Search Results

Search found 13859 results on 555 pages for 'non functional'.

Page 1/555 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Introducing functional programming constructs in non-functional programming languages

    - by Giorgio
    This question has been going through my mind quite a lot lately and since I haven't found a convincing answer to it I would like to know if other users of this site have thought about it as well. In the recent years, even though OOP is still the most popular programming paradigm, functional programming is getting a lot of attention. I have only used OOP languages for my work (C++ and Java) but I am trying to learn some FP in my free time because I find it very interesting. So, I started learning Haskell three years ago and Scala last summer. I plan to learn some SML and Caml as well, and to brush up my (little) knowledge of Scheme. Well, a lot of plans (too ambitious?) but I hope I will find the time to learn at least the basics of FP during the next few years. What is important for me is how functional programming works and how / whether I can use it for some real projects. I have already developed small tools in Haskell. In spite of my strong interest for FP, I find it difficult to understand why functional programming constructs are being added to languages like C#, Java, C++, and so on. As a developer interested in FP, I find it more natural to use, say, Scala or Haskell, instead of waiting for the next FP feature to be added to my favourite non-FP language. In other words, why would I want to have only some FP in my originally non-FP language instead of looking for a language that has a better support for FP? For example, why should I be interested to have lambdas in Java if I can switch to Scala where I have much more FP concepts and access all the Java libraries anyway? Similarly: why do some FP in C# instead of using F# (to my knowledge, C# and F# can work together)? Java was designed to be OO. Fine. I can do OOP in Java (and I would like to keep using Java in that way). Scala was designed to support OOP + FP. Fine: I can use a mix of OOP and FP in Scala. Haskell was designed for FP: I can do FP in Haskell. If I need to tune the performance of a particular module, I can interface Haskell with some external routines in C. But why would I want to do OOP with just some basic FP in Java? So, my main point is: why are non-functional programming languages being extended with some functional concept? Shouldn't it be more comfortable (interesting, exciting, productive) to program in a language that has been designed from the very beginning to be functional or multi-paradigm? Don't different programming paradigms integrate better in a language that was designed for it than in a language in which one paradigm was only added later? The first explanation I could think of is that, since FP is a new concept (it isn't new at all, but it is new for many developers), it needs to be introduced gradually. However, I remember my switch from imperative to OOP: when I started to program in C++ (coming from Pascal and C) I really had to rethink the way in which I was coding, and to do it pretty fast. It was not gradual. So, this does not seem to be a good explanation to me. Or can it be that many non-FP programmers are not really interested in understanding and using functional programming, but they find it practically convenient to adopt certain FP-idioms in their non-FP language? IMPORTANT NOTE Just in case (because I have seen several language wars on this site): I mentioned the languages I know better, this question is in no way meant to start comparisons between different programming languages to decide which is better / worse. Also, I am not interested in a comparison of OOP versus FP (pros and cons). The point I am interested in is to understand why FP is being introduced one bit at a time into existing languages that were not designed for it even though there exist languages that were / are specifically designed to support FP.

    Read the article

  • Functional programming constructs in non-functional programming languages

    - by Giorgio
    This question has been going through my mind quite a lot lately and since I haven't found a convincing answer to it I would like to know if other users of this site have thought about it as well. In the recent years, even though OOP is still the most popular programming paradigm, functional programming is getting a lot of attention. I have only used OOP languages for my work (C++ and Java) but I am trying to learn some FP in my free time because I find it very interesting. So, I started learning Haskell three years ago and Scala last summer. I plan to learn some SML and Caml as well, and to brush up my (little) knowledge of Scheme. Well, a lot of plans (too ambitious?) but I hope I will find the time to learn at least the basics of FP during the next few years. What is important for me is how functional programming works and how / whether I can use it for some real projects. I have already developed small tools in Haskell. In spite of my strong interest for FP, I find it difficult to understand why functional programming constructs are being added to languages like C#, Java, C++, and so on. As a developer interested in FP, I find it more natural to use, say, Scala or Haskell, instead of waiting for the next FP feature to be added to my favourite non-FP language. In other words, why would I want to have only some FP in my originally non-FP language instead of looking for a language that has a better support for FP? For example, why should I be interested to have lambdas in Java if I can switch to Scala where I have much more FP concepts and access all the Java libraries anyway? Similarly: why do some FP in C# instead of using F# (to my knowledge, C# and F# can work together)? Java was designed to be OO. Fine. I can do OOP in Java (and I would like to keep using Java in that way). Scala was designed to support OOP + FP. Fine: I can use a mix of OOP and FP in Scala. Haskell was designed for FP: I can do FP in Haskell. If I need to tune the performance of a particular module, I can interface Haskell with some external routines in C. But why would I want to do OOP with just some basic FP in Java? So, my main point is: why are non-functional programming languages being extended with some functional concept? Shouldn't it be more comfortable (interesting, exciting, productive) to program in a language that has been designed from the very beginning to be functional or multi-paradigm? Don't different programming paradigms integrate better in a language that was designed for it than in a language in which one paradigm was only added later? The first explanation I could think of is that, since FP is a new concept (it isn't new at all, but it is new for many developers), it needs to be introduced gradually. However, I remember my switch from imperative to OOP: when I started to program in C++ (coming from Pascal and C) I really had to rethink the way in which I was coding, and to do it pretty fast. It was not gradual. So, this does not seem to be a good explanation to me. Also, I asked myself if my impression is just plainly wrong due to lack of knowledge. E.g., do C# and C++11 support FP as extensively as, say, Scala or Caml do? In this case, my question would be simply non-existent. Or can it be that many non-FP programmers are not really interested in using functional programming, but they find it practically convenient to adopt certain FP-idioms in their non-FP language? IMPORTANT NOTE Just in case (because I have seen several language wars on this site): I mentioned the languages I know better, this question is in no way meant to start comparisons between different programming languages to decide which is better / worse. Also, I am not interested in a comparison of OOP versus FP (pros and cons). The point I am interested in is to understand why FP is being introduced one bit at a time into existing languages that were not designed for it even though there exist languages that were / are specifically designed to support FP.

    Read the article

  • Non-Profit Technololgy for Non-Profits?

    - by TomJ
    I've been looking around for a way to give back to the community, but I haven't found my right fit yet, so an idea came to mind: A non-profit technology "company" that targets non-profits. Do these exist? I've been doing some google searches and can only find software that is targeted for non-profits that is created by for-profit companies or that charges what I believe to be an outrages amount, conferences directed towards non-profits and technology they may use -- or articles complaining about the digital divide and how non-profits view technology as key but dont have the funds or the knowledge to employ it. Pseudo "Business Model" An open source 501(3)(c) organization that targets directly targets non-profits to fill the "digital divide." Most services would be free and consulting fees would be charged for customization. Donations would be accepted and government grants would be sought after. This would enable non-profits to keep pace with the for-profits in the technology sector, but at little to no cost. Perhaps the first "industry" to be targeted would be those that fill key social needs like unemployment, or food banks.

    Read the article

  • Is functional programming a superset of object oriented?

    - by Jimmy Hoffa
    The more functional programming I do, the more I feel like it adds an extra layer of abstraction that seems like how an onion's layer is- all encompassing of the previous layers. I don't know if this is true so going off the OOP principles I've worked with for years, can anyone explain how functional does or doesn't accurately depict any of them: Encapsulation, Abstraction, Inheritance, Polymorphism I think we can all say, yes it has encapsulation via tuples, or do tuples count technically as fact of "functional programming" or are they just a utility of the language? I know Haskell can meet the "interfaces" requirement, but again not certain if it's method is a fact of functional? I'm guessing that the fact that functors have a mathematical basis you could say those are a definite built in expectation of functional, perhaps? Please, detail how you think functional does or does not fulfill the 4 principles of OOP.

    Read the article

  • Functional or non-functional requirement?

    - by killer_PL
    I'm wondering about functional or non-functional requirements. I have found lot of different definitions for those terms and I can't assign some of my requirement to proper category. I'm wondering about requirements that aren't connected with some action or have some additional conditions, for example: On the list of selected devices, device can be repeated. Database must contain at least 100 items Currency of some value must be in USD dollar. Device must have a name and power consumption value in Watts. are those requirements functional or non-functional ?

    Read the article

  • Learning functional programming [closed]

    - by Oni
    This question is similar to Choosing a functional programming language. I want to learn functional programming but I am having troubles choosing the right programming language. At the university I studied Haskell for 2 months, so I have a basic idea of what a functional language is. I have read a lot that functional programming change your way of think. I started to take a look to Clojure, which I like for several reasons(code as data, JVM, etc). What stops me from continue learning Clojure is that it is not a pure functional language and I am afraid of ending up using imperative/OO style. Should I learn Haskell or keep on learning Clojure? Thanks in advance P.D: I am open to any other language.

    Read the article

  • Data structures in functional programming

    - by pwny
    I'm currently playing with LISP (particularly Scheme and Clojure) and I'm wondering how typical data structures are dealt with in functional programming languages. For example, let's say I would like to solve a problem using a graph pathfinding algorithm. How would one typically go about representing that graph in a functional programming language (primarily interested in pure functional style that can be applied to LISP)? Would I just forget about graphs altogether and solve the problem some other way?

    Read the article

  • Functional programming readability

    - by Jimmy Hoffa
    I'm curious about this because I recall before learning any functional languages, I thought them all horribly, awfully, terribly unreadable. Now that I know Haskell and f#, I find it takes a little longer to read less code, but that little code does far more than an equivalent amount would in an imperative language, so it feels like a net gain and I'm not extremely practiced in functional. Here's my question, I constantly hear from OOP folks that functional style is terribly unreadable. I'm curious if this is the case and I'm deluding myself, or if they took the time to learn a functional language, the whole style would no longer be more unreadable than OOP? Has anybody seen any evidence or got any anecdotes where they saw this go one way or another with frequency enough to possibly say? If writing functionally really is of lower readability than I don't want to keep using it, but I really don't know if that's the case or not..

    Read the article

  • Misconceptions about purely functional languages?

    - by Giorgio
    I often encounter the following statements / arguments: Pure functional programming languages do not allow side effects (and are therefore of little use in practice because any useful program does have side effects, e.g. when it interacts with the external world). Pure functional programming languages do not allow to write a program that maintains state (which makes programming very awkward because in many application you do need state). I am not an expert in functional languages but here is what I have understood about these topics until now. Regarding point 1, you can interact with the environment in purely functional languages but you have to explicitly mark the code (functions) that introduces them (e.g. in Haskell by means of monadic types). Also, AFAIK computing by side effects (destructively updating data) should also be possible (using monadic types?) but is not the preferred way of working. Regarding point 2, AFAIK you can represent state by threading values through several computation steps (in Haskell, again, using monadic types) but I have no practical experience doing this and my understanding is rather vague. So, are the two statements above correct in any sense or are they just misconceptions about purely functional languages? If they are misconceptions, how did they come about? Could you write a (possibly small) code snippet illustrating the Haskell idiomatic way to (1) implement side effects and (2) implement a computation with state?

    Read the article

  • Efficient heaps in purely functional languages

    - by Kim
    As an exercise in Haskell, I'm trying to implement heapsort. The heap is usually implemented as an array in imperative languages, but this would be hugely inefficient in purely functional languages. So I've looked at binary heaps, but everything I found so far describes them from an imperative viewpoint and the algorithms presented are hard to translate to a functional setting. How to efficiently implement a heap in a purely functional language such as Haskell? Edit: By efficient I mean it should still be in O(n*log n), but it doesn't have to beat a C program. Also, I'd like to use purely functional programming. What else would be the point of doing it in Haskell?

    Read the article

  • Functional Languages that compile to Android's Dalvik VM?

    - by Berin Loritsch
    I have a software problem that fits the functional approach to programming, but the target market will be on the Android OS. I ask because there are functional languages that compile to Java's VM, but Dalvik bytecode != Java bytecode. Alternatively, do you know if the dx utility can intelligently convert the .class files generated from functional languages like Scala? Edit: In order to add a bit more helpfulness to the community, and also to help me choose better, can I refine the question a bit? Have you used any alternate languages with Dalvik? Which ones? What are some "gotchas" (problems) that I might run into? Is performance acceptable? By that, I mean the application still feels responsive to the user. I've never done mobile phone development, but I grew up on constrained devices and I'm under no illusion that there is a cost to using non-standard languages with the platform. I just need to know if the cost is such that I should shoe-horn my approach into default language (i.e. apply functional principles in the OOP language).

    Read the article

  • Unit testing statically typed functional code

    - by back2dos
    I wanted to ask you people, in which cases it makes sense to unit test statically typed functional code, as written in haskell, scala, ocaml, nemerle, f# or haXe (the last is what I am really interested in, but I wanted to tap into the knowledge of the bigger communities). I ask this because from my understanding: One aspect of unit tests is to have the specs in runnable form. However when employing a declarative style, that directly maps the formalized specs to language semantics, is it even actually possible to express the specs in runnable form in a separate way, that adds value? The more obvious aspect of unit tests is to track down errors that cannot be revealed through static analysis. Given that type safe functional code is a good tool to code extremely close to what your static analyzer understands. However a simple mistake like using x instead of y (both being coordinates) in your code cannot be covered. However such a mistake could also arise while writing the test code, so I am not sure whether its worth the effort. Unit tests do introduce redundancy, which means that when requirements change, the code implementing them and the tests covering this code must both be changed. This overhead of course is about constant, so one could argue, that it doesn't really matter. In fact, in languages like Ruby it really doesn't compared to the benefits, but given how statically typed functional programming covers a lot of the ground unit tests are intended for, it feels like it's a constant overhead one can simply reduce without penalty. From this I'd deduce that unit tests are somewhat obsolete in this programming style. Of course such a claim can only lead to religious wars, so let me boil this down to a simple question: When you use such a programming style, to which extents do you use unit tests and why (what quality is it you hope to gain for your code)? Or the other way round: do you have criteria by which you can qualify a unit of statically typed functional code as covered by the static analyzer and hence needs no unit test coverage?

    Read the article

  • Functional programming compared to OOP with classes

    - by luckysmack
    I have been interested in some of the concepts of functional programming lately. I have used OOP for some time now. I can see how I would build a fairly complex app in OOP. Each object would know how to do things that object does. Or anything it's parents class does as well. So I can simply tell Person().speak() to make the person talk. But how do I do similar things in functional programming? I see how functions are first class items. But that function only does one specific thing. Would I simply have a say() method floating around and call it with an equivalent of Person() argument so I know what kind of thing is saying something? So I can see the simple things, just how would I do the comparable of OOP and objects in functional programming, so I can modularize and organize my code base? For reference, my primary experience with OOP is Python, PHP, and some C#. The languages that I am looking at that have functional features are Scala and Haskell. Though I am leaning towards Scala. Basic Example (Python): Animal(object): def say(self, what): print(what) Dog(Animal): def say(self, what): super().say('dog barks: {0}'.format(what)) Cat(Animal): def say(self, what): super().say('cat meows: {0}'.format(what)) dog = Dog() cat = Cat() dog.say('ruff') cat.say('purr')

    Read the article

  • Uses of persistent data structures in non-functional languages

    - by Ray Toal
    Languages that are purely functional or near-purely functional benefit from persistent data structures because they are immutable and fit well with the stateless style of functional programming. But from time to time we see libraries of persistent data structures for (state-based, OOP) languages like Java. A claim often heard in favor of persistent data structures is that because they are immutable, they are thread-safe. However, the reason that persistent data structures are thread-safe is that if one thread were to "add" an element to a persistent collection, the operation returns a new collection like the original but with the element added. Other threads therefore see the original collection. The two collections share a lot of internal state, of course -- that's why these persistent structures are efficient. But since different threads see different states of data, it would seem that persistent data structures are not in themselves sufficient to handle scenarios where one thread makes a change that is visible to other threads. For this, it seems we must use devices such as atoms, references, software transactional memory, or even classic locks and synchronization mechanisms. Why then, is the immutability of PDSs touted as something beneficial for "thread safety"? Are there any real examples where PDSs help in synchronization, or solving concurrency problems? Or are PDSs simply a way to provide a stateless interface to an object in support of a functional programming style?

    Read the article

  • Pure functional programming and game state

    - by Fu86
    Is there a common technique to handle state (in general) in a functional programming language? There are solutions in every (functional) programming language to handle global state, but I want to avoid this as far as I could. All state in a pure functional manner are function parameters. So I need to put the whole game state (a gigantic hashmap with the world, players, positions, score, assets, enemies, ...)) as a parameter to all functions which wants to manipulate the world on a given input or trigger. The function itself picks the relevant information from the gamestate blob, do something with it, manipulate the gamestate and return the gamestate. But this looks like a poor mans solution for the problem. If I put the whole gamestate into all functions, there is no benefit for me in contrast to global variables or the imperative approach. I could put just the relevant information into the functions and return the actions which will be taken for the given input. And one single function apply all the actions to the gamestate. But most functions need a lot of "relevant" information. move() need the object position, the velocity, the map for collision, position of all enemys, current health, ... So this approach does not seem to work either. So my question is how do I handle the massive amount of state in a functional programming language -- especially for game development?

    Read the article

  • How to make the transition to functional programming?

    - by tahatmat
    Lately, I have been very intrigued with F# which I have been working a bit with. Coming mostly from Java and C#, I like how concise and easily understandable it is. However, I believe that my background with these imperative languages disturb my way of thinking when programming in F#. I found a comparison of the imperative and functional approach, and I surely do recognize the "imperative way" of programming, but I also find it difficult to define problems to fit well with the functional approach. So my question is: How do I best make the transition from object-oriented programming to functional programming? Can you provide some tips or perhaps provide some literature that can help one to think "in functions" in general?

    Read the article

  • From Imperative to Functional Programming

    - by user66569
    As an Electronic Engineer, my programming experience started with Assembly and continue with PL/M, C, C++, Delphi, Java, C# among others (imperative programming is in my blood). I'm interested in add to my previous knowledge, skills about functional programming, but all I've seen until now seems very obfuscated and esoteric. Can you please answer me these questions? 1) What is the mainstream functional programming language today (I don't want to get lost myself studying a plethora of FP languages, just because language X has the feature Y)? 2) What was the first FP language (the Fortran of functional programming if you want)? 3) Finally, when talking about pure vs. non pure FP what are the mainstream languages of each category? Thank you in advance

    Read the article

  • Are there any purely functional Schemes or Lisps?

    - by nickname
    Over the past few months, I've put a lot of effort into learning (or attempting to learn) several functional programming languages. I really like math, so they have been very natural for me to use. Simply to be more specific, I have tried Common Lisp, Scheme, Haskell, OCaml, and (a little bit of) Erlang. I did not like the syntax of OCaml and do not have enough Erlang knowledge to make a judgment on it yet. Because of its consistent and beautiful (non-)syntax, I really like Scheme. However, I really do appreciate the stateless nature of purely functional programming languages such as Haskell. Haskell looks very interesting, but the amount of inconsistent and non-extendable syntax really bothered me. In the interest of preventing a Lisp vs Haskell flame war, just pretend that I can't use Haskell for some other reason. Therefore, my question is: Are there any purely functional Schemes (or Lisps in general)?

    Read the article

  • Analysis and Design for Functional Programming

    - by edalorzo
    How do you deal with analysis and design phases when you plan to develop a system using a functional programming language like Haskell? My background is in imperative/object-oriented programming languages, and therefore, I am used to use case analysis and the use of UML to document the design of program. But the thing is that UML is inherently related to the object-oriented way of doing software. And I am intrigued about what would be the best way to develop documentation and define software designs for a system that is going to be developed using functional programming. Would you still use use case analysis or perhaps structured analysis and design instead? How do software architects define the high-level design of the system so that developers follow it? What do you show to you clients or to new developers when you are supposed to present a design of the solution? How do you document a picture of the whole thing without having first to write it all? Is there anything comparable to UML in the functional world?

    Read the article

  • Fastest Functional Language

    - by Farouk
    I've recently been delving into functional programming especially Haskell and F#, the prior more so. After some googling around I could not find a benchmark comparison of the more prominent functional languages (Scala,F# etc). I know it's not necessarily fair to some of the languages (Scala comes to mind) given that they are hybrids, but I just wanna know which outperforms which on what operations and overall.

    Read the article

  • Dealing with state problems in functional programming

    - by Andrew Martin
    I've learned how to program primarily from an OOP standpoint (like most of us, I'm sure), but I've spent a lot of time trying to learn how to solve problems the functional way. I have a good grasp on how to solve calculational problems with FP, but when it comes to more complicated problems I always find myself reverting to needing mutable objects. For example, if I'm writing a particle simulator, I will want particle "objects" with a mutable position to update. How are inherently "stateful" problems typically solved using functional programming techniques?

    Read the article

  • Should one comment differently in functional languages

    - by Tom Squires
    I'm just getting started with functional programming and I'm wondering the correct way to comment my code. It seems a little redundant to comment a short function as the names and signature already should tell you everything you need to know. Commenting larger functions also seems a little redundant since they are generally comprised of smaller self-descriptive functions. What is the correct way to comment a functional program? Should I use the same approach as in iterative programming?

    Read the article

  • Should I pick up a functional programming language?

    - by Statement
    I have recently been more concerned about the way I write my code. After reading a few books on design patterns (and overzealous implementation of them, I'm sure) I have shifted my thinking greatly toward encapsulating that which change. I tend to notice that I write less interfaces and more method-oriented code, where I love to spruce life into old classes with predicates, actions and other delegate tasks. I tend to think that it's often the actions that change, so I encapsulate those. I even often, although not always, break down interfaces to a single method, and then I prefer to use a delegate for the task instead of forcing client code to create a new class. So I guess it then hit me. Should I be doing functional programming instead? Edit: I may have a misconception about functional programming. Currently my language of choice is C#, and I come from a C++ background. I work as a game developer but I am currently unemployed. I have a great passion for architecture. My virtues are clean, flexible, reusable and maintainable code. I don't know if I have been poisoned by these ways or if it is for the better. Am I having a refactoring fever or should I move on? I understand this might be a question about "use the right tool for the job", but I'd like to hear your thoughts. Should I pick up a functional language? One of my fear factors is to leave the comfort of Visual Studio.

    Read the article

  • To maximize chances of functional programming employment

    - by Rob Agar
    Given that the future of programming is functional, at some point in the nearish future I want to be paid to code in a functional language, preferably Haskell. Assuming I have a firm grasp of the language, plus all the basic programmer attributes (good communication skills/sense of humour/hygiene etc), what should I concentrate on learning to maximize my chances? Are there any particularly sought after libraries I should know? Alternatively, would another language be a better bet, say F#? (I'm not too fussed about the kind of programming work, so long as it's reasonably interesting and reasonably well paid, and with nice people)

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >