Search Results

Search found 89788 results on 3592 pages for 'euler user'.

Page 1/3592 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • blocking bad bots with robots.txt in 2012 [closed]

    - by Rachel Sparks
    does it still work good? I have this: # Generated using http://solidshellsecurity.com services # Begin block Bad-Robots from robots.txt User-agent: asterias Disallow:/ User-agent: BackDoorBot/1.0 Disallow:/ User-agent: Black Hole Disallow:/ User-agent: BlowFish/1.0 Disallow:/ User-agent: BotALot Disallow:/ User-agent: BuiltBotTough Disallow:/ User-agent: Bullseye/1.0 Disallow:/ User-agent: BunnySlippers Disallow:/ User-agent: Cegbfeieh Disallow:/ User-agent: CheeseBot Disallow:/ User-agent: CherryPicker Disallow:/ User-agent: CherryPickerElite/1.0 Disallow:/ User-agent: CherryPickerSE/1.0 Disallow:/ User-agent: CopyRightCheck Disallow:/ User-agent: cosmos Disallow:/ User-agent: Crescent Disallow:/ User-agent: Crescent Internet ToolPak HTTP OLE Control v.1.0 Disallow:/ User-agent: DittoSpyder Disallow:/ User-agent: EmailCollector Disallow:/ User-agent: EmailSiphon Disallow:/ User-agent: EmailWolf Disallow:/ User-agent: EroCrawler Disallow:/ User-agent: ExtractorPro Disallow:/ User-agent: Foobot Disallow:/ User-agent: Harvest/1.5 Disallow:/ User-agent: hloader Disallow:/ User-agent: httplib Disallow:/ User-agent: humanlinks Disallow:/ User-agent: InfoNaviRobot Disallow:/ User-agent: JennyBot Disallow:/ User-agent: Kenjin Spider Disallow:/ User-agent: Keyword Density/0.9 Disallow:/ User-agent: LexiBot Disallow:/ User-agent: libWeb/clsHTTP Disallow:/ User-agent: LinkextractorPro Disallow:/ User-agent: LinkScan/8.1a Unix Disallow:/ User-agent: LinkWalker Disallow:/ User-agent: LNSpiderguy Disallow:/ User-agent: lwp-trivial Disallow:/ User-agent: lwp-trivial/1.34 Disallow:/ User-agent: Mata Hari Disallow:/ User-agent: Microsoft URL Control - 5.01.4511 Disallow:/ User-agent: Microsoft URL Control - 6.00.8169 Disallow:/ User-agent: MIIxpc Disallow:/ User-agent: MIIxpc/4.2 Disallow:/ User-agent: Mister PiX Disallow:/ User-agent: moget Disallow:/ User-agent: moget/2.1 Disallow:/ User-agent: mozilla/4 Disallow:/ User-agent: Mozilla/4.0 (compatible; BullsEye; Windows 95) Disallow:/ User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95) Disallow:/ User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 98) Disallow:/ User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows NT) Disallow:/ User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows XP) Disallow:/ User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 2000) Disallow:/ User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows ME) Disallow:/ User-agent: mozilla/5 Disallow:/ User-agent: NetAnts Disallow:/ User-agent: NICErsPRO Disallow:/ User-agent: Offline Explorer Disallow:/ User-agent: Openfind Disallow:/ User-agent: Openfind data gathere Disallow:/ User-agent: ProPowerBot/2.14 Disallow:/ User-agent: ProWebWalker Disallow:/ User-agent: QueryN Metasearch Disallow:/ User-agent: RepoMonkey Disallow:/ User-agent: RepoMonkey Bait & Tackle/v1.01 Disallow:/ User-agent: RMA Disallow:/ User-agent: SiteSnagger Disallow:/ User-agent: SpankBot Disallow:/ User-agent: spanner Disallow:/ User-agent: suzuran Disallow:/ User-agent: Szukacz/1.4 Disallow:/ User-agent: Teleport Disallow:/ User-agent: TeleportPro Disallow:/ User-agent: Telesoft Disallow:/ User-agent: The Intraformant Disallow:/ User-agent: TheNomad Disallow:/ User-agent: TightTwatBot Disallow:/ User-agent: Titan Disallow:/ User-agent: toCrawl/UrlDispatcher Disallow:/ User-agent: True_Robot Disallow:/ User-agent: True_Robot/1.0 Disallow:/ User-agent: turingos Disallow:/ User-agent: URLy Warning Disallow:/ User-agent: VCI Disallow:/ User-agent: VCI WebViewer VCI WebViewer Win32 Disallow:/ User-agent: Web Image Collector Disallow:/ User-agent: WebAuto Disallow:/ User-agent: WebBandit Disallow:/ User-agent: WebBandit/3.50 Disallow:/ User-agent: WebCopier Disallow:/ User-agent: WebEnhancer Disallow:/ User-agent: WebmasterWorldForumBot Disallow:/ User-agent: WebSauger Disallow:/ User-agent: Website Quester Disallow:/ User-agent: Webster Pro Disallow:/ User-agent: WebStripper Disallow:/ User-agent: WebZip Disallow:/ User-agent: WebZip/4.0 Disallow:/ User-agent: Wget Disallow:/ User-agent: Wget/1.5.3 Disallow:/ User-agent: Wget/1.6 Disallow:/ User-agent: WWW-Collector-E Disallow:/ User-agent: Xenu's Disallow:/ User-agent: Xenu's Link Sleuth 1.1c Disallow:/ User-agent: Zeus Disallow:/ User-agent: Zeus 32297 Webster Pro V2.9 Win32 Disallow:/

    Read the article

  • Global User Experience Research: Mobile

    - by ultan o'broin
    A shout out to the usableapps.oracle.com blog article Going Native to Understand Mobile Workers. Oracle is a global company and with all that revenue coming from outside the US, international usability research is essential. So read up about how the Applications User Experience team went about this important user-centered ethnographic research. Personalization is king in the mobile space. Going native is a great way to uncover exactly what users want as they work and use their mobile devices, but you need to do it worldwide!

    Read the article

  • Project Euler 51: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 51.  I know I started back up with Python this week, but I have three more Ruby solutions in the hopper and I wanted to share. For the record, Project Euler 51 was the second hardest Euler problem for me thus far. Yeah. As always, any feedback is welcome. # Euler 51 # http://projecteuler.net/index.php?section=problems&id=51 # By replacing the 1st digit of *3, it turns out that six # of the nine possible values: 13, 23, 43, 53, 73, and 83, # are all prime. # # By replacing the 3rd and 4th digits of 56**3 with the # same digit, this 5-digit number is the first example # having seven primes among the ten generated numbers, # yielding the family: 56003, 56113, 56333, 56443, # 56663, 56773, and 56993. Consequently 56003, being the # first member of this family, is the smallest prime with # this property. # # Find the smallest prime which, by replacing part of the # number (not necessarily adjacent digits) with the same # digit, is part of an eight prime value family. timer_start = Time.now require 'mathn' def eight_prime_family(prime) 0.upto(9) do |repeating_number| # Assume mask of 3 or more repeating numbers if prime.count(repeating_number.to_s) >= 3 ctr = 1 (repeating_number + 1).upto(9) do |replacement_number| family_candidate = prime.gsub(repeating_number.to_s, replacement_number.to_s) ctr += 1 if (family_candidate.to_i).prime? end return true if ctr >= 8 end end false end # Wanted to loop through primes using Prime.each # but it took too long to get to the starting value. n = 9999 while n += 2 next if !n.prime? break if eight_prime_family(n.to_s) end puts n puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • Conversation as User Assistance

    - by ultan o'broin
    Applications User Experience members (Erika Web, Laurie Pattison, and I) attended the User Assistance Europe Conference in Stockholm, Sweden. We were impressed with the thought leadership and practical application of ideas in Anne Gentle's keynote address "Social Web Strategies for Documentation". After the conference, we spoke with Anne to explore the ideas further. Anne Gentle (left) with Applications User Experience Senior Director Laurie Pattison In Anne's book called Conversation and Community: The Social Web for Documentation, she explains how user assistance is undergoing a seismic shift. The direction is away from the old print manuals and online help concept towards a web-based, user community-driven solution using social media tools. User experience professionals now have a vast range of such tools to start and nurture this "conversation": blogs, wikis, forums, social networking sites, microblogging systems, image and video sharing sites, virtual worlds, podcasts, instant messaging, mashups, and so on. That user communities are a rich source of user assistance is not a surprise, but the extent of available assistance is. For example, we know from the Consortium for Service Innovation that there has been an 'explosion' of user-generated content on the web. User-initiated community conversations provide as much as 30 times the number of official help desk solutions for consortium members! The growing reliance on user community solutions is clearly a user experience issue. Anne says that user assistance as conversation "means getting closer to users and helping them perform well. User-centered design has been touted as one of the most important ideas developed in the last 20 years of workplace writing. Now writers can take the idea of user-centered design a step further by starting conversations with users and enabling user assistance in interactions." Some of Anne's favorite examples of this paradigm shift from the world of traditional documentation to community conversation include: Writer Bob Bringhurst's blog about Adobe InDesign and InCopy products and Adobe's community help The Microsoft Development Network Community Center ·The former Sun (now Oracle) OpenDS wiki, NetBeans Ruby and other community approaches to engage diverse audiences using screencasts, wikis, and blogs. Cisco's customer support wiki, EMC's community, as well as Symantec and Intuit's approaches The efforts of Ubuntu, Mozilla, and the FLOSS community generally Adobe Writer Bob Bringhurst's Blog Oracle is not without a user community conversation too. Besides the community discussions and blogs around documentation offerings, we have the My Oracle Support Community forums, Oracle Technology Network (OTN) communities, wiki, blogs, and so on. We have the great work done by our user groups and customer councils. Employees like David Haimes reach out, and enthusiastic non-employee gurus like Chet Justice (OracleNerd), Floyd Teter and Eddie Awad provide great "how-to" information too. But what does this paradigm shift mean for existing technical writers as users turn away from the traditional printable PDF manual deliverables? We asked Anne after the conference. The writer role becomes one of conversation initiator or enabler. The role evolves, along with the process, as the users define their concept of user assistance and terms of engagement with the product instead of having it pre-determined. It is largely a case now of "inventing the job while you're doing it, instead of being hired for it" Anne said. There is less emphasis on formal titles. Anne mentions that her own title "Content Stacker" at OpenStack; others use titles such as "Content Curator" or "Community Lead". However, the role remains one essentially about communications, "but of a new type--interacting with users, moderating, curating content, instead of sitting down to write a manual from start to finish." Clearly then, this role is open to more than professional technical writers. Product managers who write blogs, developers who moderate forums, support professionals who update wikis, rock star programmers with a penchant for YouTube are ideal. Anyone with the product knowledge, empathy for the user, and flair for relationships on the social web can join in. Some even perform these roles already but do not realize it. Anne feels the technical communicator space will move from hiring new community conversation professionals (who are already active in the space through blogging, tweets, wikis, and so on) to retraining some existing writers over time. Our own research reveals that the established proponents of community user assistance even set employee performance objectives for internal content curators about the amount of community content delivered by people outside the organization! To take advantage of the conversations on the web as user assistance, enterprises must first establish where on the spectrum their community lies. "What is the line between community willingness to contribute and the enterprise objectives?" Anne asked. "The relationship with users must be managed and also measured." Anne believes that the process can start with a "just do it" approach. Begin by reaching out to existing user groups, individual bloggers and tweeters, forum posters, early adopter program participants, conference attendees, customer advisory board members, and so on. Use analytical tools to measure the level of conversation about your products and services to show a return on investment (ROI), winning management support. Anne emphasized that success with the community model is dependent on lowering the technical and motivational barriers so that users can readily contribute to the conversation. Simple tools must be provided, and guidelines, if any, must be straightforward but not mandatory. The conversational approach is one where traditional style and branding guides do not necessarily apply. Tools and infrastructure help users to create content easily, to search and find the information online, read it, rate it, translate it, and participate further in the content's evolution. Recognizing contributors by using ratings on forums, giving out Twitter kudos, conference invitations, visits to headquarters, free products, preview releases, and so on, also encourages the adoption of the conversation model. The move to conversation as user assistance is not free, but there is a business ROI. The conversational model means that customer service is enhanced, as user experience moves from a functional to a valued, emotional level. Studies show a positive correlation between loyalty and financial performance (Consortium for Service Innovation, 2010), and as customer experience and loyalty become key differentiators, user experience professionals cannot explore the model's possibilities. The digital universe (measured at 1.2 million petabytes in 2010) is doubling every 12 to 18 months, and 70 percent of that universe consists of user-generated content (IDC, 2010). Conversation as user assistance cannot be ignored but must be embraced. It is a time to manage for abundance, not scarcity. Besides, the conversation approach certainly sounds more interesting, rewarding, and fun than the traditional model! I would like to thank Anne for her time and thoughts, and recommend that all user assistance professionals read her book. You can follow Anne on Twitter at: http://www.twitter.com/annegentle. Oracle's Acrolinx IQ deployment was used to author this article.

    Read the article

  • Using Completed User Stories to Estimate Future User Stories

    - by David Kaczynski
    In Scrum/Agile, the complexity of a user story can be estimated in story points. After completing some user stories, a programmer or team of programmers can use those experiences to better estimate how much time it might take to complete a future user story. Is there a methodology for breaking down the complexity of user stories into quantifiable or quantifiable attributes? For example, User Story X requires a rich, new view in the GUI, but User Story X can perform most of its functionality using existing business logic on the server. On a scale of 1 to 10, User Story X has a complexity of 7 on the client and a complexity of 2 on the server. After User Story X is completed, someone asks how long would it take to complete User Story Y, which has a complexity of 3 on the client and 6 on the server. Looking at how long it took to complete User Story X, we can make an educated estimate on how long it might take to complete User Story Y. I can imagine some other details: The complexity of one attribute (such as complexity of client) could have sub-attributes, such as number of steps in a sequence, function points, etc. Several other attributes that could be considered as well, such as the programmer's familiarity with the system or the number of components/interfaces involved These attributes could be accumulated into some sort of user story checklist. To reiterate: is there an existing methodology for decomposing the complexity of a user story into complexity of attributes/sub-attributes, or is using completed user stories as indicators in estimating future user stories more of an informal process?

    Read the article

  • Project Euler 10: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 10.  As always, any feedback is welcome. # Euler 10 # http://projecteuler.net/index.php?section=problems&id=10 # The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. # Find the sum of all the primes below two million. import time start = time.time() def primes_to_max(max): primes, number = [2], 3 while number < max: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes primes = primes_to_max(2000000) print sum(primes) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 15: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 15.  As always, any feedback is welcome. # Euler 15 # http://projecteuler.net/index.php?section=problems&id=15 # Starting in the top left corner of a 2x2 grid, there # are 6 routes (without backtracking) to the bottom right # corner. How many routes are their in a 20x20 grid? import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) rows, cols = 20, 20 print factorial(rows+cols) / (factorial(rows) * factorial(cols)) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 9: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 9.  As always, any feedback is welcome. # Euler 9 # http://projecteuler.net/index.php?section=problems&id=9 # A Pythagorean triplet is a set of three natural numbers, # a b c, for which, # a2 + b2 = c2 # For example, 32 + 42 = 9 + 16 = 25 = 52. # There exists exactly one Pythagorean triplet for which # a + b + c = 1000. Find the product abc. import time start = time.time() product = 0 def pythagorean_triplet(): for a in range(1,501): for b in xrange(a+1,501): c = 1000 - a - b if (a*a + b*b == c*c): return a*b*c print pythagorean_triplet() print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 5: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 5.  As always, any feedback is welcome. # Euler 5 # http://projecteuler.net/index.php?section=problems&id=5 # 2520 is the smallest number that can be divided by each # of the numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly # divisible by all of the numbers from 1 to 20? import time start = time.time() def gcd(a, b): while b: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) print reduce(lcm, range(1, 20)) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 8: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 8.  As always, any feedback is welcome. # Euler 8 # http://projecteuler.net/index.php?section=problems&id=8 # Find the greatest product of five consecutive digits # in the following 1000-digit number import time start = time.time() number = '\ 73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450' max = 0 for i in xrange(0, len(number) - 5): nums = [int(x) for x in number[i:i+5]] val = reduce(lambda agg, x: agg*x, nums) if val > max: max = val print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 52: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 52.  Compared to Problem 51, this problem was a snap. Brute force and pretty quick… As always, any feedback is welcome. # Euler 52 # http://projecteuler.net/index.php?section=problems&id=52 # It can be seen that the number, 125874, and its double, # 251748, contain exactly the same digits, but in a # different order. # # Find the smallest positive integer, x, such that 2x, 3x, # 4x, 5x, and 6x, contain the same digits. timer_start = Time.now def contains_same_digits?(n) value = (n*2).to_s.split(//).uniq.sort.join 3.upto(6) do |i| return false if (n*i).to_s.split(//).uniq.sort.join != value end true end i = 100_000 answer = 0 while answer == 0 answer = i if contains_same_digits?(i) i+=1 end puts answer puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • Project Euler 2: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 2.  As always, any feedback is welcome. # Euler 2 # http://projecteuler.net/index.php?section=problems&id=2 # Find the sum of all the even-valued terms in the # Fibonacci sequence which do not exceed four million. # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. By starting with 1 # and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # Find the sum of all the even-valued terms in the # sequence which do not exceed four million. import time start = time.time() total = 0 previous = 0 i = 1 while i <= 4000000: if i % 2 == 0: total +=i # variable swapping removes the need for a temp variable i, previous = previous, previous + i print total print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 16: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 16.  As always, any feedback is welcome. # Euler 16 # http://projecteuler.net/index.php?section=problems&id=16 # 2^15 = 32768 and the sum of its digits is # 3 + 2 + 7 + 6 + 8 = 26. # What is the sum of the digits of the number 2^1000? import time start = time.time() print sum([int(i) for i in str(2**1000)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 4: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 4.  As always, any feedback is welcome. # Euler 4 # http://projecteuler.net/index.php?section=problems&id=4 # Find the largest palindrome made from the product of # two 3-digit numbers. A palindromic number reads the # same both ways. The largest palindrome made from the # product of two 2-digit numbers is 9009 = 91 x 99. # Find the largest palindrome made from the product of # two 3-digit numbers. import time start = time.time() def isPalindrome(s): return s == s[::-1] max = 0 for i in xrange(100, 999): for j in xrange(i, 999): n = i * j; if (isPalindrome(str(n))): if (n > max): max = n print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 7: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 7.  As always, any feedback is welcome. # Euler 7 # http://projecteuler.net/index.php?section=problems&id=7 # By listing the first six prime numbers: 2, 3, 5, 7, # 11, and 13, we can see that the 6th prime is 13. What # is the 10001st prime number? import time start = time.time() def nthPrime(nth): primes = [2] number = 3 while len(primes) < nth: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes[nth - 1] print nthPrime(10001) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 13: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 13.  As always, any feedback is welcome. # Euler 13 # http://projecteuler.net/index.php?section=problems&id=13 # Work out the first ten digits of the sum of the # following one-hundred 50-digit numbers. import time start = time.time() number_string = '\ 37107287533902102798797998220837590246510135740250\ 46376937677490009712648124896970078050417018260538\ 74324986199524741059474233309513058123726617309629\ 91942213363574161572522430563301811072406154908250\ 23067588207539346171171980310421047513778063246676\ 89261670696623633820136378418383684178734361726757\ 28112879812849979408065481931592621691275889832738\ 44274228917432520321923589422876796487670272189318\ 47451445736001306439091167216856844588711603153276\ 70386486105843025439939619828917593665686757934951\ 62176457141856560629502157223196586755079324193331\ 64906352462741904929101432445813822663347944758178\ 92575867718337217661963751590579239728245598838407\ 58203565325359399008402633568948830189458628227828\ 80181199384826282014278194139940567587151170094390\ 35398664372827112653829987240784473053190104293586\ 86515506006295864861532075273371959191420517255829\ 71693888707715466499115593487603532921714970056938\ 54370070576826684624621495650076471787294438377604\ 53282654108756828443191190634694037855217779295145\ 36123272525000296071075082563815656710885258350721\ 45876576172410976447339110607218265236877223636045\ 17423706905851860660448207621209813287860733969412\ 81142660418086830619328460811191061556940512689692\ 51934325451728388641918047049293215058642563049483\ 62467221648435076201727918039944693004732956340691\ 15732444386908125794514089057706229429197107928209\ 55037687525678773091862540744969844508330393682126\ 18336384825330154686196124348767681297534375946515\ 80386287592878490201521685554828717201219257766954\ 78182833757993103614740356856449095527097864797581\ 16726320100436897842553539920931837441497806860984\ 48403098129077791799088218795327364475675590848030\ 87086987551392711854517078544161852424320693150332\ 59959406895756536782107074926966537676326235447210\ 69793950679652694742597709739166693763042633987085\ 41052684708299085211399427365734116182760315001271\ 65378607361501080857009149939512557028198746004375\ 35829035317434717326932123578154982629742552737307\ 94953759765105305946966067683156574377167401875275\ 88902802571733229619176668713819931811048770190271\ 25267680276078003013678680992525463401061632866526\ 36270218540497705585629946580636237993140746255962\ 24074486908231174977792365466257246923322810917141\ 91430288197103288597806669760892938638285025333403\ 34413065578016127815921815005561868836468420090470\ 23053081172816430487623791969842487255036638784583\ 11487696932154902810424020138335124462181441773470\ 63783299490636259666498587618221225225512486764533\ 67720186971698544312419572409913959008952310058822\ 95548255300263520781532296796249481641953868218774\ 76085327132285723110424803456124867697064507995236\ 37774242535411291684276865538926205024910326572967\ 23701913275725675285653248258265463092207058596522\ 29798860272258331913126375147341994889534765745501\ 18495701454879288984856827726077713721403798879715\ 38298203783031473527721580348144513491373226651381\ 34829543829199918180278916522431027392251122869539\ 40957953066405232632538044100059654939159879593635\ 29746152185502371307642255121183693803580388584903\ 41698116222072977186158236678424689157993532961922\ 62467957194401269043877107275048102390895523597457\ 23189706772547915061505504953922979530901129967519\ 86188088225875314529584099251203829009407770775672\ 11306739708304724483816533873502340845647058077308\ 82959174767140363198008187129011875491310547126581\ 97623331044818386269515456334926366572897563400500\ 42846280183517070527831839425882145521227251250327\ 55121603546981200581762165212827652751691296897789\ 32238195734329339946437501907836945765883352399886\ 75506164965184775180738168837861091527357929701337\ 62177842752192623401942399639168044983993173312731\ 32924185707147349566916674687634660915035914677504\ 99518671430235219628894890102423325116913619626622\ 73267460800591547471830798392868535206946944540724\ 76841822524674417161514036427982273348055556214818\ 97142617910342598647204516893989422179826088076852\ 87783646182799346313767754307809363333018982642090\ 10848802521674670883215120185883543223812876952786\ 71329612474782464538636993009049310363619763878039\ 62184073572399794223406235393808339651327408011116\ 66627891981488087797941876876144230030984490851411\ 60661826293682836764744779239180335110989069790714\ 85786944089552990653640447425576083659976645795096\ 66024396409905389607120198219976047599490197230297\ 64913982680032973156037120041377903785566085089252\ 16730939319872750275468906903707539413042652315011\ 94809377245048795150954100921645863754710598436791\ 78639167021187492431995700641917969777599028300699\ 15368713711936614952811305876380278410754449733078\ 40789923115535562561142322423255033685442488917353\ 44889911501440648020369068063960672322193204149535\ 41503128880339536053299340368006977710650566631954\ 81234880673210146739058568557934581403627822703280\ 82616570773948327592232845941706525094512325230608\ 22918802058777319719839450180888072429661980811197\ 77158542502016545090413245809786882778948721859617\ 72107838435069186155435662884062257473692284509516\ 20849603980134001723930671666823555245252804609722\ 53503534226472524250874054075591789781264330331690' total = 0 for i in xrange(0, 100 * 50 - 1, 50): total += int(number_string[i:i+49]) print str(total)[:10] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 6: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 6.  As always, any feedback is welcome. # Euler 6 # http://projecteuler.net/index.php?section=problems&id=6 # Find the difference between the sum of the squares of # the first one hundred natural numbers and the square # of the sum. import time start = time.time() square_of_sums = sum(range(1,101)) ** 2 sum_of_squares = reduce(lambda agg, i: agg+i**2, range(1,101)) print square_of_sums - sum_of_squares print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 20: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 20.  As always, any feedback is welcome. # Euler 20 # http://projecteuler.net/index.php?section=problems&id=20 # n! means n x (n - 1) x ... x 3 x 2 x 1 # Find the sum of digits in 100! import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) print sum([int(i) for i in str(factorial(100))]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 1: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 1.  As always, any feedback is welcome. # Euler 1 # http://projecteuler.net/index.php?section=problems&amp;id=1 # If we list all the natural numbers below 10 that are # multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of # these multiples is 23. Find the sum of all the multiples # of 3 or 5 below 1000. import time start = time.time() print sum([x for x in range(1000) if x % 3== 0 or x % 5== 0]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue') # Also cool def constraint(x): return x % 3 == 0 or x % 5 == 0 print sum(filter(constraint, range(1000)))

    Read the article

  • Project Euler 3: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 3.  As always, any feedback is welcome. # Euler 3 # http://projecteuler.net/index.php?section=problems&id=3 # The prime factors of 13195 are 5, 7, 13 and 29. # What is the largest prime factor of the number # 600851475143? import time start = time.time() def largest_prime_factor(n): max = n divisor = 2 while (n >= divisor ** 2): if n % divisor == 0: max, n = n, n / divisor else: divisor += 1 return max print largest_prime_factor(600851475143) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 53: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 53.  I first attempted to solve this problem using the Ruby combinations libraries. That didn’t work out so well. With a second look at the problem, the provided formula ended up being just the thing to solve the problem effectively. As always, any feedback is welcome. # Euler 53 # http://projecteuler.net/index.php?section=problems&id=53 # There are exactly ten ways of selecting three from five, # 12345: 123, 124, 125, 134, 135, 145, 234, 235, 245, # and 345 # In combinatorics, we use the notation, 5C3 = 10. # In general, # # nCr = n! / r!(n-r)!,where r <= n, # n! = n(n1)...321, and 0! = 1. # # It is not until n = 23, that a value exceeds # one-million: 23C10 = 1144066. # In general: nCr # How many, not necessarily distinct, values of nCr, # for 1 <= n <= 100, are greater than one-million timer_start = Time.now # There's no factorial method in Ruby, I guess. class Integer # http://rosettacode.org/wiki/Factorial#Ruby def factorial (1..self).reduce(1, :*) end end def combinations(n, r) n.factorial / (r.factorial * (n-r).factorial) end answer = 0 100.downto(3) do |c| (2).upto(c-1) { |r| answer += 1 if combinations(c, r) > 1_000_000 } end puts answer puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • Project Euler 14: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 14.  As always, any feedback is welcome. # Euler 14 # http://projecteuler.net/index.php?section=problems&id=14 # The following iterative sequence is defined for the set # of positive integers: # n -> n/2 (n is even) # n -> 3n + 1 (n is odd) # Using the rule above and starting with 13, we generate # the following sequence: # 13 40 20 10 5 16 8 4 2 1 # It can be seen that this sequence (starting at 13 and # finishing at 1) contains 10 terms. Although it has not # been proved yet (Collatz Problem), it is thought that all # starting numbers finish at 1. Which starting number, # under one million, produces the longest chain? # NOTE: Once the chain starts the terms are allowed to go # above one million. import time start = time.time() def collatz_length(n): # 0 and 1 return self as length if n <= 1: return n length = 1 while (n != 1): if (n % 2 == 0): n /= 2 else: n = 3*n + 1 length += 1 return length starting_number, longest_chain = 1, 0 for x in xrange(1, 1000001): l = collatz_length(x) if l > longest_chain: starting_number, longest_chain = x, l print starting_number print longest_chain # Slow 31 seconds print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 12: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 12.  As always, any feedback is welcome. # Euler 12 # http://projecteuler.net/index.php?section=problems&id=12 # The sequence of triangle numbers is generated by adding # the natural numbers. So the 7th triangle number would be # 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms # would be: # 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... # Let us list the factors of the first seven triangle # numbers: # 1: 1 # 3: 1,3 # 6: 1,2,3,6 # 10: 1,2,5,10 # 15: 1,3,5,15 # 21: 1,3,7,21 # 28: 1,2,4,7,14,28 # We can see that 28 is the first triangle number to have # over five divisors. What is the value of the first # triangle number to have over five hundred divisors? import time start = time.time() from math import sqrt def divisor_count(x): count = 2 # itself and 1 for i in xrange(2, int(sqrt(x)) + 1): if ((x % i) == 0): if (i != sqrt(x)): count += 2 else: count += 1 return count def triangle_generator(): i = 1 while True: yield int(0.5 * i * (i + 1)) i += 1 triangles = triangle_generator() answer = 0 while True: num = triangles.next() if (divisor_count(num) >= 501): answer = num break; print answer print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 19: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 19.  As always, any feedback is welcome. # Euler 19 # http://projecteuler.net/index.php?section=problems&id=19 # You are given the following information, but you may # prefer to do some research for yourself. # # - 1 Jan 1900 was a Monday. # - Thirty days has September, # April, June and November. # All the rest have thirty-one, # Saving February alone, # Which has twenty-eight, rain or shine. # And on leap years, twenty-nine. # - A leap year occurs on any year evenly divisible by 4, # but not on a century unless it is divisible by 400. # # How many Sundays fell on the first of the month during # the twentieth century (1 Jan 1901 to 31 Dec 2000)? import time start = time.time() import datetime sundays = 0 for y in range(1901,2001): for m in range(1,13): # monday == 0, sunday == 6 if datetime.datetime(y,m,1).weekday() == 6: sundays += 1 print sundays print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 18: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 18.  As always, any feedback is welcome. # Euler 18 # http://projecteuler.net/index.php?section=problems&id=18 # By starting at the top of the triangle below and moving # to adjacent numbers on the row below, the maximum total # from top to bottom is 23. # # 3 # 7 4 # 2 4 6 # 8 5 9 3 # # That is, 3 + 7 + 4 + 9 = 23. # Find the maximum total from top to bottom of the triangle below: # 75 # 95 64 # 17 47 82 # 18 35 87 10 # 20 04 82 47 65 # 19 01 23 75 03 34 # 88 02 77 73 07 63 67 # 99 65 04 28 06 16 70 92 # 41 41 26 56 83 40 80 70 33 # 41 48 72 33 47 32 37 16 94 29 # 53 71 44 65 25 43 91 52 97 51 14 # 70 11 33 28 77 73 17 78 39 68 17 57 # 91 71 52 38 17 14 91 43 58 50 27 29 48 # 63 66 04 68 89 53 67 30 73 16 69 87 40 31 # 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 # NOTE: As there are only 16384 routes, it is possible to solve # this problem by trying every route. However, Problem 67, is the # same challenge with a triangle containing one-hundred rows; it # cannot be solved by brute force, and requires a clever method! ;o) import time start = time.time() triangle = [ [75], [95, 64], [17, 47, 82], [18, 35, 87, 10], [20, 04, 82, 47, 65], [19, 01, 23, 75, 03, 34], [88, 02, 77, 73, 07, 63, 67], [99, 65, 04, 28, 06, 16, 70, 92], [41, 41, 26, 56, 83, 40, 80, 70, 33], [41, 48, 72, 33, 47, 32, 37, 16, 94, 29], [53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14], [70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57], [91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48], [63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31], [04, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 04, 23]] # Loop through each row of the triangle starting at the base. for a in range(len(triangle) - 1, -1, -1): for b in range(0, a): # Get the maximum value for adjacent cells in current row. # Update the cell which would be one step prior in the path # with the new total. For example, compare the first two # elements in row 15. Add the max of 04 and 62 to the first # position of row 14.This provides the max total from row 14 # to 15 starting at the first position. Continue to work up # the triangle until the maximum total emerges at the # triangle's apex. triangle [a-1][b] += max(triangle [a][b], triangle [a][b+1]) print triangle [0][0] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >