Search Results

Search found 33811 results on 1353 pages for 'public folders'.

Page 106/1353 | < Previous Page | 102 103 104 105 106 107 108 109 110 111 112 113  | Next Page >

  • java instanceof not finding method

    - by Razvan N
    I have a problem with java instanceof. I have a class called Employee and several others that extend this one, for example - Manager. I also created another class,EmployeeStockPlan, where I wanted to test if instanceof is finding which object I am using. But when I am calling a method from the new class, I have this error: The method grantStock(Manager) is undefined for the type Loader. Sorry, I am somehow new to some thing in java, I hope I am not asking dumb questions. The Employee class: package com.example.domain; public class Employee { private int empId; private String name; private String ssn; private double salary; public Employee(int empId, String name, String ssn, double salary) { // constructor // method; this.empId = empId; this.name = name; this.ssn = ssn; this.salary = salary; } public void setName(String newName) { if (newName != null) { this.name = newName; } } public void raiseSalary(double increase) { this.salary += increase; } public String getName() { return name; } public double getSalary() { return salary; } public String getDetails() { return "Employee id: " + empId + "\n" + "Employee name: " + name; } } The Manager class: package com.example.domain; public class Manager extends Employee { private String deptName; public Manager(int empId, String name, String ssn, double salary, String dept) { super(empId, name, ssn, salary); this.deptName = dept; } public String getDeptName() { return deptName; } public String getDetails() { return super.getDetails() + "\n" + "Department: " + deptName; } } The EmployeeStockPlan class: package com.example.domain; public class EmployeeStockPlan { public void grantStock(Employee e) { // nothing calculated, just simulating; System.out.println("This is an employee!"); if (e instanceof Manager) { // process Manager stock grant System.out.println("This is a manager!"); } else { // error - instance of Engineer? System.out.println("Not an engineer!"); } return; } } The main class: EmployeeStockPlan esp = new EmployeeStockPlan(); Manager m = new Manager (12421, "Manager1", "111-4254-521", 2430, "Marketing1"); grantStock(m);

    Read the article

  • Why is this simple Mobile Form not closed when using the player

    - by ajhvdb
    Hi, I created this simple sample Form with the close button. Everything is working as expected when NOT using the Interop.WMPLib.dll I've seen other applications using this without problems but why isn't the Form process closed when I just add the line: SoundPlayer myPlayer = new SoundPlayer(); and of course dispose it: if (myPlayer != null) { myPlayer.Dispose(); myPlayer = null; } The Form closes but the debugger VS2008 is still active. The Form project and the dll are still active. If you send me an email to [email protected], I can send you the zipped project. Below is the class for the dll: using System; using System.Collections.Generic; using System.Text; using System.Threading; using System.Runtime.InteropServices; using WMPLib; namespace WindowsMobile.Utilities { public delegate void SoundPlayerStateChanged(SoundPlayer sender, SoundPlayerState newState); public enum SoundPlayerState { Stopped, Playing, Paused, } public class SoundPlayer : IDisposable { [DllImport("coredll")] public extern static int waveOutSetVolume(int hwo, uint dwVolume); [DllImport("coredll")] public extern static int waveOutGetVolume(int hwo, out uint dwVolume); WindowsMediaPlayer myPlayer = new WindowsMediaPlayer(); public SoundPlayer() { myPlayer.uiMode = "invisible"; myPlayer.settings.volume = 100; } string mySoundLocation = string.Empty; public string SoundLocation { get { return mySoundLocation; } set { mySoundLocation = value; } } public void Pause() { myPlayer.controls.pause(); } public void PlayLooping() { Stop(); myPlayer.URL = mySoundLocation; myPlayer.settings.setMode("loop", true); } public int Volume { get { return myPlayer.settings.volume; } set { myPlayer.settings.volume = value; } } public void Play() { Stop(); myPlayer.URL = mySoundLocation; myPlayer.controls.play(); } public void Stop() { myPlayer.controls.stop(); myPlayer.close(); } #region IDisposable Members public void Dispose() { try { Stop(); } catch (Exception) { } // need this otherwise the process won't exit?! try { int ret = Marshal.FinalReleaseComObject(myPlayer); } catch (Exception) { } myPlayer = null; GC.Collect(); } #endregion } }

    Read the article

  • Problem updating through LINQtoSQL in MVC application using StructureMap, Repository Pattern and UoW

    - by matt
    I have an ASP MVC application using LINQ to SQL for data access. I am trying to use the Repository and Unit of Work patterns, with a service layer consuming the repositories and unit of work. I am experiencing a problem when attempting to perform updates on a particular repository. My application architecture is as follows: My service class: public class MyService { private IRepositoryA _RepositoryA; private IRepositoryB _RepositoryB; private IUnitOfWork _unitOfWork; public MyService(IRepositoryA ARepositoryA, IRepositoryB ARepositoryB, IUnitOfWork AUnitOfWork) { _unitOfWork = AUnitOfWork; _RepositoryA = ARepositoryA; _RepositoryB = ARepositoryB; } public PerformActionOnObject(Guid AID) { MyObject obj = _RepositoryA.GetRecords() .WithID(AID); obj.SomeProperty = "Changed to new value"; _RepositoryA.UpdateRecord(obj); _unitOfWork.Save(); } } Repository interface: public interface IRepositoryA { IQueryable<MyObject> GetRecords(); UpdateRecord(MyObject obj); } Repository LINQtoSQL implementation: public class LINQtoSQLRepositoryA : IRepositoryA { private MyDataContext _DBContext; public LINQtoSQLRepositoryA(IUnitOfWork AUnitOfWork) { _DBConext = AUnitOfWork as MyDataContext; } public IQueryable<MyObject> GetRecords() { return from records in _DBContext.MyTable select new MyObject { ID = records.ID, SomeProperty = records.SomeProperty } } public bool UpdateRecord(MyObject AObj) { MyTableRecord record = (from u in _DB.MyTable where u.ID == AObj.ID select u).SingleOrDefault(); if (record == null) { return false; } record.SomeProperty = AObj.SomePropery; return true; } } Unit of work interface: public interface IUnitOfWork { void Save(); } Unit of work implemented in data context extension. public partial class MyDataContext : DataContext, IUnitOfWork { public void Save() { SubmitChanges(); } } StructureMap registry: public class DataServiceRegistry : Registry { public DataServiceRegistry() { // Unit of work For<IUnitOfWork>() .HttpContextScoped() .TheDefault.Is.ConstructedBy(() => new MyDataContext()); // RepositoryA For<IRepositoryA>() .Singleton() .Use<LINQtoSQLRepositoryA>(); // RepositoryB For<IRepositoryB>() .Singleton() .Use<LINQtoSQLRepositoryB>(); } } My problem is that when I call PerformActionOnObject on my service object, the update never fires any SQL. I think this is because the datacontext in the UnitofWork object is different to the one in RepositoryA where the data is changed. So when the service calls Save() on it's IUnitOfWork, the underlying datacontext does not have any updated data so no update SQL is fired. Is there something I've done wrong in the StrutureMap registry setup? Or is there a more fundamental problem with the design? Many thanks.

    Read the article

  • Linked lists in Java - help with assignment

    - by user368241
    Representation of a string in linked lists In every intersection in the list there will be 3 fields : The letter itself. The number of times it appears consecutively. A pointer to the next intersection in the list. The following class CharNode represents a intersection in the list : public class CharNode { private char _data; private int _value; private charNode _next; public CharNode (char c, int val, charNode n) { _data = c; _value = val; _next = n; } public charNode getNext() { return _next; } public void setNext (charNode node) { _next = node; } public int getValue() { return _value; } public void setValue (int v) { value = v; } public char getData() { return _data; } public void setData (char c) { _data = c; } } The class StringList represents the whole list : public class StringList { private charNode _head; public StringList() { _head = null; } public StringList (CharNode node) { _head = node; } } Add methods to the class StringList according to the details : (I will add methods gradually according to my specific questions) (Pay attention, these are methods from the class String and we want to fulfill them by the representation of a string by a list as explained above) public int indexOf (int ch) - returns the index in the string it is operated on of the first appeareance of the char "ch". If the char "ch" doesn't appear in the string, returns -1. If the value of fromIndex isn't in the range, returns -1. Pay attention to all the possible error cases. Write what is the time complexity and space complexity of every method that you wrote. Make sure the methods you wrote are effective. It is NOT allowed to use ready classes of Java. It is NOT allowed to move to string and use string operations. Here is my try to write the method indexOf (int ch). Kindly assist me with fixing the bugs so I can move on. public int indexOf (int ch) { int count = 0; charNode pose = _head; if (pose == null ) { return -1; } for (pose = _head; pose!=null && pose.getNext()!='ch'; pose = pose.getNext()) { count++; } if (pose!=null) return count; else return -1; }

    Read the article

  • JAXB doesn't unmarshal list of interfaces

    - by Joker_vD
    It seems JAXB can't read what it writes. Consider the following code: interface IFoo { void jump(); } @XmlRootElement class Bar implements IFoo { @XmlElement public String y; public Bar() { y = ""; } public Bar(String y) { this.y = y; } @Override public void jump() { System.out.println(y); } } @XmlRootElement class Baz implements IFoo { @XmlElement public int x; public Baz() { x = 0; } public Baz(int x) { this.x = x; } @Override public void jump() { System.out.println(x); } } @XmlRootElement public class Holder { private List<IFoo> things; public Holder() { things = new ArrayList<>(); } @XmlElementWrapper @XmlAnyElement public List<IFoo> getThings() { return things; } public void addThing(IFoo thing) { things.add(thing); } } // ... try { JAXBContext context = JAXBContext.newInstance(Holder.class, Bar.class, Baz.class); Holder holder = new Holder(); holder.addThing(new Bar("1")); holder.addThing(new Baz(2)); holder.addThing(new Baz(3)); for (IFoo thing : holder.getThings()) { thing.jump(); } StringWriter s = new StringWriter(); context.createMarshaller().marshal(holder, s); String data = s.toString(); System.out.println(data); StringReader t = new StringReader(data); Holder holder2 = (Holder)context.createUnmarshaller().unmarshal(t); for (IFoo thing : holder2.getThings()) { thing.jump(); } } catch (Exception e) { System.err.println(e.getMessage()); } It's a simplified example, of course. The point is that I have to store two very differently implemented classes, Bar and Baz, in one collection. Well, I observed that they have pretty similar public interface, so I created an interface IFoo and made them two to implement it. Now, I want to have tools to save and load this collection to/from XML. Unfortunately, this code doesn't quite work: the collection is saved, but then it cannot be loaded! The intended output is 1 2 3 some xml 1 2 3 But unfortunately, the actual output is 1 2 3 some xml com.sun.org.apache.xerces.internal.dom.ElementNSImpl cannot be cast to testapplication1.IFoo Apparently, I need to use the annotations in a different way? Or to give up on JAXB and look for something else? I, well, can write "XMLNode toXML()" method for all classes I wan't to (de)marshal, but...

    Read the article

  • dialog.show() crashes my application, why?

    - by user1739462
    I'm new in adroid. I like to do things when the color reach a value. I like (for example) show the alert if r is bigger than 30, but the application go in crash. Thank for very simple answares. public class MainActivity extends Activity { private AlertDialog dialog; private AlertDialog.Builder builder; private BackgroundColors view; public class BackgroundColors extends SurfaceView implements Runnable { public int grand=0; public int step=0; private boolean flip=true; private Thread thread; private boolean running; private SurfaceHolder holder; public BackgroundColors(Context context) { super(context); } Inside this loop while running is true. is impossible to show dialogs ?? public void run() { int r = 0; while (running){ if (holder.getSurface().isValid()){ Canvas canvas = holder.lockCanvas(); if (r > 250) r = 0; r += 10; if (r>30 && flip){ flip=false; // ********************************* dialog.show(); // ********************************* // CRASH !! } try { Thread.sleep(300); } catch(InterruptedException e) { e.printStackTrace(); } canvas.drawARGB(255, r, 255, 255); holder.unlockCanvasAndPost(canvas); } } } public void start() { running = true; thread = new Thread(this); holder = this.getHolder(); thread.start(); } public void stop() { running = false; boolean retry = true; while (retry){ try { thread.join(); retry = false; } catch(InterruptedException e) { retry = true; } } } public boolean onTouchEvent(MotionEvent e){ dialog.show(); return false; } protected void onSizeChanged(int xNew, int yNew, int xOld, int yOld){ super.onSizeChanged(xNew, yNew, xOld, yOld); grand = xNew; step =grand/15; } } public void onCreate(Bundle b) { super.onCreate(b); view = new BackgroundColors(this); this.setContentView(view); builder = new AlertDialog.Builder(this); builder.setMessage("ciao"); builder.setPositiveButton("OK", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int which) { Log.d("Basic", "It worked"); } }); dialog = builder.create(); } public void onPause(){ super.onPause(); view.stop(); } public void onResume(){ super.onResume(); view.start(); } }

    Read the article

  • I need to modify a program to use arrays and a method call. Should I modify the running file, the data collection file, or both?

    - by g3n3rallyl0st
    I have to have multiple classes for this program. The problem is, I don't fully understand arrays and how they work, so I'm a little lost. I will post my program I have written thus far so you can see what I'm working with, but I don't expect anyone to DO my assignment for me. I just need to know where to start and I'll try to go from there. I think I need to use a double array since I will be working with decimals since it deals with money, and my method call needs to calculate total price for all items entered by the user. Please help: RUNNING FILE package inventory2; import java.util.Scanner; public class RunApp { public static void main(String[] args) { Scanner input = new Scanner( System.in ); DataCollection theProduct = new DataCollection(); String Name = ""; double pNumber = 0.0; double Units = 0.0; double Price = 0.0; while(true) { System.out.print("Enter Product Name: "); Name = input.next(); theProduct.setName(Name); if (Name.equalsIgnoreCase("stop")) { return; } System.out.print("Enter Product Number: "); pNumber = input.nextDouble(); theProduct.setpNumber(pNumber); System.out.print("Enter How Many Units in Stock: "); Units = input.nextDouble(); theProduct.setUnits(Units); System.out.print("Enter Price Per Unit: "); Price = input.nextDouble(); theProduct.setPrice(Price); System.out.print("\n Product Name: " + theProduct.getName()); System.out.print("\n Product Number: " + theProduct.getpNumber()); System.out.print("\n Amount of Units in Stock: " + theProduct.getUnits()); System.out.print("\n Price per Unit: " + theProduct.getPrice() + "\n\n"); System.out.printf("\n Total cost for %s in stock: $%.2f\n\n\n", theProduct.getName(), theProduct.calculatePrice()); } } } DATA COLLECTION FILE package inventory2; public class DataCollection { String productName; double productNumber, unitsInStock, unitPrice, totalPrice; public DataCollection() { productName = ""; productNumber = 0.0; unitsInStock = 0.0; unitPrice = 0.0; } //setter methods public void setName(String name) { productName = name; } public void setpNumber(double pNumber) { productNumber = pNumber; } public void setUnits(double units) { unitsInStock = units; } public void setPrice(double price) { unitPrice = price; } //getter methods public String getName() { return productName; } public double getpNumber() { return productNumber; } public double getUnits() { return unitsInStock; } public double getPrice() { return unitPrice; } public double calculatePrice() { return (unitsInStock * unitPrice); } }

    Read the article

  • Self referencing a table

    - by mue
    Hello, so I'm new to NHibernate and have a problem. Perhaps somebody can help me here. Given a User-class with many, many properties: public class User { public virtual Int64 Id { get; private set; } public virtual string Firstname { get; set; } public virtual string Lastname { get; set; } public virtual string Username { get; set; } public virtual string Email { get; set; } ... public virtual string Comment { get; set; } public virtual UserInfo LastModifiedBy { get; set; } } Here some DDL for the table: CREATE TABLE USERS ( "ID" BIGINT NOT NULL , "FIRSTNAME" VARCHAR(50) NOT NULL , "LASTNAME" VARCHAR(50) NOT NULL , "USERNAME" VARCHAR(128) NOT NULL , "EMAIL" VARCHAR(128) NOT NULL , ... "LASTMODIFIEDBY" BIGINT NOT NULL , ) IN "USERSPACE1" ; Database-table-field 'LASTMODIFIEDBY' holds for auditing purposes the Id from the User who is acting in case of inserts or updates. This would normally be an admin. Because the UI shall display not this Int64 but admins name (pattern like 'Lastname, Firstname') I need to retrieve these values by self referencing table USERS to itself. Next is, that a whole object of type User would be overkill by the amount of unwanted fields. So there is a class UserInfo with much smaller footprint. public class UserInfo { public Int64 Id { get; set; } public string Firstname { get; set; } public string Lastname { get; set; } public string FullnameReverse { get { return string.Format("{0}, {1}", Lastname ?? string.Empty, Firstname ?? string.Empty); } } } So here starts the problem. Actually I have no clue how to accomplish this task. Im not sure if I also must provide a mapping for class UserInfo and not only for class User. I'd like to integrate class UserInfo as Composite-element within the mapping for User-class. But I dont no how to define the mapping between USERS.ID and USERS.LASTMODIFIEDBY table-fields. Hopefully I decribes my problem clear enough to get some hints. Thanks alot!

    Read the article

  • Criticise/Recommendations for my code

    - by aLk
    Before i go any further it would be nice to know if there is any major design flaws in my program so far. Is there anything worth changing before i continue? Model package model; import java.sql.*; import java.util.*; public class MovieDatabase { @SuppressWarnings({ "rawtypes", "unchecked" }) public List queryMovies() throws SQLException { Connection connection = null; java.sql.Statement statement = null; ResultSet rs = null; List results = new ArrayList(); try { DriverManager.registerDriver(new com.mysql.jdbc.Driver()); connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "password"); statement = connection.createStatement(); String query = "SELECT * FROM movie"; rs = statement.executeQuery(query); while(rs.next()) { MovieBean bean = new MovieBean(); bean.setMovieId(rs.getInt(1)); bean.setTitle(rs.getString(2)); bean.setYear(rs.getInt(3)); bean.setRating(rs.getInt(4)); results.add(bean); } } catch(SQLException e) { } return results; } } Servlet public class Service extends HttpServlet { @SuppressWarnings("rawtypes") protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html"); PrintWriter out = response.getWriter(); out.println("Movies!"); MovieDatabase movies = new MovieDatabase(); try { List results = movies.queryMovies(); Iterator it = results.iterator(); while(it.hasNext()) { MovieBean movie = new MovieBean(); movie = (MovieBean)it.next(); out.println(movie.getYear()); } } catch(SQLException e) { } } } Bean package model; @SuppressWarnings("serial") public class MovieBean implements java.io.Serializable { protected int movieid; protected int rating; protected int year; protected String title; public MovieBean() { } public void setMovieId(int movieidVal) { movieid = movieidVal; } public void setRating(int ratingVal) { rating = ratingVal; } public void setYear(int yearVal) { year = yearVal; } public void setTitle(String titleVal) { title = titleVal; } public int getMovieId() { return movieid; } public int getRating() { return rating; } public int getYear() { return year; } public String getTitle() { return title; } }

    Read the article

  • How to properly mix generics and inheritance to get the desired result?

    - by yamsha
    My question is not easy to explain using words, fortunately it's not too difficult to demonstrate. So, bear with me: public interface Command<R> { public R execute();//parameter R is the type of object that will be returned as the result of the execution of this command } public abstract class BasicCommand<R> { } public interface CommandProcessor<C extends Command<?>> { public <R> R process(C<R> command);//this is my question... it's illegal to do, but you understand the idea behind it, right? } //constrain BasicCommandProcessor to commands that subclass BasicCommand public class BasicCommandProcessor implements CommandProcessor<C extends BasicCommand<?>> { //here, only subclasses of BasicCommand should be allowed as arguments but these //BasicCommand object should be parameterized by R, like so: BasicCommand<R> //so the method signature should really be // public <R> R process(BasicCommand<R> command) //which would break the inheritance if the interface's method signature was instead: // public <R> R process(Command<R> command); //I really hope this fully illustrates my conundrum public <R> R process(C<R> command) { return command.execute(); } } public class CommandContext { public static void main(String... args) { BasicCommandProcessor bcp = new BasicCommandProcessor(); String textResult = bcp.execute(new BasicCommand<String>() { public String execute() { return "result"; } }); Long numericResult = bcp.execute(new BasicCommand<Long>() { public Long execute() { return 123L; } }); } } Basically, I want the generic "process" method to dictate the type of generic parameter of the Command object. The goal is to be able to restrict different implementations of CommandProcessor to certain classes that implement Command interface and at the same time to able to call the process method of any class that implements the CommandProcessor interface and have it return the object of type specified by the parametarized Command object. I'm not sure if my explanation is clear enough, so please let me know if further explanation is needed. I guess, the question is "Would this be possible to do, at all?" If the answer is "No" what would be the best work-around (I thought of a couple on my own, but I'd like some fresh ideas)

    Read the article

  • 1067: Implicit coercion of a value of type theplayclass to an unrelated type main

    - by Minelava
    I need help because I want to create a gameover screen that display score. However, there's an error that prevent me from transferring the score from theplayclass.as to thegameoverclass.as. Are there ways to pass a value to another movieclip without causing any errors. I refer the source code from this website : http://www.emanueleferonato.com/2008/12/17/designing-the-structure-of-a-flash-game-as3-version/ Here's the error C:\Users\xxx\Downloads\Migrate\test\theplayclass.as, Line 54, Column 41 1067: Implicit coercion of a value of type theplayclass to an unrelated type main. main.as package { import flash.display.MovieClip; import flash.events.Event; public class main extends MovieClip { public var playClass:theplayclass; public var gameOverClass:thegameoverclass; public function main() { showWin(); } public function showWin() { playClass = new theplayclass(this); addChild(playClass); } public function showGameOver() { gameOverClass = new thegameoverclass(this); addChild(gameOverClass); removeChild(playClass); playClass = null; } } } theplayclass.as package { import flash.display.MovieClip; import flash.events.*; public class theplayclass extends MovieClip { private var mainClass:main; var gameScore:Number; var gameOverScore:thegameoverclass; public function theplayclass(passedClass:main) { mainClass = passedClass; scoreText.text ="0"; gameScore = 0; win.addEventListener(MouseEvent.CLICK, showwinFunction); next.addEventListener(MouseEvent.CLICK, showgameoverFunction); addEventListener(Event.ADDED_TO_STAGE, addToStage); addEventListener(Event.ENTER_FRAME, changeScore); } public function addToStage(e:Event):void { this.x = 0; this.y = 0; } private function showwinFunction(e:MouseEvent):void { gameScore+=50; } private function changeScore(e:Event):void { scoreText.text =""+gameScore; } public function showgameoverFunction(e:MouseEvent) { mainClass.showGameOver(); gameOverScore = new thegameoverclass(this); gameOverScore.setTextScore(gameScore); } } } thegameoverclass.as package { import flash.display.MovieClip; import flash.events.MouseEvent; import flash.events.*; public class thegameoverclass extends MovieClip { var mainClass:main; var scorePoints:Number; public function thegameoverclass(passedClass:main) { mainClass = passedClass; finalScore.text = "test"; } public function setTextScore(textToSet:Number) { finalScore.text = ""+scorePoints; } } }

    Read the article

  • Entity framework 4 many-to-many insertion?

    - by Saxman
    Hi all, I'm not very familiar with the many-to-many insertion process using Entity Framework 4, POCO. I have a blog with 3 tables: Post, Comment, and Tag. A Post can have many Tags and a Tag can be in many Posts. Here are the Post and Tag models: public class Tag { public int Id { get; set; } [Required] [StringLength(25, ErrorMessage = "Tag name can't exceed 25 characters.")] public string Name { get; set; } public virtual ICollection<Post> Posts { get; set; } } public class Post { public int Id { get; set; } [Required] [StringLength(512, ErrorMessage = "Title can't exceed 512 characters")] public string Title { get; set; } [Required] [AllowHtml] public string Content { get; set; } public string FriendlyUrl { get; set; } public DateTime PostedDate { get; set; } public bool IsActive { get; set; } public virtual ICollection<Comment> Comments { get; set; } public virtual ICollection<Tag> Tags { get; set; } } Now when I'm adding a new post, I'm not sure what would be the right way to do. I'm thinking that I'll have a textbox where I can select multiple tags for that post (this part is already done), in my controller, I will check to see if the tag is already exists or not, if not, then I will insert the new tag. But I'm not even sure based on the models that I've created for EF, will they create a PostsTags table, or they are creating just a Tags and a Posts table and links between the two? How would I insert the new Post and set the tags to that post? Is it just newPost.Tags = Tags (where Tags are the one that got selected, do I even need to check to see if they already exists?), and then something like _post.Add(newPost);? Thanks.

    Read the article

  • MVC3 - render view that is not a method in a controller

    - by scoo-b
    I don't know how to best describe my requirement, but here goes. I'm trying to render a view from the following controller/model in a nopCommerce application: CustomerController.cs snippet: [NonAction] protected CustomerNavigationModel GetCustomerNavigationModel(Customer customer) { var model = new CustomerNavigationModel(); model.HideAvatar = !_customerSettings.AllowCustomersToUploadAvatars; model.HideRewardPoints = !_rewardPointsSettings.Enabled; model.HideForumSubscriptions = !_forumSettings.ForumsEnabled || !_forumSettings.AllowCustomersToManageSubscriptions; model.HideReturnRequests = !_orderSettings.ReturnRequestsEnabled || _orderService.SearchReturnRequests(customer.Id, 0, null).Count == 0; model.HideDownloadableProducts = _customerSettings.HideDownloadableProductsTab; model.HideBackInStockSubscriptions = _customerSettings.HideBackInStockSubscriptionsTab; return model; } CustomerNavigationModel.cs: public partial class CustomerNavigationModel : BaseNopModel { public bool HideInfo { get; set; } public bool HideAddresses { get; set; } public bool HideOrders { get; set; } public bool HideBackInStockSubscriptions { get; set; } public bool HideReturnRequests { get; set; } public bool HideDownloadableProducts { get; set; } public bool HideRewardPoints { get; set; } public bool HideChangePassword { get; set; } public bool HideAvatar { get; set; } public bool HideForumSubscriptions { get; set; } public CustomerNavigationEnum SelectedTab { get; set; } } public enum CustomerNavigationEnum { Info, Addresses, Orders, BackInStockSubscriptions, ReturnRequests, DownloadableProducts, RewardPoints, ChangePassword, Avatar, ForumSubscriptions } MyAccountNavigation.cshtml snippet: @model CustomerNavigationModel @using Nop.Web.Models.Customer; @if (!Model.HideInfo) { <li><a href="@Url.RouteUrl("CustomerInfo")" class="@if (Model.SelectedTab == CustomerNavigationEnum.Info) {<text>active</text>} else {<text>inactive</text>}">@T("Account.CustomerInfo")</a></li>} Views: @Html.Partial("MyAccountNavigation", Model.NavigationModel, new ViewDataDictionary()) I am aware that it is unable to render MyAccountNavigation because it doesn't exist in the controller. However, depending on which page the syntax is placed it works. So is there a way to achieve that without changing the code in the controller? Thanks in advance.

    Read the article

  • activating the class need help.... :)

    - by asm_debuger
    this is my code... i dont anderstend way the class dont work... import java.awt.BorderLayout; import java.awt.Button; import java.awt.Color; import java.awt.GridLayout; import java.awt.Panel; public class Caldesinger { public Panel p1=new Panel(); public Button[] arr=new Button[20]; public String[] name = {"9","8","7","6","5","4","3","2","1","0","+","-","*","/",".","cos","sin","=","pow"}; public Caldesinger() { for (int i = 0; i < arr.length; i++) { this.arr[i]=new Button(""+name[i]); } } public Panel getP1() { return p1; } public void setP1(Panel p1) { this.p1 = p1; } public Button[] getArr() { return arr; } public void setArr(Button[] arr) { this.arr = arr; } public Object c() { this.p1.setLayout(new GridLayout(4,15)); for (int i = 0; i < arr.length; i++) { arr[i].setBackground(Color.LIGHT_GRAY); arr[i].setForeground(Color.orange); p1.add(arr[i]); } this.p1.setLayout(new GridLayout(4,15)); return this; } } the class desinge the applet this is the main: import java.applet.Applet; import java.awt.BorderLayout; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; public class Mainapp extends Applet implements ActionListener { Caldesinger desinge=new Caldesinger (); public void init() { this.setLayout(new BorderLayout()); this.desinge.c(); } public void ActionPerformed(ActionEvent arg0) { for (int i = 0; i <20; i++) { if(arg0.getSource()== this.desinge.arr[i]); } } } way the method c does not work? the method desinge the applet

    Read the article

  • Cutting down repeating code in c# Class

    - by Tom Gullen
    This is a wrapper for an API I'm working on, am I doing it sort of right? I'm not particularly fond of all the repeating code in the constructor, if someone can show me if I can reduce that it would be very helpful! public class WebWizForumVersion { // Properties of returned data public string Software { get; private set; } public string Version { get; private set; } public string APIVersion { get; private set; } public string Copyright { get; private set; } public string BoardName { get; private set; } public string URL { get; private set; } public string Email { get; private set; } public string Database { get; private set; } public string InstallationID { get; private set; } public bool NewsPad { get; private set; } public string NewsPadURL { get; private set; } public WebWizForumVersion(XmlReader Data) { try { Data.ReadToFollowing("Software"); this.Software = Data.ReadElementContentAsString(); Data.ReadToFollowing("Version"); this.Version = Data.ReadElementContentAsString(); Data.ReadToFollowing("ApiVersion"); this.APIVersion = Data.ReadElementContentAsString(); Data.ReadToFollowing("Copyright"); this.Copyright = Data.ReadElementContentAsString(); Data.ReadToFollowing("BoardName"); this.BoardName = Data.ReadElementContentAsString(); Data.ReadToFollowing("URL"); this.URL = Data.ReadElementContentAsString(); Data.ReadToFollowing("Email"); this.Email = Data.ReadElementContentAsString(); Data.ReadToFollowing("Database"); this.Database = Data.ReadElementContentAsString(); Data.ReadToFollowing("InstallID"); this.InstallationID = Data.ReadElementContentAsString(); Data.ReadToFollowing("NewsPad"); this.NewsPad = bool.Parse(Data.ReadElementContentAsString()); Data.ReadToFollowing("NewsPadURL"); this.NewsPadURL = Data.ReadElementContentAsString(); } catch (Exception e) { } } }

    Read the article

  • Video Recording Not Working in ICS

    - by Nirav Ranpara
    I have implement code Record video in Android Phone . This code is working in 2.2 , 2.3 . not in ICS But when I checked in ICS code is not working ? here I posted code and xml file. videorecord.java import java.io.File; import java.io.IOException; import android.app.Activity; import android.app.AlertDialog; import android.content.Context; import android.content.DialogInterface; import android.content.Intent; import android.content.SharedPreferences; import android.hardware.Camera; import android.media.CamcorderProfile; import android.media.MediaRecorder; import android.os.Bundle; import android.os.CountDownTimer; import android.os.Environment; import android.util.Log; import android.view.Display; import android.view.KeyEvent; import android.view.SurfaceHolder; import android.view.SurfaceView; import android.view.View; import android.widget.EditText; import android.widget.FrameLayout; import android.widget.ImageView; import android.widget.LinearLayout; import android.widget.TextView; import android.widget.Toast; public class videorecord extends Activity{ SharedPreferences.Editor pre; String filename; CountDownTimer t; private Camera myCamera; private MyCameraSurfaceView myCameraSurfaceView; private MediaRecorder mediaRecorder; Integer cnt=0; LinearLayout myButton; TextView myButton1; SurfaceHolder surfaceHolder; boolean recording; private TextView txtcount; private ImageView btnplay; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); recording = false; setContentView(R.layout.videorecord); init(); myCamera = getCameraInstance(); if(myCamera == null){ } myCameraSurfaceView = new MyCameraSurfaceView(this, myCamera); FrameLayout myCameraPreview = (FrameLayout)findViewById(R.id.videoview); Display display = getWindowManager().getDefaultDisplay(); int width = display.getWidth(); int height = display.getHeight(); myCameraSurfaceView.setLayoutParams(new LinearLayout.LayoutParams(width, height-60)); myCameraPreview.addView(myCameraSurfaceView); myButton = (LinearLayout)findViewById(R.id.mybutton); btnplay.setOnClickListener(myButtonOnClickListener); } private void init() { txtcount = (TextView) findViewById(R.id.txtcounter); //myButton1 = (TextView) findViewById(R.id.mybutton1); btnplay = (ImageView)findViewById(R.id.btnplay); t = new CountDownTimer( Long.MAX_VALUE , 1000) { @Override public void onTick(long millisUntilFinished) { cnt++; String time = new Integer(cnt).toString(); long millis = cnt; int seconds = (int) (millis / 60); int minutes = seconds / 60; seconds = seconds % 60; txtcount.setText(String.format("%d:%02d:%02d", minutes, seconds,millis)); } @Override public void onFinish() { } }; } @Override public boolean onKeyDown(int keyCode, KeyEvent event) { if ((keyCode == KeyEvent.KEYCODE_BACK)) { if(recording) { new AlertDialog.Builder(videorecord.this).setTitle("Do you want to save Video ?") .setPositiveButton("OK", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int which) { filename(); //finish(); } }).setNegativeButton("Cancle", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int which) { // TODO Auto-generated method stub } }).show(); } else { if ((keyCode == KeyEvent.KEYCODE_BACK)) { //Intent homeIntent= new Intent(Intent.ACTION_MAIN); //homeIntent.addCategory(Intent.CATEGORY_HOME); //homeIntent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP); //startActivity(homeIntent); //this.finishActivity(1); finish(); } //moveTaskToBack(true); // finish(); return super.onKeyDown(keyCode, event); } } else { // Toast.makeText(getApplicationContext(), "asd", Toast.LENGTH_LONG).show(); android.os.Process.killProcess(android.os.Process.myPid()) ; } return super.onKeyDown(keyCode, event); } ImageView.OnClickListener myButtonOnClickListener = new ImageView.OnClickListener(){ public void onClick(View v) { if(recording){ Log.e("Record error", "error in recording ."); mediaRecorder.stop(); t.cancel(); filename(); releaseMediaRecorder(); }else{ releaseCamera(); Log.e("Record Stop error", "error in recording ."); // if(!prepareMediaRecorder()){ prepareMediaRecorder(); finish(); } mediaRecorder.start(); recording = true; // myButton1.setText("STOP Recording"); // btnplay.setImageResource(android.R.drawable.ic_media_pause); btnplay.setImageResource(R.drawable.stoprec); t.start(); } }}; private Camera getCameraInstance(){ Camera c = null; try { c = Camera.open(); } catch (Exception e){ } return c; } private void filename() { AlertDialog.Builder alert = new AlertDialog.Builder(this); alert.setTitle("Save Video"); alert.setMessage("Enter File Name"); final EditText input = new EditText(this); alert.setView(input); alert.setPositiveButton("Ok", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int whichButton) { if(input.getText().length()>=1) { filename = input.getText().toString(); File sdcard = new File(Environment.getExternalStorageDirectory() + "/VideoRecord"); File from = new File(sdcard,"null.mp4"); File to = new File(sdcard,filename+".mp4"); from.renameTo(to); SharedPreferences sp = videorecord.this.getSharedPreferences("data", MODE_WORLD_WRITEABLE); pre = sp.edit(); pre.clear(); pre.commit(); pre.putString("lastvideo", filename+".mp4"); pre.commit(); //btnplay.setImageResource(android.R.drawable.ic_media_play); btnplay.setImageResource(R.drawable.startrec); // Intent intent = new Intent(videorecord.this,StopVidoWatch_Activity.class); // startActivity(intent); Intent myIntent = new Intent(getApplicationContext(), StopVidoWatch_Activity.class).setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP); startActivity(myIntent); } else { filename(); } } }); alert.setNegativeButton("Cancel", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int whichButton) { // Intent intent = new Intent(videorecord.this,StopVidoWatch_Activity.class); // startActivity(intent); File file = new File(Environment.getExternalStorageDirectory() + "/VideoRecord/null.mp4"); //boolean deleted = file.delete(); file.delete(); finish(); } }); alert.show(); } private boolean prepareMediaRecorder(){ myCamera = getCameraInstance(); mediaRecorder = new MediaRecorder(); myCamera.unlock(); mediaRecorder.setCamera(myCamera); mediaRecorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER); mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA); mediaRecorder.setProfile(CamcorderProfile.get(CamcorderProfile.QUALITY_HIGH)); File folder = new File(Environment.getExternalStorageDirectory() + "/VideoRecord"); boolean success = false; if (!folder.exists()) { success = folder.mkdir(); } if (!success) { } else { } mediaRecorder.setOutputFile("/sdcard/VideoRecord/"+filename+".mp4"); mediaRecorder.setMaxDuration(60000); mediaRecorder.setMaxFileSize(5000000); Display display = getWindowManager().getDefaultDisplay(); int width = display.getHeight(); int height = display.getWidth(); String s = new String(); s= s.valueOf(width); String s1 = new String(); s1= s1.valueOf(height); // Toast.makeText(videorecord.this, "Width : " + s , Toast.LENGTH_LONG).show(); // Toast.makeText(videorecord.this, "Height : " + s1 , Toast.LENGTH_LONG).show(); mediaRecorder.setVideoSize(height, width); mediaRecorder.setPreviewDisplay(myCameraSurfaceView.getHolder().getSurface()); try { mediaRecorder.prepare(); } catch (IllegalStateException e) { releaseMediaRecorder(); return false; } catch (IOException e) { releaseMediaRecorder(); return false; } return true; } @Override protected void onPause() { super.onPause(); releaseMediaRecorder(); releaseCamera(); } private void releaseMediaRecorder() { if (mediaRecorder != null) { mediaRecorder.reset(); mediaRecorder.release(); mediaRecorder = null; myCamera.lock(); } } private void releaseCamera(){ if (myCamera != null){ myCamera.release(); myCamera = null; } } public class MyCameraSurfaceView extends SurfaceView implements SurfaceHolder.Callback{ private SurfaceHolder mHolder; private Camera mCamera; public MyCameraSurfaceView(Context context, Camera camera) { super(context); mCamera = camera; mHolder = getHolder(); mHolder.addCallback(this); mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); } public void surfaceChanged(SurfaceHolder holder, int format, int weight, int height) { if (mHolder.getSurface() == null){ return; } try { mCamera.stopPreview(); } catch (Exception e){ } try { mCamera.setPreviewDisplay(mHolder); mCamera.startPreview(); } catch (Exception e){ } } public void surfaceCreated(SurfaceHolder holder) { try { mCamera.setPreviewDisplay(holder); mCamera.startPreview(); } catch (IOException e) { } } public void surfaceDestroyed(SurfaceHolder holder) { } } } videorecord.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical" android:layout_width="fill_parent" android:layout_height="fill_parent" > <FrameLayout android:layout_width="fill_parent" android:layout_height="fill_parent" > <FrameLayout android:id="@+id/videoview" android:layout_width="fill_parent" android:layout_height="fill_parent"></FrameLayout> <LinearLayout android:id="@+id/mybutton" android:layout_width="fill_parent" android:layout_marginBottom="0dip" android:layout_height="wrap_content" android:orientation="horizontal" android:layout_weight="0" > <!-- <TextView android:text="START Recording" android:id="@+id/mybutton1" android:layout_height="wrap_content" android:layout_width="wrap_content" style="@style/savestyle" android:layout_weight="1" android:gravity="left" > </TextView> --> <ImageView android:layout_height="wrap_content" android:id="@+id/btnplay" android:padding="5dip" android:background="#A0000000" android:textColor="#ffffffff" android:layout_width="wrap_content" android:src="@drawable/startrec" /> </LinearLayout> <TextView android:text="00:00:00" android:id="@+id/txtcounter" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_gravity="right|bottom" android:padding="5dip" android:background="#A0000000" android:textColor="#ffffffff" /> </FrameLayout> <RelativeLayout android:layout_width="fill_parent" android:layout_height="fill_parent" android:background="@color/bgcolor" > <LinearLayout android:layout_above="@+id/mybutton" android:orientation="horizontal" android:layout_width="fill_parent" android:layout_height="fill_parent" > </LinearLayout> </RelativeLayout> </LinearLayout>

    Read the article

  • Using RIA DomainServices with ASP.NET and MVC 2

    - by Bobby Diaz
    Recently, I started working on a new ASP.NET MVC 2 project and I wanted to reuse the data access (LINQ to SQL) and business logic methods (WCF RIA Services) that had been developed for a previous project that used Silverlight for the front-end.  I figured that I would be able to instantiate the various DomainService classes from within my controller’s action methods, because after all, the code for those services didn’t look very complicated.  WRONG!  I didn’t realize at first that some of the functionality is handled automatically by the framework when the domain services are hosted as WCF services.  After some initial searching, I came across an invaluable post by Joe McBride, which described how to get RIA Service .svc files to work in an MVC 2 Web Application, and another by Brad Abrams.  Unfortunately, Brad’s solution was for an earlier preview release of RIA Services and no longer works with the version that I am running (PDC Preview). I have not tried the RC version of WCF RIA Services, so I am not sure if any of the issues I am having have been resolved, but I wanted to come up with a way to reuse the shared libraries so I wouldn’t have to write a non-RIA version that basically did the same thing.  The classes I came up with work with the scenarios I have encountered so far, but I wanted to go ahead and post the code in case someone else is having the same trouble I had.  Hopefully this will save you a few headaches! 1. Querying When I first tried to use a DomainService class to perform a query inside one of my controller’s action methods, I got an error stating that “This DomainService has not been initialized.”  To solve this issue, I created an extension method for all DomainServices that creates the required DomainServiceContext and passes it to the service’s Initialize() method.  Here is the code for the extension method; notice that I am creating a sort of mock HttpContext for those cases when the service is running outside of IIS, such as during unit testing!     public static class ServiceExtensions     {         /// <summary>         /// Initializes the domain service by creating a new <see cref="DomainServiceContext"/>         /// and calling the base DomainService.Initialize(DomainServiceContext) method.         /// </summary>         /// <typeparam name="TService">The type of the service.</typeparam>         /// <param name="service">The service.</param>         /// <returns></returns>         public static TService Initialize<TService>(this TService service)             where TService : DomainService         {             var context = CreateDomainServiceContext();             service.Initialize(context);             return service;         }           private static DomainServiceContext CreateDomainServiceContext()         {             var provider = new ServiceProvider(new HttpContextWrapper(GetHttpContext()));             return new DomainServiceContext(provider, DomainOperationType.Query);         }           private static HttpContext GetHttpContext()         {             var context = HttpContext.Current;   #if DEBUG             // create a mock HttpContext to use during unit testing...             if ( context == null )             {                 var writer = new StringWriter();                 var request = new SimpleWorkerRequest("/", "/",                     String.Empty, String.Empty, writer);                   context = new HttpContext(request)                 {                     User = new GenericPrincipal(new GenericIdentity("debug"), null)                 };             } #endif               return context;         }     }   With that in place, I can use it almost as normally as my first attempt, except with a call to Initialize():     public ActionResult Index()     {         var service = new NorthwindService().Initialize();         var customers = service.GetCustomers();           return View(customers);     } 2. Insert / Update / Delete Once I got the records showing up, I was trying to insert new records or update existing data when I ran into the next issue.  I say issue because I wasn’t getting any kind of error, which made it a little difficult to track down.  But once I realized that that the DataContext.SubmitChanges() method gets called automatically at the end of each domain service submit operation, I could start working on a way to mimic the behavior of a hosted domain service.  What I came up with, was a base class called LinqToSqlRepository<T> that basically sits between your implementation and the default LinqToSqlDomainService<T> class.     [EnableClientAccess()]     public class NorthwindService : LinqToSqlRepository<NorthwindDataContext>     {         public IQueryable<Customer> GetCustomers()         {             return this.DataContext.Customers;         }           public void InsertCustomer(Customer customer)         {             this.DataContext.Customers.InsertOnSubmit(customer);         }           public void UpdateCustomer(Customer currentCustomer)         {             this.DataContext.Customers.TryAttach(currentCustomer,                 this.ChangeSet.GetOriginal(currentCustomer));         }           public void DeleteCustomer(Customer customer)         {             this.DataContext.Customers.TryAttach(customer);             this.DataContext.Customers.DeleteOnSubmit(customer);         }     } Notice the new base class name (just change LinqToSqlDomainService to LinqToSqlRepository).  I also added a couple of DataContext (for Table<T>) extension methods called TryAttach that will check to see if the supplied entity is already attached before attempting to attach it, which would cause an error! 3. LinqToSqlRepository<T> Below is the code for the LinqToSqlRepository class.  The comments are pretty self explanatory, but be aware of the [IgnoreOperation] attributes on the generic repository methods, which ensures that they will be ignored by the code generator and not available in the Silverlight client application.     /// <summary>     /// Provides generic repository methods on top of the standard     /// <see cref="LinqToSqlDomainService&lt;TContext&gt;"/> functionality.     /// </summary>     /// <typeparam name="TContext">The type of the context.</typeparam>     public abstract class LinqToSqlRepository<TContext> : LinqToSqlDomainService<TContext>         where TContext : System.Data.Linq.DataContext, new()     {         /// <summary>         /// Retrieves an instance of an entity using it's unique identifier.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="keyValues">The key values.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual TEntity GetById<TEntity>(params object[] keyValues) where TEntity : class         {             var table = this.DataContext.GetTable<TEntity>();             var mapping = this.DataContext.Mapping.GetTable(typeof(TEntity));               var keys = mapping.RowType.IdentityMembers                 .Select((m, i) => m.Name + " = @" + i)                 .ToArray();               return table.Where(String.Join(" && ", keys), keyValues).FirstOrDefault();         }           /// <summary>         /// Creates a new query that can be executed to retrieve a collection         /// of entities from the <see cref="DataContext"/>.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <returns></returns>         [IgnoreOperation]         public virtual IQueryable<TEntity> GetEntityQuery<TEntity>() where TEntity : class         {             return this.DataContext.GetTable<TEntity>();         }           /// <summary>         /// Inserts the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Insert<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.InsertOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Insert);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity) where TEntity : class         {             return this.Update(entity, null);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <param name="original">The original.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity, TEntity original)             where TEntity : class         {             if ( original == null )             {                 original = GetOriginal(entity);             }               var table = this.DataContext.GetTable<TEntity>();             table.TryAttach(entity, original);               return this.Submit(entity, original, DomainOperation.Update);         }           /// <summary>         /// Deletes the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Delete<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.TryAttach(entity);             //table.DeleteOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Delete);         }           protected virtual bool Submit(Object entity, Object original, DomainOperation operation)         {             var entry = new ChangeSetEntry(0, entity, original, operation);             var changes = new ChangeSet(new ChangeSetEntry[] { entry });             return base.Submit(changes);         }           private TEntity GetOriginal<TEntity>(TEntity entity) where TEntity : class         {             var context = CreateDataContext();             var table = context.GetTable<TEntity>();             return table.FirstOrDefault(e => e == entity);         }     } 4. Conclusion So there you have it, a fully functional Repository implementation for your RIA Domain Services that can be consumed by your ASP.NET and MVC applications.  I have uploaded the source code along with unit tests and a sample web application that queries the Customers table from inside a Controller, as well as a Silverlight usage example. As always, I welcome any comments or suggestions on the approach I have taken.  If there is enough interest, I plan on contacting Colin Blair or maybe even the man himself, Brad Abrams, to see if this is something worthy of inclusion in the WCF RIA Services Contrib project.  What do you think? Enjoy!

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Automapper: Handling NULL members

    - by PSteele
    A question about null members came up on the Automapper mailing list.  While the problem wasn’t with Automapper, investigating the issue led to an interesting feature in Automapper. Normally, Automapper ignores null members.  After all, what is there really to do?  Imagine these source classes: public class Source { public int Data { get; set; } public Address Address { get; set; } }   public class Destination { public string Data { get; set; } public Address Address { get; set; } }   public class Address { public string AddressType { get; set; } public string Location { get; set; } } And imagine a simple mapping example with these classes: Mapper.CreateMap<Source, Destination>();   var source = new Source { Data = 22, Address = new Address { AddressType = "Home", Location = "Michigan", }, };   var dest = Mapper.Map<Source, Destination>(source); The variable ‘dest’ would have a complete mapping of the Data member and the Address member. But what if the source had no address? Mapper.CreateMap<Source, Destination>();   var source = new Source { Data = 22, };   var dest = Mapper.Map<Source, Destination>(source); In that case, Automapper would just leave the Destination.Address member null as well.  But what if we always wanted an Address defined – even if it’s just got some default data?  Use the “NullSubstitute” option: Mapper.CreateMap<Source, Destination>() .ForMember(d => d.Address, o => o.NullSubstitute(new Address { AddressType = "Unknown", Location = "Unknown", }));   var source = new Source { Data = 22, };   var dest = Mapper.Map<Source, Destination>(source); Now, the ‘dest’ variable will have an Address defined with a type and location of “Unknown”.  Very handy! Technorati Tags: .NET,Automapper,NULL

    Read the article

  • Best methods for Lazy Initialization with properties

    - by Stuart Pegg
    I'm currently altering a widely used class to move as much of the expensive initialization from the class constructor into Lazy Initialized properties. Below is an example (in c#): Before: public class ClassA { public readonly ClassB B; public void ClassA() { B = new ClassB(); } } After: public class ClassA { private ClassB _b; public ClassB B { get { if (_b == null) { _b = new ClassB(); } return _b; } } } There are a fair few more of these properties in the class I'm altering, and some are not used in certain contexts (hence the Laziness), but if they are used they're likely to be called repeatedly. Unfortunately, the properties are often also used inside the class. This means there is a potential for the private variable (_b) to be used directly by a method without it being initialized. Is there a way to make only the public property (B) available inside the class, or even an alternative method with the same initialized-when-needed?

    Read the article

  • Metro: Namespaces and Modules

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can use the Windows JavaScript (WinJS) library to create namespaces. In particular, you learn how to use the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. You also learn how to hide private methods by using the module pattern. Why Do We Need Namespaces? Before we do anything else, we should start by answering the question: Why do we need namespaces? What function do they serve? Do they just add needless complexity to our Metro applications? After all, plenty of JavaScript libraries do just fine without introducing support for namespaces. For example, jQuery has no support for namespaces and jQuery is the most popular JavaScript library in the universe. If jQuery can do without namespaces, why do we need to worry about namespaces at all? Namespaces perform two functions in a programming language. First, namespaces prevent naming collisions. In other words, namespaces enable you to create more than one object with the same name without conflict. For example, imagine that two companies – company A and company B – both want to make a JavaScript shopping cart control and both companies want to name the control ShoppingCart. By creating a CompanyA namespace and CompanyB namespace, both companies can create a ShoppingCart control: a CompanyA.ShoppingCart and a CompanyB.ShoppingCart control. The second function of a namespace is organization. Namespaces are used to group related functionality even when the functionality is defined in different physical files. For example, I know that all of the methods in the WinJS library related to working with classes can be found in the WinJS.Class namespace. Namespaces make it easier to understand the functionality available in a library. If you are building a simple JavaScript application then you won’t have much reason to care about namespaces. If you need to use multiple libraries written by different people then namespaces become very important. Using WinJS.Namespace.define() In the WinJS library, the most basic method of creating a namespace is to use the WinJS.Namespace.define() method. This method enables you to declare a namespace (of arbitrary depth). The WinJS.Namespace.define() method has the following parameters: · name – A string representing the name of the new namespace. You can add nested namespace by using dot notation · members – An optional collection of objects to add to the new namespace For example, the following code sample declares two new namespaces named CompanyA and CompanyB.Controls. Both namespaces contain a ShoppingCart object which has a checkout() method: // Create CompanyA namespace with ShoppingCart WinJS.Namespace.define("CompanyA"); CompanyA.ShoppingCart = { checkout: function (){ return "Checking out from A"; } }; // Create CompanyB.Controls namespace with ShoppingCart WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); // Call CompanyA ShoppingCart checkout method console.log(CompanyA.ShoppingCart.checkout()); // Writes "Checking out from A" // Call CompanyB.Controls checkout method console.log(CompanyB.Controls.ShoppingCart.checkout()); // Writes "Checking out from B" In the code above, the CompanyA namespace is created by calling WinJS.Namespace.define(“CompanyA”). Next, the ShoppingCart is added to this namespace. The namespace is defined and an object is added to the namespace in separate lines of code. A different approach is taken in the case of the CompanyB.Controls namespace. The namespace is created and the ShoppingCart object is added to the namespace with the following single line of code: WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); Notice that CompanyB.Controls is a nested namespace. The top level namespace CompanyB contains the namespace Controls. You can declare a nested namespace using dot notation and the WinJS library handles the details of creating one namespace within the other. After the namespaces have been defined, you can use either of the two shopping cart controls. You call CompanyA.ShoppingCart.checkout() or you can call CompanyB.Controls.ShoppingCart.checkout(). Using WinJS.Namespace.defineWithParent() The WinJS.Namespace.defineWithParent() method is similar to the WinJS.Namespace.define() method. Both methods enable you to define a new namespace. The difference is that the defineWithParent() method enables you to add a new namespace to an existing namespace. The WinJS.Namespace.defineWithParent() method has the following parameters: · parentNamespace – An object which represents a parent namespace · name – A string representing the new namespace to add to the parent namespace · members – An optional collection of objects to add to the new namespace The following code sample demonstrates how you can create a root namespace named CompanyA and add a Controls child namespace to the CompanyA parent namespace: WinJS.Namespace.define("CompanyA"); WinJS.Namespace.defineWithParent(CompanyA, "Controls", { ShoppingCart: { checkout: function () { return "Checking out"; } } } ); console.log(CompanyA.Controls.ShoppingCart.checkout()); // Writes "Checking out" One significant advantage of using the defineWithParent() method over the define() method is the defineWithParent() method is strongly-typed. In other words, you use an object to represent the base namespace instead of a string. If you misspell the name of the object (CompnyA) then you get a runtime error. Using the Module Pattern When you are building a JavaScript library, you want to be able to create both public and private methods. Some methods, the public methods, are intended to be used by consumers of your JavaScript library. The public methods act as your library’s public API. Other methods, the private methods, are not intended for public consumption. Instead, these methods are internal methods required to get the library to function. You don’t want people calling these internal methods because you might need to change them in the future. JavaScript does not support access modifiers. You can’t mark an object or method as public or private. Anyone gets to call any method and anyone gets to interact with any object. The only mechanism for encapsulating (hiding) methods and objects in JavaScript is to take advantage of functions. In JavaScript, a function determines variable scope. A JavaScript variable either has global scope – it is available everywhere – or it has function scope – it is available only within a function. If you want to hide an object or method then you need to place it within a function. For example, the following code contains a function named doSomething() which contains a nested function named doSomethingElse(): function doSomething() { console.log("doSomething"); function doSomethingElse() { console.log("doSomethingElse"); } } doSomething(); // Writes "doSomething" doSomethingElse(); // Throws ReferenceError You can call doSomethingElse() only within the doSomething() function. The doSomethingElse() function is encapsulated in the doSomething() function. The WinJS library takes advantage of function encapsulation to hide all of its internal methods. All of the WinJS methods are defined within self-executing anonymous functions. Everything is hidden by default. Public methods are exposed by explicitly adding the public methods to namespaces defined in the global scope. Imagine, for example, that I want a small library of utility methods. I want to create a method for calculating sales tax and a method for calculating the expected ship date of a product. The following library encapsulates the implementation of my library in a self-executing anonymous function: (function (global) { // Public method which calculates tax function calculateTax(price) { return calculateFederalTax(price) + calculateStateTax(price); } // Private method for calculating state tax function calculateStateTax(price) { return price * 0.08; } // Private method for calculating federal tax function calculateFederalTax(price) { return price * 0.02; } // Public method which returns the expected ship date function calculateShipDate(currentDate) { currentDate.setDate(currentDate.getDate() + 4); return currentDate; } // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); })(this); // Show expected ship date var shipDate = CompanyA.Utilities.calculateShipDate(new Date()); console.log(shipDate); // Show price + tax var price = 12.33; var tax = CompanyA.Utilities.calculateTax(price); console.log(price + tax); In the code above, the self-executing anonymous function contains four functions: calculateTax(), calculateStateTax(), calculateFederalTax(), and calculateShipDate(). The following statement is used to expose only the calcuateTax() and the calculateShipDate() functions: // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); Because the calculateTax() and calcuateShipDate() functions are added to the CompanyA.Utilities namespace, you can call these two methods outside of the self-executing function. These are the public methods of your library which form the public API. The calculateStateTax() and calculateFederalTax() methods, on the other hand, are forever hidden within the black hole of the self-executing function. These methods are encapsulated and can never be called outside of scope of the self-executing function. These are the internal methods of your library. Summary The goal of this blog entry was to describe why and how you use namespaces with the WinJS library. You learned how to define namespaces using both the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. We also discussed how to hide private members and expose public members using the module pattern.

    Read the article

  • Calculated Columns in Entity Framework Code First Migrations

    - by David Paquette
    I had a couple people ask me about calculated properties / columns in Entity Framework this week.  The question was, is there a way to specify a property in my C# class that is the result of some calculation involving 2 properties of the same class.  For example, in my database, I store a FirstName and a LastName column and I would like a FullName property that is computed from the FirstName and LastName columns.  My initial answer was: 1: public string FullName 2: { 3: get { return string.Format("{0} {1}", FirstName, LastName); } 4: } Of course, this works fine, but this does not give us the ability to write queries using the FullName property.  For example, this query: 1: var users = context.Users.Where(u => u.FullName.Contains("anan")); Would result in the following NotSupportedException: The specified type member 'FullName' is not supported in LINQ to Entities. Only initializers, entity members, and entity navigation properties are supported. It turns out there is a way to support this type of behavior with Entity Framework Code First Migrations by making use of Computed Columns in SQL Server.  While there is no native support for computed columns in Code First Migrations, we can manually configure our migration to use computed columns. Let’s start by defining our C# classes and DbContext: 1: public class UserProfile 2: { 3: public int Id { get; set; } 4: 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: 8: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 9: public string FullName { get; private set; } 10: } 11: 12: public class UserContext : DbContext 13: { 14: public DbSet<UserProfile> Users { get; set; } 15: } The DatabaseGenerated attribute is needed on our FullName property.  This is a hint to let Entity Framework Code First know that the database will be computing this property for us. Next, we need to run 2 commands in the Package Manager Console.  First, run Enable-Migrations to enable Code First Migrations for the UserContext.  Next, run Add-Migration Initial to create an initial migration.  This will create a migration that creates the UserProfile table with 3 columns: FirstName, LastName, and FullName.  This is where we need to make a small change.  Instead of allowing Code First Migrations to create the FullName property, we will manually add that column as a computed column. 1: public partial class Initial : DbMigration 2: { 3: public override void Up() 4: { 5: CreateTable( 6: "dbo.UserProfiles", 7: c => new 8: { 9: Id = c.Int(nullable: false, identity: true), 10: FirstName = c.String(), 11: LastName = c.String(), 12: //FullName = c.String(), 13: }) 14: .PrimaryKey(t => t.Id); 15: Sql("ALTER TABLE dbo.UserProfiles ADD FullName AS FirstName + ' ' + LastName"); 16: } 17: 18: 19: public override void Down() 20: { 21: DropTable("dbo.UserProfiles"); 22: } 23: } Finally, run the Update-Database command.  Now we can query for Users using the FullName property and that query will be executed on the database server.  However, we encounter another potential problem. Since the FullName property is calculated by the database, it will get out of sync on the object side as soon as we make a change to the FirstName or LastName property.  Luckily, we can have the best of both worlds here by also adding the calculation back to the getter on the FullName property: 1: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 2: public string FullName 3: { 4: get { return FirstName + " " + LastName; } 5: private set 6: { 7: //Just need this here to trick EF 8: } 9: } Now we can both query for Users using the FullName property and we also won’t need to worry about the FullName property being out of sync with the FirstName and LastName properties.  When we run this code: 1: using(UserContext context = new UserContext()) 2: { 3: UserProfile userProfile = new UserProfile {FirstName = "Chanandler", LastName = "Bong"}; 4: 5: Console.WriteLine("Before saving: " + userProfile.FullName); 6: 7: context.Users.Add(userProfile); 8: context.SaveChanges(); 9:  10: Console.WriteLine("After saving: " + userProfile.FullName); 11:  12: UserProfile chanandler = context.Users.First(u => u.FullName == "Chanandler Bong"); 13: Console.WriteLine("After reading: " + chanandler.FullName); 14:  15: chanandler.FirstName = "Chandler"; 16: chanandler.LastName = "Bing"; 17:  18: Console.WriteLine("After changing: " + chanandler.FullName); 19:  20: } We get this output: It took a bit of work, but finally Chandler’s TV Guide can be delivered to the right person. The obvious downside to this implementation is that the FullName calculation is duplicated in the database and in the UserProfile class. This sample was written using Visual Studio 2012 and Entity Framework 5. Download the source code here.

    Read the article

  • Problems with Level Architect, Citrus Engine, Flash

    - by Idan
    I am using the Citrus Engine to make a Flash game, and the Level Architect doesn't work well for me. Firstly, when I first launch it and open my project and my level, nothing is shown, no assets and not anything I have previously done with my level. To fix it, I open another project. The other project works fine, meaning I can see the assets and the level. Then I go back to the actual project I am working on, and the problem is fixed, only it does not fix the second problem: I can't add my own assests. I follow the manual and add tags like this: [Property(value="0")] But it doesn't change a thing in the level architect window (even after I close and reopen it). Any ideas? Thanks! Here's the code of the class I want to be shown in the Level Architect: package { import com.citrusengine.objects.PhysicsObject; import com.citrusengine.objects.platformer.Sensor; import flash.utils.clearTimeout; import flash.utils.setTimeout; /** * @author Aymeric */ public class Teleporter extends Sensor { [Property(value="0")] public var endX:Number=0; [Property(value="0")] public var endY:Number=0; public var object:PhysicsObject; [Property(value="0")] public var time:Number = 0; public var needToTeleport:Boolean = false; protected var _teleporting:Boolean = false; private var _teleportTimeoutID:uint; public function Teleporter(name:String, params:Object = null) { super(name, params); } override public function destroy():void { clearTimeout(_teleportTimeoutID); super.destroy(); } override public function update(timeDelta:Number):void { super.update(timeDelta); if (needToTeleport) { _teleporting = true; _teleportTimeoutID = setTimeout(_teleport, time); needToTeleport = false; } _updateAnimation(); } protected function _teleport():void { _teleporting = false; object.x = endX; object.y = endY; clearTimeout(_teleportTimeoutID); } protected function _updateAnimation():void { if (_teleporting) { _animation = "teleport"; } else { _animation = "normal"; } } } }

    Read the article

  • The Return Of __FILE__ And __LINE__ In .NET 4.5

    - by Alois Kraus
    Good things are hard to kill. One of the most useful predefined compiler macros in C/C++ were __FILE__ and __LINE__ which do expand to the compilation units file name and line number where this value is encountered by the compiler. After 4.5 versions of .NET we are on par with C/C++ again. It is of course not a simple compiler expandable macro it is an attribute but it does serve exactly the same purpose. Now we do get CallerLineNumberAttribute  == __LINE__ CallerFilePathAttribute        == __FILE__ CallerMemberNameAttribute  == __FUNCTION__ (MSVC Extension)   The most important one is CallerMemberNameAttribute which is very useful to implement the INotifyPropertyChanged interface without the need to hard code the name of the property anymore. Now you can simply decorate your change method with the new CallerMemberName attribute and you get the property name as string directly inserted by the C# compiler at compile time.   public string UserName { get { return _userName; } set { _userName=value; RaisePropertyChanged(); // no more RaisePropertyChanged(“UserName”)! } } protected void RaisePropertyChanged([CallerMemberName] string member = "") { var copy = PropertyChanged; if(copy != null) { copy(new PropertyChangedEventArgs(this, member)); } } Nice and handy. This was obviously the prime reason to implement this feature in the C# 5.0 compiler. You can repurpose this feature for tracing to get your hands on the method name of your caller along other stuff very fast now. All infos are added during compile time which is much faster than other approaches like walking the stack. The example on MSDN shows the usage of this attribute with an example public static void TraceMessage(string message, [CallerMemberName] string memberName = "", [CallerFilePath] string sourceFilePath = "", [CallerLineNumber] int sourceLineNumber = 0) { Console.WriteLine("Hi {0} {1} {2}({3})", message, memberName, sourceFilePath, sourceLineNumber); }   When I do think of tracing I do usually want to have a API which allows me to Trace method enter and leave Trace messages with a severity like Info, Warning, Error When I do print a trace message it is very useful to print out method and type name as well. So your API must either be able to pass the method and type name as strings or extract it automatically via walking back one Stackframe and fetch the infos from there. The first glaring deficiency is that there is no CallerTypeAttribute yet because the C# compiler team was not satisfied with its performance.   A usable Trace Api might therefore look like   enum TraceTypes { None = 0, EnterLeave = 1 << 0, Info = 1 << 1, Warn = 1 << 2, Error = 1 << 3 } class Tracer : IDisposable { string Type; string Method; public Tracer(string type, string method) { Type = type; Method = method; if (IsEnabled(TraceTypes.EnterLeave,Type, Method)) { } } private bool IsEnabled(TraceTypes traceTypes, string Type, string Method) { // Do checking here if tracing is enabled return false; } public void Info(string fmt, params object[] args) { } public void Warn(string fmt, params object[] args) { } public void Error(string fmt, params object[] args) { } public static void Info(string type, string method, string fmt, params object[] args) { } public static void Warn(string type, string method, string fmt, params object[] args) { } public static void Error(string type, string method, string fmt, params object[] args) { } public void Dispose() { // trace method leave } } This minimal trace API is very fast but hard to maintain since you need to pass in the type and method name as hard coded strings which can change from time to time. But now we have at least CallerMemberName to rid of the explicit method parameter right? Not really. Since any acceptable usable trace Api should have a method signature like Tracexxx(… string fmt, params [] object args) we not able to add additional optional parameters after the args array. If we would put it before the format string we would need to make it optional as well which would mean the compiler would need to figure out what our trace message and arguments are (not likely) or we would need to specify everything explicitly just like before . There are ways around this by providing a myriad of overloads which in the end are routed to the very same method but that is ugly. I am not sure if nobody inside MS agrees that the above API is reasonable to have or (more likely) that the whole talk about you can use this feature for diagnostic purposes was not a core feature at all but a simple byproduct of making the life of INotifyPropertyChanged implementers easier. A way around this would be to allow for variable argument arrays after the params keyword another set of optional arguments which are always filled by the compiler but I do not know if this is an easy one. The thing I am missing much more is the not provided CallerType attribute. But not in the way you would think of. In the API above I did add some filtering based on method and type to stay as fast as possible for types where tracing is not enabled at all. It should be no more expensive than an additional method call and a bool variable check if tracing for this type is enabled at all. The data is tightly bound to the calling type and method and should therefore become part of the static type instance. Since extending the CLR type system for tracing is not something I do expect to happen I have come up with an alternative approach which allows me basically to attach run time data to any existing type object in super fast way. The key to success is the usage of generics.   class Tracer<T> : IDisposable { string Method; public Tracer(string method) { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public void Dispose() { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public static void Info(string fmt, params object[] args) { } /// <summary> /// Every type gets its own instance with a fresh set of variables to describe the /// current filter status. /// </summary> /// <typeparam name="T"></typeparam> internal class TraceData<UsingType> { internal static TraceData<UsingType> Instance = new TraceData<UsingType>(); public bool IsInitialized = false; // flag if we need to reinit the trace data in case of reconfigured trace settings at runtime public TraceTypes Enabled = TraceTypes.None; // Enabled trace levels for this type } } We do not need to pass the type as string or Type object to the trace Api. Instead we define a generic Api that accepts the using type as generic parameter. Then we can create a TraceData static instance which is due to the nature of generics a fresh instance for every new type parameter. My tests on my home machine have shown that this approach is as fast as a simple bool flag check. If you have an application with many types using tracing you do not want to bring the app down by simply enabling tracing for one special rarely used type. The trace filter performance for the types which are not enabled must be therefore the fasted code path. This approach has the nice side effect that if you store the TraceData instances in one global list you can reconfigure tracing at runtime safely by simply setting the IsInitialized flag to false. A similar effect can be achieved with a global static Dictionary<Type,TraceData> object but big hash tables have random memory access semantics which is bad for cache locality and you always need to pay for the lookup which involves hash code generation, equality check and an indexed array access. The generic version is wicked fast and allows you to add more features to your tracing Api with minimal perf overhead. But it is cumbersome to write the generic type argument always explicitly and worse if you do refactor code and move parts of it to other classes it might be that you cannot configure tracing correctly. I would like therefore to decorate my type with an attribute [CallerType] class Tracer<T> : IDisposable to tell the compiler to fill in the generic type argument automatically. class Program { static void Main(string[] args) { using (var t = new Tracer()) // equivalent to new Tracer<Program>() { That would be really useful and super fast since you do not need to pass any type object around but you do have full type infos at hand. This change would be breaking if another non generic type exists in the same namespace where now the generic counterpart would be preferred. But this is an acceptable risk in my opinion since you can today already get conflicts if two generic types of the same name are defined in different namespaces. This would be only a variation of this issue. When you do think about this further you can add more features like to trace the exception in your Dispose method if the method is left with an exception with that little trick I did write some time ago. You can think of tracing as a super fast and configurable switch to write data to an output destination or to execute alternative actions. With such an infrastructure you can e.g. Reconfigure tracing at run time. Take a memory dump when a specific method is left with a specific exception. Throw an exception when a specific trace statement is hit (useful for testing error conditions). Execute a passed delegate which e.g. dumps additional state when enabled. Write data to an in memory ring buffer and dump it when specific events do occur (e.g. method is left with an exception, triggered from outside). Write data to an output device. …. This stuff is really useful to have when your code is in production on a mission critical server and you need to find the root cause of sporadic crashes of your application. It could be a buggy graphics card driver which throws access violations into your application (ok with .NET 4 not anymore except if you enable a compatibility flag) where you would like to have a minidump or you have reached after two weeks of operation a state where you need a full memory dump at a specific point in time in the middle of an transaction. At my older machine I do get with this super fast approach 50 million traces/s when tracing is disabled. When I do know that tracing is enabled for this type I can walk the stack by using StackFrameHelper.GetStackFramesInternal to check further if a specific action or output device is configured for this method which is about 2-3 times faster than the regular StackTrace class. Even with one String.Format I am down to 3 million traces/s so performance is not so important anymore since I do want to do something now. The CallerMemberName feature of the C# 5 compiler is nice but I would have preferred to get direct access to the MethodHandle and not to the stringified version of it. But I really would like to see a CallerType attribute implemented to fill in the generic type argument of the call site to augment the static CLR type data with run time data.

    Read the article

  • A Generic Boolean Value Converter

    - by codingbloke
    On fairly regular intervals a question on Stackoverflow like this one:  Silverlight Bind to inverse of boolean property value appears.  The same answers also regularly appear.  They all involve an implementation of IValueConverter and basically include the same boilerplate code. The required output type sometimes varies, other examples that have passed by are Boolean to Brush and Boolean to String conversions.  Yet the code remains pretty much the same.  There is therefore a good case to create a generic Boolean to value converter to contain this common code and then just specialise it for use in Xaml. Here is the basic converter:- BoolToValueConverter using System; using System.Windows.Data; namespace SilverlightApplication1 {     public class BoolToValueConverter<T> : IValueConverter     {         public T FalseValue { get; set; }         public T TrueValue { get; set; }         public object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             if (value == null)                 return FalseValue;             else                 return (bool)value ? TrueValue : FalseValue;         }         public object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             return value.Equals(TrueValue);         }     } } With this generic converter in place it easy to create a set of converters for various types.  For example here are all the converters mentioned so far:- Value Converters using System; using System.Windows; using System.Windows.Media; namespace SilverlightApplication1 {     public class BoolToStringConverter : BoolToValueConverter<String> { }     public class BoolToBrushConverter : BoolToValueConverter<Brush> { }     public class BoolToVisibilityConverter : BoolToValueConverter<Visibility> { }     public class BoolToObjectConverter : BoolToValueConverter<Object> { } } With the specialised converters created they can be specified in a Resources property on a user control like this:- <local:BoolToBrushConverter x:Key="Highlighter" FalseValue="Transparent" TrueValue="Yellow" /> <local:BoolToStringConverter x:Key="CYesNo" FalseValue="No" TrueValue="Yes" /> <local:BoolToVisibilityConverter x:Key="InverseVisibility" TrueValue="Collapsed" FalseValue="Visible" />

    Read the article

< Previous Page | 102 103 104 105 106 107 108 109 110 111 112 113  | Next Page >