Search Results

Search found 1918 results on 77 pages for 'orange async'.

Page 11/77 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • How to run an async task afor every x mins in android?

    - by Shan
    how to run the async task at specific time? (I want to run it every 2 mins) I tried using post delayed but it's not working? tvData.postDelayed(new Runnable(){ @Override public void run() { readWebpage(); }}, 100); In the above code readwebpage is function which calls the async task for me.. Right now below is the method which I am using public void onCreate(Bundle savedInstanceState) { readwebapage(); } public void readWebpage() { DownloadWebPageTask task = new DownloadWebPageTask(); task.execute("http://www.google.com"); } private class DownloadWebPageTask extends AsyncTask<String, Void, String> { @Override protected String doInBackground(String... urls) { String response1 = ""; response1=read(); //read is my another function which does the real work response1=read(); super.onPostExecute(response1); return response1; } protected void onPostExecute(String result) { try { Thread.sleep(100); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } TextView tvData = (TextView) findViewById(R.id.TextView01); tvData.setText(result); DownloadWebPageTask task = new DownloadWebPageTask(); task.execute(new String[] { "http://www.google.com" }); } } This is what I my code is and it works perfectly fine but the big problem I drains my battery?

    Read the article

  • Adding cancel ability and exception handling to async code.

    - by Rob
    I have this sample code for async operations (copied from the interwebs) public class LongRunningTask { public LongRunningTask() { //do nowt } public int FetchInt() { Thread.Sleep(2000); return 5; } } public delegate TOutput SomeMethod<TOutput>(); public class GoodPerformance { public void BeginFetchInt() { LongRunningTask lr = new LongRunningTask(); SomeMethod<int> method = new SomeMethod<int>(lr.FetchInt); // method is state object used to transfer result //of long running operation method.BeginInvoke(EndFetchInt, method); } public void EndFetchInt(IAsyncResult result) { SomeMethod<int> method = result.AsyncState as SomeMethod<int>; Value = method.EndInvoke(result); } public int Value { get; set; } } Other async approaches I tried required the aysnc page attribute, they also seemed to cancel if other page elements where actioned on (a button clicked), this approach just seemed to work. I’d like to add a cancel ability and exception handling for the longRunningTask class, but don’t erm, really know how.

    Read the article

  • How to detect a timeout when using asynchronous Socket.BeginReceive?

    - by James Hugard
    Writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible. Not using "System.Net.NetworkInformation.Ping", because it appears to allocate one thread per request. Am also interested in using F# async workflows. The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond. Not sure if this is a .NET issue, or an F# one... Any ideas? (note: the process must run as Admin to allow Raw Socket access) This throws a timeout: let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 ) However, this hangs: let result = Ping.AsyncPing ( IPAddress.Parse( "192.168.33.22" ), 1000 ) |> Async.RunSynchronously Here's the code... module Ping open System open System.Net open System.Net.Sockets open System.Threading //---- ICMP Packet Classes type IcmpMessage (t : byte) = let mutable m_type = t let mutable m_code = 0uy let mutable m_checksum = 0us member this.Type with get() = m_type member this.Code with get() = m_code member this.Checksum = m_checksum abstract Bytes : byte array default this.Bytes with get() = [| m_type m_code byte(m_checksum) byte(m_checksum >>> 8) |] member this.GetChecksum() = let mutable sum = 0ul let bytes = this.Bytes let mutable i = 0 // Sum up uint16s while i < bytes.Length - 1 do sum <- sum + uint32(BitConverter.ToUInt16( bytes, i )) i <- i + 2 // Add in last byte, if an odd size buffer if i <> bytes.Length then sum <- sum + uint32(bytes.[i]) // Shuffle the bits sum <- (sum >>> 16) + (sum &&& 0xFFFFul) sum <- sum + (sum >>> 16) sum <- ~~~sum uint16(sum) member this.UpdateChecksum() = m_checksum <- this.GetChecksum() type InformationMessage (t : byte) = inherit IcmpMessage(t) let mutable m_identifier = 0us let mutable m_sequenceNumber = 0us member this.Identifier = m_identifier member this.SequenceNumber = m_sequenceNumber override this.Bytes with get() = Array.append (base.Bytes) [| byte(m_identifier) byte(m_identifier >>> 8) byte(m_sequenceNumber) byte(m_sequenceNumber >>> 8) |] type EchoMessage() = inherit InformationMessage( 8uy ) let mutable m_data = Array.create 32 32uy do base.UpdateChecksum() member this.Data with get() = m_data and set(d) = m_data <- d this.UpdateChecksum() override this.Bytes with get() = Array.append (base.Bytes) (this.Data) //---- Synchronous Ping let Ping (host : IPAddress, timeout : int ) = let mutable ep = new IPEndPoint( host, 0 ) let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let mutable buffer = packet.Bytes try if socket.SendTo( buffer, ep ) <= 0 then raise (SocketException()) buffer <- Array.create (buffer.Length + 20) 0uy let mutable epr = ep :> EndPoint if socket.ReceiveFrom( buffer, &epr ) <= 0 then raise (SocketException()) finally socket.Close() buffer //---- Entensions to the F# Async class to allow up to 5 paramters (not just 3) type Async with static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction) static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction) //---- Extensions to the Socket class to provide async SendTo and ReceiveFrom type System.Net.Sockets.Socket with member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginSendTo, this.EndSendTo ) member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginReceiveFrom, (fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) ) //---- Asynchronous Ping let AsyncPing (host : IPAddress, timeout : int ) = async { let ep = IPEndPoint( host, 0 ) use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let outbuffer = packet.Bytes try let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep ) if result <= 0 then raise (SocketException()) let epr = ref (ep :> EndPoint) let inbuffer = Array.create (outbuffer.Length + 256) 0uy let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr ) if result <= 0 then raise (SocketException()) return inbuffer finally socket.Close() }

    Read the article

  • Why does BeginReceiveFrom never time out?

    - by James Hugard
    I am writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible ("System.Net.NetworkInformation.Ping" appears to use one thread per request, but have not tested this... also am interested in using F# async workflows). The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond... Any ideas? (note: the process must run as Admin for this code to work) This throws a timeout: let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 ) However, this hangs: let result = Ping.PingAsync ( IPAddress.Parse( "192.168.33.22" ), 1000 ) |> Async.RunSynchronously Here's the code... module Ping open System open System.Net open System.Net.Sockets open System.Threading //---- ICMP Packet Classes type IcmpMessage (t : byte) = let mutable m_type = t let mutable m_code = 0uy let mutable m_checksum = 0us member this.Type with get() = m_type member this.Code with get() = m_code member this.Checksum = m_checksum abstract Bytes : byte array default this.Bytes with get() = [| m_type m_code byte(m_checksum) byte(m_checksum >>> 8) |] member this.GetChecksum() = let mutable sum = 0ul let bytes = this.Bytes let mutable i = 0 // Sum up uint16s while i < bytes.Length - 1 do sum <- sum + uint32(BitConverter.ToUInt16( bytes, i )) i <- i + 2 // Add in last byte, if an odd size buffer if i <> bytes.Length then sum <- sum + uint32(bytes.[i]) // Shuffle the bits sum <- (sum >>> 16) + (sum &&& 0xFFFFul) sum <- sum + (sum >>> 16) sum <- ~~~sum uint16(sum) member this.UpdateChecksum() = m_checksum <- this.GetChecksum() type InformationMessage (t : byte) = inherit IcmpMessage(t) let mutable m_identifier = 0us let mutable m_sequenceNumber = 0us member this.Identifier = m_identifier member this.SequenceNumber = m_sequenceNumber override this.Bytes with get() = Array.append (base.Bytes) [| byte(m_identifier) byte(m_identifier >>> 8) byte(m_sequenceNumber) byte(m_sequenceNumber >>> 8) |] type EchoMessage() = inherit InformationMessage( 8uy ) let mutable m_data = Array.create 32 32uy do base.UpdateChecksum() member this.Data with get() = m_data and set(d) = m_data <- d this.UpdateChecksum() override this.Bytes with get() = Array.append (base.Bytes) (this.Data) //---- Synchronous Ping let Ping (host : IPAddress, timeout : int ) = let mutable ep = new IPEndPoint( host, 0 ) let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let mutable buffer = packet.Bytes try if socket.SendTo( buffer, ep ) <= 0 then raise (SocketException()) buffer <- Array.create (buffer.Length + 20) 0uy let mutable epr = ep :> EndPoint if socket.ReceiveFrom( buffer, &epr ) <= 0 then raise (SocketException()) finally socket.Close() buffer //---- Entensions to the F# Async class to allow up to 5 paramters (not just 3) type Async with static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction) static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction) //---- Extensions to the Socket class to provide async SendTo and ReceiveFrom type System.Net.Sockets.Socket with member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginSendTo, this.EndSendTo ) member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginReceiveFrom, (fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) ) //---- Asynchronous Ping let PingAsync (host : IPAddress, timeout : int ) = async { let ep = IPEndPoint( host, 0 ) use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let outbuffer = packet.Bytes try let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep ) if result <= 0 then raise (SocketException()) let epr = ref (ep :> EndPoint) let inbuffer = Array.create (outbuffer.Length + 256) 0uy let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr ) if result <= 0 then raise (SocketException()) return inbuffer finally socket.Close() }

    Read the article

  • How is starting and ending row number of a Range obtained?

    - by Robert Kerr
    Given a user-selected Range, what is the simplest way to determine the starting row number, and ending row number? Range.Address returns a string containing any number of possible formats. There has to be something simpler. Desired: Dim oRange As Range Dim startRow As Integer Dim endRow As Integer oRange = Range("A1:X50") startRow = oRange.Address.StartRow endRow = oRange.Address.EndRow of course, those properties do not exist. I want to do the same to return column letters.

    Read the article

  • Is there a way to unit test an async method?

    - by Jiho Han
    I am using Xunit and NMock on .NET platform. I am testing a presentation model where a method is asynchronous. The method creates an async task and executes it so the method returns immediately and the state I need to check aren't ready yet. I can set a flag upon finish without modifying the SUT but that would mean I would have to keep checking the flag in a while loop for example, with perhaps timeout. What are my options?

    Read the article

  • I want to consolidate two sites into a third. Will my search engine rankings be penalized if I rewrite and redirect pages one by one?

    - by Patrick Kenny
    I have two Drupal sites with different content-- let's call them Apple and Orange. I recently developed a much more sophisticated third Drupal site-- let's call it Tree. For a large number of reasons, the content on Apple and Orange is useful for the users of Tree, so I want to move the content to Tree. However, much of the content is out of date. (This whole process took about five years.) To update the content, I will rewrite it one article at a time myself. Now here's my question: if I move the articles one by one (as I rewrite them) and then redirect the old articles (using a 301 redirect) on Apple/Orange to the new site on Tree, will this have a huge negative effect on my search engine rankings? Is there a good way to redirect among sites when they merge like this, or would I be better off keeping the old articles on Apple/Orange and simply linking them to the new, rewritten articles on Tree?

    Read the article

  • Advanced (?) Excel sorting

    - by Preston Grayskull
    First of all, I'd like to admit that I don't really know anything about Excel, but I have tried to look up a solution to this in Excel books and Googling. Here's what I'm trying to do: I have a really long spreadsheet There are 7 columns total, but only two columns that I'm most interested in. Here's an example CSV that is much more simple than my actual dataset, but the search/sort is analogous: John, Apple Dave, Apple Dave, Orange Steve, Apple Steve, Orange Steve, Kiwi Bob, Apple Bob, Banana I'm interested in extracting the entire rows (all of the columns) that meet the following criteria: ["Apple"] OR ["Apple" and "Orange"] NOT ["Apple" and "Orange" and Anything Else] NOT ["Apple" and Anything that isn't Orange] So with the above CSV, I would get the entire rows for John and Dave, but not Steve and not Bob. I started doing this manually, and will likely finish by the time this question has an answer, but I would like to know this for future reference. Thanks!

    Read the article

  • Delegate, BeginInvoke. EndInvoke - How to clean up multiple Async threat calls to the same delegate?

    - by Dan
    I've created a Delegate that I intend to call Async. Module Level Delegate Sub GetPartListDataFromServer(ByVal dvOriginal As DataView, ByVal ProgramID As Integer) Dim dlgGetPartList As GetPartListDataFromServer The following code I use in a method Dim dlgGetPartList As New GetPartListDataFromServer(AddressOf AsyncThreadMethod_GetPartListDataFromServer) dlgGetPartList.BeginInvoke(ucboPart.DataSource, ucboProgram.Value, AddressOf AsyncCallback_GetPartListDataFromServer, Nothing) The method runs and does what it needs to The Asyn callback is fired upon completion where I do an EndInvoke Sub AsyncCallback_GetPartListDataFromServer(ByVal ar As IAsyncResult) dlgGetPartList.EndInvoke(Nothing) End Sub It works as long as the method that starts the BeginInvoke on the delegate only ever runs while there is not a BeginInvoke/Thread operation already running. Problem is that the a new thread could be invoked while another thread on the delegate is still running and hasnt yet been EndInvoke'd. The program needs to be able to have the delegate run in more than one instance at a time if necessary and they all need to complete and have EndInvoke called. Once I start another BeginInvoke I lose the reference to the first BeginInvoke so I am unable to clean up the new thread with an EndInvoke. What is a clean solution and best practice to overcome this problem?

    Read the article

  • Throwing an exception from a BackgroundWorker which calls an async. method (Webrequest)

    - by mrbamboo
    Hi, My main application creates a new BackgroundWorker X the DoWork event handler of X calls a method Y of my controller. This method creates the WebRequest (async.) instance and the callback using AsyncCallback. When the response arrives the callback method Z gets called and the content will be analyzed. It can happen that the response has an unwanted content. At that moment callback Z will throw an exception. I want to catch this exception in my main application. I tried it in DoWork and RunWorkerCompleted but nothing can be caught from there. Error in RunWorkerCompletedEventArgs is always null.

    Read the article

  • Calling a void async. - Event based pattern, or another method?

    - by alex
    I have a class that basically stores files in amazon s3. Here is what it looks like (simplified) public class S3FileStore { public void PutFile(string ID, Stream content) { //do stuff } } In my client app, I want to be able to call: var s3 = new() S3FileStore(); s3.PutFile ("myId", File.OpenRead(@"C:\myFile1")); s3.PutFile ("myId", File.OpenRead(@"C:\myFile2")); s3.PutFile ("myId", File.OpenRead(@"C:\myFile3")); I want this to be an asynchronous operation - I want the S3FileStore to handle this (i don't want my caller to have to execute PutFile asynchronously so to speak) but, i want to be able to trap exceptions / tell if the operation completed for each file. I've looked at event based async calls, especially this: http://blogs.windowsclient.net/rendle/archive/2008/11/04/functional-shortcuts-2-event-based-asynchronous-pattern.aspx However, I can't see how to call my PutFile (void) method? Are there any better examples?

    Read the article

  • Where would async calls make sense in an ASP.net (MVC) Web Application?

    - by Michael Stum
    I'm just wondering, if I have an ASP.net Web Application, either WebForms or MVC, is there any situation where doing stuff asynchronously would make sense? The Web Server already handles threading for me in that it spins up multiple threads to handle requests, and most request processing is rather simple and straight forward. I see some use for when stuff truly is a) expensive and b) can be parallelized. but these are the minority cases (at least from what I've encountered). Is there any gain from async in the simple "Read some input, do some CRUD, display some output" scenario?

    Read the article

  • Update a list of things without hitting every entry

    - by bobobobo
    I have a list in a database that the user should be able to order. itemname| order value (int) --------+--------------------- salad | 1 mango | 2 orange | 3 apples | 4 On load from the database, I simply order by order_value. By drag 'n drop, he should be able to move apples so that it appears at the top of the list.. itemname| order value (int) --------+--------------------- apples | 4 salad | 1 mango | 2 orange | 3 Ok. So now internally I have to update EVERY LIST ITEM! If the list has 20 or 100 items, that's a lot of updates for a simple drag operation. itemname| order value (int) --------+--------------------- apples | 1 salad | 2 mango | 3 orange | 4 I'd rather do it with only one update. One way I thought of is if "internal Order" is a double value. itemname| order value (double) --------+--------------------- salad | 1.0 mango | 2.0 orange | 3.0 apples | 4.0 SO after the drag n' drop operation, I assign apples has a value that is less than the item it is to appear in front of: itemname| order value (double) --------+--------------------- apples | 0.5 salad | 1.0 mango | 2.0 orange | 3.0 .. and if an item is dragged into the middle somewhere, its order_value is bigger than the one it appears after .. here I moved orange to be between salad and mango: itemname| order value (double) --------+--------------------- apples | 0.5 salad | 1.0 orange | 1.5 mango | 2.0 Any thoughts on better ways to do this?

    Read the article

  • .NET 3.5 C# does not offer what I need for locking: Count async saves until 0 again.

    - by Frank Michael Kraft
    I have some records, that I want to save to database asynchronously. I organize them into batches, then send them. As time passes, the batches are processed. In the meanwhile the user can work on. There are some critical operations, that I want to lock him out from, while any save batch is still running asynchronously. The save is done using a TableServiceContext and method .BeginSave() - but I think this should be irrelevant. What I want to do is whenever an async save is started, increase a lock count, and when it completes, decrease the lock count so that it will be zero as soon as all have finished. I want to lock out the critical operation as long as the count is not zero. Furthermore I want to qualify the lock - by business object - for example. I did not find a .NET 3.5 c# locking method, that does fulfil this requirement. A semaphore does not contain a method to check, if the count is 0. Otherwise a semaphore with unlimited max count would do.

    Read the article

  • How do I run a batch file async using PSExec?

    - by Paul Mrozowski
    I have a batch file I run that, among other things, reset's the NICs in the machine. I have some watchdog software running on another machine that monitors the first one. I'd like to run this batch file using PSExec when it detects certain types of failures. The problem I'm having is that since the batch file reset's the NIC's it kills the connection PSExec has (I'm OK with that). The real issue is that when PSExec dies the batch file stops running (leaving the NIC's disabled). I've tried using the -i option with PSExec with no luck. Any ideas about basically just fire off the batch file and NOT have it stop when PSExec is disconnected?

    Read the article

  • Consolidating Columns in Excel

    - by New to iPhone
    I have two columns in excel like the following a,apple a,bannana a,orange a,plum b,apple b,berry b,orange b,grapefruit c,melon c,berry c,kiwi I need to consolidate them like this on a different sheet a,apple,bannana,orange,plum b,apple,berry,orange,grapefruit c,melon,berry,kiwi Any help would be appreciated

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Coding With Windows Azure IaaS

    - by Hisham El-bereky
    This post will focus on some advanced programming topics concerned with IaaS (Infrastructure as a Service) which provided as windows azure virtual machine (with its related resources like virtual disk and virtual network), you know that windows azure started as PaaS cloud platform but regarding to some business cases which need to have full control over their virtual machine, so windows azure directed toward providing IaaS. Sometimes you will need to manage your cloud IaaS through code may be for these reasons: Working on hyper-cloud system by providing bursting connector to windows azure virtual machines Providing multi-tenant system which consume windows azure virtual machine Automated process on your on-premises or cloud service which need to utilize some virtual resources We are going to implement the following basic operation using C# code: List images Create virtual machine List virtual machines Restart virtual machine Delete virtual machine Before going to implement the above operations we need to prepare client side and windows azure subscription to communicate correctly by providing management certificate (x.509 v3 certificates) which permit client access to resources in your Windows Azure subscription, whilst requests made using the Windows Azure Service Management REST API require authentication against a certificate that you provide to Windows Azure More info about setting management certificate located here. And to install .cer on other client machine you will need the .pfx file, or if not exist by exporting .cer as .pfx Note: You will need to install .net 4.5 on your machine to try the code So let start This post built on the post sent by Michael Washam "Advanced Windows Azure IaaS – Demo Code", so I'm here to declare some points and to add new operation which is not exist in Michael's demo The basic C# class object used here as client to azure REST API for IaaS service is HttpClient (Provides a base class for sending HTTP requests and receiving HTTP responses from a resource identified by a URI) this object must be initialized with the required data like certificate, headers and content if required. Also I'd like to refer here that the code is based on using Asynchronous programming with calls to azure which enhance the performance and gives us the ability to work with complex calls which depends on more than one sub-call to achieve some operation The following code explain how to get certificate and initializing HttpClient object with required data like headers and content HttpClient GetHttpClient() { X509Store certificateStore = null; X509Certificate2 certificate = null; try { certificateStore = new X509Store(StoreName.My, StoreLocation.CurrentUser); certificateStore.Open(OpenFlags.ReadOnly); string thumbprint = ConfigurationManager.AppSettings["CertThumbprint"]; var certificates = certificateStore.Certificates.Find(X509FindType.FindByThumbprint, thumbprint, false); if (certificates.Count > 0) { certificate = certificates[0]; } } finally { if (certificateStore != null) certificateStore.Close(); }   WebRequestHandler handler = new WebRequestHandler(); if (certificate!= null) { handler.ClientCertificates.Add(certificate); HttpClient httpClient = new HttpClient(handler); //And to set required headers lik x-ms-version httpClient.DefaultRequestHeaders.Add("x-ms-version", "2012-03-01"); httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/xml")); return httpClient; } return null; }  Let us keep the object httpClient as reference object used to call windows azure REST API IaaS service. For each request operation we need to define: Request URI HTTP Method Headers Content body (1) List images The List OS Images operation retrieves a list of the OS images from the image repository Request URI https://management.core.windows.net/<subscription-id>/services/images] Replace <subscription-id> with your windows Id HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None.  C# Code List<String> imageList = new List<String>(); //replace _subscriptionid with your WA subscription String uri = String.Format("https://management.core.windows.net/{0}/services/images", _subscriptionid);  HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);  if (responseStream != null) {      XDocument xml = XDocument.Load(responseStream);      var images = xml.Root.Descendants(ns + "OSImage").Where(i => i.Element(ns + "OS").Value == "Windows");      foreach (var image in images)      {      string img = image.Element(ns + "Name").Value;      imageList.Add(img);      } } More information about the REST call (Request/Response) located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/jj157191.aspx (2) Create Virtual Machine Creating virtual machine required service and deployment to be created first, so creating VM should be done through three steps incase hosted service and deployment is not created yet Create hosted service, a container for service deployments in Windows Azure. A subscription may have zero or more hosted services Create deployment, a service that is running on Windows Azure. A deployment may be running in either the staging or production deployment environment. It may be managed either by referencing its deployment ID, or by referencing the deployment environment in which it's running. Create virtual machine, the previous two steps info required here in this step I suggest here to use the same name for service, deployment and service to make it easy to manage virtual machines Note: A name for the hosted service that is unique within Windows Azure. This name is the DNS prefix name and can be used to access the hosted service. For example: http://ServiceName.cloudapp.net// 2.1 Create service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/gg441304.aspx C# code The following method show how to create hosted service async public Task<String> NewAzureCloudService(String ServiceName, String Location, String AffinityGroup, String subscriptionid) { String requestID = String.Empty;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices", subscriptionid); HttpClient http = GetHttpClient();   System.Text.ASCIIEncoding ae = new System.Text.ASCIIEncoding(); byte[] svcNameBytes = ae.GetBytes(ServiceName);   String locationEl = String.Empty; String locationVal = String.Empty;   if (String.IsNullOrEmpty(Location) == false) { locationEl = "Location"; locationVal = Location; } else { locationEl = "AffinityGroup"; locationVal = AffinityGroup; }   XElement srcTree = new XElement("CreateHostedService", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("ServiceName", ServiceName), new XElement("Label", Convert.ToBase64String(svcNameBytes)), new XElement(locationEl, locationVal) ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } 2.2 Create Deployment Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deploymentslots/<deployment-slot-name> <deployment-slot-name> with staging or production, depending on where you wish to deploy your service package <service-name> provided as input from the previous step HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/ee460813.aspx C# code The following method show how to create hosted service deployment async public Task<String> NewAzureVMDeployment(String ServiceName, String VMName, String VNETName, XDocument VMXML, XDocument DNSXML) { String requestID = String.Empty;     String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments", _subscriptionid, ServiceName); HttpClient http = GetHttpClient(); XElement srcTree = new XElement("Deployment", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("Name", ServiceName), new XElement("DeploymentSlot", "Production"), new XElement("Label", ServiceName), new XElement("RoleList", null) );   if (String.IsNullOrEmpty(VNETName) == false) { srcTree.Add(new XElement("VirtualNetworkName", VNETName)); }   if(DNSXML != null) { srcTree.Add(new XElement("DNS", new XElement("DNSServers", DNSXML))); }   XDocument deploymentXML = new XDocument(srcTree); ApplyNamespace(srcTree, ns);   deploymentXML.Descendants(ns + "RoleList").FirstOrDefault().Add(VMXML.Root);     String fixedXML = deploymentXML.ToString().Replace(" xmlns=\"\"", ""); HttpContent content = new StringContent(fixedXML); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); }   return requestID; } 2.3 Create Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<cloudservice-name>/deployments/<deployment-name>/roles <cloudservice-name> and <deployment-name> are provided as input from the previous steps Http Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) located here http://msdn.microsoft.com/en-us/library/windowsazure/jj157186.aspx C# code async public Task<String> NewAzureVM(String ServiceName, String VMName, XDocument VMXML) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName);   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles", _subscriptionid, ServiceName, deployment);   HttpClient http = GetHttpClient(); HttpContent content = new StringContent(VMXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml"); HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } (3) List Virtual Machines To list virtual machine hosted on windows azure subscription we have to loop over all hosted services to get its hosted virtual machines To do that we need to execute the following operations: listing hosted services listing hosted service Virtual machine 3.1 Listing Hosted Services Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/ee460781.aspx C# Code async private Task<List<XDocument>> GetAzureServices(String subscriptionid) { String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices ", subscriptionid); List<XDocument> services = new List<XDocument>();   HttpClient http = GetHttpClient();   Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var svcs = xml.Root.Descendants(ns + "HostedService"); foreach (XElement r in svcs) { XDocument vm = new XDocument(r); services.Add(vm); } }   return services; }  3.2 Listing Hosted Service Virtual Machines Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name> HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157193.aspx C# Code async public Task<XDocument> GetAzureVM(String ServiceName, String VMName, String subscriptionid) { String deployment = await GetAzureDeploymentName(ServiceName); XDocument vmXML = new XDocument();   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles/{3}", subscriptionid, ServiceName, deployment, VMName);   HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri); if (responseStream != null) { vmXML = XDocument.Load(responseStream); }   return vmXML; }  So the final method which can be used to list all virtual machines is: async public Task<XDocument> GetAzureVMs() { List<XDocument> services = await GetAzureServices(); XDocument vms = new XDocument(); vms.Add(new XElement("VirtualMachines")); ApplyNamespace(vms.Root, ns); foreach (var svc in services) { string ServiceName = svc.Root.Element(ns + "ServiceName").Value;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deploymentslots/{2}", _subscriptionid, ServiceName, "Production");   try { HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var roles = xml.Root.Descendants(ns + "RoleInstance"); foreach (XElement r in roles) { XElement svcnameel = new XElement("ServiceName", ServiceName); ApplyNamespace(svcnameel, ns); r.Add(svcnameel); // not part of the roleinstance vms.Root.Add(r); } } } catch (HttpRequestException http) { // no vms with cloud service } } return vms; }  (4) Restart Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name>/Operations HTTP Method POST (HTTP 1.1) Headers x-ms-version: 2012-03-01 Content-Type: application/xml Body <RestartRoleOperation xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <OperationType>RestartRoleOperation</OperationType> </RestartRoleOperation>  More details about this http request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157197.aspx  C# Code async public Task<String> RebootVM(String ServiceName, String RoleName) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName); String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roleInstances/{3}/Operations", _subscriptionid, ServiceName, deployment, RoleName);   HttpClient http = GetHttpClient();   XElement srcTree = new XElement("RestartRoleOperation", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("OperationType", "RestartRoleOperation") ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; }  (5) Delete Virtual Machine You can delete your hosted virtual machine by deleting its deployment, but I prefer to delete its hosted service also, so you can easily manage your virtual machines from code 5.1 Delete Deployment Request URI https://management.core.windows.net/< subscription-id >/services/hostedservices/< service-name >/deployments/<Deployment-Name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteDeployment( string deploymentName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}", _subscriptionid, deploymentName, deploymentName); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  5.2 Delete Hosted Service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteService(string serviceName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}", _subscriptionid, serviceName); Log.Info("Windows Azure URI (http DELETE verb): " + uri, typeof(VMManager)); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  And the following is the method which can used to delete both of deployment and service async public Task<string> DeleteVM(string vmName) { string responseString = string.Empty;   // as a convention here in this post, a unified name used for service, deployment and VM instance to make it easy to manage VMs HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await DeleteDeployment(vmName);   if (responseMessage != null) {   string requestID = responseMessage.Headers.GetValues("x-ms-request-id").FirstOrDefault(); OperationResult result = await PollGetOperationStatus(requestID, 5, 120); if (result.Status == OperationStatus.Succeeded) { responseString = result.Message; HttpResponseMessage sResponseMessage = await DeleteService(vmName); if (sResponseMessage != null) { OperationResult sResult = await PollGetOperationStatus(requestID, 5, 120); responseString += sResult.Message; } } else { responseString = result.Message; } } return responseString; }  Note: This article is subject to be updated Hisham  References Advanced Windows Azure IaaS – Demo Code Windows Azure Service Management REST API Reference Introduction to the Azure Platform Representational state transfer Asynchronous Programming with Async and Await (C# and Visual Basic) HttpClient Class

    Read the article

  • asynchrony is viral

    - by Daniel Moth
    It is becoming hard to write code today without introducing some form of asynchrony and, if you are using .NET (e.g. for Windows Phone 8 or Windows Store apps), that means sooner or later you have to await something and mark your method as async. My most recent examples included introducing speech recognition in my Translator By Moth phone app where I had to await mySpeechRecognizerUI.RecognizeWithUIAsync() and when moving that code base to a Windows Store project just to show a MessageBox I had to await myMessageDialog.ShowAsync(). Any time you need to invoke an asynchronous method in your code, you have a choice to make: kick off the operation but don’t wait for it to complete (otherwise known as fire-and-forget), synchronously wait for it to complete (which will entail blocking, which can be bad, especially on a UI thread), or asynchronously wait for it to complete before continuing on with the rest of the method’s work. In most cases, you want the latter, and the await keyword makes that trivial to implement.  When you use the magical await keyword in front of an API call, then you typically have to make additional changes to your code: This await usage is within a method of course, and now you have to annotate that method with async. Furthermore, you have to change the return type of the method you just annotated so it returns a Task (if it previously returned void), or Task<myOldReturnType> (if it previously returned myOldReturnType). Note that if it returns void, in some cases you could cheat and stop there. Furthermore, any method that called this method you just annotated with async will now also be invoking an asynchronous operation, so you have to make that change in the body of the caller method to introduce the await keyword before the call to the method. …you guessed it, you now have to change this caller method to be annotated with async and have its return types tweaked... …and it goes on virally… At some point you reach the root of your user code, e.g. a GUI event handler, and whoever calls that void method can already deal with the fact that you marked it as async and the viral introduction of the keywords stops there… This is all wonderful progress and a very powerful mechanism, and I just wish someone had written a refactoring tool to take care of this… anyone? I mentioned earlier that you have a choice when invoking an asynchronous operation. If the first time you encounter this you wish to localize the impact of all these changes and essentially try to turn the asynchronous behavior into synchronous by blocking - don't! For reasons why you don't want to do that, read Toub's excellent blog post (and check out the rest of his blog with gems on async programming starting with the Async FAQ). Just embrace the pattern knowing that when you use one instance of an await, you'll propagate the change all the way to the root user code method, e.g. typically an event handler. Related aside: I just finished re-writing my MessageBox wrapper class for Phone projects, including making it work in Windows Store projects, and it does expect you to use it with an await :-). I'll share that in an upcoming post for those of you that have the same need… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Why is multithreading often preferred for improving performance?

    - by user1849534
    I have a question, it's about why programmers seems to love concurrency and multi-threaded programs in general. I'm considering 2 main approaches here: an async approach basically based on signals, or just an async approach as called by many papers and languages like the new C# 5.0 for example, and a "companion thread" that manages the policy of your pipeline a concurrent approach or multi-threading approach I will just say that I'm thinking about the hardware here and the worst case scenario, and I have tested this 2 paradigms myself, the async paradigm is a winner at the point that I don't get why people 90% of the time talk about multi-threading when they want to speed up things or make a good use of their resources. I have tested multi-threaded programs and async program on an old machine with an Intel quad-core that doesn't offer a memory controller inside the CPU, the memory is managed entirely by the motherboard, well in this case performances are horrible with a multi-threaded application, even a relatively low number of threads like 3-4-5 can be a problem, the application is unresponsive and is just slow and unpleasant. A good async approach is, on the other hand, probably not faster but it's not worst either, my application just waits for the result and doesn't hangs, it's responsive and there is a much better scaling going on. I have also discovered that a context change in the threading world it's not that cheap in real world scenario, it's in fact quite expensive especially when you have more than 2 threads that need to cycle and swap among each other to be computed. On modern CPUs the situation it's not really that different, the memory controller it's integrated but my point is that an x86 CPUs is basically a serial machine and the memory controller works the same way as with the old machine with an external memory controller on the motherboard. The context switch is still a relevant cost in my application and the fact that the memory controller it's integrated or that the newer CPU have more than 2 core it's not bargain for me. For what i have experienced the concurrent approach is good in theory but not that good in practice, with the memory model imposed by the hardware, it's hard to make a good use of this paradigm, also it introduces a lot of issues ranging from the use of my data structures to the join of multiple threads. Also both paradigms do not offer any security abut when the task or the job will be done in a certain point in time, making them really similar from a functional point of view. According to the X86 memory model, why the majority of people suggest to use concurrency with C++ and not just an async approach ? Also why not considering the worst case scenario of a computer where the context switch is probably more expensive than the computation itself ?

    Read the article

  • Why C++ people loves multithreading when it comes to performances?

    - by user1849534
    I have a question, it's about why programmers seems to love concurrency and multi-threaded programs in general. I'm considering 2 main approach here: an async approach basically based on signals, or just an async approach as called by many papers and languages like the new C# 5.0 for example, and a "companion thread" that maanges the policy of your pipeline a concurrent approach or multi-threading approach I will just say that I'm thinking about the hardware here and the worst case scenario, and I have tested this 2 paradigms myself, the async paradigm is a winner at the point that I don't get why people 90% of the time talk about concurrency when they wont to speed up things or make a good use of their resources. I have tested multi-threaded programs and async program on an old machine with an Intel quad-core that doesn't offer a memory controller inside the CPU, the memory is managed entirely by the motherboard, well in this case performances are horrible with a multi-threaded application, even a relatively low number of threads like 3-4-5 can be a problem, the application is unresponsive and is just slow and unpleasant. A good async approach is, on the other hand, probably not faster but it's not worst either, my application just waits for the result and doesn't hangs, it's responsive and there is a much better scaling going on. I have also discovered that a context change in the threading world it's not that cheap in real world scenario, it's infact quite expensive especially when you have more than 2 threads that need to cycle and swap among each other to be computed. On modern CPUs the situation it's not really that different, the memory controller it's integrated but my point is that an x86 CPUs is basically a serial machine and the memory controller works the same way as with the old machine with an external memory controller on the motherboard. The context switch is still a relevant cost in my application and the fact that the memory controller it's integrated or that the newer CPU have more than 2 core it's not bargain for me. For what i have experienced the concurrent approach is good in theory but not that good in practice, with the memory model imposed by the hardware, it's hard to make a good use of this paradigm, also it introduces a lot of issues ranging from the use of my data structures to the join of multiple threads. Also both paradigms do not offer any security abut when the task or the job will be done in a certain point in time, making them really similar from a functional point of view. According to the X86 memory model, why the majority of people suggest to use concurrency with C++ and not just an async aproach ? Also why not considering the worst case scenario of a computer where the context switch is probably more expensive than the computation itself ?

    Read the article

  • ?Oracle Database 12c????TTnn TMON??redo??????

    - by Liu Maclean(???)
    ?Oracle 11g? Data Guard?redo?????????3???????: ARCi (FAL – archived redo shipping, ping, local only archivals) NSAi (async) 12.1 name: TTnn , NSSi (sync) –– live redo shipping ????12c?? ??TTnn  ??TT00?????async ???redo??? ???????TMON????Redo transport monitor? SQL> select banner from v$version where rownum=1; BANNER -------------------------------------------------------------------------------- Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production SQL> select program,pid from v$process where program like '%TMON%' or Program like '%TT%'; PROGRAM PID ------------------------------ ---------- ORACLE.EXE (TMON) 7 ORACLE.EXE (TT00) 24 ??????? ?11g ???NSAi async redo ship?????????LGWR?????????,?????redo ????; ???12c?TTnn???redo???????LGWR? ???  ??????async redo ship ??redo??! 11g?: 12c?

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >