys working on – IT innovations that can impact an enterprise bottom line, streamlining IT budgets through IT consolidation, architecture and integration of systems, performance tuning, and review of enterprise applications. He has received Microsoft MVP award for ASP.NET, Connected Systems and most recently on Windows Azure. When he is away from his laptop, you will find him taking deep dives in automobiles, pottery, rafting, photography, cooking and financial statements though not necessarily in that order. He is also a manager/speaker at BDOTNET, Asia’s largest .NET user group. Here is the guest post by Niraj Bhatt. As data in your applications grows it’s the database that usually becomes a bottleneck. It’s hard to scale a relational DB and the preferred approach for large scale applications is to create separate databases for writes and reads. These databases are referred as transactional database and reporting database. Though there are tools / techniques which can allow you to create snapshot of your transactional database for reporting purpose, sometimes they don’t quite fit the reporting requirements of an enterprise. These requirements typically are data analytics, effective schema (for an Information worker to self-service herself), historical data, better performance (flat data, no joins) etc. This is where a need for data warehouse or an OLAP system arises. A Key point to remember is a data warehouse is mostly a relational database. It’s built on top of same concepts like Tables, Rows, Columns, Primary keys, Foreign Keys, etc. Before we talk about how data warehouses are typically structured let’s understand key components that can create a data flow between OLTP systems and OLAP systems. There are 3 major areas to it: a) OLTP system should be capable of tracking its changes as all these changes should go back to data warehouse for historical recording. For e.g. if an OLTP transaction moves a customer from silver to gold category, OLTP system needs to ensure that this change is tracked and send to data warehouse for reporting purpose. A report in context could be how many customers divided by geographies moved from sliver to gold category. In data warehouse terminology this process is called Change Data Capture. There are quite a few systems that leverage database triggers to move these changes to corresponding tracking tables. There are also out of box features provided by some databases e.g. SQL Server 2008 offers Change Data Capture and Change Tracking for addressing such requirements. b) After we make the OLTP system capable of tracking its changes we need to provision a batch process that can run periodically and takes these changes from OLTP system and dump them into data warehouse. There are many tools out there that can help you fill this gap – SQL Server Integration Services happens to be one of them. c) So we have an OLTP system that knows how to track its changes, we have jobs that run periodically to move these changes to warehouse. The question though remains is how warehouse will record these changes? This structural change in data warehouse arena is often covered under something called Slowly Changing Dimension (SCD). While we will talk about dimensions in a while, SCD can be applied to pure relational tables too. SCD enables a database structure to capture historical data. This would create multiple records for a given entity in relational database and data warehouses prefer having their own primary key, often known as surrogate key. As I mentioned a data warehouse is just a relational database but industry often attributes a specific schema style to data warehouses. These styles are Star Schema or Snowflake Schema. The motivation behind these styles is to create a flat database structure (as opposed to normalized one), which is easy to understand / use, easy to query and easy to slice / dice. Star schema is a database structure made up of dimensions and facts. Facts are generally the numbers (sales, quantity, etc.) that you want to slice and dice. Fact tables have these numbers and have references (foreign keys) to set of tables that provide context around those facts. E.g. if you have recorded 10,000 USD as sales that number would go in a sales fact table and could have foreign keys attached to it that refers to the sales agent responsible for sale and to time table which contains the dates between which that sale was made. These agent and time tables are called dimensions which provide context to the numbers stored in fact tables. This schema structure of fact being at center surrounded by dimensions is called Star schema. A similar structure with difference of dimension tables being normalized is called a Snowflake schema. This relational structure of facts and dimensions serves as an input for another analysis structure called Cube. Though physically Cube is a special structure supported by commercial databases like SQL Server Analysis Services, logically it’s a multidimensional structure where dimensions define the sides of cube and facts define the content. Facts are often called as Measures inside a cube. Dimensions often tend to form a hierarchy. E.g. Product may be broken into categories and categories in turn to individual items. Category and Items are often referred as Levels and their constituents as Members with their overall structure called as Hierarchy. Measures are rolled up as per dimensional hierarchy. These rolled up measures are called Aggregates. Now this may seem like an overwhelming vocabulary to deal with but don’t worry it will sink in as you start working with Cubes and others. Let’s see few other terms that we would run into while talking about data warehouses. ODS or an Operational Data Store is a frequently misused term. There would be few users in your organization that want to report on most current data and can’t afford to miss a single transaction for their report. Then there is another set of users that typically don’t care how current the data is. Mostly senior level executives who are interesting in trending, mining, forecasting, strategizing, etc. don’t care for that one specific transaction. This is where an ODS can come in handy. ODS can use the same star schema and the OLAP cubes we saw earlier. The only difference is that the data inside an ODS would be short lived, i.e. for few months and ODS would sync with OLTP system every few minutes. Data warehouse can periodically sync with ODS either daily or weekly depending on business drivers. Data marts are another frequently talked about topic in data warehousing. They are subject-specific data warehouse. Data warehouses that try to span over an enterprise are normally too big to scope, build, manage, track, etc. Hence they are often scaled down to something called Data mart that supports a specific segment of business like sales, marketing, or support. Data marts too, are often designed using star schema model discussed earlier. Industry is divided when it comes to use of data marts. Some experts prefer having data marts along with a central data warehouse. Data warehouse here acts as information staging and distribution hub with spokes being data marts connected via data feeds serving summarized data. Others eliminate the need for a centralized data warehouse citing that most users want to report on detailed data. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Business Intelligence, Data Warehousing, Database, Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Swiss Re increases data warehouse performance and deploys in record time

    - by KLaker
    Great information on yet another data warehouse deployment on Exadata. A little background on Swiss Re: In 2002, Swiss Re established a data warehouse for its client markets and products to gather reinsurance information across all organizational units into an integrated structure. The data warehouse provided the basis for reporting at the group level with drill-down capability to individual contracts, while facilitating application integration and data exchange by using common data standards. Initially focusing on property and casualty reinsurance information only, it now includes life and health reinsurance, insurance, and nonlife insurance information. Key highlights of the benefits that Swiss Re achieved by using Exadata: Reduced the time to feed the data warehouse and generate data marts by 58% Reduced average runtime by 24% for standard reports comfortably loading two data warehouse refreshes per day with incremental feeds Freed up technical experts by significantly minimizing time spent on tuning activities Most importantly this was one of the fastest project deployments in Swiss Re's history. They went from installation to production in just four months! What is truly surprising is the that it only took two weeks between power-on to testing the machine with full data volumes! Business teams at Swiss Re are now able to fully exploit up-to-date analytics across property, casualty, life, health insurance, and reinsurance lines to identify successful products. These points are highlighted in the following quotes from Dr. Stephan Gutzwiller, Head of Data Warehouse Services at Swiss Re:  "We were operating a complete Oracle stack, including servers, storage area network, operating systems, and databases that was well optimized and delivered very good performance over an extended period of time. When a hardware replacement was scheduled for 2012, Oracle Exadata was a natural choice—and the performance increase was impressive. It enabled us to deliver analytics to our internal customers faster, without hiring more IT staff" “The high quality data that is readily available with Oracle Exadata gives us the insight and agility we need to cater to client needs. We also can continue re-engineering to keep up with the increasing demand without having to grow the organization. This combination creates excellent business value.” Our full press release is available here: http://www.oracle.com/us/corporate/customers/customersearch/swiss-re-1-exadata-ss-2050409.html. If you want more information about how Exadata can increase the performance of your data warehouse visit our home page: http://www.oracle.com/us/products/database/exadata-database-machine/overview/index.html

    Read the article

  • SQLAuthority News – Scaling Up Your Data Warehouse with SQL Server 2008 R2

    - by pinaldave
    Data Warehouses are suppose to be containing huge amount of the data from the beginning. However, there are cases when too big is not enough. Every Data Warehouse Admin will agree that they have faced situation where they will need to scale up their data warehouse. Microsoft has released white paper discussing the same. Here is the abstract from the Microsoft Official site: SQL Server 2008 introduced many new functional and performance improvements for data warehousing, and SQL Server 2008 R2 includes all these and more. This paper discusses how to use SQL Server 2008 R2 to get great performance as your data warehouse scales up. We present lessons learned during extensive internal data warehouse testing on a 64-core HP Integrity Superdome during the development of the SQL Server 2008 release, and via production experience with large-scale SQL Server customers. Our testing indicates that many customers can expect their performance to nearly double on the same hardware they are currently using, merely by upgrading to SQL Server 2008 R2 from SQL Server 2005 or earlier, and compressing their fact tables. We cover techniques to improve manageability and performance at high-scale, encompassing data loading (extract, transform, load), query processing, partitioning, index maintenance, indexed view (aggregate) management, and backup and restore. Scaling Up Your Data Warehouse with SQL Server 2008 R2 Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • What is a Data Warehouse?

    Typically Data Warehouses are considered to be non-volatile in comparison to traditional databasesdue to the fact that data within the warehouse does not change that often.  In addition, Data Warehouses typically represent data through the use of Multidimensional Conceptual Views that allow data to be extracted based on the view and the current position within the view. Common Data Warehouse Traits Relatively Non-volatile Data Supports Data Extraction and Analysis Optimized for Data Retrieval and Analysis Multidimensional Views of Data Flexible Reporting Multi User Support Generic Dimensionality Transparent Accessible Unlimited Dimensions of Data Unlimited Aggregation levels of Data Normally, Data Warehouses are much larger then there traditional database counterparts due to the fact that they store the basis data along with derived data via Multidimensional Conceptual Views. As companies store larger and larger amounts of data, they will need a way to effectively and accurately extract analysis information that can be used to aide in formulating current and future business decisions. This process can be done currently through data mining within a Data Warehouse. Data Warehouses provide access to data derived through complex analysis, knowledge discovery and decision making. Secondly, they support the demands for high performance in regards to analyzing an organization’s existing and current data. Data Warehouses provide support for an organization’s data and acquired business knowledge.  Within a Data Warehouse multiple types of operations/sub systems are supported. Common Data Warehouse Sub Systems Online Analytical Processing (OLAP) Decision –Support Systems (DSS) Online Transaction Processing (OLTP)

    Read the article

  • Handling primary key duplicates in a data warehouse load

    - by Meff
    I'm currently building an ETL system to load a data warehouse from a transactional system. The grain of my fact table is the transaction level. In order to ensure I don't load duplicate rows I've put a primary key on the fact table, which is the transaction ID. I've encountered a problem with transactions being reversed - In the transactional database this is done via a status, which I pick up and I can work out if the transaction is being done, or rolled back so I can load a reversal row in the warehouse. However, the reversal row will have the same transaction ID and so I get a primary key violation. I've solved this for now by negating the primary key, so transaction ID 1 would be a payment, and transaction ID -1 (In the warehouse only) would be the reversal. I have considered an alternative of generating a BIT column, where 0 is normal and 1 is reversal, then making the PK the transaction ID and the BIT column. My question is, is this a good practice, and has anyone else encountered anything like this? For reference, this is a payment processing system, so values will not be modified, so there will only ever be transactions and reversals.

    Read the article

  • BIWA Wednesday TechCast Series - Opposition to Data Warehouse Initiatives

    - by jenny.gelhausen
    BIWA Wednesday TechCast Series - 19th Event! Opposition to Data Warehouse Initiatives Please join us for this webcast on Wednesday, March 24, 12 noon Eastern or check your local area's time Webcast is open to clients, prospects and partners. No matter how good your technology and technical skills, organizational issues can derail a data warehousing or BI project. Therefore BIWA presents a vital topic that crosses product boundaries: organizational resistance to data warehouse initiatives - how to recognize it and what to do about it. Many a DW/BI professional has been surprised by organizational resistance to DW/BI initiatives. Yet real organizational imperatives may be behind this apparently irrational behavior. Based on in-depth interviews with IT professionals, industry consultants, and power users, our speaker Bruce Jenks will present his research findings about what drives organizational resistance to data warehouse initiatives. The talk will cover specific behaviors that can signal organizational resistance to a data warehouse program and what organizations have done to address such resistance. Presenter: Bruce Jenks of Dun and Bradstreet Bruce Jenks has over 20 years experience in data warehousing and business intelligence, much of it as a consultant to large organizations spanning the US. Bruce's data warehousing clients have included firms such as Sprint, Gallo Wines, Southern California Edison, The Gap, and Safeway. He started his data warehousing career at Metaphor Computers, a pioneering DW/BI firm from which a number of industry luminaries sprang including Ralph Kimball (author of The Data Warehouse Toolkit ). Bruce continued his data warehousing career at HP, Stanford University and other firms. Bruce is currently completing his doctorate in business administration at Golden Gate University, and today's material arises from his doctoral research. He is also a principal consultant for Dun and Bradstreet. Audio Dial-In: 866 682 4770 Audio Meeting ID: 1683901 Audio Meeting Passcode: 334451 Web Conference: Please register at https://www1.gotomeeting.com/register/807185273 After you register you will be provided with a link to the TechCast. Invitation to Speakers: All BIWA members and Oracle professionals (experts, end users, managers, DBAs, developers, data analysts, ISVs, partners, etc.) may submit abstracts for 45 minute technical webcasts to our Oracle BIWA (IOUG SIG) Community. Submit your BIWA TechCast abstract today! BIWA is a worldwide forum with over 2000 members who are business intelligence, warehousing and analytics professionals. BIWA presents information, experiences and best practices in successfully deploying Oracle Database-centric BI, Data Warehousing, and Analytics products, features and Options--the Oracle Database "BIWA" platform. Attendance Information & Replays at the BIWA website: oraclebiwa.org var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-13185312-1"); pageTracker._trackPageview(); } catch(err) {}

    Read the article

  • SQLAuthority News – Fast Track Data Warehouse 3.0 Reference Guide

    - by pinaldave
    http://msdn.microsoft.com/en-us/library/gg605238.aspx I am very excited that Fast Track Data Warehouse 3.0 reference guide has been announced. As a consultant I have always enjoyed working with Fast Track Data Warehouse project as it truly expresses the potential of the SQL Server Engine. Here is few details of the enhancement of the Fast Track Data Warehouse 3.0 reference architecture. The SQL Server Fast Track Data Warehouse initiative provides a basic methodology and concrete examples for the deployment of balanced hardware and database configuration for a data warehousing workload. Balance is measured across the key components of a SQL Server installation; storage, server, application settings, and configuration settings for each component are evaluated. Description Note FTDW 3.0 Architecture Basic component architecture for FT 3.0 based systems. New Memory Guidelines Minimum and maximum tested memory configurations by server socket count. Additional Startup Options Notes for T-834 and setting for Lock Pages in Memory. Storage Configuration RAID1+0 now standard (RAID1 was used in FT 2.0). Evaluating Fragmentation Query provided for evaluating logical fragmentation. Loading Data Additional options for CI table loads. MCR Additional detail and explanation of FTDW MCR Rating. Read white paper on fast track data warehousing. Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Business Intelligence, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • Database warehouse design: fact tables and dimension tables

    - by morpheous
    I am building a poor man's data warehouse using a RDBMS. I have identified the key 'attributes' to be recorded as: sex (true/false) demographic classification (A, B, C etc) place of birth date of birth weight (recorded daily): The fact that is being recorded My requirements are to be able to run 'OLAP' queries that allow me to: 'slice and dice' 'drill up/down' the data and generally, be able to view the data from different perspectives After reading up on this topic area, the general consensus seems to be that this is best implemented using dimension tables rather than normalized tables. Assuming that this assertion is true (i.e. the solution is best implemented using fact and dimension tables), I would like to seek some help in the design of these tables. 'Natural' (or obvious) dimensions are: Date dimension Geographical location Which have hierarchical attributes. However, I am struggling with how to model the following fields: sex (true/false) demographic classification (A, B, C etc) The reason I am struggling with these fields is that: They have no obvious hierarchical attributes which will aid aggregation (AFAIA) - which suggest they should be in a fact table They are mostly static or very rarely change - which suggests they should be in a dimension table. Maybe the heuristic I am using above is too crude? I will give some examples on the type of analysis I would like to carryout on the data warehouse - hopefully that will clarify things further. I would like to aggregate and analyze the data by sex and demographic classification - e.g. answer questions like: How does male and female weights compare across different demographic classifications? Which demographic classification (male AND female), show the most increase in weight this quarter. etc. Can anyone clarify whether sex and demographic classification are part of the fact table, or whether they are (as I suspect) dimension tables.? Also assuming they are dimension tables, could someone elaborate on the table structures (i.e. the fields)? The 'obvious' schema: CREATE TABLE sex_type (is_male int); CREATE TABLE demographic_category (id int, name varchar(4)); may not be the correct one.

    Read the article

  • Warehouse system

    - by TJ
    I work for an ecommerce company, and we're gearing up to make some updates to our warehouse system. During a meeting we were asked if there are any viable solutions available that could be integrated into our current systems. I was wondering if anyone had any opinions, or experiences they could share. Typical requirements: inventory management pick and pack shipping integration with USPS and UPS returns returns Thanks in advanced

    Read the article

  • Webcast: ODI and Successful Strategies for Optimizing Your Data Warehouse

    - by antonio romero
    A new public webcast for ODI: “Successful Strategies for Optimizing Your Data Warehouse”  is scheduled for March 3th at 10am PT/1pm ET. In this webcast, Mala Narasimharajan, from the product marketing team and Denis Gray from the product management team, will be presenting ODI’s strong value proposition for data warehousing solutions. You can find the registration link below. Live webcast: Successful Strategies for Optimizing Your Data Warehouse March 3, 2011 1pm ET/10pm PT Registration link: http://www.oracle.com/us/dm/66153-wwmk10035379mpp011-se-309154.html

    Read the article

  • Oracle Data Warehouse and Big Data Magazine MAY Edition for Customers + Partners

    - by KLaker
    Follow us on The latest edition of our monthly data warehouse and big data magazine for Oracle customers and partners is now available. The content for this magazine is taken from the various data warehouse and big data Oracle product management blogs, Oracle press releases, videos posted on Oracle Media Network and Oracle Facebook pages. Click here to view the May Edition Please share this link http://flip.it/fKOUS to our magazine with your customers and partners This magazine is optimized for display on tablets and smartphones using the Flipboard App which is available from the Apple App store and Google Play store

    Read the article

  • Time and date dimension in data warehouse

    - by peperg
    I'm buildind an data warehouse. Each fact has it's timestamp. I need to create reports by day, month, quater but by hours too. Loking at the examples I see that dates tend to be saved in dimension tabels. But I think, that it makes no sense for time. The dimension table would grow and grow. On the other hand JOIN with date dimension table is more efficent than using date/time functions in SQL. What are your opinions/solutions ? (I'm using Infobright)

    Read the article

  • Data Warehouse: One Database or many?

    - by drrollins
    At my new company, they keep all data associated with the data warehouse, including import, staging, audit, dimension and fact tables, together in the same physical database. I've been a database developer for a number of years now and this consolidation of function and form seems counter to everything I know. It seems to make security, backup/restore and performance management issues more manually intensive. Is this something that is done in the industry? Are there substantial reasons for doing or not doing it? The platform is Netezza. The size is in terabytes, hundreds of millions of rows. What I'm looking to get from answers to this question is a solid understanding of how right or wrong this path is. From your experience, what are the issues I should be focused on arguing if this is a path that will cause trouble for us down the road. If it is no big deal, then I'd like to know that as well.

    Read the article

  • Oracle Warehouse Builder és Enterprise ETL

    - by Fekete Zoltán
    Friss és ropogós az adatlap!!! Fogyasszátok egészséggel: ODI Enterprise Edition: Warehouse Builder Enterprise ETL white paper. A jó hír: minden megvásárolt Oracle Database-hez ingyenese használható az Oracle Warehouse Builder alap (core) funkcionalitása. Mi is az az OWB core funkcionalitás, és mit használhatunk az opciókban? Az Enterprise ETL funkcionalitás az Oracle Data Integrator Enterprise Edition licensz részeként érheto el az OWB-hez. Azok a funkciók, amik csak az ODI EE licensszel érhetok el (a korábbi OWB Enterprise ETL opció is ennek a része) megtekinthetok itt is a szöveg alján. Ezek: - Transportable ETL modules, multiple configurations, and pluggable mappings - Operators for pluggable mapping, pluggable mapping input signature, pluggable mapping output signature - Design Environment Support for RAC - Metadata change propagation - Schedulable Mappings and Process Flows - Slowing Changing Dimensions (SCD) Type 2 and 3 - XML Files as a target - Target load ordering - Seeded spatial and streams transformations - Process Flow Activity templates - Process Flow variables support - Process Flow looping activities such as For Loop and While Loop - Process Flow Route and Notification activities - Metadata lineage and impact analysis - Metadata Extensibility - Deployment to Discoverer EUL - Deployment to Oracle BI Beans catalog Tehát ha komolyabb környezetben szeretném használni az OWB-t, több környezetbe deployálni, stb, akkor szükség van az ODI EE licenszre is. ODI Enterprise Edition: Warehouse Builder Enterprise ETL white paper.

    Read the article

  • PostgreSQL to Data-Warehouse: Best approach for near-real-time ETL / extraction of data

    - by belvoir
    Background: I have a PostgreSQL (v8.3) database that is heavily optimized for OLTP. I need to extract data from it on a semi real-time basis (some-one is bound to ask what semi real-time means and the answer is as frequently as I reasonably can but I will be pragmatic, as a benchmark lets say we are hoping for every 15min) and feed it into a data-warehouse. How much data? At peak times we are talking approx 80-100k rows per min hitting the OLTP side, off-peak this will drop significantly to 15-20k. The most frequently updated rows are ~64 bytes each but there are various tables etc so the data is quite diverse and can range up to 4000 bytes per row. The OLTP is active 24x5.5. Best Solution? From what I can piece together the most practical solution is as follows: Create a TRIGGER to write all DML activity to a rotating CSV log file Perform whatever transformations are required Use the native DW data pump tool to efficiently pump the transformed CSV into the DW Why this approach? TRIGGERS allow selective tables to be targeted rather than being system wide + output is configurable (i.e. into a CSV) and are relatively easy to write and deploy. SLONY uses similar approach and overhead is acceptable CSV easy and fast to transform Easy to pump CSV into the DW Alternatives considered .... Using native logging (http://www.postgresql.org/docs/8.3/static/runtime-config-logging.html). Problem with this is it looked very verbose relative to what I needed and was a little trickier to parse and transform. However it could be faster as I presume there is less overhead compared to a TRIGGER. Certainly it would make the admin easier as it is system wide but again, I don't need some of the tables (some are used for persistent storage of JMS messages which I do not want to log) Querying the data directly via an ETL tool such as Talend and pumping it into the DW ... problem is the OLTP schema would need tweaked to support this and that has many negative side-effects Using a tweaked/hacked SLONY - SLONY does a good job of logging and migrating changes to a slave so the conceptual framework is there but the proposed solution just seems easier and cleaner Using the WAL Has anyone done this before? Want to share your thoughts?

    Read the article

  • Free data warehouse - Infobright, Hadoop/Hive or what ?

    - by peperg
    I need to store large amount of small data objects (millions of rows per month). Once they're saved they wont change. I need to : store them securely use them to analysis (mostly time-oriented) retrieve some raw data occasionally It would be nice if it could be used with JasperReports or BIRT My first shot was Infobright Community - just a column-oriented, read-only storing mechanism for MySQL On the other hand, people says that NoSQL approach could be better. Hadoop+Hive looks promissing, but the documentation looks poor and the version number is less than 1.0 . I heard about Hypertable, Pentaho, MongoDB .... Do you have any recommendations ? (Yes, I found some topics here, but it was year or two ago)

    Read the article

  • Data Warehouse: Modelling a future schedule

    - by Pat
    I'm creating a DW that will contain data on financial securities such as bonds and loans. These securities are associated with payment schedules. For example, a bond could pay quarterly, while a mortage would usually pay monthly (sometimes biweekly). The payment schedule is created when the security is traded and, in the majority of cases, will remain unchanged. However, the design would need to accomodate those cases where it does change. I'm currently attempting to model this data and I'm having difficulty coming up with a workable design. One of the most commonly queried fields is "next payment date". Users often want to know when a security will pay next. Therefore, I want to make it as easy as possible for them to get the next payment date and amount for each security. Also, users often run historical queries in which case they'd want the next payment date and amount as of a specific point in time. For example, they may want to look back at 1/31/09 and query the next payment dates (which would usually be in February 2009 for mortgages). It's also common that they want to query a security's entire payment schedule, which might consist of 360 records (30 year mortgage x 12 payments/year). Since the next payment date and amount would be changing each month or even biweekly, these fields wouldn't seem to fit into a slow-changing dimension very well. It would probably make more sense to use a fact table, but I'm unsure of how to model it. Any ideas would be greatly appreciated.

    Read the article

  • 3rd party data - Store in Data Warehouse or Primary database?

    - by brydgesk
    This is mostly a data warehouse philosophy question. My project involves an Oracle forms application, and a Teradata Data Warehouse for reporting and ad-hoc purposes. In addition to the primary data created by the users of our application, we also require data from various other sources. Currently, this 3rd party data comes via FTPd flat files directly to our Data Warehouse. To access the data, our users must use a series of custom BusinessObjects reports. My question is, would it make more sense for this data to be sent to our source Oracle system instead? Is it ever appropriate for a Data Warehouse to be the point of origin for users to access raw data? In short, is it more important that the operational database contain only the data created by your project, or that the data warehouse remain dedicated solely to reporting and analysis?

    Read the article

  • Parallel Data Warehouse

    - by jchang
    The Microsoft Parallel Data Warehouse diagram was somewhat difficult to understand in terms of the functionality of each subsystem in relation to the configuration of its components. So now that HP has provided a detailed list of the PDW components , the diagram below shows the PDW subsystems with component configuration (InfiniBand, FC, and network connections not shown). Observe that there are three different ProLiant server models, the DL360 G7, DL370 G6 and the DL380 G7, in five different configurations...(read more)

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >