Search Results

Search found 3511 results on 141 pages for 'const correctness'.

Page 108/141 | < Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >

  • Strange problem with Random Access Filing in C++

    - by sam
    This is a simple random access filing program . The problem arises where i want to write data randomly. If I write any where in the file the previous records are set to 0. the last 1 which is being entered currently holds the correct value all others =0. This is the code #include <iostream> #include<fstream> #include<string> using namespace std; class name { int id; int pass; public: void writeBlank(); void writedata(); void readdata(); void readall(); int getid() { return id; } int getpass() { return pass; } void setid(int i) { id=i; } void setpass(int p) { pass=p; } }; void name::writeBlank() { name person; person.setid(0); person.setpass(0); int i; ofstream out("pass.txt",ios::binary); if ( !out ) { cout << "File could not be opened." << endl; } for(i=0;i<10;i++) //make 10 records { cout<<"Put pointer is at: "<<out.tellp()<<endl; cout<<"Blank record "<<i<<" is: "<<person.getid()<<" "<<person.getpass()<<" and size: "<<sizeof(person)<<endl; cout<<"Put pointer is at: "<<out.tellp()<<endl; out.write(reinterpret_cast< const char * >(&person),sizeof(name)); } } void name::writedata() { ofstream out("pass.txt",ios::binary|ios::out); name n1; int iD,p; cout<<"ID?"; cin>>iD; n1.setid(iD); cout<<"Enter password"; cin>>p; n1.setpass(p); if (!out ) { cout << "File could not be opened." << endl; } out.seekp((n1.getid()-1)*sizeof(name),ios::beg); //pointer moves to desired location where we have to store password according to its ID(index) cout<<"File pointer is at: "<<out.tellp()<<endl; out.write(reinterpret_cast<const char*> (&n1), sizeof(name)); //write on that pointed location } void name::readall() { name n1; ifstream in("pass.txt",ios::binary); if ( !in ) { cout << "File could not be opened." << endl; } in.read( reinterpret_cast<char *>(&n1), sizeof(name) ); while ( !in.eof() ) { // display record cout<<endl<<"password at this index is:"<<n1.getpass()<<endl; cout<<"File pointer is at: "<<in.tellg()<<endl; // read next from file in.read( reinterpret_cast< char * >(&n1), sizeof(name)); } // end while } void name::readdata() { ifstream in("pass.txt",ios::binary); if ( !in ) { cout << "File could not be opened." << endl; } in.seekg((getid()-1)*sizeof(name)); //pointer moves to desired location where we have to read password according to its ID(index) cout<<"File pointer is at: "<<in.tellg()<<endl; in.read((char* )this,sizeof(name)); //reads from that pointed location cout<<endl<<"password at this index is:"<<getpass()<<endl; } int main() { name n1; cout<<"Enter 0 to write blank records"<<endl; cout<<"Enter 1 for new account"<<endl; cout<<"Enter 2 to login"<<endl; cout<<"Enter 3 to read all"<<endl; cout<<"Enter 9 to exit"<<endl; int option; cin>>option; while(option==0 || option==1 || option==2 || option==3) { if (option == 0) n1.writeBlank(); if(option==1) { /*int iD,p; cout<<"ID?"; cin>>iD; n1.setid(iD); cout<<"Enter password"; cin>>p; n1.setpass(p);*/ n1.writedata(); } int ind; if(option==2) { cout<<"Index?"; cin>>ind; n1.setid(ind); n1.readdata(); } if(option == 3) n1.readall(); cout<<"Enter 0 to write blank records"<<endl; cout<<"Enter 1 for new account"<<endl; cout<<"Enter 2 to login"<<endl; cout<<"Enter 3 to read all"<<endl; cout<<"Enter 9 to exit"<<endl; cin>>option; } } I Cant understand Y the previous records turn 0.

    Read the article

  • JNI String Corruption

    - by Chris Dennett
    Hi everyone, I'm getting weird string corruption across JNI calls which is causing problems on the the Java side. Every so often, I'll get a corrupted string in the passed array, which sometimes has existing parts of the original non-corrupted string. The C++ code is supposed to set the first index of the array to the address, it's a nasty hack to get around method call limitations. Additionally, the application is multi-threaded. remoteaddress[0]: 10.1.1.2:49153 remoteaddress[0]: 10.1.4.2:49153 remoteaddress[0]: 10.1.6.2:49153 remoteaddress[0]: 10.1.2.2:49153 remoteaddress[0]: 10.1.9.2:49153 remoteaddress[0]: {garbage here} java.lang.NullPointerException at kokuks.KKSAddress.<init>(KKSAddress.java:139) at kokuks.KKSAddress.createAddress(KKSAddress.java:48) at kokuks.KKSSocket._recvFrom(KKSSocket.java:963) at kokuks.scheduler.RecvOperation$1.execute(RecvOperation.java:144) at kokuks.scheduler.RecvOperation$1.execute(RecvOperation.java:1) at kokuks.KKSEvent.run(KKSEvent.java:58) at kokuks.KokuKS.handleJNIEventExpiry(KokuKS.java:872) at kokuks.KokuKS.handleJNIEventExpiry_fjni(KokuKS.java:880) at kokuks.KokuKS.runSimulator_jni(Native Method) at kokuks.KokuKS$1.run(KokuKS.java:773) at java.lang.Thread.run(Thread.java:717) remoteaddress[0]: 10.1.7.2:49153 The null pointer exception comes from trying to use the corrupt string. In C++, the address prints to standard out normally, but doing this reduces the rate of errors, from what I can see. The C++ code (if it helps): /* * Class: kokuks_KKSSocket * Method: recvFrom_jni * Signature: (Ljava/lang/String;[Ljava/lang/String;Ljava/nio/ByteBuffer;IIJ)I */ JNIEXPORT jint JNICALL Java_kokuks_KKSSocket_recvFrom_1jni (JNIEnv *env, jobject obj, jstring sockpath, jobjectArray addrarr, jobject buf, jint position, jint limit, jlong flags) { if (addrarr && env->GetArrayLength(addrarr) > 0) { env->SetObjectArrayElement(addrarr, 0, NULL); } jboolean iscopy; const char* cstr = env->GetStringUTFChars(sockpath, &iscopy); std::string spath = std::string(cstr); env->ReleaseStringUTFChars(sockpath, cstr); // release me! if (KKS_DEBUG) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << std::endl; } ns3::Ptr<ns3::Socket> socket = ns3::Names::Find<ns3::Socket>(spath); if (!socket) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " socket not found for path!!" << std::endl; return -1; // not found } if (!addrarr) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " array to set sender is null" << std::endl; return -1; } jsize arrsize = env->GetArrayLength(addrarr); if (arrsize < 1) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " array too small to set sender!" << std::endl; return -1; } uint8_t* bufaddr = (uint8_t*)env->GetDirectBufferAddress(buf); long bufcap = env->GetDirectBufferCapacity(buf); uint8_t* realbufaddr = bufaddr + position; uint32_t remaining = limit - position; if (KKS_DEBUG) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " bufaddr: " << bufaddr << ", cap: " << bufcap << std::endl; } ns3::Address aaddr; uint32_t mflags = flags; int ret = socket->RecvFrom(realbufaddr, remaining, mflags, aaddr); if (ret > 0) { if (KKS_DEBUG) std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " addr: " << aaddr << std::endl; ns3::InetSocketAddress insa = ns3::InetSocketAddress::ConvertFrom(aaddr); std::stringstream ss; insa.GetIpv4().Print(ss); ss << ":" << insa.GetPort() << std::ends; if (KKS_DEBUG) std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " addr: " << ss.str() << std::endl; jsize index = 0; const char *cstr = ss.str().c_str(); jstring jaddr = env->NewStringUTF(cstr); if (jaddr == NULL) std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " jaddr is null!!" << std::endl; //jaddr = (jstring)env->NewGlobalRef(jaddr); env->SetObjectArrayElement(addrarr, index, jaddr); //if (env->ExceptionOccurred()) { // env->ExceptionDescribe(); //} } jint jret = ret; return jret; } The Java code (if it helps): /** * Pass an array of size 1 into remote address, and this will be set with * the sender of the packet (hax). This emulates C++ references. * * @param remoteaddress * @param buf * @param flags * @return */ public int _recvFrom(final KKSAddress remoteaddress[], ByteBuffer buf, long flags) { if (!kks.isCurrentlyThreadSafe()) throw new RuntimeException( "Not currently thread safe for ns-3 functions!" ); //lock.lock(); try { if (!buf.isDirect()) return -6; // not direct!! final String[] remoteAddrStr = new String[1]; int ret = 0; ret = recvFrom_jni( path.toPortableString(), remoteAddrStr, buf, buf.position(), buf.limit(), flags ); if (ret > 0) { System.out.println("remoteaddress[0]: " + remoteAddrStr[0]); remoteaddress[0] = KKSAddress.createAddress(remoteAddrStr[0]); buf.position(buf.position() + ret); } return ret; } finally { errNo = _getErrNo(); //lock.unlock(); } } public int recvFrom(KKSAddress[] fromaddress, final ByteBuffer bytes, long flags, long timeoutMS) { if (KokuKS.DEBUG_MODE) printMessage("public synchronized int recvFrom(KKSAddress[] fromaddress, final ByteBuffer bytes, long flags, long timeoutMS)"); if (kks.isCurrentlyThreadSafe()) { return _recvFrom(fromaddress, bytes, flags); // avoid event } fromaddress[0] = null; RecvOperation ro = new RecvOperation( kks, this, flags, true, bytes, timeoutMS ); ro.start(); fromaddress[0] = ro.getFrom(); return ro.getRetCode(); }

    Read the article

  • Atmospheric scattering OpenGL 3.3

    - by user1419305
    Im currently trying to convert a shader by Sean O'Neil to version 330 so i can try it out in a application im writing. Im having some issues with deprecated functions, so i replaced them, but im almost completely new to glsl, so i probably did a mistake somewhere. Original shaders can be found here: http://www.gamedev.net/topic/592043-solved-trying-to-use-atmospheric-scattering-oneill-2004-but-get-black-sphere/ My horrible attempt at converting them: Vertex Shader: #version 330 core layout(location = 0) in vec3 vertexPosition_modelspace; //layout(location = 1) in vec2 vertexUV; layout(location = 2) in vec3 vertexNormal_modelspace; uniform vec3 v3CameraPos; uniform vec3 v3LightPos; uniform vec3 v3InvWavelength; uniform float fCameraHeight; uniform float fCameraHeight2; uniform float fOuterRadius; uniform float fOuterRadius2; uniform float fInnerRadius; uniform float fInnerRadius2; uniform float fKrESun; uniform float fKmESun; uniform float fKr4PI; uniform float fKm4PI; uniform float fScale; uniform float fScaleDepth; uniform float fScaleOverScaleDepth; // passing in matrixes for transformations uniform mat4 MVP; uniform mat4 V; uniform mat4 M; const int nSamples = 4; const float fSamples = 4.0; out vec3 v3Direction; out vec4 gg_FrontColor; out vec4 gg_FrontSecondaryColor; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { vec3 v3Pos = vertexPosition_modelspace; vec3 v3Ray = v3Pos - v3CameraPos; float fFar = length(v3Ray); v3Ray /= fFar; vec3 v3Start = v3CameraPos; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight)); float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight; float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight; float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle))); vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } gg_FrontSecondaryColor.rgb = v3FrontColor * fKmESun; gg_FrontColor.rgb = v3FrontColor * (v3InvWavelength * fKrESun); gl_Position = MVP * vec4(vertexPosition_modelspace,1); v3Direction = v3CameraPos - v3Pos; } Fragment Shader: #version 330 core uniform vec3 v3LightPos; uniform float g; uniform float g2; in vec3 v3Direction; out vec4 FragColor; in vec4 gg_FrontColor; in vec4 gg_FrontSecondaryColor; void main (void) { float fCos = dot(v3LightPos, v3Direction) / length(v3Direction); float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5); FragColor = gg_FrontColor + fMiePhase * gg_FrontSecondaryColor; FragColor.a = FragColor.b; } I wrote a function to render a sphere, and im trying to render this shader onto a inverted version of it, the sphere works completely fine, with normals and all. My problem is that the sphere gets rendered all black, so the shader is not working. This is how i'm trying to render the atmosphere inside my main rendering loop. glUseProgram(programAtmosphere); glBindTexture(GL_TEXTURE_2D, 0); //###################### glUniform3f(v3CameraPos, getPlayerPos().x, getPlayerPos().y, getPlayerPos().z); glUniform3f(v3LightPos, lightPos.x / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), lightPos.y / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), 0); glUniform3f(v3InvWavelength, 1.0 / pow(0.650, 4.0), 1.0 / pow(0.570, 4.0), 1.0 / pow(0.475, 4.0)); glUniform1fARB(fCameraHeight, 1); glUniform1fARB(fCameraHeight2, 1); glUniform1fARB(fInnerRadius, 6350); glUniform1fARB(fInnerRadius2, 6350 * 6350); glUniform1fARB(fOuterRadius, 6450); glUniform1fARB(fOuterRadius2, 6450 * 6450); glUniform1fARB(fKrESun, 0.0025 * 20.0); glUniform1fARB(fKmESun, 0.0015 * 20.0); glUniform1fARB(fKr4PI, 0.0025 * 4.0 * 3.141592653); glUniform1fARB(fKm4PI, 0.0015 * 4.0 * 3.141592653); glUniform1fARB(fScale, 1.0 / (6450 - 6350)); glUniform1fARB(fScaleDepth, 0.25); glUniform1fARB(fScaleOverScaleDepth, 4.0 / (6450 - 6350)); glUniform1fARB(g, -0.85); glUniform1f(g2, -0.85 * -0.85); // vertices glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer[1]); glVertexAttribPointer( 0, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); // normals glEnableVertexAttribArray(2); glBindBuffer(GL_ARRAY_BUFFER, normalbuffer[1]); glVertexAttribPointer( 2, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer[1]); glUniformMatrix4fv(ModelMatrixAT, 1, GL_FALSE, &ModelMatrix[0][0]); glUniformMatrix4fv(ViewMatrixAT, 1, GL_FALSE, &ViewMatrix[0][0]); glUniformMatrix4fv(ModelViewPAT, 1, GL_FALSE, &MVP[0][0]); // Draw the triangles glDrawElements( GL_TRIANGLES, // mode cubeIndices[1], // count GL_UNSIGNED_SHORT, // type (void*)0 // element array buffer offset ); Any ideas?

    Read the article

  • Failling install Ralink RT5592 driver on Ubuntu 14.04 LTS

    - by atisou
    My problem concerns the installation of a wi-fi driver (RT5592) for my new wi-fi adapter (PCE-N53) on my newly built computer. Basically, I don't manage to get the driver installed and therefore I cannot get the wifi to work. I know I am not the only one having this issue this year, between RT5592 driver and Ubuntu 14.04 LTS, in one way or the other. Is there anybody who has ever been able to fix this problem? It does not look like on all the posts I have been through... Following an answer to a same problem as mine (I was getting the same error message as Christopher Kyle Horton of "incompatible types" etc), I have applied the instructions and done the editings in a script as suggested by Paul B. Unfortunately I still do get error/warnings message (a different one this time) at the end of the make and the wi-fi still does not work. Below is a snapshot of the end of the message: In file included from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/include/os/rt_linux.h:31:0, from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/include/rtmp_os.h:44, from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/include/rtmp_comm.h:69, from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux/../../os/linux/pci_main_dev.c:31: include/linux/module.h:88:32: error: ‘__mod_pci_device_table’ aliased to undefined symbol ‘rt2860_pci_tbl’ extern const struct gtype##_id __mod_##gtype##_table \ ^ include/linux/module.h:146:3: note: in expansion of macro ‘MODULE_GENERIC_TABLE’ MODULE_GENERIC_TABLE(type##_device,name) ^ /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux/../../os/linux/pci_main_dev.c:73:1: note: in expansion of macro ‘MODULE_DEVICE_TABLE’ MODULE_DEVICE_TABLE(pci, rt2860_pci_tbl); ^ cc1: some warnings being treated as errors make[2]: *** [/home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux/../../os/linux/pci_main_dev.o] Error 1 make[1]: *** [_module_/home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.13.0-32-generic' make: *** [LINUX] Error 2 The full pastebin data: paste.ubuntu.com/8088834/ It looks from the message that one would need to edit manually some of/other scripts in the driver package, as did Paul B suggest in one case. But I have no idea how to do that. Here is the driver package of the wifi adapter: www.asus.com/uk/Networking/PCEN53/HelpDesk_Download/ My system is as following: OS: ubuntu 14.04 LTS wi-fi card: Asus PCE-N53 motherboard: Asus KCMA-D8 processor: AMD Opteron 4228 HE kernel: 3.13.0-32-generic Following this info from chili555 in here, below are some extra info about my system: lspci -nn | grep 0280 gives 04:00.0 Network controller [0280]: Ralink corp. RT5592 PCI2 Wireless Network Adapater [1814:5592] and sudo apt-get install linux-headers-generic returns linux-headers-generic is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. If this is a kernel version (I have 3.13.0-32-generic) incompatibility issue with the driver as chilli555 suggests (the README file in the driver package says indeed it is compatible with kernel 2.6), how could one trick this around to make it work? that should be possible right? On ubuntu forums, the patches proposed dont work (leads the computer to freeze). Basically: is there anybody out there who has ever been able to make a PCE-N53 work on Ubuntu 14.04 LTS (kernel 3.13)? how shall I edit the driver package to make it work for my kernel?

    Read the article

  • The Incremental Architect&acute;s Napkin &ndash; #3 &ndash; Make Evolvability inevitable

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/04/the-incremental-architectacutes-napkin-ndash-3-ndash-make-evolvability-inevitable.aspxThe easier something to measure the more likely it will be produced. Deviations between what is and what should be can be readily detected. That´s what automated acceptance tests are for. That´s what sprint reviews in Scrum are for. It´s no small wonder our software looks like it looks. It has all the traits whose conformance with requirements can easily be measured. And it´s lacking traits which cannot easily be measured. Evolvability (or Changeability) is such a trait. If an operation is correct, if an operation if fast enough, that can be checked very easily. But whether Evolvability is high or low, that cannot be checked by taking a measure or two. Evolvability might correlate with certain traits, e.g. number of lines of code (LOC) per function or Cyclomatic Complexity or test coverage. But there is no threshold value signalling “evolvability too low”; also Evolvability is hardly tangible for the customer. Nevertheless Evolvability is of great importance - at least in the long run. You can get away without much of it for a short time. Eventually, though, it´s needed like any other requirement. Or even more. Because without Evolvability no other requirement can be implemented. Evolvability is the foundation on which all else is build. Such fundamental importance is in stark contrast with its immeasurability. To compensate this, Evolvability must be put at the very center of software development. It must become the hub around everything else revolves. Since we cannot measure Evolvability, though, we cannot start watching it more. Instead we need to establish practices to keep it high (enough) at all times. Chefs have known that for long. That´s why everybody in a restaurant kitchen is constantly seeing after cleanliness. Hygiene is important as is to have clean tools at standardized locations. Only then the health of the patrons can be guaranteed and production efficiency is constantly high. Still a kitchen´s level of cleanliness is easier to measure than software Evolvability. That´s why important practices like reviews, pair programming, or TDD are not enough, I guess. What we need to keep Evolvability in focus and high is… to continually evolve. Change must not be something to avoid but too embrace. To me that means the whole change cycle from requirement analysis to delivery needs to be gone through more often. Scrum´s sprints of 4, 2 even 1 week are too long. Kanban´s flow of user stories across is too unreliable; it takes as long as it takes. Instead we should fix the cycle time at 2 days max. I call that Spinning. No increment must take longer than from this morning until tomorrow evening to finish. Then it should be acceptance checked by the customer (or his/her representative, e.g. a Product Owner). For me there are several resasons for such a fixed and short cycle time for each increment: Clear expectations Absolute estimates (“This will take X days to complete.”) are near impossible in software development as explained previously. Too much unplanned research and engineering work lurk in every feature. And then pervasive interruptions of work by peers and management. However, the smaller the scope the better our absolute estimates become. That´s because we understand better what really are the requirements and what the solution should look like. But maybe more importantly the shorter the timespan the more we can control how we use our time. So much can happen over the course of a week and longer timespans. But if push comes to shove I can block out all distractions and interruptions for a day or possibly two. That´s why I believe we can give rough absolute estimates on 3 levels: Noon Tonight Tomorrow Think of a meeting with a Product Owner at 8:30 in the morning. If she asks you, how long it will take you to implement a user story or bug fix, you can say, “It´ll be fixed by noon.”, or you can say, “I can manage to implement it until tonight before I leave.”, or you can say, “You´ll get it by tomorrow night at latest.” Yes, I believe all else would be naive. If you´re not confident to get something done by tomorrow night (some 34h from now) you just cannot reliably commit to any timeframe. That means you should not promise anything, you should not even start working on the issue. So when estimating use these four categories: Noon, Tonight, Tomorrow, NoClue - with NoClue meaning the requirement needs to be broken down further so each aspect can be assigned to one of the first three categories. If you like absolute estimates, here you go. But don´t do deep estimates. Don´t estimate dozens of issues; don´t think ahead (“Issue A is a Tonight, then B will be a Tomorrow, after that it´s C as a Noon, finally D is a Tonight - that´s what I´ll do this week.”). Just estimate so Work-in-Progress (WIP) is 1 for everybody - plus a small number of buffer issues. To be blunt: Yes, this makes promises impossible as to what a team will deliver in terms of scope at a certain date in the future. But it will give a Product Owner a clear picture of what to pull for acceptance feedback tonight and tomorrow. Trust through reliability Our trade is lacking trust. Customers don´t trust software companies/departments much. Managers don´t trust developers much. I find that perfectly understandable in the light of what we´re trying to accomplish: delivering software in the face of uncertainty by means of material good production. Customers as well as managers still expect software development to be close to production of houses or cars. But that´s a fundamental misunderstanding. Software development ist development. It´s basically research. As software developers we´re constantly executing experiments to find out what really provides value to users. We don´t know what they need, we just have mediated hypothesises. That´s why we cannot reliably deliver on preposterous demands. So trust is out of the window in no time. If we switch to delivering in short cycles, though, we can regain trust. Because estimates - explicit or implicit - up to 32 hours at most can be satisfied. I´d say: reliability over scope. It´s more important to reliably deliver what was promised then to cover a lot of requirement area. So when in doubt promise less - but deliver without delay. Deliver on scope (Functionality and Quality); but also deliver on Evolvability, i.e. on inner quality according to accepted principles. Always. Trust will be the reward. Less complexity of communication will follow. More goodwill buffer will follow. So don´t wait for some Kanban board to show you, that flow can be improved by scheduling smaller stories. You don´t need to learn that the hard way. Just start with small batch sizes of three different sizes. Fast feedback What has been finished can be checked for acceptance. Why wait for a sprint of several weeks to end? Why let the mental model of the issue and its solution dissipate? If you get final feedback after one or two weeks, you hardly remember what you did and why you did it. Resoning becomes hard. But more importantly youo probably are not in the mood anymore to go back to something you deemed done a long time ago. It´s boring, it´s frustrating to open up that mental box again. Learning is harder the longer it takes from event to feedback. Effort can be wasted between event (finishing an issue) and feedback, because other work might go in the wrong direction based on false premises. Checking finished issues for acceptance is the most important task of a Product Owner. It´s even more important than planning new issues. Because as long as work started is not released (accepted) it´s potential waste. So before starting new work better make sure work already done has value. By putting the emphasis on acceptance rather than planning true pull is established. As long as planning and starting work is more important, it´s a push process. Accept a Noon issue on the same day before leaving. Accept a Tonight issue before leaving today or first thing tomorrow morning. Accept a Tomorrow issue tomorrow night before leaving or early the day after tomorrow. After acceptance the developer(s) can start working on the next issue. Flexibility As if reliability/trust and fast feedback for less waste weren´t enough economic incentive, there is flexibility. After each issue the Product Owner can change course. If on Monday morning feature slices A, B, C, D, E were important and A, B, C were scheduled for acceptance by Monday evening and Tuesday evening, the Product Owner can change her mind at any time. Maybe after A got accepted she asks for continuation with D. But maybe, just maybe, she has gotten a completely different idea by then. Maybe she wants work to continue on F. And after B it´s neither D nor E, but G. And after G it´s D. With Spinning every 32 hours at latest priorities can be changed. And nothing is lost. Because what got accepted is of value. It provides an incremental value to the customer/user. Or it provides internal value to the Product Owner as increased knowledge/decreased uncertainty. I find such reactivity over commitment economically very benefical. Why commit a team to some workload for several weeks? It´s unnecessary at beast, and inflexible and wasteful at worst. If we cannot promise delivery of a certain scope on a certain date - which is what customers/management usually want -, we can at least provide them with unpredecented flexibility in the face of high uncertainty. Where the path is not clear, cannot be clear, make small steps so you´re able to change your course at any time. Premature completion Customers/management are used to premeditating budgets. They want to know exactly how much to pay for a certain amount of requirements. That´s understandable. But it does not match with the nature of software development. We should know that by now. Maybe there´s somewhere in the world some team who can consistently deliver on scope, quality, and time, and budget. Great! Congratulations! I, however, haven´t seen such a team yet. Which does not mean it´s impossible, but I think it´s nothing I can recommend to strive for. Rather I´d say: Don´t try this at home. It might hurt you one way or the other. However, what we can do, is allow customers/management stop work on features at any moment. With spinning every 32 hours a feature can be declared as finished - even though it might not be completed according to initial definition. I think, progress over completion is an important offer software development can make. Why think in terms of completion beyond a promise for the next 32 hours? Isn´t it more important to constantly move forward? Step by step. We´re not running sprints, we´re not running marathons, not even ultra-marathons. We´re in the sport of running forever. That makes it futile to stare at the finishing line. The very concept of a burn-down chart is misleading (in most cases). Whoever can only think in terms of completed requirements shuts out the chance for saving money. The requirements for a features mostly are uncertain. So how does a Product Owner know in the first place, how much is needed. Maybe more than specified is needed - which gets uncovered step by step with each finished increment. Maybe less than specified is needed. After each 4–32 hour increment the Product Owner can do an experient (or invite users to an experiment) if a particular trait of the software system is already good enough. And if so, she can switch the attention to a different aspect. In the end, requirements A, B, C then could be finished just 70%, 80%, and 50%. What the heck? It´s good enough - for now. 33% money saved. Wouldn´t that be splendid? Isn´t that a stunning argument for any budget-sensitive customer? You can save money and still get what you need? Pull on practices So far, in addition to more trust, more flexibility, less money spent, Spinning led to “doing less” which also means less code which of course means higher Evolvability per se. Last but not least, though, I think Spinning´s short acceptance cycles have one more effect. They excert pull-power on all sorts of practices known for increasing Evolvability. If, for example, you believe high automated test coverage helps Evolvability by lowering the fear of inadverted damage to a code base, why isn´t 90% of the developer community practicing automated tests consistently? I think, the answer is simple: Because they can do without. Somehow they manage to do enough manual checks before their rare releases/acceptance checks to ensure good enough correctness - at least in the short term. The same goes for other practices like component orientation, continuous build/integration, code reviews etc. None of that is compelling, urgent, imperative. Something else always seems more important. So Evolvability principles and practices fall through the cracks most of the time - until a project hits a wall. Then everybody becomes desperate; but by then (re)gaining Evolvability has become as very, very difficult and tedious undertaking. Sometimes up to the point where the existence of a project/company is in danger. With Spinning that´s different. If you´re practicing Spinning you cannot avoid all those practices. With Spinning you very quickly realize you cannot deliver reliably even on your 32 hour promises. Spinning thus is pulling on developers to adopt principles and practices for Evolvability. They will start actively looking for ways to keep their delivery rate high. And if not, management will soon tell them to do that. Because first the Product Owner then management will notice an increasing difficulty to deliver value within 32 hours. There, finally there emerges a way to measure Evolvability: The more frequent developers tell the Product Owner there is no way to deliver anything worth of feedback until tomorrow night, the poorer Evolvability is. Don´t count the “WTF!”, count the “No way!” utterances. In closing For sustainable software development we need to put Evolvability first. Functionality and Quality must not rule software development but be implemented within a framework ensuring (enough) Evolvability. Since Evolvability cannot be measured easily, I think we need to put software development “under pressure”. Software needs to be changed more often, in smaller increments. Each increment being relevant to the customer/user in some way. That does not mean each increment is worthy of shipment. It´s sufficient to gain further insight from it. Increments primarily serve the reduction of uncertainty, not sales. Sales even needs to be decoupled from this incremental progress. No more promises to sales. No more delivery au point. Rather sales should look at a stream of accepted increments (or incremental releases) and scoup from that whatever they find valuable. Sales and marketing need to realize they should work on what´s there, not what might be possible in the future. But I digress… In my view a Spinning cycle - which is not easy to reach, which requires practice - is the core practice to compensate the immeasurability of Evolvability. From start to finish of each issue in 32 hours max - that´s the challenge we need to accept if we´re serious increasing Evolvability. Fortunately higher Evolvability is not the only outcome of Spinning. Customer/management will like the increased flexibility and “getting more bang for the buck”.

    Read the article

  • MvcExtensions - PerRequestTask

    - by kazimanzurrashid
    In the previous post, we have seen the BootstrapperTask which executes when the application starts and ends, similarly there are times when we need to execute some custom logic when a request starts and ends. Usually, for this kind of scenario we create HttpModule and hook the begin and end request events. There is nothing wrong with this approach, except HttpModules are not at all IoC containers friendly, also defining the HttpModule execution order is bit cumbersome, you either have to modify the machine.config or clear the HttpModules and add it again in web.config. Instead, you can use the PerRequestTask which is very much container friendly as well as supports execution orders. Lets few examples where it can be used. Remove www Subdomain Lets say we want to remove the www subdomain, so that if anybody types http://www.mydomain.com it will automatically redirects to http://mydomain.com. public class RemoveWwwSubdomain : PerRequestTask { public RemoveWww() { Order = DefaultOrder - 1; } protected override TaskContinuation ExecuteCore(PerRequestExecutionContext executionContext) { const string Prefix = "http://www."; Check.Argument.IsNotNull(executionContext, "executionContext"); HttpContextBase httpContext = executionContext.HttpContext; string url = httpContext.Request.Url.ToString(); bool startsWith3W = url.StartsWith(Prefix, StringComparison.OrdinalIgnoreCase); bool shouldContinue = true; if (startsWith3W) { string newUrl = "http://" + url.Substring(Prefix.Length); HttpResponseBase response = httpContext.Response; response.StatusCode = (int)HttpStatusCode.MovedPermanently; response.Status = "301 Moved Permanently"; response.RedirectLocation = newUrl; response.SuppressContent = true; shouldContinue = false; } return shouldContinue ? TaskContinuation.Continue : TaskContinuation.Break; } } As you can see, first, we are setting the order so that we do not have to execute the remaining tasks of the chain when we are redirecting, next in the ExecuteCore, we checking the whether www is present, if present we are sending a permanently moved http status code and breaking the task execution chain otherwise we are continuing with the chain. Blocking IP Address Lets take another scenario, your application is hosted in a shared hosting environment where you do not have the permission to change the IIS setting and you want to block certain IP addresses from visiting your application. Lets say, you maintain a list of IP address in database/xml files which you want to block, you have a IBannedIPAddressRepository service which is used to match banned IP Address. public class BlockRestrictedIPAddress : PerRequestTask { protected override TaskContinuation ExecuteCore(PerRequestExecutionContext executionContext) { bool shouldContinue = true; HttpContextBase httpContext = executionContext.HttpContext; if (!httpContext.Request.IsLocal) { string ipAddress = httpContext.Request.UserHostAddress; HttpResponseBase httpResponse = httpContext.Response; if (executionContext.ServiceLocator.GetInstance<IBannedIPAddressRepository>().IsMatching(ipAddress)) { httpResponse.StatusCode = (int)HttpStatusCode.Forbidden; httpResponse.StatusDescription = "IPAddress blocked."; shouldContinue = false; } } return shouldContinue ? TaskContinuation.Continue : TaskContinuation.Break; } } Managing Database Session Now, let see how it can be used to manage NHibernate session, assuming that ISessionFactory of NHibernate is already registered in our container. public class ManageNHibernateSession : PerRequestTask { private ISession session; protected override TaskContinuation ExecuteCore(PerRequestExecutionContext executionContext) { ISessionFactory factory = executionContext.ServiceLocator.GetInstance<ISessionFactory>(); session = factory.OpenSession(); return TaskContinuation.Continue; } protected override void DisposeCore() { session.Close(); session.Dispose(); } } As you can see PerRequestTask can be used to execute small and precise tasks in the begin/end request, certainly if you want to execute other than begin/end request there is no other alternate of HttpModule. That’s it for today, in the next post, we will discuss about the Action Filters, so stay tuned.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • How to fix OpenGL Co-ordinate System in SFML?

    - by Marc Alexander Reed
    My OpenGL setup is somehow configured to work like so: (-1, 1) (0, 1) (1, 1) (-1, 0) (0, 0) (1, 0) (-1, -1) (0, -1) (1, -1) How do I configure it so that it works like so: (0, 0) (SW/2, 0) (SW, 0) (0, SH/2) (SW/2, SH/2) (SW, SH/2) (0, SH) (SW/2, SH) (SW/2, SH) SW as Screen Width. SH as Screen Height. This solution would have to fix the problem of I can't translate significantly(1) on the Z axis. Depth doesn't seem to be working either. The Perspective code I'm using is that of my WORKING GLUT OpenGL code which has a cool 3d grid and camera system etc. But my OpenGL setup doesn't seem to work with SFML. Help me guys. :( Thanks in advance. :) #include <SFML/Window.hpp> #include <SFML/Graphics.hpp> #include <SFML/Audio.hpp> #include <SFML/Network.hpp> #include <SFML/OpenGL.hpp> #include "ResourcePath.hpp" //Mac-only #define _USE_MATH_DEFINES #include <cmath> double screen_width = 640.f; double screen_height = 480.f; int main (int argc, const char **argv) { sf::ContextSettings settings; settings.depthBits = 24; settings.stencilBits = 8; settings.antialiasingLevel = 2; sf::Window window(sf::VideoMode(screen_width, screen_height, 32), "SFML OpenGL", sf::Style::Close, settings); window.setActive(); glEnable(GL_DEPTH_TEST); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_NORMALIZE); glEnable(GL_COLOR_MATERIAL); glShadeModel(GL_SMOOTH); glViewport(0, 0, screen_width, screen_height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); //glOrtho(0.0f, screen_width, screen_height, 0.0f, -100.0f, 100.0f); gluPerspective(45.0f, (double) screen_width / (double) screen_height , 0.f, 100.f); glClearColor(0.f, 0.f, 1.f, 0.f); //blue while (window.isOpen()) { sf::Event event; while (window.pollEvent(event)) { switch (event.type) { case sf::Event::Closed: window.close(); break; } switch (event.key.code) { case sf::Keyboard::Escape: window.close(); break; case 'W': break; case 'S': break; case 'A': break; case 'D': break; } } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.f, 0.f, 0.f); glPushMatrix(); glBegin(GL_QUADS); glColor3f(1.f, 0.f, 0.f); glVertex3f(-1.f, 1.f, 0.f); glColor3f(0.f, 1.f, 0.f); glVertex3f(1.f, 1.f, 0.f); glColor3f(1.f, 0.f, 1.f); glVertex3f(1.f, -1.f, 0.f); glColor3f(0.f, 0.f, 1.f); glVertex3f(-1.f, -1.f, 0.f); glEnd(); glPopMatrix(); window.display(); } return EXIT_SUCCESS; }

    Read the article

  • Subterranean IL: Custom modifiers

    - by Simon Cooper
    In IL, volatile is an instruction prefix used to set a memory barrier at that instruction. However, in C#, volatile is applied to a field to indicate that all accesses on that field should be prefixed with volatile. As I mentioned in my previous post, this means that the field definition needs to store this information somehow, as such a field could be accessed from another assembly. However, IL does not have a concept of a 'volatile field'. How is this information stored? Attributes The standard way of solving this is to apply a VolatileAttribute or similar to the field; this extra metadata notifies the C# compiler that all loads and stores to that field should use the volatile prefix. However, there is a problem with this approach, namely, the .NET C++ compiler. C++ allows methods to be overloaded using properties, like volatile or const, on the parameters; this is perfectly legal C++: public ref class VolatileMethods { void Method(int *i) {} void Method(volatile int *i) {} } If volatile was specified using a custom attribute, then the VolatileMethods class wouldn't be compilable to IL, as there is nothing to differentiate the two methods from each other. This is where custom modifiers come in. Custom modifiers Custom modifiers are similar to custom attributes, but instead of being applied to an IL element separately to its declaration, they are embedded within the field or parameter's type signature itself. The VolatileMethods class would be compiled to the following IL: .class public VolatileMethods { .method public instance void Method(int32* i) {} .method public instance void Method( int32 modreq( [mscorlib]System.Runtime.CompilerServices.IsVolatile)* i) {} } The modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile) is the custom modifier. This adds a TypeDef or TypeRef token to the signature of the field or parameter, and even though they are mostly ignored by the CLR when it's executing the program, this allows methods and fields to be overloaded in ways that wouldn't be allowed using attributes. Because the modifiers are part of the signature, they need to be fully specified when calling such a method in IL: call instance void Method( int32 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)*) There are two ways of applying modifiers; modreq specifies required modifiers (like IsVolatile), and modopt specifies optional modifiers that can be ignored by compilers (like IsLong or IsConst). The type specified as the modifier argument are simple placeholders; if you have a look at the definitions of IsVolatile and IsLong they are completely empty. They exist solely to be referenced by a modifier. Custom modifiers are used extensively by the C++ compiler to specify concepts that aren't expressible in IL, but still need to be taken into account when calling method overloads. C++ and C# That's all very well and good, but how does this affect C#? Well, the C++ compiler uses modreq(IsVolatile) to specify volatility on both method parameters and fields, as it would be slightly odd to have the same concept represented using a modifier or attribute depending on what it was applied to. Once you've compiled your C++ project, it can then be referenced and used from C#, so the C# compiler has to recognise the modreq(IsVolatile) custom modifier applied to fields, and vice versa. So, even though you can't overload fields or parameters with volatile using C#, volatile needs to be expressed using a custom modifier rather than an attribute to guarentee correct interoperability and behaviour with any C++ dlls that happen to come along. Next up: a closer look at attributes, and how certain attributes compile in unexpected ways.

    Read the article

  • problem with frustum AABB culling in DirectX

    - by Matthew Poole
    Hi, I am currently working on a project with a few friends, and I am trying to get frustum culling working. Every single tutorial or article I go to shows that my math is correct and that this should be working. I thought maybe posting here, somebody would catch something I could not. Thank you. Here are the important code snippets /create the projection matrix void CD3DCamera::SetLens(float fov, float aspect, float nearZ, float farZ) { D3DXMatrixPerspectiveFovLH(&projMat, D3DXToRadian(fov), aspect, nearZ, farZ); } //build the view matrix after changes have been made to camera void CD3DCamera::BuildView() { //keep axes orthoganal D3DXVec3Normalize(&look, &look); //up D3DXVec3Cross(&up, &look, &right); D3DXVec3Normalize(&up, &up); //right D3DXVec3Cross(&right, &up, &look); D3DXVec3Normalize(&right, &right); //fill view matrix float x = -D3DXVec3Dot(&position, &right); float y = -D3DXVec3Dot(&position, &up); float z = -D3DXVec3Dot(&position, &look); viewMat(0,0) = right.x; viewMat(1,0) = right.y; viewMat(2,0) = right.z; viewMat(3,0) = x; viewMat(0,1) = up.x; viewMat(1,1) = up.y; viewMat(2,1) = up.z; viewMat(3,1) = y; viewMat(0,2) = look.x; viewMat(1,2) = look.y; viewMat(2,2) = look.z; viewMat(3,2) = z; viewMat(0,3) = 0.0f; viewMat(1,3) = 0.0f; viewMat(2,3) = 0.0f; viewMat(3,3) = 1.0f; } void CD3DCamera::BuildFrustum() { D3DXMATRIX VP; D3DXMatrixMultiply(&VP, &viewMat, &projMat); D3DXVECTOR4 col0(VP(0,0), VP(1,0), VP(2,0), VP(3,0)); D3DXVECTOR4 col1(VP(0,1), VP(1,1), VP(2,1), VP(3,1)); D3DXVECTOR4 col2(VP(0,2), VP(1,2), VP(2,2), VP(3,2)); D3DXVECTOR4 col3(VP(0,3), VP(1,3), VP(2,3), VP(3,3)); // Planes face inward frustum[0] = (D3DXPLANE)(col2); // near frustum[1] = (D3DXPLANE)(col3 - col2); // far frustum[2] = (D3DXPLANE)(col3 + col0); // left frustum[3] = (D3DXPLANE)(col3 - col0); // right frustum[4] = (D3DXPLANE)(col3 - col1); // top frustum[5] = (D3DXPLANE)(col3 + col1); // bottom // Normalize the frustum for( int i = 0; i < 6; ++i ) D3DXPlaneNormalize( &frustum[i], &frustum[i] ); } bool FrustumCheck(D3DXVECTOR3 max, D3DXVECTOR3 min, const D3DXPLANE* frustum) { // Test assumes frustum planes face inward. D3DXVECTOR3 P; D3DXVECTOR3 Q; bool ret = false; for(int i = 0; i < 6; ++i) { // For each coordinate axis x, y, z... for(int j = 0; j < 3; ++j) { // Make PQ point in the same direction as the plane normal on this axis. if( frustum[i][j] > 0.0f ) { P[j] = min[j]; Q[j] = max[j]; } else { P[j] = max[j]; Q[j] = min[j]; } } if(D3DXPlaneDotCoord(&frustum[i], &Q) < 0.0f ) ret = false; } return true; }

    Read the article

  • OpenGL not rendering my images to the screen

    - by Brendan Webster
    for some reason my game isn't showing the image I am rendering to the screen. My engine is state based, and at the beginning I set the logo, but it isn't showing on the screen. Here is my method of doing so first I create one image and assign some values to it's preset values. //create one image instance for the logo background O_File.v_Create_Images(1); //set the atributes of the background //first Image O_File.sImage[0].nImageDepth = -30.0f; O_File.sImage[0].sImageLocation = "image.bmp"; //load the images int O_File.v_Load_Images(); Then I load them with DevIL void C_File_Manager::v_Load_Images() { ilGenImages(1, &image); ilBindImage(image); for(int i = 0;i < sImage.size();i++) { success = ilLoadImage(sImage[i].sImageLocation.c_str()); if (success) { success = ilConvertImage(IL_RGBA, IL_UNSIGNED_BYTE); glGenTextures(1, &image); glBindTexture(GL_TEXTURE_2D, image); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, 4, ilGetInteger(IL_IMAGE_WIDTH), ilGetInteger(IL_IMAGE_HEIGHT), 0, ilGetInteger(IL_IMAGE_FORMAT), GL_UNSIGNED_BYTE, ilGetData()); //asign values to the width and height of the image if they are already not assigned if(sImage[i].nImageHeight == 0) sImage[i].nImageHeight = ilGetInteger(IL_IMAGE_HEIGHT); if(sImage[i].nImageWidth == 0) sImage[i].nImageWidth = ilGetInteger(IL_IMAGE_WIDTH); std::cout << sImage[i].nImageHeight << std::endl; const std::string word = sImage[i].sImageLocation.c_str(); std::cout << sImage[i].sImageLocation.c_str() << std::endl; ilLoadImage(word.c_str()); ilDeleteImages(1, &image); } } } and then I apply them to the screen void C_File_Manager::v_Apply_Images() { glMatrixMode(GL_MODELVIEW); glLoadIdentity(); for(int i = 0;i < sImage.size();i++) { //move the image to where it should be on the screen; glTranslatef(sImage[i].nImageX,sImage[i].nImageY,sImage[i].nImageDepth); //rotate image around the 3 axes glRotatef(sImage[i].fImageAngleX,1,0,0); glRotatef(sImage[i].fImageAngleY,0,1,0); glRotatef(sImage[i].fImageAngleZ,0,0,1); //scale the image glScalef(1,1,1); //center the image glTranslatef((sImage[i].nImageWidth/2),(sImage[i].nImageHeight/2),0); //draw the box that will encase the loaded image glBegin(GL_QUADS); //change the color of the loaded image; glColor4f(1,1,1,1); //top left corner of image glNormal3f(0.0,0,0.0); glTexCoord2f (1.0, 0.0); glVertex3f(0,0,sImage[i].nImageDepth); //top right corner of image glNormal3f(1.0,0,0.0); glTexCoord2f (1.0, 1.0); glVertex3f(0,sImage[i].nImageHeight,sImage[i].nImageDepth); //bottom right corner of image glNormal3f(-1.0,0,0.0); glTexCoord2f (0.0, 1.0); glVertex3f(sImage[i].nImageWidth,sImage[i].nImageHeight,sImage[i].nImageDepth); //bottom left corner of image glNormal3f(-1.0,0,0.0); glTexCoord2f(0.0, 0.0); glVertex3f(sImage[i].nImageWidth,0,sImage[i].nImageDepth); glEnd(); } } when I debug there is no errors at all, but yet the images don't show up on the screen, I have positioned the camera at (0,0,-1) and that is where the images should show up. the clipping plane is set 1 to 1000. There is probably some random problem with the code, but I just can't catch it.

    Read the article

  • Default Parameters vs Method Overloading

    - by João Angelo
    With default parameters introduced in C# 4.0 one might be tempted to abandon the old approach of providing method overloads to simulate default parameters. However, you must take in consideration that both techniques are not interchangeable since they show different behaviors in certain scenarios. For me the most relevant difference is that default parameters are a compile time feature while method overloading is a runtime feature. To illustrate these concepts let’s take a look at a complete, although a bit long, example. What you need to retain from the example is that static method Foo uses method overloading while static method Bar uses C# 4.0 default parameters. static void CreateCallerAssembly(string name) { // Caller class - Invokes Example.Foo() and Example.Bar() string callerCode = String.Concat( "using System;", "public class Caller", "{", " public void Print()", " {", " Console.WriteLine(Example.Foo());", " Console.WriteLine(Example.Bar());", " }", "}"); var parameters = new CompilerParameters(new[] { "system.dll", "Common.dll" }, name); new CSharpCodeProvider().CompileAssemblyFromSource(parameters, callerCode); } static void Main() { // Example class - Foo uses overloading while Bar uses C# 4.0 default parameters string exampleCode = String.Concat( "using System;", "public class Example", "{{", " public static string Foo() {{ return Foo(\"{0}\"); }}", " public static string Foo(string key) {{ return \"FOO-\" + key; }}", " public static string Bar(string key = \"{0}\") {{ return \"BAR-\" + key; }}", "}}"); var compiler = new CSharpCodeProvider(); var parameters = new CompilerParameters(new[] { "system.dll" }, "Common.dll"); // Build Common.dll with default value of "V1" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V1")); // Caller1 built against Common.dll that uses a default of "V1" CreateCallerAssembly("Caller1.dll"); // Rebuild Common.dll with default value of "V2" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V2")); // Caller2 built against Common.dll that uses a default of "V2" CreateCallerAssembly("Caller2.dll"); dynamic caller1 = Assembly.LoadFrom("Caller1.dll").CreateInstance("Caller"); dynamic caller2 = Assembly.LoadFrom("Caller2.dll").CreateInstance("Caller"); Console.WriteLine("Caller1.dll:"); caller1.Print(); Console.WriteLine("Caller2.dll:"); caller2.Print(); } And if you run this code you will get the following output: // Caller1.dll: // FOO-V2 // BAR-V1 // Caller2.dll: // FOO-V2 // BAR-V2 You see that even though Caller1.dll runs against the current Common.dll assembly where method Bar defines a default value of “V2″ the output show us the default value defined at the time Caller1.dll compiled against the first version of Common.dll. This happens because the compiler will copy the current default value to each method call, much in the same way a constant value (const keyword) is copied to a calling assembly and changes to it’s value will only be reflected if you rebuild the calling assembly again. The use of default parameters is also discouraged by Microsoft in public API’s as stated in (CA1026: Default parameters should not be used) code analysis rule.

    Read the article

  • AWS .NET SDK v2: setting up queues and topics

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/13/aws-.net-sdk-v2-setting-up-queues-and-topics.aspxFollowing on from my last post, reading from SQS queues with the new SDK is easy stuff, but linking a Simple Notification Service topic to an SQS queue is a bit more involved. The AWS model for topics and subscriptions is a bit more advanced than in Azure Service Bus. SNS lets you have subscribers on multiple different channels, so you can send a message which gets relayed to email address, mobile apps and SQS queues all in one go. As the topic owner, when you request a subscription on any channel, the owner needs to confirm they’re happy for you to send them messages. With email subscriptions, the user gets a confirmation request from Amazon which they need to reply to before they start getting messages. With SQS, you need to grant the topic permission to write to the queue. If you own both the topic and the queue, you can do it all in code with the .NET SDK. Let’s say you want to create a new topic, a new queue as a topic subscriber, and link the two together. Creating the topic is easy with the SNS client (which has an expanded name, AmazonSimpleNotificationServiceClient, compare to the SQS class which is just called QueueClient): var request = new CreateTopicRequest(); request.Name = TopicName; var response = _snsClient.CreateTopic(request); TopicArn = response.TopicArn; In the response from AWS (which I’m assuming is successful), you get an ARN – Amazon Resource Name – which is the unique identifier for the topic. We create the queue using the same code from my last post, AWS .NET SDK v2: the message-pump pattern, and then we need to subscribe the queue to the topic. The topic creates the subscription request: var response = _snsClient.Subscribe(new SubscribeRequest { TopicArn = TopicArn, Protocol = "sqs", Endpoint = _queueClient.QueueArn }); That response will give you an ARN for the subscription, which you’ll need if you want to set attributes like RawMessageDelivery. Then the SQS client needs to confirm the subscription by allowing the topic to send messages to it. The SDK doesn’t give you a nice mechanism for doing that, so I’ve extended my AWS wrapper with a method that encapsulates it: internal void AllowSnsToSendMessages(TopicClient topicClient) { var policy = Policies.AllowSendFormat.Replace("%QueueArn%", QueueArn).Replace("%TopicArn%", topicClient.TopicArn); var request = new SetQueueAttributesRequest(); request.Attributes.Add("Policy", policy); request.QueueUrl = QueueUrl; var response = _sqsClient.SetQueueAttributes(request); } That builds up a policy statement, which gets added to the queue as an attribute, and specifies that the topic is allowed to send messages to the queue. The statement itself is a JSON block which contains the ARN of the queue, the ARN of the topic, and an Allow effect for the sqs:SendMessage action: public const string AllowSendFormat= @"{ ""Statement"": [ { ""Sid"": ""MySQSPolicy001"", ""Effect"": ""Allow"", ""Principal"": { ""AWS"": ""*"" }, ""Action"": ""sqs:SendMessage"", ""Resource"": ""%QueueArn%"", ""Condition"": { ""ArnEquals"": { ""aws:SourceArn"": ""%TopicArn%"" } } } ] }"; There’s a new gist with an updated QueueClient and a new TopicClient here: Wrappers for the SQS and SNS clients in the AWS SDK for .NET v2. Both clients have an Ensure() method which creates the resource, so if you want to create a topic and a subscription you can use:  var topicClient = new TopicClient(“BigNews”, “ImListening”); And the topic client has a Subscribe() method, which calls into the message pump on the queue client: topicClient.Subscribe(x=>Log.Debug(x.Body)); var message = {}; //etc. topicClient.Publish(message); So you can isolate all the fiddly bits and use SQS and SNS with a similar interface to the Azure SDK.

    Read the article

  • Problems implementing a screen space shadow ray tracing shader

    - by Grieverheart
    Here I previously asked for the possibility of ray tracing shadows in screen space in a deferred shader. Several problems were pointed out. One of the most important problem is that only visible objects can cast shadows and objects between the camera and the shadow caster can interfere. Still I thought it'd be a fun experiment. The idea is to calculate the view coordinates of pixels and cast a ray to the light. The ray is then traced pixel by pixel to the light and its depth is compared with the depth at the pixel. If a pixel is in front of the ray, a shadow is casted at the original pixel. At first I thought that I could use the DDA algorithm in 2D to calculate the distance 't' (in p = o + t d, where o origin, d direction) to the next pixel and use it in the 3D ray equation to find the ray's z coordinate at that pixel's position. For the 2D ray, I would use the projected and biased 3D ray direction and origin. The idea was that 't' would be the same in both 2D and 3D equations. Unfortunately, this is not the case since the projection matrix is 4D. Thus, some tweak needs to be done to make this work this way. I would like to ask if someone knows of a way to do what I described above, i.e. from a 2D ray in texture coordinate space to get the 3D ray in screen space. I did implement a simple version of the idea which you can see in the following video: video here Shadows may seem a bit pixelated, but that's mostly because of the size of the step in 't' I chose. And here is the shader: #version 330 core uniform sampler2D DepthMap; uniform vec2 projAB; uniform mat4 projectionMatrix; const vec3 light_p = vec3(-30.0, 30.0, -10.0); noperspective in vec2 pass_TexCoord; smooth in vec3 viewRay; layout(location = 0) out float out_AO; vec3 CalcPosition(void){ float depth = texture(DepthMap, pass_TexCoord).r; float linearDepth = projAB.y / (depth - projAB.x); vec3 ray = normalize(viewRay); ray = ray / ray.z; return linearDepth * ray; } void main(void){ vec3 origin = CalcPosition(); if(origin.z < -60) discard; vec2 pixOrigin = pass_TexCoord; //tex coords vec3 dir = normalize(light_p - origin); vec2 texel_size = vec2(1.0 / 600.0); float t = 0.1; ivec2 pixIndex = ivec2(pixOrigin / texel_size); out_AO = 1.0; while(true){ vec3 ray = origin + t * dir; vec4 temp = projectionMatrix * vec4(ray, 1.0); vec2 texCoord = (temp.xy / temp.w) * 0.5 + 0.5; ivec2 newIndex = ivec2(texCoord / texel_size); if(newIndex != pixIndex){ float depth = texture(DepthMap, texCoord).r; float linearDepth = projAB.y / (depth - projAB.x); if(linearDepth > ray.z + 0.1){ out_AO = 0.2; break; } pixIndex = newIndex; } t += 0.5; if(texCoord.x < 0 || texCoord.x > 1.0 || texCoord.y < 0 || texCoord.y > 1.0) break; } } As you can see, here I just increment 't' by some arbitrary factor, calculate the 3D ray and project it to get the pixel coordinates, which is not really optimal. Hopefully, I would like to optimize the code as much as possible and compare it with shadow mapping and how it scales with the number of lights. PS: Keep in mind that I reconstruct position from depth by interpolating rays through a full screen quad.

    Read the article

  • Tessellation Texture Coordinates

    - by Stuart Martin
    Firstly some info - I'm using DirectX 11 , C++ and I'm a fairly good programmer but new to tessellation and not a master graphics programmer. I'm currently implementing a tessellation system for a terrain model, but i have reached a snag. My current system produces a terrain model from a height map complete with multiple texture coordinates, normals, binormals and tangents for rendering. Now when i was using a simple vertex and pixel shader combination everything worked perfectly but since moving to include a hull and domain shader I'm slightly confused and getting strange results. My terrain is a high detail model but the textured results are very large patches of solid colour. My current setup passes the model data into the vertex shader then through the hull into the domain and then finally into the pixel shader for use in rendering. My only thought is that in my hull shader i pass the information into the domain shader per patch and this is producing the large areas of solid colour because each patch has identical information. Lighting and normal data are also slightly off but not as visibly as texturing. Below is a copy of my hull shader that does not work correctly because i think the way that i am passing the data through is incorrect. If anyone can help me out but suggesting an alternative way to get the required data into the pixel shader? or by showing me the correct way to handle the data in the hull shader id be very thankful! cbuffer TessellationBuffer { float tessellationAmount; float3 padding; }; struct HullInputType { float3 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; float3 tangent : TANGENT; float3 binormal : BINORMAL; float2 tex2 : TEXCOORD1; }; struct ConstantOutputType { float edges[3] : SV_TessFactor; float inside : SV_InsideTessFactor; }; struct HullOutputType { float3 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; float3 tangent : TANGENT; float3 binormal : BINORMAL; float2 tex2 : TEXCOORD1; float4 depthPosition : TEXCOORD2; }; ConstantOutputType ColorPatchConstantFunction(InputPatch<HullInputType, 3> inputPatch, uint patchId : SV_PrimitiveID) { ConstantOutputType output; output.edges[0] = tessellationAmount; output.edges[1] = tessellationAmount; output.edges[2] = tessellationAmount; output.inside = tessellationAmount; return output; } [domain("tri")] [partitioning("integer")] [outputtopology("triangle_cw")] [outputcontrolpoints(3)] [patchconstantfunc("ColorPatchConstantFunction")] HullOutputType ColorHullShader(InputPatch<HullInputType, 3> patch, uint pointId : SV_OutputControlPointID, uint patchId : SV_PrimitiveID) { HullOutputType output; output.position = patch[pointId].position; output.tex = patch[pointId].tex; output.tex2 = patch[pointId].tex2; output.normal = patch[pointId].normal; output.tangent = patch[pointId].tangent; output.binormal = patch[pointId].binormal; return output; } Edited to include the domain shader:- [domain("tri")] PixelInputType ColorDomainShader(ConstantOutputType input, float3 uvwCoord : SV_DomainLocation, const OutputPatch<HullOutputType, 3> patch) { float3 vertexPosition; PixelInputType output; // Determine the position of the new vertex. vertexPosition = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position; output.position = mul(float4(vertexPosition, 1.0f), worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); output.depthPosition = output.position; output.tex = patch[0].tex; output.tex2 = patch[0].tex2; output.normal = patch[0].normal; output.tangent = patch[0].tangent; output.binormal = patch[0].binormal; return output; }

    Read the article

  • C++ property system interface for game editors (reflection system)

    - by Cristopher Ismael Sosa Abarca
    I have designed an reusable game engine for an project, and their functionality is like this: Is a completely scripted game engine instead of the usual scripting languages as Lua or Python, this uses Runtime-Compiled C++, and an modified version of Cistron (an component-based programming framework).to be compatible with Runtime-Compiled C++ and so on. Using the typical GameObject and Component classes of the Component-based design pattern, is serializable via JSON, BSON or Binary useful for selecting which objects will be loaded the next time. The main problem: We want to use our custom GameObjects and their components properties in our level editor, before used hardcoded functions to access GameObject base class virtual functions from the derived ones, if do you want to modify an property specifically from that class you need inside into the code, this situation happens too with the derived classes of Component class, in little projects there's no problem but for larger projects becomes tedious, lengthy and error-prone. I've researched a lot to find a solution without luck, i tried with the Ogitor's property system (since our engine is Ogre-based) but we find it inappropiate for the component-based design and it's limited only for the Ogre classes and can lead to performance overhead, and we tried some code we find in the Internet we tested it and worked a little but we considered the macro and lambda abuse too horrible take a look (some code omitted): IWE_IMPLEMENT_PROP_BEGIN(CBaseEntity) IWE_PROP_LEVEL_BEGIN("Editor"); IWE_PROP_INT_S("Id", "Internal id", m_nEntID, [](int n) {}, true); IWE_PROP_LEVEL_END(); IWE_PROP_LEVEL_BEGIN("Entity"); IWE_PROP_STRING_S("Mesh", "Mesh used for this entity", m_pModelName, [pInst](const std::string& sModelName) { pInst->m_stackMemUndoType.push(ENT_MEM_MESH); pInst->m_stackMemUndoStr.push(pInst->getModelName()); pInst->setModel(sModelName, false); pInst->saveState(); }, false); IWE_PROP_VECTOR3_S("Position", m_vecPosition, [pInst](float fX, float fY, float fZ) { pInst->m_stackMemUndoType.push(ENT_MEM_POSITION); pInst->m_stackMemUndoVec3.push(pInst->getPosition()); pInst->saveState(); pInst->m_vecPosition.Get()[0] = fX; pInst->m_vecPosition.Get()[1] = fY; pInst->m_vecPosition.Get()[2] = fZ; pInst->setPosition(pInst->m_vecPosition); }, false); IWE_PROP_QUATERNION_S("Orientation (Quat)", m_quatOrientation, [pInst](float fW, float fX, float fY, float fZ) { pInst->m_stackMemUndoType.push(ENT_MEM_ROTATE); pInst->m_stackMemUndoQuat.push(pInst->getOrientation()); pInst->saveState(); pInst->m_quatOrientation.Get()[0] = fW; pInst->m_quatOrientation.Get()[1] = fX; pInst->m_quatOrientation.Get()[2] = fY; pInst->m_quatOrientation.Get()[3] = fZ; pInst->setOrientation(pInst->m_quatOrientation); }, false); IWE_PROP_LEVEL_END(); IWE_IMPLEMENT_PROP_END() We are finding an simplified way to this, without leading confusing the programmers, (will be released to the public) i find ways to achieve this but they are only available for the common scripting as Lua or editors using C#. also too portable, we can write "wrappers" for different GUI toolkits as Qt or GTK, also i'm thinking to using Boost.Wave to get additional macro functionality without creating my own compiler. The properties designed to use in the editor they are removed in the game since the save file contains their data and loads it using an simple 'load' function to reduce unnecessary code bloat may will be useful if some GameObject property wants to be hidden instead. In summary, there's a way to implement an reflection(property) system for a level editor based in properties from derived classes? Also we can use C++11 and Boost (restricted only to Wave and PropertyTree)

    Read the article

  • Problems with 3D Array for Voxel Data

    - by Sean M.
    I'm trying to implement a voxel engine in C++ using OpenGL, and I've been working on the rendering of the world. In order to render, I have a 3D array of uint16's that hold that id of the block at the point. I also have a 3D array of uint8's that I am using to store the visibility data for that point, where each bit represents if a face is visible. I have it so the blocks render and all of the proper faces are hidden if needed, but all of the blocks are offset by a power of 2 from where they are stored in the array. So the block at [0][0][0] is rendered at (0, 0, 0), and the block at 11 is rendered at (1, 1, 1), but the block at [2][2][2] is rendered at (4, 4, 4) and the block at [3][3][3] is rendered at (8, 8, 8), and so on and so forth. This is the result of drawing the above situation: I'm still a little new to the more advanced concepts of C++, like triple pointers, which I'm using for the 3D array, so I think the error is somewhere in there. This is the code for creating the arrays: uint16*** _blockData; //Contains a 3D array of uint16s that are the ids of the blocks in the region uint8*** _visibilityData; //Contains a 3D array of bytes that hold the visibility data for the faces //Allocate memory for the world data _blockData = new uint16**[REGION_DIM]; for (int i = 0; i < REGION_DIM; i++) { _blockData[i] = new uint16*[REGION_DIM]; for (int j = 0; j < REGION_DIM; j++) _blockData[i][j] = new uint16[REGION_DIM]; } //Allocate memory for the visibility _visibilityData = new uint8**[REGION_DIM]; for (int i = 0; i < REGION_DIM; i++) { _visibilityData[i] = new uint8*[REGION_DIM]; for (int j = 0; j < REGION_DIM; j++) _visibilityData[i][j] = new uint8[REGION_DIM]; } Here is the code used to create the block mesh for the region: //Check if the positive x face is visible, this happens for every face //Block::VERT_X_POS is just an array of non-transformed cube verts for one face //These checks are in a triple loop, which goes over every place in the array if (_visibilityData[x][y][z] & 0x01 > 0) { _vertexData->AddData(&(translateVertices(Block::VERT_X_POS, x, y, z)[0]), sizeof(Block::VERT_X_POS)); } //This is a seperate method, not in the loop glm::vec3* translateVertices(const glm::vec3 data[], uint16 x, uint16 y, uint16 z) { glm::vec3* copy = new glm::vec3[6]; memcpy(&copy, &data, sizeof(data)); for(int i = 0; i < 6; i++) copy[i] += glm::vec3(x, -y, z); //Make +y go down instead return copy; } I cannot see where the blocks may be getting offset by more than they should be, and certainly not why the offsets are a power of 2. Any help is greatly appreciated. Thanks.

    Read the article

  • How to Create SharePoint List and Insert List Item programmatically from a Windows Forms Application.

    - by Michael M. Bangoy
    In this post I’m going to demonstrate how to create SharePoint List and also Insert Items on the List from a Windows Forms Application. 1. Open Visual Studio and create a new project. On the project template select Windows Form Application under C#. 2. In order to communicate with Sharepoint from a Windows Forms Application we need to add the 2 Sharepoint Client DLL located in c:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\ISAPI.  3. Select the Microsoft.Sharepoint.Client.dll and Microsoft.Sharepoint.Client.Runtime.dll. (Your solution should look like the one below) 4. Open the Form1 in design view and from the Toolbox menu add a button on the form surface. Your form should look like the one below. 5. Double click the button to open the code view. Add Using statement to reference the Sharepoint Client Library then create method for the Create List. Your code should like the codes below. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Security; using System.Windows.Forms; using SP = Microsoft.SharePoint.Client; namespace ClientObjectModel {     public partial class Form1 : Form     {         // url of the Sharepoint site         const string _context = "urlofthesharepointsite";         public Form1()         {             InitializeComponent();         }         private void Form1_Load(object sender, EventArgs e)         {                    }         private void cmdcreate_Click(object sender, EventArgs e)         {             try             {                 // declare the ClientContext Object                 SP.ClientContext _clientcontext = new SP.ClientContext(_context);                 SP.Web _site = _clientcontext.Web;                 // declare a ListCreationInfo                 SP.ListCreationInformation _listcreationinfo = new SP.ListCreationInformation();                 // set the Title and the Template of the List to be created                 _listcreationinfo.Title = "NewListFromCOM";                 _listcreationinfo.TemplateType = (int)SP.ListTemplateType.GenericList;                 // Call the add method to the ListCreatedInfo                 SP.List _list = _site.Lists.Add(_listcreationinfo);                 // Add Description field to the List                 SP.Field _Description = _list.Fields.AddFieldAsXml(@"                                     <Field Type='Text'                                         DisplayName='Description'>                                     </Field>", true, SP.AddFieldOptions.AddToDefaultContentType);                 // declare the List item Creation object for creating List Item                 SP.ListItemCreationInformation _itemcreationinfo = new SP.ListItemCreationInformation();                 // call the additem method of the list to insert a new List Item                 SP.ListItem _item = _list.AddItem(_itemcreationinfo);                 _item["Title"] = "New Item from Client Object Model";                 _item["Description"] = "This item was added by a Windows Forms Application";                 // call the update method                 _item.Update();                 // execute the query of the clientcontext                 _clientcontext.ExecuteQuery();                 // dispose the clientcontext                 _clientcontext.Dispose();                 MessageBox.Show("List Creation Successfull");             }             catch(Exception ex)             {                 MessageBox.Show("Error creating list" + ex.ToString());             }          }     } } 6. Hit F5 to run the application. A message will be displayed on the screen if the operation is successful and also if it fails. 7. To make that the operation of our Windows Form Application has really created the List and Inserted an item on it. Let’s open our SharePoint site. Once the SharePoint is open click on the Site Actions then View All Site Content. 7. Click the List to open it and check if an Item is inserted. That’s it. Hope this helps.

    Read the article

  • How to display Sharepoint Data in a Windows Forms Application

    - by Michael M. Bangoy
    In this post I'm going to demonstrate how to retrieve Sharepoint data and display it on a Windows Forms Application. 1. Open Visual Studio 2010 and create a new Project. 2. In the project template select Windows Forms Application. 3. In order to communicate with Sharepoint from a Windows Forms Application we need to add the 2 Sharepoint Client DLL located in c:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\ISAPI. 4. Select the Microsoft.Sharepoint.Client.dll and Microsoft.Sharepoint.Client.Runtime.dll. (Your solution should look like the one below) 5. Open the Form1 in design view and from the Toolbox menu Add a Button, TextBox, Label and DataGridView on the form. 6. Next double click on the Load Button, this will open the code view of the form. Add Using statement to reference the Sharepoint Client Library then create two method for the Load Site Title and LoadList. See below:   using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Security; using System.Windows.Forms; using SP = Microsoft.SharePoint.Client;   namespace ClientObjectModel {     public partial class Form1 : Form     {         // url of the Sharepoint site         const string _context = "theurlofthesharepointsite";         public Form1()         {             InitializeComponent();         }         private void Form1_Load(object sender, EventArgs e)         {                    }         private void getsitetitle()         {             SP.ClientContext context = new SP.ClientContext(_context);             SP.Web _site = context.Web;             context.Load(_site);             context.ExecuteQuery();             txttitle.Text = _site.Title;             context.Dispose();         }                 private void loadlist()         {             using (SP.ClientContext _clientcontext = new SP.ClientContext(_context))             {                 SP.Web _web = _clientcontext.Web;                 SP.ListCollection _lists = _clientcontext.Web.Lists;                 _clientcontext.Load(_lists);                 _clientcontext.ExecuteQuery();                 DataTable dt = new DataTable();                 DataColumn column;                 DataRow row;                 column = new DataColumn();                 column.DataType = Type.GetType("System.String");                 column.ColumnName = "List Title";                 dt.Columns.Add(column);                 foreach (SP.List listitem in _lists)                 {                     row = dt.NewRow();                     row["List Title"] = listitem.Title;                     dt.Rows.Add(row);                 }                 dataGridView1.DataSource = dt;             }                   }       private void cmdload_Click(object sender, EventArgs e)         {             getsitetitle();             loadlist();          }     } } 7. That’s it. Hit F5 to run the application then click the Load Button. Your screen should like the one below. Hope this helps.

    Read the article

  • Game Object Factory: Fixing Memory Leaks

    - by Bunkai.Satori
    Dear all, this is going to be tough: I have created a game object factory that generates objects of my wish. However, I get memory leaks which I can not fix. Memory leaks are generated by return new Object(); in the bottom part of the code sample. static BaseObject * CreateObjectFunc() { return new Object(); } How and where to delete the pointers? I wrote bool ReleaseClassType(). Despite the factory works well, ReleaseClassType() does not fix memory leaks. bool ReleaseClassTypes() { unsigned int nRecordCount = vFactories.size(); for (unsigned int nLoop = 0; nLoop < nRecordCount; nLoop++ ) { // if the object exists in the container and is valid, then render it if( vFactories[nLoop] != NULL) delete vFactories[nLoop](); } return true; } Before taking a look at the code below, let me help you in that my CGameObjectFactory creates pointers to functions creating particular object type. The pointers are stored within vFactories vector container. I have chosen this way because I parse an object map file. I have object type IDs (integer values) which I need to translate them into real objects. Because I have over 100 different object data types, I wished to avoid continuously traversing very long Switch() statement. Therefore, to create an object, I call vFactoriesnEnumObjectTypeID via CGameObjectFactory::create() to call stored function that generates desired object. The position of the appropriate function in the vFactories is identical to the nObjectTypeID, so I can use indexing to access the function. So the question remains, how to proceed with garbage collection and avoid reported memory leaks? #ifndef GAMEOBJECTFACTORY_H_UNIPIXELS #define GAMEOBJECTFACTORY_H_UNIPIXELS //#include "MemoryManager.h" #include <vector> template <typename BaseObject> class CGameObjectFactory { public: // cleanup and release registered object data types bool ReleaseClassTypes() { unsigned int nRecordCount = vFactories.size(); for (unsigned int nLoop = 0; nLoop < nRecordCount; nLoop++ ) { // if the object exists in the container and is valid, then render it if( vFactories[nLoop] != NULL) delete vFactories[nLoop](); } return true; } // register new object data type template <typename Object> bool RegisterClassType(unsigned int nObjectIDParam ) { if(vFactories.size() < nObjectIDParam) vFactories.resize(nObjectIDParam); vFactories[nObjectIDParam] = &CreateObjectFunc<Object>; return true; } // create new object by calling the pointer to the appropriate type function BaseObject* create(unsigned int nObjectIDParam) const { return vFactories[nObjectIDParam](); } // resize the vector array containing pointers to function calls bool resize(unsigned int nSizeParam) { vFactories.resize(nSizeParam); return true; } private: //DECLARE_HEAP; template <typename Object> static BaseObject * CreateObjectFunc() { return new Object(); } typedef BaseObject*(*factory)(); std::vector<factory> vFactories; }; //DEFINE_HEAP_T(CGameObjectFactory, "Game Object Factory"); #endif // GAMEOBJECTFACTORY_H_UNIPIXELS

    Read the article

  • SPTI problem with Mode Select

    - by Bob Murphy
    I'm running into a problem in which an attempt to do a "Mode Select" SCSI command using SPTI is returning an error status of 0x02 ("Check Condition"), and hope someone here might have some tips or suggestions. The code in question is intended to work with at a custom SCSI device. I wrote the original support for it using ASPI under WinXP, and am converting it to work with SPTI under 64-bit Windows 7. Here's the problematic code - and what's happening is, sptwb.spt.ScsiStatus is 2, which is a "Check Condition" error. Unfortunately, the device in question doesn't return useful information when you do a "Request Sense" after this problem occurs, so that's no help. void MSSModeSelect(const ModeSelectRequestPacket& inRequest, StatusResponsePacket& outResponse) { IPC_LOG("MSSModeSelect(): PathID=%d, TargetID=%d, LUN=%d", inRequest.m_Device.m_PathId, inRequest.m_Device.m_TargetId, inRequest.m_Device.m_Lun); int adapterIndex = inRequest.m_Device.m_PathId; HANDLE adapterHandle = prvOpenScsiAdapter(inRequest.m_Device.m_PathId); if (adapterHandle == INVALID_HANDLE_VALUE) { outResponse.m_Status = eScsiAdapterErr; return; } SCSI_PASS_THROUGH_WITH_BUFFERS sptwb; memset(&sptwb, 0, sizeof(sptwb)); #define MODESELECT_BUF_SIZE 32 sptwb.spt.Length = sizeof(SCSI_PASS_THROUGH); sptwb.spt.PathId = inRequest.m_Device.m_PathId; sptwb.spt.TargetId = inRequest.m_Device.m_TargetId; sptwb.spt.Lun = inRequest.m_Device.m_Lun; sptwb.spt.CdbLength = CDB6GENERIC_LENGTH; sptwb.spt.SenseInfoLength = 0; sptwb.spt.DataIn = SCSI_IOCTL_DATA_IN; sptwb.spt.DataTransferLength = MODESELECT_BUF_SIZE; sptwb.spt.TimeOutValue = 2; sptwb.spt.DataBufferOffset = offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS,ucDataBuf); sptwb.spt.Cdb[0] = SCSIOP_MODE_SELECT; sptwb.spt.Cdb[4] = MODESELECT_BUF_SIZE; DWORD length = offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS,ucDataBuf) + sptwb.spt.DataTransferLength; memset(sptwb.ucDataBuf, 0, sizeof(sptwb.ucDataBuf)); sptwb.ucDataBuf[2] = 0x10; sptwb.ucDataBuf[16] = (BYTE)0x01; ULONG bytesReturned = 0; BOOL okay = DeviceIoControl(adapterHandle, IOCTL_SCSI_PASS_THROUGH, &sptwb, sizeof(SCSI_PASS_THROUGH), &sptwb, length, &bytesReturned, FALSE); DWORD gle = GetLastError(); IPC_LOG(" DeviceIoControl() %s", okay ? "worked" : "failed"); if (okay) { outResponse.m_Status = (sptwb.spt.ScsiStatus == 0) ? eOk : ePrinterStatusErr; } else { outResponse.m_Status = eScsiPermissionsErr; } CloseHandle(adapterHandle); } A few more remarks, for what it's worth: This is derived from some old ASPI code that does the "Mode Select" flawlessly. This routine opens \\.\SCSI<whatever> at the beginning, via prvOpenScsiAdapter(), and closes the handle at the end. All the other routines for dealing with the device do the same thing, including the routine to do "Reserve Unit". Is this a good idea under SPTI, or should the call to "Reserve Unit" leave the handle open, so this routine and others in the sequence can use the same handle? This uses the IOCTL_SCSI_PASS_THROUGH. Should "Mode Select" use IOCTL_SCSI_PASS_THROUGH_DIRECT instead? Thanks in advance - any help will be greatly appreciated.

    Read the article

  • I am trying to create an windows application watcher? [migrated]

    - by Broken_Code
    I recently started coding in c #(in may this year) and well I find it best to learn by working with code. this application http://www.c-sharpcorner.com/UploadFile/satisharveti/ActiveApplicationWatcher01252007024921AM/ActiveApplicationWatcher.aspx. I am trying to recreate it however mine will be saving the information into an sql database(new at this as well). I am having some coding problems though as it does not do what I expect it to do. THis is the main code I am using. private void GetTotalTimer() { DateTime now = DateTime.Now; IntPtr hwnd = APIFunc.getforegroundWindow(); Int32 pid = APIFunc.GetWindowProcessID(hwnd); Process p = Process.GetProcessById(pid); appName = p.ProcessName; const int nChars = 256; int handle = 0; StringBuilder Buff = new StringBuilder(nChars); handle = GetForegroundWindow(); appltitle = APIFunc.ActiveApplTitle().Trim().Replace("\0", ""); //if (GetWindowText(handle, Buff, nChars) > 0) //{ // string strbuff = Buff.ToString(); // StrWindow = strbuff; #region insert statement try { if (Conn.State == ConnectionState.Closed) { Conn.Open(); } if (Conn.State == ConnectionState.Open) { SqlCommand com = new SqlCommand("Select top 1 [Window Title] From TimerLogs ORDER BY [Time of Event] DESC", Conn); SqlDataReader reader = com.ExecuteReader(); startTime = DateTime.Now; string time = now.ToString(); if (!reader.HasRows) { reader.Close(); cmd = new SqlCommand("insert into [TimerLogs] values(@time,@appName,@appltitle,@Elapsed_Time,@userName)", Conn); cmd.Parameters.AddWithValue("@time", time); cmd.Parameters.AddWithValue("@appName", appName); cmd.Parameters.AddWithValue("@appltitle", appltitle); cmd.Parameters.AddWithValue("@Elapsed_Time", blank.ToString()); cmd.Parameters.AddWithValue("@userName", userName); cmd.ExecuteNonQuery(); Conn.Close(); } else if(reader.HasRows) { reader.Read(); if (appltitle != reader.ToString()) { reader.Close(); endTime = DateTime.Now; appduration = endTime.Subtract(startTime); cmd = new SqlCommand("insert into [TimerLogs] values (@time,@appName,@appltitle,@Elapsed_Time,@userName)", Conn); cmd.Parameters.AddWithValue("@time", time); cmd.Parameters.AddWithValue("@appName", appName); cmd.Parameters.AddWithValue("@appltitle", appltitle); cmd.Parameters.AddWithValue("@Elapsed_Time", appduration.ToString()); cmd.Parameters.AddWithValue("@userName", userName); cmd.ExecuteNonQuery(); reader.Close(); Conn.Close(); } } } } catch (Exception) { } //} #endregion ActivityTimer.Start(); Processing = "Working"; } Unfortunately this is the result. it is not saving the data as I expect it to. What am i doing wrong I had thought that with the sql reader it would first check for a value and only save if they do not match however it is saving whether there is a match or not.

    Read the article

  • Improving the efficiency of frustum culling

    - by DeadMG
    I've got some code which performs frustum culling. However, this defines the "frustum" way too broadly- when I have ~10 objects on screen, the code returns 42 objects to be rendered. I've tried taking "slices" through the frustum to attempt to increase the accuracy of the technique, but it doesn't seem to have made much impact. I also significantly reduced the far plane, so that the objects are barely at the edge. Here's my code (where size is the size in screen space- the resolution of the client area of the window I'm rendering into). Any suggestions? auto&& size = GetDimensions(); D3DVIEWPORT9 vp = { 0, 0, size.x, size.y, 0, 1 }; D3DCALL(device->SetViewport(&vp)); static const int slices = 10; std::vector<Object*> result; for(int i = 0; i < slices; i++) { D3DXVECTOR3 WorldSpaceFrustrumPoints[8] = { D3DXVECTOR3(0, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i + 1) / slices), D3DXVECTOR3(0, size.y, static_cast<float>(i + 1) / slices) }; D3DXMATRIXA16 Identity; D3DXMatrixIdentity(&Identity); D3DXVec3UnprojectArray( WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), &vp, &Projection, &View, &Identity, 8 ); Math::AABB Frustrum; auto world_begin = std::begin(WorldSpaceFrustrumPoints); auto world_end = std::end(WorldSpaceFrustrumPoints); auto world_initial = WorldSpaceFrustrumPoints[0]; Frustrum.BottomLeftClosest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x < rhs.x ? lhs : rhs; }).x; Frustrum.BottomLeftClosest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y < rhs.y ? lhs : rhs; }).y; Frustrum.BottomLeftClosest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z < rhs.z ? lhs : rhs; }).z; Frustrum.TopRightFurthest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x > rhs.x ? lhs : rhs; }).x; Frustrum.TopRightFurthest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y > rhs.y ? lhs : rhs; }).y; Frustrum.TopRightFurthest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z > rhs.z ? lhs : rhs; }).z; auto slices_result = ObjectTree.collision(Frustrum); result.insert(result.end(), slices_result.begin(), slices_result.end()); } return result;

    Read the article

  • How can I have multiple layers in my map array?

    - by Manl400
    How do I load Levels in my game, as in Layer 1 would be Objects, Layer 2 would be Characters and so on. I only need 3 layers, and they will all be put on top of each other. i.e having a flower with a transparent background to be put on grass or dirt on the layer below.I would like to Read From the same file too. How would i go about doing this? Any help would be appreciated. I load the map from a level file which are just numbers corresponding to a tile in the tilesheet. Here is the level file [Layer1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [Layer2] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [Layer3] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 And here is the code that interprets it void LoadMap(const char *filename, std::vector< std::vector <int> > &map) { std::ifstream openfile(filename); if(openfile.is_open()) { std::string line, value; int space; while(!openfile.eof()) { std::getline(openfile, line); if(line.find("[TileSet]") != std::string::npos) { state = TileSet; continue; } else if (line.find("[Layer1]") != std::string::npos) { state = Map; continue; } switch(state) { case TileSet: if(line.length() > 0) tileSet = al_load_bitmap(line.c_str()); break; case Map: std::stringstream str(line); std::vector<int> tempVector; while(!str.eof()) { std::getline(str, value, ' '); if(value.length() > 0) tempVector.push_back(atoi(value.c_str())); } map.push_back(tempVector); break; } } } else { } } and this is how it draws the map. Also the tile sheet is 1280 by 1280 and the tilesizeX and tilesizeY is 64 void DrawMap(std::vector <std::vector <int> > map) { int mapRowCount = map.size(); for(int i, j = 0; i < mapRowCount; i ++) { int mapColCount = map[i].size(); for (int j = 0; j < mapColCount; ++j) { int tilesetIndex = map[i][j]; int tilesetRow = floor(tilesetIndex / TILESET_COLCOUNT); int tilesetCol = tilesetIndex % TILESET_COLCOUNT; al_draw_bitmap_region(tileSet, tilesetCol * TileSizeX, tilesetRow * TileSizeY, TileSizeX, TileSizeY, j * TileSizeX, i * TileSizeX, NULL); } } } EDIT: http://i.imgur.com/Ygu0zRE.jpg

    Read the article

  • GameStateManagement and inputs not being recognized

    - by Dave Voyles
    EDIT: I've removed a bit of code from the input class to make this more readable, and updated my StartScreen class, which is now at the bottom. I have the same issues though, but they are explained in my comments on the bottom of this page. It won't let me paste my additional code here (the format comes out crazy), so I've linked to pastebin with the code pastebin I've been trying to implement the MS provided GameStateManagement sample with my game, but it has proven a bit difficult. Really, I'm using Oneksoft's Starter Kit, which uses the MS provided sample, so they are identical, except for my splash screen. I'm able to get the splash screen to launch, where it informs the player to press A to advance the screen, but this doesn't seem to accept any of my inputs. I’ve also added Console.Writeline(“Pressing A”) under the IsMenuPressed method in Input.cs to verify that it is getting called, but for some reason it is constantly spamming my log, rather than just appearing each time I press it. Not sure why this is happening. I have a bit too much code to post it all here, so I’ve attached a link to my .rar with my classes, but I’ll also leave a bit here which I thinkmay be applicable. https://www.dropbox.com/sh/6ek4uru2jc2ch0k/JTeBWN_3PQ What do you guys think the issue is? namespace Pong { public class Input { public const int MaxInputs = 4; public readonly KeyboardState[] CurrentKeyboardState; public readonly GamePadState[] CurrentGamePadState; public KeyboardState[] LastKeyboardState; public GamePadState[] LastGamePadState; public readonly bool[] GamePadWasConnected; public Input() { // Get input state CurrentKeyboardState = new KeyboardState[MaxInputs]; CurrentGamePadState = new GamePadState[MaxInputs]; // Preserving last states to check for isKeyUp events LastKeyboardState = CurrentKeyboardState; LastGamePadState = CurrentGamePadState; } /// <summary> /// Checks for a "menu select" input action. /// The controllingPlayer parameter specifies which player to read input for. /// If this is null, it will accept input from any player. When the action /// is detected, the output playerIndex reports which player pressed it. /// </summary> public bool IsMenuSelect(PlayerIndex? controllingPlayer, out PlayerIndex playerIndex) { Console.WriteLine("Pressing A"); return IsNewKeyPress(Keys.Space, controllingPlayer, out playerIndex) || IsNewKeyPress(Keys.Enter, controllingPlayer, out playerIndex) || IsNewButtonPress(Buttons.A, controllingPlayer, out playerIndex) || IsNewButtonPress(Buttons.Start, controllingPlayer, out playerIndex); } /// <summary> /// Checks for a "menu cancel" input action. /// The controllingPlayer parameter specifies which player to read input for. /// If this is null, it will accept input from any player. When the action /// is detected, the output playerIndex reports which player pressed it. /// </summary> public bool IsMenuCancel(PlayerIndex? controllingPlayer, out PlayerIndex playerIndex) { return IsNewKeyPress(Keys.Escape, controllingPlayer, out playerIndex) || IsNewButtonPress(Buttons.B, controllingPlayer, out playerIndex) || IsNewButtonPress(Buttons.Back, controllingPlayer, out playerIndex); }

    Read the article

< Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >