Search Results

Search found 593 results on 24 pages for 'dimensional'.

Page 10/24 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Concept of Search Engine Optimization

    In today's competent world where the market is big and competition is getting huge one who wants to put himself in the arena of business must be aware of the dimensional demands of the market. To market your product in a right way is the key ingredient for success in business.

    Read the article

  • Tools for displaying a multidimensional data table?

    - by ShreevatsaR
    [Apologies if this sort of question is off-topic for SuperUser. Please redirect to the right place if so.] There is a 3-dimensional array of values. (That is, instead of a table/2-dimensional array with values in a grid, the values can be thought of in a cube instead.) Is there a way to display this "cube" interactively, ideally on a webpage? Specifically, given the data, it would work something like this: the user selects two of the 3 variables. He then sees a "stack" of tables, one for each value of the third variable (cross-sections, in other words). By selecting the appropriate table from the stack, he can see the (i,j,k) value he wants. The "technology" for displaying such a thing (stacked tables, rotation, etc.) already exists, so this seems the sort of thing that someone ought to have written already. To be clear: I don't need sophisticated graphics necessarily, just the ability to select from cross-sections of variables. But I have no experience with (say, for displaying on a webpage) what web gadgets exist, so I'm clueless how to even search for one. (Google searches like "multidimensional data visualization" didn't throw up anything useful. Google Spreadsheets can do a few kinds of charts which can be embedded on a webpage, but I cannot tell if this is one of them.) [I can imagine how it ought to work for higher dimensions. For four-dimensions, instead of selecting just a stack, you'd first select an (i,j) from an "outer table", which would show all (k,l) values for that (i,j). For higher dimensions, inductively: you select (i,j), and then repeat what you'd do with 2 fewer dimensions.] So has this been written? Is this easy to write? Where ought one to look for such a thing?

    Read the article

  • Multidimensional data table?

    - by ShreevatsaR
    [Apologies if this sort of question is off-topic for SuperUser. Please redirect to the right place if so.] There is a 3-dimensional array of values. (That is, instead of a table/2-dimensional array with values in a grid, the values can be thought of in a cube instead.) Is there a way to display this "cube" interactively, ideally on a webpage? Specifically, given the data, it would work something like this: the user selects two of the 3 variables. He then sees a "stack" of tables, one for each value of the third variable (cross-sections, in other words). By selecting the appropriate table from the stack, he can see the (i,j,k) value he wants. The "technology" for displaying such a thing (stacked tables, rotation, etc.) already exists, so this seems the sort of thing that someone ought to have written already. To be clear: I don't need sophisticated graphics necessarily, just the ability to select from cross-sections of variables. But I have no experience with (say, for displaying on a webpage) what web gadgets exist, so I'm clueless how to even search for one. (Google searches like "multidimensional data visualization" didn't throw up anything useful. Google Spreadsheets can do a few kinds of charts which can be embedded on a webpage, but I cannot tell if this is one of them.) [I can imagine how it ought to work for higher dimensions. For four-dimensions, instead of selecting just a stack, you'd first select an (i,j) from an "outer table", which would show all (k,l) values for that (i,j). For higher dimensions, inductively: you select (i,j), and then repeat what you'd do with 2 fewer dimensions.] So has this been written? Is this easy to write? Where ought one to look for such a thing?

    Read the article

  • Incremental PCA

    - by smichak
    Hi, Lately, I've been looking into an implementation of an incremental PCA algorithm in python - I couldn't find something that would meet my needs so I did some reading and implemented an algorithm I found in some paper. Here is the module's code - the relevant paper on which it is based is mentioned in the module's documentation. I would appreciate any feedback from people who are interested in this. Micha #!/usr/bin/env python """ Incremental PCA calculation module. Based on P.Hall, D. Marshall and R. Martin "Incremental Eigenalysis for Classification" which appeared in British Machine Vision Conference, volume 1, pages 286-295, September 1998. Principal components are updated sequentially as new observations are introduced. Each new observation (x) is projected on the eigenspace spanned by the current principal components (U) and the residual vector (r = x - U(U.T*x)) is used as a new principal component (U' = [U r]). The new principal components are then rotated by a rotation matrix (R) whose columns are the eigenvectors of the transformed covariance matrix (D=U'.T*C*U) to yield p + 1 principal components. From those, only the first p are selected. """ __author__ = "Micha Kalfon" import numpy as np _ZERO_THRESHOLD = 1e-9 # Everything below this is zero class IPCA(object): """Incremental PCA calculation object. General Parameters: m - Number of variables per observation n - Number of observations p - Dimension to which the data should be reduced """ def __init__(self, m, p): """Creates an incremental PCA object for m-dimensional observations in order to reduce them to a p-dimensional subspace. @param m: Number of variables per observation. @param p: Number of principle components. @return: An IPCA object. """ self._m = float(m) self._n = 0.0 self._p = float(p) self._mean = np.matrix(np.zeros((m , 1), dtype=np.float64)) self._covariance = np.matrix(np.zeros((m, m), dtype=np.float64)) self._eigenvectors = np.matrix(np.zeros((m, p), dtype=np.float64)) self._eigenvalues = np.matrix(np.zeros((1, p), dtype=np.float64)) def update(self, x): """Updates with a new observation vector x. @param x: Next observation as a column vector (m x 1). """ m = self._m n = self._n p = self._p mean = self._mean C = self._covariance U = self._eigenvectors E = self._eigenvalues if type(x) is not np.matrix or x.shape != (m, 1): raise TypeError('Input is not a matrix (%d, 1)' % int(m)) # Update covariance matrix and mean vector and centralize input around # new mean oldmean = mean mean = (n*mean + x) / (n + 1.0) C = (n*C + x*x.T + n*oldmean*oldmean.T - (n+1)*mean*mean.T) / (n + 1.0) x -= mean # Project new input on current p-dimensional subspace and calculate # the normalized residual vector g = U.T*x r = x - (U*g) r = (r / np.linalg.norm(r)) if not _is_zero(r) else np.zeros_like(r) # Extend the transformation matrix with the residual vector and find # the rotation matrix by solving the eigenproblem DR=RE U = np.concatenate((U, r), 1) D = U.T*C*U (E, R) = np.linalg.eigh(D) # Sort eigenvalues and eigenvectors from largest to smallest to get the # rotation matrix R sorter = list(reversed(E.argsort(0))) E = E[sorter] R = R[:,sorter] # Apply the rotation matrix U = U*R # Select only p largest eigenvectors and values and update state self._n += 1.0 self._mean = mean self._covariance = C self._eigenvectors = U[:, 0:p] self._eigenvalues = E[0:p] @property def components(self): """Returns a matrix with the current principal components as columns. """ return self._eigenvectors @property def variances(self): """Returns a list with the appropriate variance along each principal component. """ return self._eigenvalues def _is_zero(x): """Return a boolean indicating whether the given vector is a zero vector up to a threshold. """ return np.fabs(x).min() < _ZERO_THRESHOLD if __name__ == '__main__': import sys def pca_svd(X): X = X - X.mean(0).repeat(X.shape[0], 0) [_, _, V] = np.linalg.svd(X) return V N = 1000 obs = np.matrix([np.random.normal(size=10) for _ in xrange(N)]) V = pca_svd(obs) print V[0:2] pca = IPCA(obs.shape[1], 2) for i in xrange(obs.shape[0]): x = obs[i,:].transpose() pca.update(x) U = pca.components print U

    Read the article

  • Multidimensional Thinking–24 Hours of Pass: Celebrating Women in Technology

    - by smisner
    It’s Day 1 of #24HOP and it’s been great to participate in this event with so many women from all over the world in one long training-fest. The SQL community has been abuzz on Twitter with running commentary which is fun to watch while listening to the current speaker. If you missed the fun today because you’re busy with all that work you’ve got to do – don’t despair. All sessions are recorded and will be available soon. Keep an eye on the 24 Hours of Pass page for details. And the fun’s not over today. Rather than run 24 hours consecutively, #24HOP is now broken down into 12-hours over two days, so check out the schedule to see if there’s a session that interests you and fits your schedule. I’m pleased to announce that my business colleague Erika Bakse ( Blog | Twitter) will be presenting on Day 2 – her debut presentation for a PASS event. (And I’m also pleased to say she’s my daughter!) Multidimensional Thinking: The Presentation My contribution to this lineup of terrific speakers was Multidimensional Thinking. Here’s the abstract: “Whether you’re developing Analysis Services cubes or creating PowerPivot workbooks, you need to get into a multidimensional frame of mind to produce a model that best enables users to answer their business questions on their own. Many database professionals struggle initially with multidimensional models because the data modeling process is much different than the one they use to produce traditional, third normal form databases. In this session, I’ll introduce you to the terminology of multidimensional modeling and step through the process of translating business requirements into a viable model.” If you watched the presentation and want a copy of the slides, you can download a copy here. And you’re welcome to download the slides even if you didn’t watch the presentation, but they’ll make more sense if you did! Kimball All the Way There’s only so much I can cover in the time allotted, but I hope that I succeeded in my attempt to build a foundation that prepares you for starting out in business intelligence. One of my favorite resources that will get into much more detail about all kinds of scenarios (well beyond the basics!) is The Data Warehouse Toolkit (Second Edition) by Ralph Kimball. Anything from Kimball or the Kimball Group is worth reading. Kimball material might take reading and re-reading a few times before it makes sense. From my own experience, I found that I actually had to just build my first data warehouse using dimensional modeling on faith that I was going the right direction because it just didn’t click with me initially. I’ve had years of practice since then and I can say it does get easier with practice. The most important thing, in my opinion, is that you simply must prototype a lot and solicit user feedback, because ultimately the model needs to make sense to them. They will definitely make sure you get it right! Schema Generation One question came up after the presentation about whether we use SQL Server Management Studio or Business Intelligence Development Studio (BIDS) to build the tables for the dimensional model. My answer? It really doesn’t matter how you create the tables. Use whatever method that you’re comfortable with. But just so happens that it IS possible to set up your design in BIDS as part of an Analysis Services project and to have BIDS generate the relational schema for you. I did a Webcast last year called Building a Data Mart with Integration Services that demonstrated how to do this. Yes, the subject was Integration Services, but as part of that presentation, I showed how to leverage Analysis Services to build the tables, and then I showed how to use Integration Services to load those tables. I blogged about this presentation in September 2010 and included downloads of the project that I used. In the blog post, I explained that I missed a step in the demonstration. Oops. Just as an FYI, there were two more Webcasts to finish the story begun with the data – Accelerating Answers with Analysis Services and Delivering Information with Reporting Services. If you want to just cut to the chase and learn how to use Analysis Services to build the tables, you can see the Using the Schema Generation Wizard topic in Books Online.

    Read the article

  • Boosting my GA with Neural Networks and/or Reinforcement Learning

    - by AlexT
    As I have mentioned in previous questions I am writing a maze solving application to help me learn about more theoretical CS subjects, after some trouble I've got a Genetic Algorithm working that can evolve a set of rules (handled by boolean values) in order to find a good solution through a maze. That being said, the GA alone is okay, but I'd like to beef it up with a Neural Network, even though I have no real working knowledge of Neural Networks (no formal theoretical CS education). After doing a bit of reading on the subject I found that a Neural Network could be used to train a genome in order to improve results. Let's say I have a genome (group of genes), such as 1 0 0 1 0 1 0 1 0 1 1 1 0 0... How could I use a Neural Network (I'm assuming MLP?) to train and improve my genome? In addition to this as I know nothing about Neural Networks I've been looking into implementing some form of Reinforcement Learning, using my maze matrix (2 dimensional array), although I'm a bit stuck on what the following algorithm wants from me: (from http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-Learning-Algorithm.htm) 1. Set parameter , and environment reward matrix R 2. Initialize matrix Q as zero matrix 3. For each episode: * Select random initial state * Do while not reach goal state o Select one among all possible actions for the current state o Using this possible action, consider to go to the next state o Get maximum Q value of this next state based on all possible actions o Compute o Set the next state as the current state End Do End For The big problem for me is implementing a reward matrix R and what a Q matrix exactly is, and getting the Q value. I use a multi-dimensional array for my maze and enum states for every move. How would this be used in a Q-Learning algorithm? If someone could help out by explaining what I would need to do to implement the following, preferably in Java although C# would be nice too, possibly with some source code examples it'd be appreciated.

    Read the article

  • Numpy: Sorting a multidimensional array by a multidimensional array

    - by JD Long
    Forgive me if this is redundant or super basic. I'm coming to Python/Numpy from R and having a hard time flipping things around in my head. I have a n dimensional array which I want to sort using another n dimensional array of index values. I know I could wrap this in a loop but it seems like there should be a really concise Numpyonic way of beating this into submission. Here's my example code to set up the problem where n=2: a1 = random.standard_normal(size=[2,5]) index = array([[0,1,2,4,3] , [0,1,2,3,4] ]) so now I have a 2 x 5 array of random numbers and a 2 x 5 index. I've read the help for take() about 10 times now but my brain is not groking it, obviously. I thought this might get me there: take(a1, index) array([[ 0.29589188, -0.71279375, -0.18154864, -1.12184984, 0.25698875], [ 0.29589188, -0.71279375, -0.18154864, 0.25698875, -1.12184984]]) but that's clearly reordering only the first element (I presume because of flattening). Any tips on how I get from where I am to a solution that sorts element 0 of a1 by element 0 of the index ... element n?

    Read the article

  • How to load JPG file into NSBitmapImageRep?

    - by Adam
    Objective-C / Cocoa: I need to load the image from a JPG file into a two dimensional array so that I can access each pixel. I am trying (unsuccessfully) to load the image into a NSBitmapImageRep. I have tried several variations on the following two lines of code: NSString *filePath = [NSString stringWithFormat: @"%@%@",@"/Users/adam/Documents/phoneimages/", [outLabel stringValue]]; //this coming from a window control NSImageRep *controlBitmap = [[NSImageRep alloc] imageRepWithContentsOfFile:filePath]; With the code shown, I get a runtime error: -[NSImageRep imageRepWithContentsOfFile:]: unrecognized selector sent to instance 0x100147070. I have tried replacing the second line of code with: NSImage *controlImage = [[NSImage alloc] initWithContentsOfFile:filePath]; NSBitmapImageRep *controlBitmap = [[NSBitmapImageRep alloc] initWithData:controlImage]; But this yields a compiler error 'incompatible type' saying that initWithData wants a NSData variable not an NSImage. I have also tried various other ways to get this done, but all are unsuccessful either due to compiler or runtime error. Can someone help me with this? I will eventually need to load some PNG files in the same way (so it would be nice to have a consistent technique for both). And if you know of an easier / simpler way to accomplish what I am trying to do (i.e., get the images into a two-dimensional array), rather than using NSBitmapImageRep, then please let me know! And by the way, I know the path is valid (confirmed with fileExistsAtPath) -- and the filename in outLabel is a file with .jpg extension. Thanks for any help!

    Read the article

  • Plot vectors with labels in matlab

    - by mad
    I have a Nx62 matrix with N 62-D vectors and a NX1 vector with the labels for the vectors. I am trying to plot these vectors with their labels because I want to see the behavior of these classes when plotted in a 62-dimensional space. The vectors belong to three classes according to the labels of a NX1 vector cited before. How to to that in matlab? when i do plot(vector,classes) the result is very weird to analyse, how to put labels in the graph? The code i am using to get the labels, vectors and plotting is the following: %labels is a vector with labels, vectors is a matrix where each line is a vector [labels,vectors]=libsvmread('features-im1.txt'); when I plot a three dimensional vector is simple a=[1,2,3] plot(a) and then I get the result but now i have a set of vectors and a set of labels, and i want to see the distribution of them, i want to plot each of these labels but also want to identify their classes. How to do that in matlab? EDIT: This code is almost working. The problem is the fact that for each vector and class the plot will assign a color. I just want three colors and three labels, one per class. [class,vector]=libsvmread('features-im1.txt'); %the plot doesn't allow negative and 0 values in the label class=class+2; labels = {'class -1','class 0','class 1'}; h = plot(vector); legend(h,labels{class})

    Read the article

  • Optimizing T-SQL where an array would be nice

    - by Polatrite
    Alright, first you'll need to grab a barf bag. I've been tasked with optimizing several old stored procedures in our database. This SP does the following: 1) cursor loops through a series of "buildings" 2) cursor loops through a week, Sunday-Saturday 3) has a huge set of IF blocks that are responsible for counting how many Objects of what Types are present in a given building Essentially what you'll see in this code block is that, if there are 5 objects of type #2, it will increment @Type_2_Objects_5 by 1. IF @Number_Type_1_Objects = 0 BEGIN SET @Type_1_Objects_0 = @Type_1_Objects_0 + 1 END IF @Number_Type_1_Objects = 1 BEGIN SET @Type_1_Objects_1 = @Type_1_Objects_1 + 1 END IF @Number_Type_1_Objects = 2 BEGIN SET @Type_1_Objects_2 = @Type_1_Objects_2 + 1 END IF @Number_Type_1_Objects = 3 BEGIN SET @Type_1_Objects_3 = @Type_1_Objects_3 + 1 END [... Objects_4 through Objects_20 for Type_1] IF @Number_Type_2_Objects = 0 BEGIN SET @Type_2_Objects_0 = @Type_2_Objects_0 + 1 END IF @Number_Type_2_Objects = 1 BEGIN SET @Type_2_Objects_1 = @Type_2_Objects_1 + 1 END IF @Number_Type_2_Objects = 2 BEGIN SET @Type_2_Objects_2 = @Type_2_Objects_2 + 1 END IF @Number_Type_2_Objects = 3 BEGIN SET @Type_2_Objects_3 = @Type_2_Objects_3 + 1 END [... Objects_4 through Objects_20 for Type_2] In addition to being extremely hacky (and limited to a quantity of 20 objects), it seems like a terrible way of handling this. In a traditional language, this could easily be solved with a 2-dimensional array... objects[type][quantity] += 1; I'm a T-SQL novice, but since writing stored procedures often uses a lot of temporary tables (which could essentially be a 2-dimensional array) I was wondering if someone could illuminate a better way of handling a situation like this with two dynamic pieces of data to store. Requested in comments: The columns are simply Number_Type_1_Objects, Number_Type_2_Objects, Number_Type_3_Objects, Number_Type_4_Objects, Number_Type_5_Objects, and CurrentDateTime. Each row in the table represents 5 minutes. The expected output is to figure out what percentage of time a given quantity of objects is present throughout each day. Sunday - Object Type 1 0 objects - 69 rows, 5:45, 34.85% 1 object - 85 rows, 7:05, 42.93% 2 objects - 44 rows, 3:40, 22.22% On Sunday, there were 0 objects of type 1 for 34.85% of the day. There was 1 object for 42.93% of the day, and 2 objects for 22.22% of the day. Repeat for each object type.

    Read the article

  • can I store an id value in array of float type ?

    - by srikanth rongali
    I used, for(id value in values) to get the value from an NSArray. Now I want to store it in 2 dimensional float array[][]. When I try to assign the values to array it is giving error:incompatible types in assignment. I tried to cast the value but I got error: pointer value used where a floating point value was expected. I need to store the values in an 2 dimensional array . How can I make it ? Thank You. @implementation fromFileRead1 NSString *fileNameString; int numberOfEnemies, numberOfValues; -(id)init { if( (self = [super init]) ) { NSString *path = @"/Users/sridhar/Desktop/Projects/exampleOnFile2/enemyDetals.txt"; NSString *contentsOfFile = [[NSString alloc] initWithContentsOfFile:path]; NSArray *lines = [contentsOfFile componentsSeparatedByString:@"\n"]; numberOfEnemies = [lines count]; NSLog(@"The number of Lines: %d", numberOfEnemies); for (id line in lines) { NSLog(@"Line %@", line ); NSString *string1 = line; NSArray *split1 = [string1 componentsSeparatedByString:@","]; numberOfValues = [split1 count]; NSLog(@"The number of values in Row: %d", numberOfValues); for (id value in split1) { NSLog(@"value %@", value); float value1; value1 = [split1 objectAtIndex:2]); NSLog(@"VAlue of Value1 at index 2: %f", value1 ); } } } return self; } @end In enemyDetal.txt I have 1,3,3 2,3,2.8 10,2,1.6

    Read the article

  • (Java) Is there a type of object that can handle anything from primitives to arrays?

    - by Michael
    I'm pretty new to Java, so I'm hoping one of you guys knows how to do this. I'm having the user specify both the type and value of arguments, in any XML-like way, to be passed to methods that are external to my application. Example: javac myAppsName externalJavaClass methodofExternalClass [parameters] Of course, to find the proper method, we have to have the proper parameter types as the method may be overloaded and that's the only way to tell the difference between the different versions. Parameters are currently formatted in this manner: (type)value(/type), e.g. (int)71(/int) (string)This is my string that I'm passing as a parameter!(/string) I parse them, getting the constructor for whatever type is indicated, then execute that constructor by running its method, newInstance(<String value>), loading the new instance into an Object. This works fine and dandy, but as we all know, some methods take arrays, or even multi-dimensional arrays. I could handle the argument formatting like so: (array)(array)(int)0(/int)(int)1(/int)(/array)(array)(int)2(/int)(int)3(/int)(/array)(/array)... or perhaps even better... {{(int)0(/int)(int)1(/int)}{(int)2(/int)(int)3(/int)}}. The question is, how can this be implemented? Do I have to start wrapping everything in an Object[] array so I can handle primitives, etc. as argObj[0], but load an array as I normally would? (Unfortunately, I would have to make it an Object[][] array if I wanted to support two-dimensional arrays. This implementation wouldn't be very pretty.)

    Read the article

  • Working with PivotTables in Excel

    - by Mark Virtue
    PivotTables are one of the most powerful features of Microsoft Excel.  They allow large amounts of data to be analyzed and summarized in just a few mouse clicks. In this article, we explore PivotTables, understand what they are, and learn how to create and customize them. Note:  This article is written using Excel 2010 (Beta).  The concept of a PivotTable has changed little over the years, but the method of creating one has changed in nearly every iteration of Excel.  If you are using a version of Excel that is not 2010, expect different screens from the ones you see in this article. A Little History In the early days of spreadsheet programs, Lotus 1-2-3 ruled the roost.  Its dominance was so complete that people thought it was a waste of time for Microsoft to bother developing their own spreadsheet software (Excel) to compete with Lotus.  Flash-forward to 2010, and Excel’s dominance of the spreadsheet market is greater than Lotus’s ever was, while the number of users still running Lotus 1-2-3 is approaching zero.  How did this happen?  What caused such a dramatic reversal of fortunes? Industry analysts put it down to two factors:  Firstly, Lotus decided that this fancy new GUI platform called “Windows” was a passing fad that would never take off.  They declined to create a Windows version of Lotus 1-2-3 (for a few years, anyway), predicting that their DOS version of the software was all anyone would ever need.  Microsoft, naturally, developed Excel exclusively for Windows.  Secondly, Microsoft developed a feature for Excel that Lotus didn’t provide in 1-2-3, namely PivotTables.  The PivotTables feature, exclusive to Excel, was deemed so staggeringly useful that people were willing to learn an entire new software package (Excel) rather than stick with a program (1-2-3) that didn’t have it.  This one feature, along with the misjudgment of the success of Windows, was the death-knell for Lotus 1-2-3, and the beginning of the success of Microsoft Excel. Understanding PivotTables So what is a PivotTable, exactly? Put simply, a PivotTable is a summary of some data, created to allow easy analysis of said data.  But unlike a manually created summary, Excel PivotTables are interactive.  Once you have created one, you can easily change it if it doesn’t offer the exact insights into your data that you were hoping for.  In a couple of clicks the summary can be “pivoted” – rotated in such a way that the column headings become row headings, and vice versa.  There’s a lot more that can be done, too.  Rather than try to describe all the features of PivotTables, we’ll simply demonstrate them… The data that you analyze using a PivotTable can’t be just any data – it has to be raw data, previously unprocessed (unsummarized) – typically a list of some sort.  An example of this might be the list of sales transactions in a company for the past six months. Examine the data shown below: Notice that this is not raw data.  In fact, it is already a summary of some sort.  In cell B3 we can see $30,000, which apparently is the total of James Cook’s sales for the month of January.  So where is the raw data?  How did we arrive at the figure of $30,000?  Where is the original list of sales transactions that this figure was generated from?  It’s clear that somewhere, someone must have gone to the trouble of collating all of the sales transactions for the past six months into the summary we see above.  How long do you suppose this took?  An hour?  Ten?  Probably. If we were to track down the original list of sales transactions, it might look something like this: You may be surprised to learn that, using the PivotTable feature of Excel, we can create a monthly sales summary similar to the one above in a few seconds, with only a few mouse clicks.  We can do this – and a lot more too! How to Create a PivotTable First, ensure that you have some raw data in a worksheet in Excel.  A list of financial transactions is typical, but it can be a list of just about anything:  Employee contact details, your CD collection, or fuel consumption figures for your company’s fleet of cars. So we start Excel… …and we load such a list… Once we have the list open in Excel, we’re ready to start creating the PivotTable. Click on any one single cell within the list: Then, from the Insert tab, click the PivotTable icon: The Create PivotTable box appears, asking you two questions:  What data should your new PivotTable be based on, and where should it be created?  Because we already clicked on a cell within the list (in the step above), the entire list surrounding that cell is already selected for us ($A$1:$G$88 on the Payments sheet, in this example).  Note that we could select a list in any other region of any other worksheet, or even some external data source, such as an Access database table, or even a MS-SQL Server database table.  We also need to select whether we want our new PivotTable to be created on a new worksheet, or on an existing one.  In this example we will select a new one: The new worksheet is created for us, and a blank PivotTable is created on that worksheet: Another box also appears:  The PivotTable Field List.  This field list will be shown whenever we click on any cell within the PivotTable (above): The list of fields in the top part of the box is actually the collection of column headings from the original raw data worksheet.  The four blank boxes in the lower part of the screen allow us to choose the way we would like our PivotTable to summarize the raw data.  So far, there is nothing in those boxes, so the PivotTable is blank.  All we need to do is drag fields down from the list above and drop them in the lower boxes.  A PivotTable is then automatically created to match our instructions.  If we get it wrong, we only need to drag the fields back to where they came from and/or drag new fields down to replace them. The Values box is arguably the most important of the four.  The field that is dragged into this box represents the data that needs to be summarized in some way (by summing, averaging, finding the maximum, minimum, etc).  It is almost always numerical data.  A perfect candidate for this box in our sample data is the “Amount” field/column.  Let’s drag that field into the Values box: Notice that (a) the “Amount” field in the list of fields is now ticked, and “Sum of Amount” has been added to the Values box, indicating that the amount column has been summed. If we examine the PivotTable itself, we indeed find the sum of all the “Amount” values from the raw data worksheet: We’ve created our first PivotTable!  Handy, but not particularly impressive.  It’s likely that we need a little more insight into our data than that. Referring to our sample data, we need to identify one or more column headings that we could conceivably use to split this total.  For example, we may decide that we would like to see a summary of our data where we have a row heading for each of the different salespersons in our company, and a total for each.  To achieve this, all we need to do is to drag the “Salesperson” field into the Row Labels box: Now, finally, things start to get interesting!  Our PivotTable starts to take shape….   With a couple of clicks we have created a table that would have taken a long time to do manually. So what else can we do?  Well, in one sense our PivotTable is complete.  We’ve created a useful summary of our source data.  The important stuff is already learned!  For the rest of the article, we will examine some ways that more complex PivotTables can be created, and ways that those PivotTables can be customized. First, we can create a two-dimensional table.  Let’s do that by using “Payment Method” as a column heading.  Simply drag the “Payment Method” heading to the Column Labels box: Which looks like this: Starting to get very cool! Let’s make it a three-dimensional table.  What could such a table possibly look like?  Well, let’s see… Drag the “Package” column/heading to the Report Filter box: Notice where it ends up…. This allows us to filter our report based on which “holiday package” was being purchased.  For example, we can see the breakdown of salesperson vs payment method for all packages, or, with a couple of clicks, change it to show the same breakdown for the “Sunseekers” package: And so, if you think about it the right way, our PivotTable is now three-dimensional.  Let’s keep customizing… If it turns out, say, that we only want to see cheque and credit card transactions (i.e. no cash transactions), then we can deselect the “Cash” item from the column headings.  Click the drop-down arrow next to Column Labels, and untick “Cash”: Let’s see what that looks like…As you can see, “Cash” is gone. Formatting This is obviously a very powerful system, but so far the results look very plain and boring.  For a start, the numbers that we’re summing do not look like dollar amounts – just plain old numbers.  Let’s rectify that. A temptation might be to do what we’re used to doing in such circumstances and simply select the whole table (or the whole worksheet) and use the standard number formatting buttons on the toolbar to complete the formatting.  The problem with that approach is that if you ever change the structure of the PivotTable in the future (which is 99% likely), then those number formats will be lost.  We need a way that will make them (semi-)permanent. First, we locate the “Sum of Amount” entry in the Values box, and click on it.  A menu appears.  We select Value Field Settings… from the menu: The Value Field Settings box appears. Click the Number Format button, and the standard Format Cells box appears: From the Category list, select (say) Accounting, and drop the number of decimal places to 0.  Click OK a few times to get back to the PivotTable… As you can see, the numbers have been correctly formatted as dollar amounts. While we’re on the subject of formatting, let’s format the entire PivotTable.  There are a few ways to do this.  Let’s use a simple one… Click the PivotTable Tools/Design tab: Then drop down the arrow in the bottom-right of the PivotTable Styles list to see a vast collection of built-in styles: Choose any one that appeals, and look at the result in your PivotTable:   Other Options We can work with dates as well.  Now usually, there are many, many dates in a transaction list such as the one we started with.  But Excel provides the option to group data items together by day, week, month, year, etc.  Let’s see how this is done. First, let’s remove the “Payment Method” column from the Column Labels box (simply drag it back up to the field list), and replace it with the “Date Booked” column: As you can see, this makes our PivotTable instantly useless, giving us one column for each date that a transaction occurred on – a very wide table! To fix this, right-click on any date and select Group… from the context-menu: The grouping box appears.  We select Months and click OK: Voila!  A much more useful table: (Incidentally, this table is virtually identical to the one shown at the beginning of this article – the original sales summary that was created manually.) Another cool thing to be aware of is that you can have more than one set of row headings (or column headings): …which looks like this…. You can do a similar thing with column headings (or even report filters). Keeping things simple again, let’s see how to plot averaged values, rather than summed values. First, click on “Sum of Amount”, and select Value Field Settings… from the context-menu that appears: In the Summarize value field by list in the Value Field Settings box, select Average: While we’re here, let’s change the Custom Name, from “Average of Amount” to something a little more concise.  Type in something like “Avg”: Click OK, and see what it looks like.  Notice that all the values change from summed totals to averages, and the table title (top-left cell) has changed to “Avg”: If we like, we can even have sums, averages and counts (counts = how many sales there were) all on the same PivotTable! Here are the steps to get something like that in place (starting from a blank PivotTable): Drag “Salesperson” into the Column Labels Drag “Amount” field down into the Values box three times For the first “Amount” field, change its custom name to “Total” and it’s number format to Accounting (0 decimal places) For the second “Amount” field, change its custom name to “Average”, its function to Average and it’s number format to Accounting (0 decimal places) For the third “Amount” field, change its name to “Count” and its function to Count Drag the automatically created field from Column Labels to Row Labels Here’s what we end up with: Total, average and count on the same PivotTable! Conclusion There are many, many more features and options for PivotTables created by Microsoft Excel – far too many to list in an article like this.  To fully cover the potential of PivotTables, a small book (or a large website) would be required.  Brave and/or geeky readers can explore PivotTables further quite easily:  Simply right-click on just about everything, and see what options become available to you.  There are also the two ribbon-tabs: PivotTable Tools/Options and Design.  It doesn’t matter if you make a mistake – it’s easy to delete the PivotTable and start again – a possibility old DOS users of Lotus 1-2-3 never had. We’ve included an Excel that should work with most versions of Excel, so you can download to practice your PivotTable skills. Download Our Practice Excel File Similar Articles Productive Geek Tips Magnify Selected Cells In Excel 2007Share Access Data with Excel in Office 2010Make Excel 2007 Print Gridlines In Workbook FileMake Excel 2007 Always Save in Excel 2003 FormatConvert Older Excel Documents to Excel 2007 Format TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Ben & Jerry’s Free Cone Day, 3/23/10 New Stinger from McAfee Helps Remove ‘FakeAlert’ Threats Google Apps Marketplace: Tools & Services For Google Apps Users Get News Quick and Precise With Newser Scan for Viruses in Ubuntu using ClamAV Replace Your Windows Task Manager With System Explorer

    Read the article

  • How to render axometric/isometric tiles that are a 2d array in logic, but inclined 45º visually?

    - by TheLima
    I am making a tile-based strategy game which i plan to have 2.5D visuals in an axometric/isometric fashion. Right now i'm programming it's logic and rendering it as a literal 2-dimensional array (perfect squares, like an isometric top-down-view). In short, i have something like this: And i want to turn it to something like this: Do i keep going on the 2d-array logic? Is it all just a change in rendering behavior, as i'm thinking it is? or 2d-array is the wrong approach for my objective and I should change before it's too late? What are the ways of doing it, anyways? How should i apply the 2.5D axometric/isometric view (45º rotation to the side, and 45º rotation upwards)?

    Read the article

  • Friday Fun: Daisy in Wonderland

    - by Asian Angel
    Are you suffering the effects of another grinding week at work? Then it is time for you to relax for a little bit and have some fun! In this week’s game you get to engage in inter-dimensional travel as you help Daisy try to return home Latest Features How-To Geek ETC How To Create Your Own Custom ASCII Art from Any Image How To Process Camera Raw Without Paying for Adobe Photoshop How Do You Block Annoying Text Message (SMS) Spam? How to Use and Master the Notoriously Difficult Pen Tool in Photoshop HTG Explains: What Are the Differences Between All Those Audio Formats? How To Use Layer Masks and Vector Masks to Remove Complex Backgrounds in Photoshop Bring Summer Back to Your Desktop with the LandscapeTheme for Chrome and Iron The Prospector – Home Dash Extension Creates a Whole New Browsing Experience in Firefox KinEmote Links Kinect to Windows Why Nobody Reads Web Site Privacy Policies [Infographic] Asian Temple in the Snow Wallpaper 10 Weird Gaming Records from the Guinness Book

    Read the article

  • A* Jump Point Search - how does pruning really work?

    - by DeadMG
    I've come across Jump Point Search, and it seems pretty sweet to me. However, I'm unsure as to how their pruning rules actually work. More specifically, in Figure 1, it states that we can immediately prune all grey neighbours as these can be reached optimally from the parent of x without ever going through node x However, this seems somewhat at odds. In the second image, node 5 could be reached by first going through node 7 and skipping x entirely through a symmetrical path- that is, 6 -> x -> 5 seems to be symmetrical to 6 -> 7 -> 5. This would be the same as how node 3 can be reached without going through x in the first image. As such, I don't understand how these two images are not entirely equivalent, and not just rotated versions of each other. Secondly, I'd like to understand how this algorithm could be generalized to a three-dimensional search volume.

    Read the article

  • Physics engine that can handle multiple attractors?

    - by brice
    I'm putting together a game that will be played mostly with three dimensional gravity. By that I mean multiple planets/stars/moons behaving realistically, and path plotting and path prediction in the gravity field. I have looked at a variety of physics engines, such as Bullet, tokamak or Newton, but none of them seem to be suitable, as I'd essentially have to re-write the gravity engine in their framework. Do you know of a physics engine that is capable of dealing with multiple bodies all attracted to one another? I don't need scenegraph management, or rendering, just core physics. (collision detection would be a bonus, as would rigid body dynamics). My background is in physics, so I would be able to write an engine that uses Verlet integration or RK4 (or even Euler integration, if I had to) but I'd much rather adapt an off the shelf solution. [edit]: There are some great resources for physics simulation of n-body problems online, and on stackoverflow

    Read the article

  • Using heavyweight ORM implementation for light based games

    - by Holland
    I'm just about to engulf myself in an MVC-based/Component architecture in C#, using MySQL's connector/Net for the data storage, and probably some NHibernate/FluentNHibernate Object-relational-mapping to map out the data structure. The goal is to build a scalable 2D RPG. Then I think about it...and I can't help but think this seems a little "heavy weight" for a 2D RPG, especially one which, while I plan to incorporate a lot of functionality and entertaining gameplay, may be ported to something like Windows Phone or Android in the future. Yet, on the other hand even a 2-Dimensional RPG can become very complicated, and therefore must incorporate a lot of functionality. While this can be accomplished with text/XML/JSON for data storage, is there a better way? Is something such as Object-Relational-Mapping useful in such an application? So, what do you think? Would you say that there is a place for such technologies? I don't know what to think...

    Read the article

  • Powder games: how do they work?

    - by Marc Müller
    Hey guys, I recently found these two gems: http://powdertoy.co.uk/ http://dan-ball.jp/en/javagame/dust/ My question is: How are the physics with so many elements efficiently handled? Am I just severely underestimating modern computing power or is it possible to 'just' have a two-dimensional array, each cell of which describes what is placed at the according position and simulate each cell in every step. Or are there more complex things being done like summarising large areas of the same kind into a single data set and separating said set as needed? Are there any open-source games like this I could look at?

    Read the article

  • What is the best way to construct a "remove multiple items" area (ASP.NET VB) [on hold]

    - by Darkcat Studios
    Lets say for example I have a (variable length) 2 dimensional array of product names and their unique product codes. I can display this list in a datagrid, table etc. (Imagine this as a standard shopping basket type scenario) What I need to do is be able to tick multiple items (?) , then on clicking a submit button, fire an action. The bit im struggling with is how do i: A: programatically display asp:checkboxes for each item (and give them a unique ID) B: know which are ticked on firing the final action (not sure if this question is best suited to the main stack but theres so much activity on there that questions just get lost now!)

    Read the article

  • How should I do 3D games through Java on a mac?

    - by Steven Rogers
    I have been self-teaching myself Java on the mac mostly because the language is cross-platform. Recently, I have been only able to develop 2D games using the Graphics2D class. Now, I want to learn how to make 3D games in Java. I used to model and animate stuff in 3D, so my knowledge of 3-Dimensional stuff is okay. I have spent the last 3 hours using google to look up ways of making 3D games in java. Apparently the best one to use is OpenGL, so i looked up a tutorial on it and i cannot find a tutorial that shows how to (if there is a way) install JOGL on the Mac platform. Should i continue to use Java? How can i make 3D games using Java? What is the best way to make 3D games on a mac?

    Read the article

  • An introduction to Oracle Retail Data Model with Claudio Cavacini

    - by user801960
    In this video, Claudio Cavacini of Oracle Retail explains Oracle Retail Data Model, a solution that combines pre-built data mining, online analytical processing (OLAP) and dimensional models to deliver industry-specific metrics and insights that improve a retailers’ bottom line. Claudio shares how the Oracle Retail Data Model (ORDM) delivers retailer and market insight quickly and efficiently, allowing retailers to provide a truly multi-channel approach and subsequently an effective customer experience. The rapid implementation of ORDM results in predictable costs and timescales, giving retailers a higher return on investment. Please visit our website for further information on Oracle Retail Data Model.

    Read the article

  • RGB values from image into a one dimension array in c#

    - by velocityxyz
    I was wondering if there is a was a way to read rgb values from an image into a one dimensional array in C#. If it doesnt make sense, in java I would do something like this. int[] pixels; BufferedImage image = getClass().getResourceAsStream("asdfghjkl.png"); int w = image.getWidth(); int h = image.getHeight(); pixels = new int[w * h]; image.getRGB(0, 0, w, h, pixels, 0, w) ; So any help would be great, or if you can point me in the right direction, that'd be great

    Read the article

  • Moving camera, or camera with discrete "screens"?

    - by Jacob Millward
    I'm making a game with a friend, but having trouble deciding on a camera style. The basic idea for the game, is having a randomly generated 2-dimensional world, with settlements in it. These settlements would have access to different resources, and it would be the job of the player to create bridges and ladders and links between these villages so they can trade. The player would advance personally by getting better gear, fighting monsters and looking for materials in the world, in order to craft and trade them at the settlements. My friend wants to use an old-style camera, where the world is split into a discrete number of screens that the player moves between. Similar to early Zelda dungeons, or Knytt Stories. This is opposite to me, as I want a standard camera that follows the player around as I feel the split-screen style camera limits the game. Can anyone argue the case either way? We've hit a massive roadblock here and can't seem to get past it.

    Read the article

  • Typical collision detection

    - by marcg11
    I would like to know how is the typical collision detection of most games. For example, you control a character which can move in 2 dimensional directions (except up and down). Now lets asume he walks into a wall, most of the games depending on character angle and the BB normal face will only stop the player in one axis, but will continue moving in the other along the wall axis. How is that done? I've only managed to stop the character from going through the wall by seting the position to the last one in the past frame if the new position colllisions the bounding box. But this just makes the player stop sharply and unrealisticly.

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >