Search Results

Search found 39 results on 2 pages for 'glreadpixels'.

Page 1/2 | 1 2  | Next Page >

  • glReadPixels() returning non-accurate value

    - by max
    I'm trying to implement the flood fill algorithm. But glReadPixels() is returning float RGB values of a pixel which are slightly different from the actual value set by me, causing the algorithm to fail. Why is this happening? Outputting returned RGB values to check. #include<iostream> #include<GL/glut.h> using namespace std; float boundaryColor[3]={0,0,0}, interiorColor[3]={0,0,0.5}, fillColor[3]={1,0,0}; float readPixel[3]; void init(void) { glClearColor(0,0,0.5,0); glMatrixMode(GL_PROJECTION); gluOrtho2D(0,500,0,500); } void setPixel(int x,int y) { glColor3fv(fillColor); glBegin(GL_POINTS); glVertex2f(x,y); glEnd(); } void getPixel(int x, int y, float *color) { glReadPixels(x,y,1,1,GL_RGB,GL_FLOAT,color); } void floodFill(int x,int y) { getPixel(x,y,readPixel); //outputting values here to check cout<<readPixel[0]<<endl; cout<<readPixel[1]<<endl; cout<<readPixel[2]<<endl; if( readPixel[0]==interiorColor[0] && readPixel[1]==interiorColor[1] && readPixel[2]==interiorColor[2] ) { setPixel(x,y); floodFill(x+1,y); floodFill(x,y+1); floodFill(x-1,y); floodFill(x,y-1); } } void display() { glClear(GL_COLOR_BUFFER_BIT); glColor3fv(boundaryColor); glLineWidth(3); glBegin(GL_LINE_STRIP); glVertex2i(150,150); glVertex2i(150,350); glVertex2i(350,350); glVertex2i(350,150); glVertex2i(150,150); glEnd(); floodFill(200,200); glFlush(); } int main(int argc,char** argv) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowPosition(100,100); glutInitWindowSize(500,500); glutCreateWindow("Flood fill"); init(); glutDisplayFunc(display); glutMainLoop(); }

    Read the article

  • Using glReadBuffer/glReadPixels returns black image instead of the actual image only on Intel cards

    - by cloudraven
    I have this piece of code glReadBuffer( GL_FRONT ); glReadPixels( 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, buffer ); Which works just perfectly in all the Nvidia and AMD GPUs I have tried, but it fails in almost every single Intel built-in video that I have tried. It actually works in a very old 945GME, but fails in all the others. Instead of getting a screenshot I am actually getting a black screen. If it helps, I am working with the Doom3 Engine, and that code is derived from the built-in screen capture code. By the way, even with the original game I cannot do screen capture on those intel devices anyway. My guess is that they are not implementing the standard correctly or something. Is there a workaround for this?

    Read the article

  • gl_FragColor and glReadPixels

    - by chun0216
    I am still trying to read pixels from fragment shader and I have some questions. I know that gl_FragColor returns with vec4 meaning RGBA, 4 channels. After that, I am using glReadPixels to read FBO and write it in data GLubyte *pixels = new GLubyte[640*480*4]; glReadPixels(0, 0, 640,480, GL_RGBA, GL_UNSIGNED_BYTE, pixels); This works fine but it really has speed issue. Instead of this, I want to just read RGB so ignore alpha channels. I tried: GLubyte *pixels = new GLubyte[640*480*3]; glReadPixels(0, 0, 640,480, GL_RGB, GL_UNSIGNED_BYTE, pixels); instead and this didn't work though. I guess it's because gl_FragColor returns 4 channels and maybe I should do something before this? Actually, since my returned image (gl_FragColor) is grayscale, I did something like float gray = 0.5 //or some other values gl_FragColor = vec4(gray,gray,gray,1.0); So is there any efficient way to use glReadPixels instead of using the first 4 channels method? Any suggestion? By the way, this is on opengl es 2.0 code.

    Read the article

  • Screen Capture with Open GL using glReadPixels

    - by Raja
    Hi, I created a CGRegisterScreenRefreshCallback(refreshCallback, NULL) and in the refreshCallback method get the list of rectangles which have changed. I am getting the rectangle data from frameBuffer using OpenGL glReadPixels. Is there a better way of screen capture either with/without opengl and also using OpenGL can I skip reading pixel by pixel ? I have looked at glGetTexImage and glCopyTexSubImage2D. Any simple code block which can explain how to use these functions to get the changed rectangle data would be very helpful ? Thanks, Raja.

    Read the article

  • glReadPixels and save to image

    - by Julius Petraška
    I have app, where user drags and drops image, and it is being redrawn with OpenGL for some aviable processing. Everything works. And when user wants to save his image it works like that: glReadPixels -> NSBitmapImageRep -> NSData -> Write to file This works too. Almost. With some images it is not working as it should work. For example: .png when I open and save this image: I get: And if I open and save this image: I get: .jpg If I open and save: I get: And when I open and save: I get: So sometimes images saves badly. Why is it happening?

    Read the article

  • OpenGL "out of memory" on glReadPixels()

    - by spurserh
    Hello, I am running into an "out of memory" error from OpenGL on glReadPixels() under low-memory conditions. I am writing a plug-in to a program that has a robust heap mechanism for such situations, but I have no idea whether or how OpenGL could be made to use it for application memory management. The notion that this is even possible came to my attention through this [albeit dated] thread on a similar issue under Mac OS X: http://lists.apple.com/archives/Mac-opengl/2001/Sep/msg00042.html I am using Windows XP, and have seen it on multiple NVidia cards. I am also interested in any work-arounds I might be able to relay to users (the thread mentions "increasing virtual memory"). Thanks, Sean

    Read the article

  • Android source code not working, reading frame buffer through glReadPixels

    - by Muhammad Ali Rajput
    Hi, I am new to Android development and have an assignment to read frame buffer data after a specified interval of time. I have come up with the following code: public class mainActivity extends Activity { Bitmap mSavedBM; private EGL10 egl; private EGLDisplay display; private EGLConfig config; private EGLSurface surface; private EGLContext eglContext; private GL11 gl; protected int width, height; //Called when the activity is first created. @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); // get the screen width and height DisplayMetrics dm = new DisplayMetrics(); getWindowManager().getDefaultDisplay().getMetrics(dm); int screenWidth = dm.widthPixels; int screenHeight = dm.heightPixels; String SCREENSHOT_DIR = "/screenshots"; initGLFr(); //GlView initialized. savePixels( 0, 10, screenWidth, screenHeight, gl); //this gets the screen to the mSavedBM. saveBitmap(mSavedBM, SCREENSHOT_DIR, "capturedImage"); //Now we need to save the bitmap (the screen capture) to some location. setContentView(R.layout.main); //This displays the content on the screen } private void initGLFr() { egl = (EGL10) EGLContext.getEGL(); display = egl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY); int[] ver = new int[2]; egl.eglInitialize(display, ver); int[] configSpec = {EGL10.EGL_NONE}; EGLConfig[] configOut = new EGLConfig[1]; int[] nConfig = new int[1]; egl.eglChooseConfig(display, configSpec, configOut, 1, nConfig); config = configOut[0]; eglContext = egl.eglCreateContext(display, config, EGL10.EGL_NO_CONTEXT, null); surface = egl.eglCreateWindowSurface(display, config, SurfaceHolder.SURFACE_TYPE_GPU, null); egl.eglMakeCurrent(display, surface, surface, eglContext); gl = (GL11) eglContext.getGL(); } public void savePixels(int x, int y, int w, int h, GL10 gl) { if (gl == null) return; synchronized (this) { if (mSavedBM != null) { mSavedBM.recycle(); mSavedBM = null; } } int b[] = new int[w * (y + h)]; int bt[] = new int[w * h]; IntBuffer ib = IntBuffer.wrap(b); ib.position(0); gl.glReadPixels(x, 0, w, y + h, GL10.GL_RGBA,GL10.GL_UNSIGNED_BYTE,ib); for (int i = 0, k = 0; i < h; i++, k++) { //OpenGLbitmap is incompatible with Android bitmap //and so, some corrections need to be done. for (int j = 0; j < w; j++) { int pix = b[i * w + j]; int pb = (pix >> 16) & 0xff; int pr = (pix << 16) & 0x00ff0000; int pix1 = (pix & 0xff00ff00) | pr | pb; bt[(h - k - 1) * w + j] = pix1; } } Bitmap sb = Bitmap.createBitmap(bt, w, h, Bitmap.Config.ARGB_8888); synchronized (this) { mSavedBM = sb; } } static String saveBitmap(Bitmap bitmap, String dir, String baseName) { try { File sdcard = Environment.getExternalStorageDirectory(); File pictureDir = new File(sdcard, dir); pictureDir.mkdirs(); File f = null; for (int i = 1; i < 200; ++i) { String name = baseName + i + ".png"; f = new File(pictureDir, name); if (!f.exists()) { break; } } if (!f.exists()) { String name = f.getAbsolutePath(); FileOutputStream fos = new FileOutputStream(name); bitmap.compress(Bitmap.CompressFormat.PNG, 100, fos); fos.flush(); fos.close(); return name; } } catch (Exception e) { } finally { //if (fos != null) { // fos.close(); // } } return null; } } Also, if some one can direct me to better way to read the framebuffer it would be great. I am using Android 2.2 and virtual device of API level 8. I have gone through many previous discussions and have found that we can not know read frame buffer directly throuh the "/dev/graphics/fb0". Thanks, Muhammad Ali

    Read the article

  • How do I get the correct values from glReadPixels in OpenGL 3.0?

    - by NoobScratcher
    I'm currently trying to Implement mouse selection into my game editor and I ran into a little problem when I look at the values stored in &pixel[0],&pixel[1],&pixel[2],&pixel[3]; I get r: 0 g: 0 b: 0 a: 0 As you can see I'm not able to get the correct values from glReadPixels(); My 3D models are red colored using glColor3f(255,0,0); I was hoping someone could help me figure this out. Here is the source code: case WM_LBUTTONDOWN: { GetCursorPos(&pos); ScreenToClient(hwnd, &pos); GLenum err = glGetError(); while (glGetError() != GL_NO_ERROR) {cerr << err << endl;} glReadPixels(pos.x, SCREEN_HEIGHT - 1 - pos.y, 1, 1, GL_RGB, GL_UNSIGNED_BYTE, &pixel[0] ); cerr << "r: "<< (int)pixel[0] << endl; cerr << "g: "<< (int)pixel[1] << endl; cerr << "b: "<< (int)pixel[2] << endl; cerr << "a: "<< (int)pixel[3] << endl; cout << pos.x << endl; cout << pos.y << endl; } break; I use : WIN32 API OPENGL 3.0 C++

    Read the article

  • Restoring a saved opengl ES buffer (i.e. writing it back to screen)

    - by Adam
    I'm writing an iPhone app where I need to save and load the screen contents. I was able to save the screen using glReadPixels(), but since there's no glDrawPixels() in openGL ES, I'm having a lot of trouble restoring that buffer to the screen. I gather that I need to save the screen as a texture: http://stackoverflow.com/questions/708760/what-is-the-equivalent-of-gldrawpixels-in-opengl-es-1-1 But I'm not sure how to implement this. Does anyone have or know of any code samples that do this? I'm an openGL noob, so any help would be greatly appreciated :)

    Read the article

  • Asynchronous readback from opengl front buffer using multiple PBO's

    - by KillianDS
    I am developing an application that needs to read back the whole frame from the front buffer of an openGL application. I can hijack the application's opengl library and insert my code on swapbuffers. At the moment I am successfully using a simple but excruciating slow glReadPixels command without PBO's. Now I read about using multiple PBO's to speed things up. While I think I've found enough resources to actually program that (isn't that hard), I have some operational questions left. I would do something like this: create a series (e.g. 3) of PBO's use glReadPixels in my swapBuffers override to read data from front buffer to a PBO (should be fast and non-blocking, right?) Create a seperate thread to call glMapBufferARB, once per PBO after a glReadPixels, because this will block until the pixels are in client memory. Process the data from step 3. Now my main concern is of course in steps 2 and 3. I read about glReadPixels used on PBO's being non-blocking, will this be an issue if I issue new opengl commands after that very fast? Will those opengl commands block? Or will they continue (my guess), and if so, I guess only swapbuffers can be a problem, will this one stall or will glReadPixels from front buffer be many times faster than swapping (about each 15-30ms) or, worst case scenario, will swapbuffers be executed while glReadPixels is still reading data to the PBO? My current guess is this logic will do something like this: copy FRONT_BUFFER - generic place in VRAM, copy VRAM-RAM. But I have no idea which of those 2 is the real bottleneck and more, what the influence on the normal opengl command stream is. Then in step 3. Is it wise to do this asynchronously in a thread separated from normal opengl logic? At the moment I think not, It seems you have to restore buffer operations to normal after doing this and I can't install synchronization objects in the original code to temporarily block those. So I think my best option is to define a certain swapbuffer delay before reading them out, so e.g. calling glReadPixels on PBO i%3 and glMapBufferARB on PBO (i+2)%3 in the same thread, resulting in a delay of 2 frames. Also, when I call glMapBufferARB to use data in client memory, will this be the bottleneck or will glReadPixels (asynchronously) be the bottleneck? And finally, if you have some better ideas to speed up frame readback from GPU in opengl, please tell me, because this is a painful bottleneck in my current system. I hope my question is clear enough, I know the answer will probably also be somewhere on the internet but I mostly came up with results that used PBO's to keep buffers in video memory and do processing there. I really need to read back the front buffer to RAM and I do not find any clear explanations about performance in that case (which I need, I cannot rely on "it's faster", I need to explain why it's faster). Thank you

    Read the article

  • How to copy depth buffer to CPU memory in DirectX?

    - by Ashwin
    I have code in OpenGL that uses glReadPixels to copy the depth buffer to a CPU memory buffer: glReadPixels(0, 0, w, h, GL_DEPTH_COMPONENT, GL_FLOAT, dbuf); How do I achieve the same in DirectX? I have looked at a similar question which gives the solution to copy the RGB buffer. I've tried to write similar code to copy the depth buffer: IDirect3DSurface9* d3dSurface; d3dDevice->GetDepthStencilSurface(&d3dSurface); D3DSURFACE_DESC d3dSurfaceDesc; d3dSurface->GetDesc(&d3dSurfaceDesc); IDirect3DSurface9* d3dOffSurface; d3dDevice->CreateOffscreenPlainSurface( d3dSurfaceDesc.Width, d3dSurfaceDesc.Height, D3DFMT_D32F_LOCKABLE, D3DPOOL_SCRATCH, &d3dOffSurface, NULL); // FAILS: D3DERR_INVALIDCALL D3DXLoadSurfaceFromSurface( d3dOffSurface, NULL, NULL, d3dSurface, NULL, NULL, D3DX_FILTER_NONE, 0); // Copy from offscreen surface to CPU memory ... The code fails on the call to D3DXLoadSurfaceFromSurface. It returns the error value D3DERR_INVALIDCALL. What is wrong with my code?

    Read the article

  • OpenGL es 2.0 Read depth buffer

    - by Brian
    Hi! As far as i know, we can't read the Z(depth) value in OpenGL ES 2.0. So I am wondering how we can get the 3D world coordinates from a point on the 2D screen? Actually I have some random thoughts might work. Since we can read the RGBA value by using glReadPixels, how about we duplicate the depth buffer and store it in a color buffer(say ColorforDepth). Of course there need to be some nice convention so that we don't lose any information of the depth buffer. And then when we need a point's world coordinates , we attach this ColorforDepth color buffer to the framebuffer and then render it. So when we use glReadPixels to read the depth information at this frame. However, this will lead to 1 frame flash since the colorbuffer is a weird buffer translated from the depth buffer. I am still wondering if there is some standard way to get the depth in OpenGL es 2.0? Thx in advance!:)

    Read the article

  • OpenGL 3.0+ framebuffer to texture/images

    - by user827992
    I need a way to capture what is rendered on screen, i have read about glReadPixels but it looks really slow. Can you suggest a more efficient or just an alternative way for just copying what is rendered by OpenGL 3.0+ to the local RAM and in general to output this in a image or in a data stream? How i can achieve the same goal with OpenGL ES 2.0 ? EDIT: i just forgot: with this OpenGL functions how i can be sure that I'm actually reading a complete frame, meaning that there is no overlapping between 2 frames or any nasty side effect I'm actually reading the frame that comes right next to the previous one so i do not lose frames

    Read the article

  • Renderbuffer to GLSL shader?

    - by Dan
    I have a software that performs volume rendering through a raycasting approach. The actual raycasting shader writes the raycasted volume depth into a framebuffer object, through gl_FragDepth, that I bind before calling the shader. The problem I have is that I would like to use this depth in another shader that I call later on. I figured out that the only way to do that is to bind the framebuffer once the raycasting has finished, read the depthmap through something like glReadPixels(0, 0, m_winSize.x , m_winSize.y, GL_DEPTH_COMPONENT, GL_FLOAT, pixels); and write it to a 2D texture as usual glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, m_winSize.x, m_winSize.y, 0, GL_DEPTH_COMPONENT, GL_FLOAT, pixels) and then pass this 2D texture that contains a simple depth map to the other shader. However, I am not entirely sure that what I do is the proper way to do this. Is there anyway to pass the framebuffer that I fill up in my raycasting shader to the other shader?

    Read the article

  • Using glReadBuffer returns black image instead of the actual image only on Intel cards

    - by cloudraven
    I have this piece of code glReadBuffer( GL_FRONT ); glReadPixels( 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, buffer ); Which works just perfectly in all the Nvidia and AMD GPUs I have tried, but it fails in almost every single Intel built-in video that I have tried. It actually works in a very old 945GME, but fails in all the others. Instead of getting a screenshot I am actually getting a black screen. If it helps, I am working with the Doom3 Engine, and that code is derived from the built-in screen capture code. By the way, even with the original game I cannot do screen capture on those intel devices anyway. My guess is that they are not implementing the standard correctly or something. Is there a workaround for this?

    Read the article

  • How to capture the screen in DirectX 9 to a raw bitmap in memory without using D3DXSaveSurfaceToFile

    - by cloudraven
    I know that in OpenGL I can do something like this glReadBuffer( GL_FRONT ); glReadPixels( 0, 0, _width, _height, GL_RGB, GL_UNSIGNED_BYTE, _buffer ); And its pretty fast, I get the raw bitmap in _buffer. When I try to do this in DirectX. Assuming that I have a D3DDevice object I can do something like this if (SUCCEEDED(D3DDevice->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &pBackbuffer))) { HResult hr = D3DXSaveSurfaceToFileA(filename, D3DXIFF_BMP, pBackbuffer, NULL, NULL); But D3DXSaveSurfaceToFile is pretty slow, and I don't need to write the capture to disk anyway, so I was wondering if there was a faster way to do this

    Read the article

  • System hangs at glReadPixel call with GL_TEXTURE_2D_ARRAY for texturing

    - by Roshan
    I am calling glReadPixel after glDrawArray call. I am rendering a geometry with 3D texture on it as a target GL_TEXTURE_2D_ARRAY. My systems hangs at glreadpixel call. When i use target as GL_TEXTURE_3D the issue does not occurs and it correctly reads the framebuffer contents. glReadPixels(0, 0, GetViewportWidth(), GetViewportHeight(), GL_RGBA, GL_UNSIGNED_BYTE, (GLvoid *)rendered_pixels); I am using SNORM textures with GL_byte data in glTeximage3D call and I am not calling glPixelStorei, is it because of this? What should be the parameter for pixelstore call?

    Read the article

  • opengl es render but dont show on display

    - by Sponge
    i have written a object selection algorithm which picks the objects by there color. i give every object an unique color and then i just have to use the glReadPixels method to check which object was selected this works fine and is really fast but the problem is that the frame is displayed on the screen with all the picking-colors so the screen flashes every time you select something. so my question is: how do i write everything in the correct display buffer but dont display it on the screen to avoid these flashes?

    Read the article

  • How to properly use glDiscardFramebufferEXT

    - by Rafael Spring
    This question relates to the OpenGL ES 2.0 Extension EXT_discard_framebuffer. It is unclear to me which cases justify the use of this extension. If I call glDiscardFramebufferEXT() and it puts the specified attachable images in an undefined state this means that either: - I don't care about the content anymore since it has been used with glReadPixels() already, - I don't care about the content anymore since it has been used with glCopyTexSubImage() already, - I shouldn't have made the render in the first place. Clearly, only the 1st two cases make sense or are there other cases in which glDiscardFramebufferEXT() is useful? If yes, which are these cases?

    Read the article

  • opengl invert framebuffer pixels

    - by ToxIk
    I was wondering was the best way to invert the color pixels in the frame buffer is. I know it's possible to do with glReadPixels() and glDrawPixels() but the performance hit of those calls is pretty big. Basically, what I'm trying to do is have an inverted color cross-hair which is always visible no matter what's behind it. For instance, I'd have an arbitrary alpha mask bitmap or texture, have it render without depth test after the scene is drawn, and all the frame buffer pixels under the masked (full alpha) pixels of the texture would be inverted. I've been trying to do this with a texture, but I'm getting some strange results, also all the blending options I still find confusing.

    Read the article

  • Visualize the depth buffer

    - by Thanatos
    I'm attempting to visualize the depth buffer for debugging purposes, by drawing it on top of the actual rendering when a key is pressed. It's mostly working, but the resulting image appears to be zoomed in. (It's not just the original image, in an odd grayscale) Why is it not the same size as the color buffer? This is what I'm using the view the depth buffer: void get_gl_size(int &width, int &height) { int iv[4]; glGetIntegerv(GL_VIEWPORT, iv); width = iv[2]; height = iv[3]; } void visualize_depth_buffer() { int width, height; get_gl_size(width, height); float *data = new float[width * height]; glReadPixels(0, 0, width, height, GL_DEPTH_COMPONENT, GL_FLOAT, data); glDrawPixels(width, height, GL_LUMINANCE, GL_FLOAT, data); delete [] data; }

    Read the article

  • Screen capture of MDI app with OpenGL graphics using MFC

    - by NPVN
    In our MDI application - which is written in MFC - we have a function to save a screenshot of the MDI client area to file. We are currently doing a BitBlt from the screen into a bitmap, which is then saved. The problem is that some of the MDI child windows have their content rendered by OpenGL, and in the destination bitmap these areas show up as blank or garbled. I have considered some alternatives: - Extract the OpenGL content directly (using glReadPixels), and draw this to the relevant portions of the screen bitmap. - Simulate an ALT+PrtScr, since doing this manually seems to get the content just fine. This will trash the clipboard content, though. - Try working with the DWM. Appart from Vista and Win7, this also needs to work on Win2000 and XP, so this probably isn't the way to go. Any input will be appreciated!

    Read the article

  • Pixel Perfect Collision Detection in Cocos2dx

    - by Happybirthday
    I am trying to port the pixel perfect collision detection in Cocos2d-x the original version was made for Cocos2D and can be found here: http://www.cocos2d-iphone.org/forums/topic/pixel-perfect-collision-detection-using-color-blending/ Here is my code for the Cocos2d-x version bool CollisionDetection::areTheSpritesColliding(cocos2d::CCSprite *spr1, cocos2d::CCSprite *spr2, bool pp, CCRenderTexture* _rt) { bool isColliding = false; CCRect intersection; CCRect r1 = spr1-boundingBox(); CCRect r2 = spr2-boundingBox(); intersection = CCRectMake(fmax(r1.getMinX(),r2.getMinX()), fmax( r1.getMinY(), r2.getMinY()) ,0,0); intersection.size.width = fmin(r1.getMaxX(), r2.getMaxX() - intersection.getMinX()); intersection.size.height = fmin(r1.getMaxY(), r2.getMaxY() - intersection.getMinY()); // Look for simple bounding box collision if ( (intersection.size.width0) && (intersection.size.height0) ) { // If we're not checking for pixel perfect collisions, return true if (!pp) { return true; } unsigned int x = intersection.origin.x; unsigned int y = intersection.origin.y; unsigned int w = intersection.size.width; unsigned int h = intersection.size.height; unsigned int numPixels = w * h; //CCLog("Intersection X and Y %d, %d", x, y); //CCLog("Number of pixels %d", numPixels); // Draw into the RenderTexture _rt-beginWithClear( 0, 0, 0, 0); // Render both sprites: first one in RED and second one in GREEN glColorMask(1, 0, 0, 1); spr1-visit(); glColorMask(0, 1, 0, 1); spr2-visit(); glColorMask(1, 1, 1, 1); // Get color values of intersection area ccColor4B *buffer = (ccColor4B *)malloc( sizeof(ccColor4B) * numPixels ); glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, buffer); _rt-end(); // Read buffer unsigned int step = 1; for(unsigned int i=0; i 0 && color.g 0) { isColliding = true; break; } } // Free buffer memory free(buffer); } return isColliding; } My code is working perfectly if I send the "pp" parameter as false. That is if I do only a bounding box collision but I am not able to get it working correctly for the case when I need Pixel Perfect collision. I think the opengl masking code is not working as I intended. Here is the code for "_rt" _rt = CCRenderTexture::create(visibleSize.width, visibleSize.height); _rt-setPosition(ccp(origin.x + visibleSize.width * 0.5f, origin.y + visibleSize.height * 0.5f)); this-addChild(_rt, 1000000); _rt-setVisible(true); //For testing I think I am making a mistake with the implementation of this CCRenderTexture Can anyone guide me with what I am doing wrong ? Thank you for your time :)

    Read the article

  • How to snap a 2D Quad to the mouse cursor using OpenGL 3.0/WIN32?

    - by NoobScratcher
    I've been having issues trying to snap a 2D Quad to the mouse cursor position I'm able : 1.) To get values into posX, posY, posZ 2.) Translate with the values from those 3 variables But the quad positioning I'm not able to do correctly in such a way that the 2D Quad is near the mouse cursor using those values from those 3 variables eg."posX, posY, posZ" I need the mouse cursor in the center of the 2D Quad. I'm hoping someone can help me achieve this. I've tried searching around with no avail. Heres the function that is ment to do the snapping but instead creates weird flicker or shows nothing at all only the 3d models show up : void display() { glClearColor(0.0,0.0,0.0,1.0); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); for(std::vector<GLuint>::iterator I = cube.begin(); I != cube.end(); ++I) { glCallList(*I); } if(DrawArea == true) { glReadPixels(winX, winY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &winZ); cerr << winZ << endl; glGetDoublev(GL_MODELVIEW_MATRIX, modelview); glGetDoublev(GL_PROJECTION_MATRIX, projection); glGetIntegerv(GL_VIEWPORT, viewport); gluUnProject(winX, winY, winZ , modelview, projection, viewport, &posX, &posY, & posZ); glBindTexture(GL_TEXTURE_2D, DrawAreaTexture); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, DrawAreaSurface->w, DrawAreaSurface->h, 0, GL_RGBA, GL_UNSIGNED_BYTE, DrawAreaSurface->pixels); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, DrawAreaTexture); glTranslatef(posX , posY, posZ); glBegin(GL_QUADS); glTexCoord2f (0.0, 0.0); glVertex3f(0.5, 0.5, 0); glTexCoord2f (1.0, 0.0); glVertex3f(0, 0.5, 0); glTexCoord2f (1.0, 1.0); glVertex3f(0, 0, 0); glTexCoord2f (0.0, 1.0); glVertex3f(0.5, 0, 0); glEnd(); } SwapBuffers(hDC); } I'm using : OpenGL 3.0 WIN32 API C++ GLSL if you really want the full source here it is - http://pastebin.com/1Ncm9HNf , Its pretty messy.

    Read the article

1 2  | Next Page >