Search Results

Search found 688 results on 28 pages for 'terminate'.

Page 10/28 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Consequences of an infinite loop on Google App Engine?

    - by Axidos
    I am not a Google App Engine user. However, I understand you're billed for CPU time and other resources. What are the consequences if you happen to create an infinite loop? Will Google ever terminate it, or will you have to do it yourself manually somehow? I'm a hobbyist developer worried about a small error that might end up costing hundreds.

    Read the article

  • python multiprocessing member variable not set

    - by Jake
    In the following script, I get the "stop message received" output but the process never ends. Why is that? Is there another way to end a process besides terminate or os.kill that is along these lines? from multiprocessing import Process from time import sleep class Test(Process): def __init__(self): Process.__init__(self) self.stop = False def run(self): while self.stop == False: print "running" sleep(1.0) def end(self): print "stop message received" self.stop = True if __name__ == "__main__": test = Test() test.start() sleep(1.0) test.end() test.join()

    Read the article

  • C++0x thread interruption

    - by Nicola Bonelli
    According to the C++0x final draft, there's no way to request a thread to terminate. That said, if required we need to implement a do-it-yourself solution. In your opinion, what's the best solution? Designing your own cooperative 'interruption mechanism' or going native?

    Read the article

  • What does "the application failed to initialize properly" mean?

    - by Mason Wheeler
    I just got a bug report from someone running an app I wrote under Windows XP. He says it won't start up. The application failed to initialize properly (0xc0150002). Click on OK to terminate the application. It works fine at my end, (under Windows 7,) and I don't have any Win7- or Vista-specific stuff in the program, so it should work on XP too. How do I go about tracking this down and debugging it?

    Read the article

  • link dll to executable

    - by user353707
    How can I link the .dll file to an executable? I do not have the source for the dll nor executable. The two files operate on a 64-bit system. When the executable is ported from another system, I get "The application failed to initialize properly (0xc0150002). Click OK to Terminate the program.

    Read the article

  • What is the meaning of this C++ Error std::length_error

    - by Janusz
    While running my program I get this Error: terminate called after throwing an instance of 'std::length_error' what(): basic_string::_S_create Abort trap I know that you can't do much without the code but I think that error is to deep in the code to copy all of it. Maybe I can figure it out if I understand what this error means. Is this a sign for an issue with reading or writing at the wrong memory address? Is there something I can do to get more information about the problem from my program?

    Read the article

  • Failed to allocate memory: 8

    - by Denis Hoss
    From today, when I tried to run an app in NetBeans on a 2.3.3 Android platform, it shows me that: Failed to allocate memory: 8 This application has requested the Runtime to terminate it in an unusual way. Please contact the application's support team for more information. and the Emulator doesn't want to start. This is for the first time when I see it, and google has no asnwers for this, I tried even with 2 versions of NetBeans 6.9.1 and 7.0.1, still the same error.

    Read the article

  • What happens when I throw an exception?

    - by helloWorld
    I have some technical questions. In this function: string report() const { if(list.begin() == list.end()){ throw "not good"; } //do something } If I throw the exception what is going on with the program? Will my function terminate or will it run further? If it terminates, what value will it return?

    Read the article

  • Close an external TCP connection

    - by oidfrosty
    How can i terminate a tcp connection wich is not handled by my program? for example i want to close all the connection on port 10202 and i dont want them to reopen but i want to allow the other ports everything in C# like Sysinternals' tcpView does

    Read the article

  • background worker window controls not rendered

    - by senthil
    Is there any way to load window inside the background worker thread without using showdialog()? the background worker only terminate only after getting some input from the window. Here the issue is window shown but the button and other controls are not rendered even we don't have control over any of the window.

    Read the article

  • terminating index process for search engine

    - by Sadegh
    hi, i am working on a small search-engine app with asp.net 4.0. the indexing process can index each URL founded in each document and this recursively performed for each other. now how i can terminate this process when i want or when user clicked on stop browser button?

    Read the article

  • C++ TerminateProcess function

    - by jemper
    I've been searching examples for the Win32 API C++ function TerminateProcess() but couldn't find any. I'm not that familiar with the Win32 API in general and so I wanted to ask if someone here who is better in it than me could show me an example for, Retrieving a process handle by its PID required to terminate it and then call TerminateProcess with it. If you aren't familiar with C++ a C# equivalent would help too.

    Read the article

  • Is it possible to start (and stop) a thread inside a DLL?

    - by Jerry Dodge
    I'm pondering some ideas for building a DLL for some common stuff I do. One thing I'd like to check if it's possible is running a thread inside of a DLL. I'm sure I would be able to at least start it, and have it automatically free on terminate (and make it forcefully terminate its self) - that I can see wouldn't be much of a problem. But once I start it, I don't see how I can continue communicating with it (especially to stop it) mainly because each call to the DLL is unique (as far as my knowledge tells me) but I also know very little of the subject. I've seen how in some occasions, a DLL can be loaded at the beginning and released at the end when it's not needed anymore. I have 0 knowledge or experience with this method, other than just seeing something related to it, couldn't even tell you what or how, I don't remember. But is this even possible? I know about ActiveX/COM but that is not what I want - I'd like just a basic DLL that can be used across languages (specifically C#). Also, if it is possible, then how would I go about doing callbacks from the DLL to the app? For example, when I start the thread, I most probably will assign a function (which is inside the EXE) to be the handler for the events (which are triggered from the DLL). So I guess what I'm asking is - how to load a DLL for continuous work and release it when I'm done - as opposed to the simple method of calling individual functions in the DLL as needed. In the same case - I might assign variables or create objects inside the DLL. How can I assure that once I assign that variable (or create the object), how can I make sure that variable or object will still be available the next time I call the DLL? Obviously it would require a mechanism to Initialize/Finalize the DLL (I.E. create the objects inside the DLL when the DLL is loaded, and free the objects when the DLL is unloaded). EDIT: In the end, I will wrap the DLL inside of a component, so when an instance of the component is created, DLL will be loaded and a corresponding thread will be created inside the DLL, then when the component is free'd, the DLL is unloaded. Also need to make sure that if there are for example 2 of these components, that there will be 2 instances of the DLL loaded for each component. Is this in any way related to the use of an IInterface? Because I also have 0 experience with this. No need to answer it directly with sample source code - a link to a good tutorial would be great.

    Read the article

  • exceptions in C++

    - by helloWorld
    I have some techniacal question, in this function: string report() const { if(list.begin() == list.end()){ throw "not good"; } //do something } if I throw exception what is going on with the program? Will my function terminate or it will run further? if it terminates, what value will it return?

    Read the article

  • This task is currently locked by a running workflow and cannot be edited. Limitation to both Nintex and SPD workflow

    - by ybbest
    Note, this post is from Nintex Forum here. These limitations apply to both SharePoint designer Workflow and Nintex Workflow as Nintex using the SharePoint workflow engine. The common cause that I experience is that ‘parent’ workflow is generating more than one task at once. This is common as you can have multiple approvers for certain approval process. You could also have workflow running when the task is created, one of the common scenario is you would like to set a custom column value in your approval task. For me this is huge limitation, as Nintex lover I really hope Nintex could solve this problem with Microsoft going forward. Introduction “This task is currently locked by a running workflow and cannot be edited” is a common message that is seen when an error occurs while the SharePoint workflow engine is processing a task item associated with a workflow. When a workflow processes a task normally, the following sequence of events is expected to occur: 1.       The process begins. 2.       The workflow places a ‘lock’ on the task so nothing else can change the values while the workflow is processing. 3.       The workflow processes the task. 4.       The lock is released when the task processing is finished. When the message is encountered, it usually indicates that an error occurred between step 2 and 4. As a result, the lock is never released. Therefore, the ‘task locked’ message is not an error itself, rather a symptom of another error – the ‘task locked’ message does not indicate what went wrong. In most cases, once this message is encountered, the workflow cannot be made to continue and must be terminated and started again. The following is a guide that can help troubleshoot the cause of these messages.  Some initial observations to narrow down the potential causes are: Is the error consistent or intermittent? When the error is consistent, it will happen every time the workflow is run. When it is intermittent, it may happen regularly, but not every time. Does the error occur the first time the user tries to respond to a task, or do they respond and notice the workflow does not continue, and when they respond again the error occurs? If the message is present when the user first responds to the task, the issue would have occurred when the task was created. Otherwise, it would have occurred when the user attempted to respond to the task. Causes Modifying the task list A cause of this error appearing consistently the first time a user tries to respond to a task is a modification to the default task list schema. For example, changing the ‘Assigned to’ field in a task list to be a multiple selection will cause the behaviour. Deleting the workflow task then restoring it from the Recycle bin If you start a workflow, delete the workflow task then restore it from the Recycle Bin in SharePoint, the workflow will fail with the ‘task locked’ error.  This is confirmed behaviour whether using a SharePoint Designer or a Nintex workflow.  You will need to terminate the workflow and start it again. Parallel simultaneous responses A cause of this error appearing inconsistently is multiple users responding to tasks in parallel at the same time. In this scenario, one task will complete correctly and the other will not process. When the user tries again, the ‘task locked’ message will display. Nintex included a workaround for this issue in build 11000. In build 11000 and later, one of the users will receive a message on the task form when they attempt to respond, stating that they need to try again in a few moments. Additional processing on the task A cause of this error appearing consistently and inconsistently is having an additional system running on the items in the task list. Some examples include: a workflow running on the task list, an event receiver running on the task list or another automated process querying and updating workflow tasks. Note: This Microsoft help article (http://office.microsoft.com/en-us/sharepointdesigner/HA102376561033.aspx#5) explains creating a workflow that runs on the task list to update a field on the task. Our experience shows that this causes the ‘Task Locked’ issues when the ‘parent’ workflow is generating more than one task at once. Isolated system error If the error is a rare event, or a ‘one off’ event, then an isolated system error may have occurred. For example, if there is a database connectivity issue while the workflow is processing the task response, the task will lock. In this case, the user will respond to a task but the workflow will not continue. When they respond again, the ‘task locked’ message will display. In this case, there will be an error in the SharePoint ULS Logs at the time that the user originally responded. Temporary delay while workflow processes If the workflow is taking a long time to process after a user submits a task, they may notice and try to respond to the task again. They will see the task locked error, but after a number of attempts (or after waiting some time) the task response page eventually indicates the task has been responded to. In this case, nothing actually went wrong, and the error message gives an accurate indication of what is happening – the workflow temporarily locked the task while it was processing. This scenario may occur in a very large workflow, or after the SharePoint application pool has just started. Modifying the task via a web service with an invalid url If the Nintex Workflow web service is used to respond to or delegate a task, the site context part of the url must be a valid alternative access mapping url. For example, if you access the web service via the IP address of the SharePoint server, and the IP address is not a valid AAM, the task can become locked. The workflow has become stuck without any apparent errors This behaviour can occur as a result of a bug in the SharePoint 2010 workflow engine.  If you do not have the August 2010 Cumulative Update (or later) for SharePoint, and your workflow uses delays, “Flexi-task”, State machine”, “Task Reminder” actions or variables, you could be affected. Check the SharePoint 2010 Updates site here: http://technet.microsoft.com/en-us/sharepoint/ff800847.  The October CU is recommended http://support.microsoft.com/kb/2553031.   The fix is described as “Consider the following scenario. You add a Delay activity to a workflow. Then, you set the duration for the Delay activity. You deploy the workflow in SharePoint Foundation 2010. In this scenario, the workflow is not resumed after the duration of the Delay activity”. If you find this is occurring in your environment, install the October CU, terminate all the running workflows affected and run them afresh. Investigative steps The first step to isolate the issue is to create a new task list on the site and configure the workflow to use it.  Any customizations that were made to the original task list should not be made to the new task list. If the new task list eliminates the issue, then the cause can be attributed to the original task list or a change that was made to it. To change the task list that the workflow uses: In Workflow Designer select Settings -> Startup Options Then configure the task list as required If any of the scenarios above do not help, check the SharePoint logs for any messages with a category of ‘Workflow Infrastructure’. Conclusion The information in this article has been gathered from observations and investigations by Nintex. The sources of these issues are the underlying SharePoint workflow engine. This article will be updated if further causes are discovered. From <http://connect.nintex.com/forums/thread/6503.aspx>

    Read the article

  • Use Autoruns to Manually Clean an Infected PC

    - by Mark Virtue
    There are many anti-malware programs out there that will clean your system of nasties, but what happens if you’re not able to use such a program?  Autoruns, from SysInternals (recently acquired by Microsoft), is indispensable when removing malware manually. There are a few reasons why you may need to remove viruses and spyware manually: Perhaps you can’t abide running resource-hungry and invasive anti-malware programs on your PC You might need to clean your mom’s computer (or someone else who doesn’t understand that a big flashing sign on a website that says “Your computer is infected with a virus – click HERE to remove it” is not a message that can necessarily be trusted) The malware is so aggressive that it resists all attempts to automatically remove it, or won’t even allow you to install anti-malware software Part of your geek credo is the belief that anti-spyware utilities are for wimps Autoruns is an invaluable addition to any geek’s software toolkit.  It allows you to track and control all programs (and program components) that start automatically with Windows (or with Internet Explorer).  Virtually all malware is designed to start automatically, so there’s a very strong chance that it can be detected and removed with the help of Autoruns. We have covered how to use Autoruns in an earlier article, which you should read if you need to first familiarize yourself with the program. Autoruns is a standalone utility that does not need to be installed on your computer.  It can be simply downloaded, unzipped and run (link below).  This makes is ideally suited for adding to your portable utility collection on your flash drive. When you start Autoruns for the first time on a computer, you are presented with the license agreement: After agreeing to the terms, the main Autoruns window opens, showing you the complete list of all software that will run when your computer starts, when you log in, or when you open Internet Explorer: To temporarily disable a program from launching, uncheck the box next to it’s entry.  Note:  This does not terminate the program if it is running at the time – it merely prevents it from starting next time.  To permanently prevent a program from launching, delete the entry altogether (use the Delete key, or right-click and choose Delete from the context-menu)).  Note:  This does not remove the program from your computer – to remove it completely you need to uninstall the program (or otherwise delete it from your hard disk). Suspicious Software It can take a fair bit of experience (read “trial and error”) to become adept at identifying what is malware and what is not.  Most of the entries presented in Autoruns are legitimate programs, even if their names are unfamiliar to you.  Here are some tips to help you differentiate the malware from the legitimate software: If an entry is digitally signed by a software publisher (i.e. there’s an entry in the Publisher column) or has a “Description”, then there’s a good chance that it’s legitimate If you recognize the software’s name, then it’s usually okay.  Note that occasionally malware will “impersonate” legitimate software, but adopting a name that’s identical or similar to software you’re familiar with (e.g. “AcrobatLauncher” or “PhotoshopBrowser”).  Also, be aware that many malware programs adopt generic or innocuous-sounding names, such as “Diskfix” or “SearchHelper” (both mentioned below). Malware entries usually appear on the Logon tab of Autoruns (but not always!) If you open up the folder that contains the EXE or DLL file (more on this below), an examine the “last modified” date, the dates are often from the last few days (assuming that your infection is fairly recent) Malware is often located in the C:\Windows folder or the C:\Windows\System32 folder Malware often only has a generic icon (to the left of the name of the entry) If in doubt, right-click the entry and select Search Online… The list below shows two suspicious looking entries:  Diskfix and SearchHelper These entries, highlighted above, are fairly typical of malware infections: They have neither descriptions nor publishers They have generic names The files are located in C:\Windows\System32 They have generic icons The filenames are random strings of characters If you look in the C:\Windows\System32 folder and locate the files, you’ll see that they are some of the most recently modified files in the folder (see below) Double-clicking on the items will take you to their corresponding registry keys: Removing the Malware Once you’ve identified the entries you believe to be suspicious, you now need to decide what you want to do with them.  Your choices include: Temporarily disable the Autorun entry Permanently delete the Autorun entry Locate the running process (using Task Manager or similar) and terminating it Delete the EXE or DLL file from your disk (or at least move it to a folder where it won’t be automatically started) or all of the above, depending upon how certain you are that the program is malware. To see if your changes succeeded, you will need to reboot your machine, and check any or all of the following: Autoruns – to see if the entry has returned Task Manager (or similar) – to see if the program was started again after the reboot Check the behavior that led you to believe that your PC was infected in the first place.  If it’s no longer happening, chances are that your PC is now clean Conclusion This solution isn’t for everyone and is most likely geared to advanced users. Usually using a quality Antivirus application does the trick, but if not Autoruns is a valuable tool in your Anti-Malware kit. Keep in mind that some malware is harder to remove than others.  Sometimes you need several iterations of the steps above, with each iteration requiring you to look more carefully at each Autorun entry.  Sometimes the instant that you remove the Autorun entry, the malware that is running replaces the entry.  When this happens, we need to become more aggressive in our assassination of the malware, including terminating programs (even legitimate programs like Explorer.exe) that are infected with malware DLLs. Shortly we will be publishing an article on how to identify, locate and terminate processes that represent legitimate programs but are running infected DLLs, in order that those DLLs can be deleted from the system. Download Autoruns from SysInternals Similar Articles Productive Geek Tips Using Autoruns Tool to Track Startup Applications and Add-onsHow To Get Detailed Information About Your PCSUPERAntiSpyware Portable is the Must-Have Spyware Removal Tool You NeedQuick Tip: Windows Vista Temp Files DirectoryClear Recent Commands From the Run Dialog in Windows XP TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox) OldTvShows.org – Find episodes of Hitchcock, Soaps, Game Shows and more Download Microsoft Office Help tab

    Read the article

  • Learnings from trying to write better software: Loud errors from the very start

    - by theo.spears
    Microsoft made a very small number of backwards incompatible changes between .NET 1.1 and 2.0, because they wanted to make it as easy and safe as possible to port applications to the new runtime. (Here’s a list.) However, one thing they did change was what happens when a background thread fails with an unhanded exception - in .NET 1.1 nothing happened, the thread terminated, and the application continued oblivious. Try the same trick in .NET 2.0 and the entire application, including all threads, will rudely terminate. There are three reasons for this. Firstly if a background thread has crashed, it may have left the entire application in an inconsistent state, in a way that will affect other threads. It’s better to terminate the entire application than continue and have the application perform actions based on a broken state, for example take customer orders, or write corrupt files to disk.  Secondly, during software development, it is far better for errors to be loud and obtrusive. Even if you have unit tests and integration tests (and you should), a key part of ensuring software works properly is to actually try using it, both through systematic testing and through the casual use all software gets by its developers during use. Subtle errors are easy to miss if you are not actually doing real work using the application, loud errors are obvious. Thirdly, and most importantly, even if catching and swallowing exceptions indiscriminately doesn't cause any problems in your application, the presence of unexpected exceptions shows you do not fully understand the behavior of your code. The currently released version of your application may be absolutely correct. However, because your mental model of the behavior is wrong, any future change you make to the program could and probably will introduce critical errors.  This applies to more than just exceptions causing threads to exit, any unexpected state should make the application blow up in an un-ignorable way. The worst thing you can do is silently swallow errors and continue. And let's be clear, writing to a log file does not count as blowing up in an un-ignorable way.  This is all simple as long as the call stack only contains your code, but when your functions start to be called by third party or .NET framework code, it's surprisingly easy for exceptions to start vanishing. Let's look at two examples.   1. Windows forms drag drop events  Usually if you throw an exception from a winforms event handler it will bring up the "application has crashed" dialog with abort and continue options. This is a good default behavior - the error is big and loud, but it is possible for the user to ignore the error and hopefully save their data, if somehow this bug makes it past testing. However drag and drop are different - throw an exception from one of these and it will just be silently swallowed with no explanation.  By the way, it's not just drag and drop events. Timer events do it too.  You can research how exceptions are treated in different handlers and code appropriately, but the safest and most user friendly approach is to always catch exceptions in your event handlers and show your own error message. I'll talk about one good approach to handling these exceptions at the end of this post.   2. SSMS integration for SQL Tab Magic  A while back wrote an SSMS add-in called SQL Tab Magic (learn more about the process here). It works by listening to certain SSMS events and remembering what documents are opened and closed. I deployed it internally and it was used for a few months by a number of people without problems, so I was reasonably confident in its quality. Before releasing I made a few cleanups, including introducing error reporting. Bam. A few days later I was looking at over 1,000 error reports in my inbox. In turns out I wasn't handling table designers properly. The exceptions were there, but again SSMS was helpfully swallowing them all for me, so I was blissfully unaware. Had I made my errors loud from the start, I would have noticed these issues long before and fixed them.   Handling exceptions  Now you are systematically catching exceptions throughout your application, you need to do something with them. I've tried 3 options: log them, alert the user, and automatically send them home.  There are a few good options for logging in .NET. The most widespread is Apache log4net, which provides a very capable and configurable logging framework. There is also NLog which has a compatible interface, with a greater emphasis on fluent rather than XML configuration.  Alerting the user serves two purposes. Firstly it means they understand their action has failed to they don't just assume it worked (Silent file copy failure is a problem if you then delete the originals) or that they should keep waiting for a background task to complete. Secondly, it means the users can report the bug to your support team, and then you can fix it. This means the message you show the user should contain the information you need as a developer to identify and fix it. And the user will probably just send you a screenshot of the dialog, so it shouldn't be hidden by scroll bars.  This leads us to the third option, automatically sending error reports home. By automatic I mean with minimal effort on the part of the user, rather than doing it silently behind their backs. The advantage of this is you can send back far more detailed and precise information than you can expect a user to include in an email, and by making it easier to report errors, you make it more likely users will do so.  We do this using a great tool called SmartAssembly (full disclosure: this is a product made by Red Gate). It captures complete stack traces including the values of all local variables and then allows the user to send all this information back with a single click. We also capture log files to help understand what lead up to the error. We then use the free SmartAssembly Sync for Jira to dedupe these reports and raise them as bugs in our bug tracking system.  The combined effect of loud errors during development and then automatic error reporting once software is deployed allows us to find and fix more bugs, correct misunderstandings on how our software works, and overall is a key piece in delivering higher quality software. However it is no substitute for having motivated cunning testers in the building - and we're looking to hire more of those too.   If you found this post interesting you should follow me on twitter.  

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Can't install SQL Express 2008R2- caspol.exe application error - the application failed to initialize

    - by Nir
    I'm trying to install SQL Server Express 2008 R2 on Windows 2003 Server (enterprise edition). I get the following error message: Title: caspol.exe - Application Error Text: The application failed to initialize properly (0x000007b), Click on OK to terminate the application. I get the same error message both when downloading the installer and running it and when using the web platform installer. All the pages on the internet I've found about similar problem say it's a corrupt .net installation issue - This server runs multiple .net apps and I've never had any problems with any of them. I've uninstalled and reinstalled .net (causing a painful outage) and nothing changed. Does anyone here has any idea what might cause this? Update 1: additional information I forgot to include: 32bit version of Windows running in a virtual machine, no anti virus Update 2: when running caspol.exe from the command line I get the same error

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >