Search Results

Search found 14871 results on 595 pages for 'cross reference'.

Page 120/595 | < Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Installation of LPRng (Ubuntu 13.04)

    - by Poulen
    I have problems with LPRng installation (I am linux beginner). http://lprng.com/LPRng-Reference/LPRng-Reference.html#INSTALLATION - installation guide http://lprng.com/PrintingCookbook/index.html#AEN1563 Could you write me here please, step by step, what I have to do (write into terminal) for succesful installation? I'm trying to do the first step of guide (h4: {4} % gunzip -c LPRng-.tgz | tar xvf -) but unsuccessfuly. (I put the source file to usr/bin, usr/sbin and usr/etc). I'm desperate, help me please :) Thank you and sorry for my english

    Read the article

  • Listing common SQL Code Smells.

    - by Phil Factor
    Once you’ve done a number of SQL Code-reviews, you’ll know those signs in the code that all might not be well. These ’Code Smells’ are coding styles that don’t directly cause a bug, but are indicators that all is not well with the code. . Kent Beck and Massimo Arnoldi seem to have coined the phrase in the "OnceAndOnlyOnce" page of www.C2.com, where Kent also said that code "wants to be simple". Bad Smells in Code was an essay by Kent Beck and Martin Fowler, published as Chapter 3 of the book ‘Refactoring: Improving the Design of Existing Code’ (ISBN 978-0201485677) Although there are generic code-smells, SQL has its own particular coding habits that will alert the programmer to the need to re-factor what has been written. See Exploring Smelly Code   and Code Deodorants for Code Smells by Nick Harrison for a grounding in Code Smells in C# I’ve always been tempted by the idea of automating a preliminary code-review for SQL. It would be so useful to trawl through code and pick up the various problems, much like the classic ‘Lint’ did for C, and how the Code Metrics plug-in for .NET Reflector by Jonathan 'Peli' de Halleux is used for finding Code Smells in .NET code. The problem is that few of the standard procedural code smells are relevant to SQL, and we need an agreed list of code smells. Merrilll Aldrich made a grand start last year in his blog Top 10 T-SQL Code Smells.However, I'd like to make a start by discovering if there is a general opinion amongst Database developers what the most important SQL Smells are. One can be a bit defensive about code smells. I will cheerfully write very long stored procedures, even though they are frowned on. I’ll use dynamic SQL occasionally. You can only use them as an aid for your own judgment and it is fine to ‘sign them off’ as being appropriate in particular circumstances. Also, whole classes of ‘code smells’ may be irrelevant for a particular database. The use of proprietary SQL, for example, is only a ‘code smell’ if there is a chance that the database will have to be ported to another RDBMS. The use of dynamic SQL is a risk only with certain security models. As the saying goes,  a CodeSmell is a hint of possible bad practice to a pragmatist, but a sure sign of bad practice to a purist. Plamen Ratchev’s wonderful article Ten Common SQL Programming Mistakes lists some of these ‘code smells’ along with out-and-out mistakes, but there are more. The use of nested transactions, for example, isn’t entirely incorrect, even though the database engine ignores all but the outermost: but it does flag up the possibility that the programmer thinks that nested transactions are supported. If anything requires some sort of general agreement, the definition of code smells is one. I’m therefore going to make this Blog ‘dynamic, in that, if anyone twitters a suggestion with a #SQLCodeSmells tag (or sends me a twitter) I’ll update the list here. If you add a comment to the blog with a suggestion of what should be added or removed, I’ll do my best to oblige. In other words, I’ll try to keep this blog up to date. The name against each 'smell' is the name of the person who Twittered me, commented about or who has written about the 'smell'. it does not imply that they were the first ever to think of the smell! Use of deprecated syntax such as *= (Dave Howard) Denormalisation that requires the shredding of the contents of columns. (Merrill Aldrich) Contrived interfaces Use of deprecated datatypes such as TEXT/NTEXT (Dave Howard) Datatype mis-matches in predicates that rely on implicit conversion.(Plamen Ratchev) Using Correlated subqueries instead of a join   (Dave_Levy/ Plamen Ratchev) The use of Hints in queries, especially NOLOCK (Dave Howard /Mike Reigler) Few or No comments. Use of functions in a WHERE clause. (Anil Das) Overuse of scalar UDFs (Dave Howard, Plamen Ratchev) Excessive ‘overloading’ of routines. The use of Exec xp_cmdShell (Merrill Aldrich) Excessive use of brackets. (Dave Levy) Lack of the use of a semicolon to terminate statements Use of non-SARGable functions on indexed columns in predicates (Plamen Ratchev) Duplicated code, or strikingly similar code. Misuse of SELECT * (Plamen Ratchev) Overuse of Cursors (Everyone. Special mention to Dave Levy & Adrian Hills) Overuse of CLR routines when not necessary (Sam Stange) Same column name in different tables with different datatypes. (Ian Stirk) Use of ‘broken’ functions such as ‘ISNUMERIC’ without additional checks. Excessive use of the WHILE loop (Merrill Aldrich) INSERT ... EXEC (Merrill Aldrich) The use of stored procedures where a view is sufficient (Merrill Aldrich) Not using two-part object names (Merrill Aldrich) Using INSERT INTO without specifying the columns and their order (Merrill Aldrich) Full outer joins even when they are not needed. (Plamen Ratchev) Huge stored procedures (hundreds/thousands of lines). Stored procedures that can produce different columns, or order of columns in their results, depending on the inputs. Code that is never used. Complex and nested conditionals WHILE (not done) loops without an error exit. Variable name same as the Datatype Vague identifiers. Storing complex data  or list in a character map, bitmap or XML field User procedures with sp_ prefix (Aaron Bertrand)Views that reference views that reference views that reference views (Aaron Bertrand) Inappropriate use of sql_variant (Neil Hambly) Errors with identity scope using SCOPE_IDENTITY @@IDENTITY or IDENT_CURRENT (Neil Hambly, Aaron Bertrand) Schemas that involve multiple dated copies of the same table instead of partitions (Matt Whitfield-Atlantis UK) Scalar UDFs that do data lookups (poor man's join) (Matt Whitfield-Atlantis UK) Code that allows SQL Injection (Mladen Prajdic) Tables without clustered indexes (Matt Whitfield-Atlantis UK) Use of "SELECT DISTINCT" to mask a join problem (Nick Harrison) Multiple stored procedures with nearly identical implementation. (Nick Harrison) Excessive column aliasing may point to a problem or it could be a mapping implementation. (Nick Harrison) Joining "too many" tables in a query. (Nick Harrison) Stored procedure returning more than one record set. (Nick Harrison) A NOT LIKE condition (Nick Harrison) excessive "OR" conditions. (Nick Harrison) User procedures with sp_ prefix (Aaron Bertrand) Views that reference views that reference views that reference views (Aaron Bertrand) sp_OACreate or anything related to it (Bill Fellows) Prefixing names with tbl_, vw_, fn_, and usp_ ('tibbling') (Jeremiah Peschka) Aliases that go a,b,c,d,e... (Dave Levy/Diane McNurlan) Overweight Queries (e.g. 4 inner joins, 8 left joins, 4 derived tables, 10 subqueries, 8 clustered GUIDs, 2 UDFs, 6 case statements = 1 query) (Robert L Davis) Order by 3,2 (Dave Levy) MultiStatement Table functions which are then filtered 'Sel * from Udf() where Udf.Col = Something' (Dave Ballantyne) running a SQL 2008 system in SQL 2000 compatibility mode(John Stafford)

    Read the article

  • WCF client hell (2 replies)

    I've a remote service available via tcp://. When I add a service reference on my client project, VS doesn't create all proxy objects! I miss every xxxClient class, and I have only types used as parameters in my methods. I tried to start a new empty project, add the same service reference, and in this project I can see al proxy objects! It's an hell, what can I do? thanks

    Read the article

  • WCF client hell (2 replies)

    I've a remote service available via tcp://. When I add a service reference on my client project, VS doesn't create all proxy objects! I miss every xxxClient class, and I have only types used as parameters in my methods. I tried to start a new empty project, add the same service reference, and in this project I can see al proxy objects! It's an hell, what can I do? thanks

    Read the article

  • SQL SERVER – DMV – sys.dm_exec_query_optimizer_info – Statistics of Optimizer

    - by pinaldave
    Incredibly, SQL Server has so much information to share with us. Every single day, I am amazed with this SQL Server technology. Sometimes I find several interesting information by just querying few of the DMV. And when I present this info in front of my client during performance tuning consultancy, they are surprised with my findings. Today, I am going to share one of the hidden gems of DMV with you, the one which I frequently use to understand what’s going on under the hood of SQL Server. SQL Server keeps the record of most of the operations of the Query Optimizer. We can learn many interesting details about the optimizer which can be utilized to improve the performance of server. SELECT * FROM sys.dm_exec_query_optimizer_info WHERE counter IN ('optimizations', 'elapsed time','final cost', 'insert stmt','delete stmt','update stmt', 'merge stmt','contains subquery','tables', 'hints','order hint','join hint', 'view reference','remote query','maximum DOP', 'maximum recursion level','indexed views loaded', 'indexed views matched','indexed views used', 'indexed views updated','dynamic cursor request', 'fast forward cursor request') All occurrence values are cumulative and are set to 0 at system restart. All values for value fields are set to NULL at system restart. I have removed a few of the internal counters from the script above, and kept only documented details. Let us check the result of the above query. As you can see, there is so much vital information that is revealed in above query. I can easily say so many things about how many times Optimizer was triggered and what the average time taken by it to optimize my queries was. Additionally, I can also determine how many times update, insert or delete statements were optimized. I was able to quickly figure out that my client was overusing the Query Hints using this dynamic management view. If you have been reading my blog, I am sure you are aware of my series related to SQL Server Views SQL SERVER – The Limitations of the Views – Eleven and more…. With this, I can take a quick look and figure out how many times Views were used in various solutions within the query. Moreover, you can easily know what fraction of the optimizations has been involved in tuning server. For example, the following query would tell me, in total optimizations, what the fraction of time View was “reference“. As this View also includes system Views and DMVs, the number is a bit higher on my machine. SELECT (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'view reference') / (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'optimizations') AS ViewReferencedFraction Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Profiles and using the local profile for a domain user

    - by Harry
    I’m having some trouble with profiles and would like to reach out for some help. I’ve tried to do some research to help myself along, but I’m not making much progress on my own. I’ve pretty much taken over the sys admin duties for my small lab, I don’t have much experience to justify it besides I’m the only with the time and dedication to go at it (The environment was in a state of disrepair). My network and domain I look over are extremely small by most standards, about 10 users at a time. They are pretty intensive activity on the network, and we do work with fairly large files. None of the network is online, which is nice at the moment because it allows me not to have another headache. On to my profile problem, I have set up roaming profiles for the users in the network. Now after a little research, I think I will be switching this to a hybrid of folder redirection and roaming profiles as this seems to best practice. I also don’t want the users having to wait for a long time if they have a bloated profile. Now I’ve finally got a build working using MDT. We have Mac Pros, and it wasn’t fun getting everything to play nice. The way I did this was by setting up a reference computer and installing all the software and tools that each user would need and editing the settings preferences to how we would need them. I think used MDT to do a sys prep and capture to create the image of my reference computer. Using the reference image I can push out my images to the rest of the desktops in my environment. The issue I’m having is when we join the computer to domain. The user can login and operate fine on the computer, but I’d like a more. When the user is logged on with their domain user name they lose a lot of the icons I had on my reference image, as well as the desktop background and some other miscellaneous settings. I would love to have the user log on using their domain user name and see the icons and desktop environment as I had it setup on the reference computer. I’m not sure if it is possible, or something simple that I’m missing, but any help would be greatly appreciated!

    Read the article

  • Trouble compiling MonoDevelop 4 on Ubuntu 12.04

    - by Mehran
    I'm trying to compile the latest version of MonoDevelop (4.0.9) on my Ubuntu 12.04 and I'm facing errors I can not overcome. Here are my machine's configurations: OS: Ubuntu 12.04 64-bit Mono: version 3.0.12 And here are the commands that I ran to download MonoDevelop: $ git clone git://github.com/mono/monodevelop.git $ cd monodevelop $ git submodule init $ git submodule update And afterwards to compile: ./configure --prefix=`pkg-config --variable=prefix mono` --profile=stable make Then I faced the following errors (sorry if it's long): ... Building ./Main.sln xbuild /verbosity:quiet /nologo /property:CodePage=65001 ./Main.sln /property:Configuration=Debug /home/mehran/git/monodevelop/main/Main.sln: warning : Don't know how to handle GlobalSection MonoDevelopProperties.Debug, Ignoring. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' Editor/IDocument.cs(98,30): warning CS0419: Ambiguous reference in cref attribute `GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched PatternMatching/INode.cs(51,37): warning CS1574: XML comment on `ICSharpCode.NRefactory.PatternMatching.PatternExtensions.Match(this ICSharpCode.NRefactory.PatternMatching.INode, ICSharpCode.NRefactory.PatternMatching.INode)' has cref attribute `PatternMatching.Match.Success' that could not be resolved TextLocation.cs(35,23): warning CS0419: Ambiguous reference in cref attribute `Editor.IDocument.GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched TypeSystem/FullTypeName.cs(87,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/INamedElement.cs(59,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/IType.cs(50,26): warning CS1584: XML comment on `ICSharpCode.NRefactory.TypeSystem.IType' has syntactically incorrect cref attribute `IEquatable{IType}.Equals(IType)' TypeSystem/IType.cs(319,38): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `GetMethods(Predicate{IUnresolvedMethod}, GetMemberOptions)' TypeSystem/TypeKind.cs(61,17): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' TypeSystem/SpecialType.cs(50,52): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1.

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Libvirt-php Creating Domain

    - by Alee
    Could you tell me how to create a new domain? From PHP API Reference guide: http://libvirt.org/php/api-reference.html I have seen these functions: (i) libvirt_image_create($conn, $name, $size, $format) (ii) libvirt_domain_new($conn, $name, $arch, $memMB, $maxmemMB, $vcpus, $iso_image, $disks, $networks, $flags) (iii) libvirt_domain_create($res) (iv) libvirt_domain_create_xml($conn, $xml) The problem I am facing is that i dont know the steps to create a new domain. Either I have to create a new image first using libvirt_image_create .... or something else.

    Read the article

  • Oracle Adattárház Referencia Architektúra, a legjobb gyakorlatból

    - by Fekete Zoltán
    Hogyan építsünk adattárházat, hogyan kapcsoljuk össze a rendszereinkkel? Mi legyen az az architektúra, mellyel a legkisebb kockázattal a legbiztosabban érünk célba? Ezekre a kérdésekre kaphatunk választ az Oracle Data Warehouse Reference Architecture leírásból. Letöltheto a következo dokumentum: Enabling Pervasive BI through a Practical Data Warehouse Reference Architecture

    Read the article

  • Alternate CD image downloaded last year gives different hash

    - by Oxwivi
    I had downloaded the alternate CD images through torrents some time last year, and now that I need it again I decided to check it's md5 hash. $ md5sum ubuntu-11.10-alternate-i386.iso b502888194367acdec4d79203e7a539c ubuntu-11.10-alternate-i386.iso Now the problem is, the reference hashes it's supposed to match to is completely different: 24da873c870d6a3dbfc17390dda52eb8 ubuntu-11.10-alternate-i386.iso Can I safely conclude the image I downloaded is corrupted? Reference UbuntuHashes - Community Ubuntu Documentation

    Read the article

  • Part 6: Extensions vs. Modifications

    - by volker.eckardt(at)oracle.com
    Customizations = Extensions + Modifications In the EBS terminology, a customization can be an extension or a modification. Extension means that you mainly create your own code from scratch. You may utilize existing views, packages and java classes, but your code is unique. Modifications are quite different, because here you take existing code and change or enhance certain areas to achieve a slightly different behavior. Important is that it doesn't matter if you place your code at the same or at another place – it is a modification. It is also not relevant if you leave the original code enabled or not! Why? Here is the answer: In case the original code piece you have taken as your base will get patched, you need to copy the source again and apply all your changes once more. If you don't do that, you may get different results or write different data compared to the standard – this causes a high risk! Here are some guidelines how to reduce the risk: Invest a bit longer when searching for objects to select data from. Rather choose a view than a table. In case Oracle development changes the underlying tables, the view will be more stable and is therefore a better choice. Choose rather public APIs over internal APIs. Same background as before: although internal structure might change, the public API is more stable. Use personalization and substitution rather than modification. Spend more time to check if the requirement can be covered with such techniques. Build a project code library, avoid that colleagues creating similar functionality multiple times. Otherwise you have to review lots of similar code to determine the need for correction. Use the technique of “flagged files”. Flagged files is a way to mark a standard deployment file. If you run the patch analyse (within Application Manager), the analyse result will list flagged standard files in case they will be patched. If you maintain a cross reference to your own CEMLIs, you can easily determine which CEMLIs have to be reviewed. Implement a code review process. This can be done by utilizing team internal or external persons. If you implement such a team internal process, your team members will come up with suggestions how to improve the code quality by themselves. Review heavy customizations regularly, to identify options to reduce complexity; let's say perform this every 6th month. You may not spend days for such a review, but a high level cross check if the customization can be reduced is suggested. De-install customizations which are no more required. Define a process for this. Add a section into the technical documentation how to uninstall and what are possible implications. Maintain a cross reference between CEMLIs and between CEMLIs, EBS modules and business processes. Keep this list up to date! Share this list! By following these guidelines, you are able to improve product stability. Although we might not be able to avoid modifications completely, we can give a much better advise to developers and to our test team. Summary: Extensions and Modifications have to be handled differently during their lifecycle. Modifications implicate a much higher risk and should therefore be reviewed more frequently. Good cross references allow you to give clear advise for the testing activities.

    Read the article

  • Maximizing the Value of Software

    - by David Dorf
    A few years ago we decided to increase our investments in documenting retail processes and architectures.  There were several goals but the main two were to help retailers maximize the value they derive from our software and help system integrators implement our software faster.  The sale is only part of our success metric -- its actually more important that the customer realize the benefits of the software.  That's when we actually celebrate. This week many of our customers are gathered in Chicago to discuss their successes during our annual Crosstalk conference.  That provides the perfect forum to announce the release of the Oracle Retail Reference Library.  The RRL is available for free to Oracle Retail customers and partners.  It contains 1000s of hours of work and represents years of experience in the retail industry.  The Retail Reference Library is composed of three offerings: Retail Reference Model We've been sharing the RRM for several years now, with lots of accolades.  The RRM is a set of business process diagrams at varying levels of granularity. This release marks the debut of Visio documents, which should make it easier for retailers to adopt and edit the diagrams.  The processes represent an approximation of the Oracle Retail software, but at higher levels they are pretty generic and therefore usable with other software as well.  Using these processes, the business and IT are better able to communicate the expectations of the software.  They can be used to guide customization when necessary, and help identify areas for optimization in the organization. Retail Reference Architecture When embarking on a software implementation project, it can be daunting to start from a blank sheet of paper.  So we offer the RRA, a comprehensive set of documents that describe the retail enterprise in terms of logical architecture, physical deployments, and systems integration.  These documents and diagrams describe how all the systems typically found in a retailer enterprise work together.  They serve as a way to jump-start implementations using best practices we've captured over the years. Retail Semantic Glossary Have you ever seen two people argue over something because they're using misaligned terminology?  Its a huge waste and happens all the time.  The Retail Semantic Glossary is a simple application that allows retailers to define terms and metrics in a centralized database.  This initial version comes with limited content with the goal of adding more over subsequent releases.  This is the single source for defining key performance indicators, metrics, algorithms, and terms so that the retail organization speaks in a consistent language. These three offerings are downloaded from MyOracleSupport separately and linked together using the start page above.  Everything is navigated using a Web browser.  See the Oracle Retail Documentation blog for more details.

    Read the article

  • New sales kit for partners: Oracle Enterprise Manager 12c

    - by Javier Puerta
    Check out the latest Quick Reference Guides for Enterprise Manager 12c in the Knowledge Zone. The two-page Quick Reference Guide is designed to help partners uncover additional revenue opportunity by positioning Enterprise Manager in your sales engagement. Content includes elevator pitch for Enterprise Manager, tips on identifying target customers, qualifying questions to initiate customers discussion, supporting videos, references, and whitepapers for each customer scenario: Enterprise Manager 12c for Application Partners Enterprise Manager 12c for Hardware Partners Enterprise Manager 12c for Database Partners

    Read the article

  • New Sales Kit – Enterprise Manager 12c

    - by Cinzia Mascanzoni
    Check out the latest Quick Reference Guides for Enterprise Manager 12c in the Knowledge Zone. The two-page Quick Reference Guide is designed to help partners uncover additional revenue opportunity by positioning Enterprise Manager. Content includes elevator pitch for Enterprise Manager, tips on identifying target customers, qualifying questions to initiate customers discussion, supporting videos, references, and whitepapers for each customer scenario.• Enterprise Manager 12c for Application Partners • Enterprise Manager 12c for Hardware Partners• Enterprise Manager 12c for Database Partners

    Read the article

  • Is this Java 7 security thread an issue if you have Java 7 installed but not as the default?

    - by user1361315
    I have a MBP with osx mountain lion installed, and I believe from what I read Mac's only ship with Java 6 by default. I'm not at my computer at the moment, but I am pretty sure I have installed Java 7 but it isn't my default java version (I think I installed it and I have to explicitly reference it to use it). Does this mean I am safe from this particular thread? Reference: http://www.pcworld.com/businesscenter/article/261748/researchers_find_critical_vulnerability_in_java_7_patch_hours_after_release.html

    Read the article

  • Security error accessing Service outside of FlexBuilder

    - by MikeHoss
    I'm very new to Flex and I have what I think it a head-scratcher. I am building a little Flash app that will consume some web services over HTTP. When I am in Flexbuilder and run my app there, it works fine. When I goto to my FlexBuilder project on my OS and double-click on it, it works fine. When I zip up my bin-debug file, I get this error: Security error accessing url faultCode:Channel.Security.Error faultString: 'Security error accessing url' faultDetail:'Destination: DefaultHTTP' So I googled that and got information on about the crossdomain.xml file. Well, I can't put a crossdomain file in the service I am calling, but I can put one somewhere else. So I put the following lines in Flex app: Security.allowDomain("vx1391"); Security.loadPolicyFile("http://vx1391:8080/job/Remote%20FIT%20Runner/ws/trunk/flash-cross-domain.xml"); My cross-domain.xml file is wide-open: &lt;cross-domain-policy&gt; &lt;allow-access-from domain="*"/&gt; </cross-domain-policy> Which I know is bad in a prod enivironment, but right now I just need to get this working locally but outside of FlexBuilder. Anyone want to help out this Flex-noob?

    Read the article

  • Open source file upload with no timeout on IIS6 with ASP, ASP.NET 2.0 or PHP5

    - by Christopher Done
    I'm after a cross-platform cross-browser way of uploading files such that there is no timeout. Uploads aren't necessarily huge -- some just take a long time to upload because of the uploader's slow connection -- but the server times out anyway. I hear that there are methods to upload files in chunks so that somehow the server decides not to timeout the upload. After searching around all I can see is proprietary upload helpers and Java and Flash (SWFUpload) widgets that aren't cross-platform, don't upload in chunks, or aren't free. I'd like a way to do it in any of these platforms (ASP, ASP.NET 2.0 or PHP5), though I am not very clued up on all this .NET class/controller/project/module/visual studio/compile/etc stuff, so some kind of runnable complete project that runs on .NET 2.0 would be helpful. PHP and ASP I can assume will be more straight-forward. Unless I am completely missing something, which I suspect/hope I am, reasonable web uploads are bloody hard work in any language or platform. So my question is: how can I perform web browser uploads, cross-platform, so that they don't timeout, using free software? Is it possible at all?

    Read the article

  • Guide to MySQL & NoSQL, Webinar Q&A

    - by Mat Keep
    0 0 1 959 5469 Homework 45 12 6416 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Yesterday we ran a webinar discussing the demands of next generation web services and how blending the best of relational and NoSQL technologies enables developers and architects to deliver the agility, performance and availability needed to be successful. Attendees posted a number of great questions to the MySQL developers, serving to provide additional insights into areas like auto-sharding and cross-shard JOINs, replication, performance, client libraries, etc. So I thought it would be useful to post those below, for the benefit of those unable to attend the webinar. Before getting to the Q&A, there are a couple of other resources that maybe useful to those looking at NoSQL capabilities within MySQL: - On-Demand webinar (coming soon!) - Slides used during the webinar - Guide to MySQL and NoSQL whitepaper  - MySQL Cluster demo, including NoSQL interfaces, auto-sharing, high availability, etc.  So here is the Q&A from the event  Q. Where does MySQL Cluster fit in to the CAP theorem? A. MySQL Cluster is flexible. A single Cluster will prefer consistency over availability in the presence of network partitions. A pair of Clusters can be configured to prefer availability over consistency. A full explanation can be found on the MySQL Cluster & CAP Theorem blog post.  Q. Can you configure the number of replicas? (the slide used a replication factor of 1) Yes. A cluster is configured by an .ini file. The option NoOfReplicas sets the number of originals and replicas: 1 = no data redundancy, 2 = one copy etc. Usually there's no benefit in setting it >2. Q. Interestingly most (if not all) of the NoSQL databases recommend having 3 copies of data (the replication factor).    Yes, with configurable quorum based Reads and writes. MySQL Cluster does not need a quorum of replicas online to provide service. Systems that require a quorum need > 2 replicas to be able to tolerate a single failure. Additionally, many NoSQL systems take liberal inspiration from the original GFS paper which described a 3 replica configuration. MySQL Cluster avoids the need for a quorum by using a lightweight arbitrator. You can configure more than 2 replicas, but this is a tradeoff between incrementally improved availability, and linearly increased cost. Q. Can you have cross node group JOINS? Wouldn't that run into the risk of flooding the network? MySQL Cluster 7.2 supports cross nodegroup joins. A full cross-join can require a large amount of data transfer, which may bottleneck on network bandwidth. However, for more selective joins, typically seen with OLTP and light analytic applications, cross node-group joins give a great performance boost and network bandwidth saving over having the MySQL Server perform the join. Q. Are the details of the benchmark available anywhere? According to my calculations it results in approx. 350k ops/sec per processor which is the largest number I've seen lately The details are linked from Mikael Ronstrom's blog The benchmark uses a benchmarking tool we call flexAsynch which runs parallel asynchronous transactions. It involved 100 byte reads, of 25 columns each. Regarding the per-processor ops/s, MySQL Cluster is particularly efficient in terms of throughput/node. It uses lock-free minimal copy message passing internally, and maximizes ID cache reuse. Note also that these are in-memory tables, there is no need to read anything from disk. Q. Is access control (like table) planned to be supported for NoSQL access mode? Currently we have not seen much need for full SQL-like access control (which has always been overkill for web apps and telco apps). So we have no plans, though especially with memcached it is certainly possible to turn-on connection-level access control. But specifically table level controls are not planned. Q. How is the performance of memcached APi with MySQL against memcached+MySQL or any other Object Cache like Ecache with MySQL DB? With the memcache API we generally see a memcached response in less than 1 ms. and a small cluster with one memcached server can handle tens of thousands of operations per second. Q. Can .NET can access MemcachedAPI? Yes, just use a .Net memcache client such as the enyim or BeIT memcache libraries. Q. Is the row level locking applicable when you update a column through memcached API? An update that comes through memcached uses a row lock and then releases it immediately. Memcached operations like "INCREMENT" are actually pushed down to the data nodes. In most cases the locks are not even held long enough for a network round trip. Q. Has anyone published an example using something like PHP? I am assuming that you just use the PHP memcached extension to hook into the memcached API. Is that correct? Not that I'm aware of but absolutely you can use it with php or any of the other drivers Q. For beginner we need more examples. Take a look here for a fully worked example Q. Can I access MySQL using Cobol (Open Cobol) or C and if so where can I find the coding libraries etc? A. There is a cobol implementation that works well with MySQL, but I do not think it is Open Cobol. Also there is a MySQL C client library that is a standard part of every mysql distribution Q. Is there a place to go to find help when testing and/implementing the NoSQL access? If using Cluster then you can use the [email protected] alias or post on the MySQL Cluster forum Q. Are there any white papers on this?  Yes - there is more detail in the MySQL Guide to NoSQL whitepaper If you have further questions, please don’t hesitate to use the comments below!

    Read the article

  • Handling HumanTask attachments in Oracle BPM 11g PS4FP+ (II)

    - by ccasares
    Retrieving uploaded attachments -UCM- As stated in my previous blog entry, Oracle BPM 11g 11.1.1.5.1 (aka PS4FP) introduced a new cool feature whereby you can use Oracle WebCenter Content (previously known as Oracle UCM) as the repository for the human task attached documents. For more information about how to use or enable this feature, have a look here. The attachment scope (either TASK or PROCESS) also applies to UCM-attachments. But even with this other feature, one question might arise when using UCM attachments. How can I get them from within the process? The first answer would be to use the same getTaskAttachmentContents() XPath function already explained in my previous blog entry. In fact, that's the way it should be. But in Oracle BPM 11g 11.1.1.5.1 (PS4FP) and 11.1.1.6.0 (PS5) there's a bug that prevents you to do that. If you invoke such function against a UCM-attachment, you'll get a null content response (bug#13907552). Even if the attachment was correctly uploaded. While this bug gets fixed, next I will show a workaround that lets me to retrieve the UCM-attached documents from within a BPM process. Besides, the sample will show how to interact with WCC API from within a BPM process.Aside note: I suggest you to read my previous blog entry about Human Task attachments where I briefly describe some concepts that are used next, such as the execData/attachment[] structure. Sample Process I will be using the following sample process: A dummy UserTask using "HumanTask2" Human Task, followed by an Embedded Subprocess that will retrieve the attachments payload. In this case, and here's the key point of the sample, we will retrieve such payload using WebCenter Content WebService API (IDC): and once retrieved, we will write each of them back to a file in the server using a File Adapter service: In detail:  We will use the same attachmentCollection XSD structure and same BusinessObject definition as in the previous blog entry. However we create a separate variable, named attachmentUCM, based on such BusinessObject. We will still need to keep a copy of the HumanTask output's execData structure. Therefore we need to create a new variable of type TaskExecutionData (different one than the other used for non-UCM attachments): As in the non-UCM attachments flow, in the output tab of the UserTask mapping, we'll keep a copy of the execData structure: Now we get into the embedded subprocess that will retrieve the attachments' payload. First, and using an XSLT transformation, we feed the attachmentUCM variable with the following information: The name of each attachment (from execData/attachment/name element) The WebCenter Content ID of the uploaded attachment. This info is stored in execData/attachment/URI element with the format ecm://<id>. As we just want the numeric <id>, we need to get rid of the protocol prefix ("ecm://"). We do so with some XPath functions as detailed below: with these two functions being invoked, respectively: We, again, set the target payload element with an empty string, to get the <payload></payload> tag created. The complete XSLT transformation is shown below. Remember that we're using the XSLT for-each node to create as many target structures as necessary.  Once we have fed the attachmentsUCM structure and so it now contains the name of each of the attachments along with each WCC unique id (dID), it is time to iterate through it and get the payload. Therefore we will use a new embedded subprocess of type MultiInstance, that will iterate over the attachmentsUCM/attachment[] element: In each iteration we will use a Service activity that invokes WCC API through a WebService. Follow these steps to create and configure the Partner Link needed: Login to WCC console with an administrator user (i.e. weblogic). Go to Administration menu and click on "Soap Wsdls" link. We will use the GetFile service to retrieve a file based on its dID. Thus we'll need such service WSDL definition that can be downloaded by clicking the GetFile link. Save the WSDL file in your JDev project folder. In the BPM project's composite view, drag & drop a WebService adapter to create a new External Reference, based on the just added GetFile.wsdl. Name it UCM_GetFile. WCC services are secured through basic HTTP authentication. Therefore we need to enable the just created reference for that: Right-click the reference and click on Configure WS Policies. Under the Security section, click "+" to add the "oracle/wss_username_token_client_policy" policy The last step is to set the credentials for the security policy. For the sample we will use the admin user for WCC (weblogic/welcome1). Open the composite.xml file and select the Source view. Search for the UCM_GetFile entry and add the following highlighted elements into it:   <reference name="UCM_GetFile" ui:wsdlLocation="GetFile.wsdl">     <interface.wsdl interface="http://www.stellent.com/GetFile/#wsdl.interface(GetFileSoap)"/>     <binding.ws port="http://www.stellent.com/GetFile/#wsdl.endpoint(GetFile/GetFileSoap)"                 location="GetFile.wsdl" soapVersion="1.1">       <wsp:PolicyReference URI="oracle/wss_username_token_client_policy"                            orawsp:category="security" orawsp:status="enabled"/>       <property name="weblogic.wsee.wsat.transaction.flowOption"                 type="xs:string" many="false">WSDLDriven</property>       <property name="oracle.webservices.auth.username"                 type="xs:string">weblogic</property>       <property name="oracle.webservices.auth.password"                 type="xs:string">welcome1</property>     </binding.ws>   </reference> Now the new external reference is ready: Once the reference has just been created, we should be able now to use it from our BPM process. However we find here a problem. The WCC GetFile service operation that we will use, GetFileByID, accepts as input a structure similar to this one, where all element tags are optional: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/">    <get:dID>?</get:dID>   <get:rendition>?</get:rendition>   <get:extraProps>      <get:property>         <get:name>?</get:name>         <get:value>?</get:value>      </get:property>   </get:extraProps></get:GetFileByID> and we need to fill up just the <get:dID> tag element. Due to some kind of restriction or bug on WCC, the rest of the tag elements must NOT be sent, not even empty (i.e.: <get:rendition></get:rendition> or <get:rendition/>). A sample request that performs the query just by the dID, must be in the following format: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/">   <get:dID>12345</get:dID></get:GetFileByID> The issue here is that the simple mapping in BPM does create empty tags being a sample result as follows: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/"> <get:dID>12345</get:dID> <get:rendition/> <get:extraProps/> </get:GetFileByID> Although the above structure is perfectly valid, it is not accepted by WCC. Therefore, we need to bypass the problem. The workaround we use (many others are available) is to add a Mediator component between the BPM process and the Service that simply copies the input structure from BPM but getting rid of the empty tags. Follow these steps to configure the Mediator: Drag & drop a new Mediator component into the composite. Uncheck the creation of the SOAP bindings and use the Interface Definition from WSDL template and select the existing GetFile.wsdl Double click in the mediator to edit it. Add a static routing rule to the GetFileByID operation, of type Service and select References/UCM_GetFile/GetFileByID target service: Create the request and reply XSLT mappers: Make sure you map only the dID element in the request: And do an Auto-mapper for the whole response: Finally, we can now add and configure the Service activity in the BPM process. Drag & drop it to the embedded subprocess and select the NormalizedGetFile service and getFileByID operation: Map both the input: ...and the output: Once this embedded subprocess ends, we will have all attachments (name + payload) in the attachmentsUCM variable, which is the main goal of this sample. But in order to test everything runs fine, we finish the sample writing each attachment to a file. To that end we include a final embedded subprocess to concurrently iterate through each attachmentsUCM/attachment[] element: On each iteration we will use a Service activity that invokes a File Adapter write service. In here we have two important parameters to set. First, the payload itself. The file adapter awaits binary data in base64 format (string). We have to map it using XPath (Simple mapping doesn't recognize a String as a base64-binary valid target): Second, we must set the target filename using the Service Properties dialog box: Again, note how we're making use of the loopCounter index variable to get the right element within the embedded subprocess iteration. Final blog entry about attachments will handle how to inject documents to Human Tasks from the BPM process and how to share attachments between different User Tasks. Will come soon. Again, once I finish will all posts on this matter, I will upload the whole sample project to java.net.

    Read the article

  • StackOverFlowError while creating Mac object on AS400/Java

    - by Prasanna K Rao
    Hello all, I am a newbie to AS400-Java programming. I am trying to create my first program to test the implementation of Message Authentication Code (MAC). I am trying to use the HMACSHA1 hash function. My (Java 1.4) program runs fine on a dev box (V5R4).But fails terribly on the QA box (V5R3). My program is as below: ===================================================== import java.security.InvalidKeyException; import java.security.NoSuchAlgorithmException; import java.security.Security; import java.security.Provider; import javax.crypto.Mac; import javax.crypto.spec.SecretKeySpec; import javax.crypto.SecretKey; public class Test01 { private static final String HMAC_SHA1_ALGORITHM = "HmacSHA1"; public static void main (String [] arguments) { byte[] key = { 1,2,3,4,5,6,7,8}; SecretKeySpec SHA1key = new SecretKeySpec(key, "HmacSHA1"); Mac hmac; String strFinalRslt = ""; try { hmac = Mac.getInstance("HmacSHA1"); hmac.init(SHA1key); byte[] result = hmac.doFinal(); strFinalRslt = toHexString(result); }catch (NoSuchAlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); }catch (InvalidKeyException e) { // TODO Auto-generated catch block e.printStackTrace(); }catch(StackOverflowError e){ e.printStackTrace(); } System.out.println(strFinalRslt); System.out.println("All done!!!"); } public static byte[] fromHexString ( String s ) { int stringLength = s.length(); if ( (stringLength & 0x1) != 0 ) { throw new IllegalArgumentException ( "fromHexString requires an even number of hex characters" ); } byte[] b = new byte[stringLength / 2]; for ( int i=0,j=0; i 4] ); //look up low nibble char sb.append( hexChar [b[i] & 0x0f] ); } return sb.toString(); } static char[] hexChar = { '0' , '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , '9' , 'a' , 'b' , 'c' , 'd' , 'e' , 'f'}; } This program compiles fine and gets the correct response on my win-xp client and also my dev box. But, fails with the following error on the QA box: java.lang.StackOverflowError at java.lang.Throwable.(Throwable.java:180) at java.lang.Error.(Error.java:37) at java.lang.StackOverflowError.(StackOverflowError.java:24) at java.io.Os400FileSystem.list(Native method) at java.io.File.list(File.java:922) at javax.crypto.b.e(Unknown source) at javax.crypto.b.a(Unknown source) at javax.crypto.b.c(Unknown source) at javax.crypto.b£0.run(Unknown source) at javax.crypto.b.(Unknown source) at javax.crypto.Mac.getInstance(Unknown source) I have verified the java.security file and entry corresponding to the jce files are all ok. The DMPJVM command gives me the following response: Thu Jun 03 12:25:34 E Java Virtual Machine Information 016822/QPGMR/11111 ........................................................................ . Classpath . ........................................................................ java.version=1.4 sun.boot.class.path=/QIBM/ProdData/OS400/Java400/jdk/lib/jdkptf14.zip:/QIBM /ProdData/OS400/Java400/ext/ibmjssefw.jar:/QIBM/ProdData/CAP/ibmjsseprovide r.jar:/QIBM/ProdData/OS400/Java400/ext/ibmjsseprovider2.jar:/QIBM/ProdData/ OS400/Java400/ext/ibmpkcs11impl.jar:/QIBM/ProdData/CAP/ibmjssefips.jar:/QIB M/ProdData/OS400/Java400/jdk/lib/IBMiSeriesJSSE.jar:/QIBM/ProdData/OS400/Ja va400/jdk/lib/jce.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/jaas.jar:/QIBM/P rodData/OS400/Java400/jdk/lib/ibmcertpathfw.jar:/QIBM/ProdData/OS400/Java40 0/jdk/lib/ibmcertpathprovider.jar:/QIBM/ProdData/OS400/Java400/ext/ibmpkcs. jar:/QIBM/ProdData/OS400/Java400/jdk/lib/ibmjgssfw.jar:/QIBM/ProdData/OS400 /Java400/jdk/lib/ibmjgssprovider.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/s ecurity.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/charsets.jar:/QIBM/ProdDat a/OS400/Java400/jdk/lib/resources.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/ rt.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/sunrsasign.jar:/QIBM/ProdData/O S400/Java400/ext/IBMmisc.jar:/QIBM/ProdData/Java400/ java.class.path=/myhome/lib/commons-codec-1.3.jar:/myhome/lib/commons-httpc lient-3.1.jar:/myhome/lib/commons-logging-1.1.jar:/myhome/lib/log4j-1.2.15.jar:/myhome/lib/log4j-core.jar ; java.ext.dirs=/QIBM/ProdData/OS400/Java400/jdk/lib/ext:/QIBM/UserData/Java4 00/ext:/QIBM/ProdData/Java400/jdk14/lib/ext java.library.path=/QSYS.LIB/ROBOTLIB.LIB:/QSYS.LIB/QTEMP.LIB:/QSYS.LIB/ODIP GM.LIB:/QSYS.LIB/QGPL.LIB ........................................................................ . Garbage Collection . ........................................................................ Garbage collector parameters Initial size: 16384 K Max size: 240000000 K Current values Heap size: 437952 K Garbage collections: 58 Additional values JIT heap size: 53824 K JVM heap size: 55752 K Last GC cycle time: 1333 ms ........................................................................ . Thread information . ........................................................................ Information for 4 thread(s) of 4 thread(s) processed Thread: 00000004 Thread-0 TDE: B00380000BAA0000 Thread priority: 5 Thread status: Running Thread group: main Runnable: java/lang/Thread Stack: java/io/Os400FileSystem.list(Ljava/io/File;)[Ljava/lang/String;+0 (Os400FileSystem.java:0) java/io/File.list()[Ljava/lang/String;+19 (File.java:922) javax/crypto/b.e()[B+127 (:0) javax/crypto/b.a(Ljava/security/cert/X509Certificate;)V+7 (:0) javax/crypto/b.access$500(Ljava/security/cert/X509Certificate;)V+1 (:0) javax/crypto/b$0.run()Ljava/lang/Object;+98 (:0) javax/crypto/b.()V+507 (:0) javax/crypto/Mac.getInstance(Ljava/lang/String;)Ljavax/crypto/Mac;+10 (:0) Locks: None Thread: 00000007 jitcompilethread TDE: B00380000BD58000 Thread priority: 5 Thread status: Java wait Thread group: system Runnable: java/lang/Thread Stack: None Locks: None Thread: 00000005 Reference Handler TDE: B00380000BAAC000 Thread priority: 10 Thread status: Waiting Wait object: java/lang/ref/Reference$Lock Thread group: system Runnable: java/lang/ref/Reference$ReferenceHandler Stack: java/lang/Object.wait()V+1 (Object.java:452) java/lang/ref/Reference$ReferenceHandler.run()V+47 (Reference.java:169) Locks: None Thread: 00000006 Finalizer TDE: B00380000BAB3000 Thread priority: 8 Thread status: Waiting Wait object: java/lang/ref/ReferenceQueue$Lock Thread group: system Runnable: java/lang/ref/Finalizer$FinalizerThread Stack: java/lang/ref/ReferenceQueue.remove(J)Ljava/lang/ref/Reference;+43 (ReferenceQueue.java:111) java/lang/ref/ReferenceQueue.remove()Ljava/lang/ref/Reference;+1 (ReferenceQueue.java:127) java/lang/ref/Finalizer$FinalizerThread.run()V+3 (Finalizer.java:171) Locks: None ........................................................................ . Class loader information . ........................................................................ 0 Default class loader 1 sun/reflect/DelegatingClassLoader 2 sun/misc/Launcher$ExtClassLoader ........................................................................ . GC heap information . ........................................................................ Loader Objects Class name ------ ------- ---------- 0 1493 [C 0 2122181 java/lang/String 0 47 [Ljava/util/Hashtable$Entry; 0 68 [Ljava/lang/Object; 0 1016 java/lang/Class 0 31 java/util/HashMap 0 37 java/util/Hashtable 0 2 java/lang/ThreadGroup 0 2 java/lang/RuntimePermission 0 2 java/lang/ref/ReferenceQueue$Null 0 5 java/lang/ref/ReferenceQueue 0 50 java/util/Vector 0 4 java/util/Stack 0 3 sun/misc/SoftCache 0 1 [Ljava/lang/ThreadGroup; 0 5 [Ljava/io/ObjectStreamField; 0 1 sun/reflect/ReflectionFactory 0 7 java/lang/ref/ReferenceQueue$Lock 0 10 java/lang/Object 0 1 java/lang/String$CaseInsensitiveComparator 0 1 java/util/Hashtable$EmptyEnumerator 0 1 java/util/Hashtable$EmptyIterator 0 33 [Ljava/util/HashMap$Entry; 0 19210 [J 0 1 sun/nio/cs/StandardCharsets 0 5 java/util/TreeMap 0 1075 java/util/TreeMap$Entry 0 469 [Ljava/lang/String; 0 1 java/lang/StringBuffer 0 2 java/io/FileInputStream 0 2 java/io/FileOutputStream 0 2 java/io/BufferedOutputStream 0 1 java/lang/reflect/ReflectPermission 0 1 [[Ljava/lang/ref/SoftReference; 0 2 [Ljava/lang/ref/SoftReference; 0 2 sun/nio/cs/Surrogate$Parser 0 3 sun/misc/Signal 0 1 [Ljava/io/File; 0 6 java/io/File 0 1 java/util/BitSet 0 17 sun/reflect/NativeConstructorAccessorImpl 0 2 java/net/URLClassLoader$ClassFinder 0 12 java/util/ArrayList 0 32 java/io/RandomAccessFile 0 16 java/lang/Thread 0 1 java/lang/ref/Reference$ReferenceHandler 0 1 java/lang/ref/Finalizer$FinalizerThread 0 266 [B 0 2 java/util/Properties 0 71 java/lang/ref/Finalizer 0 2 com/ibm/nio/cs/DirectEncoder 0 38 java/lang/reflect/Constructor 0 33 java/util/jar/JarFile 0 19200 java/lang/StackOverflowError 0 5 java/security/AccessControlContext 0 2 [Ljava/lang/Thread; 0 4 java/lang/OutOfMemoryError 0 1065 java/util/Hashtable$Entry 0 1 java/io/BufferedInputStream 0 2 java/io/PrintStream 0 2 java/io/OutputStreamWriter 0 428 [I 0 3 java/lang/ClassLoader$NativeLibrary 0 25 java/util/Locale 0 3 sun/misc/URLClassPath 0 30 java/util/zip/Inflater 0 612 java/util/HashMap$Entry 0 2 java/io/FilePermission 0 10 java/io/ObjectStreamField 0 1 java/security/BasicPermissionCollection 0 2 java/security/ProtectionDomain 0 1 java/lang/Integer$1 0 1 java/lang/ref/Reference$Lock 0 1 java/lang/Shutdown$Lock 0 1 java/lang/Runtime 0 36 java/io/FileDescriptor 0 1 java/lang/Long$1 0 202 java/lang/Long 0 3 java/lang/ThreadLocal 0 3 java/nio/charset/CodingErrorAction 0 2 java/nio/charset/CoderResult 0 1 java/nio/charset/CoderResult$1 0 1 java/nio/charset/CoderResult$2 0 1 sun/misc/Unsafe 0 2 java/nio/ByteOrder 0 1 java/io/Os400FileSystem 0 3 java/lang/Boolean 0 1 java/lang/Terminator$1 0 23 java/lang/Integer 0 2 sun/misc/NativeSignalHandler 0 1 sun/misc/Launcher$Factory 0 1 sun/misc/Launcher 0 53 [Ljava/lang/Class; 0 1 java/lang/reflect/ReflectAccess 0 18 sun/reflect/DelegatingConstructorAccessorImpl 0 1 sun/net/www/protocol/file/Handler 0 3 java/util/HashSet 0 3 sun/net/www/protocol/jar/Handler 0 1 java/util/jar/JavaUtilJarAccessImpl 0 1 java/net/UnknownContentHandler 0 2 [Ljava/security/Principal; 0 10 [Ljava/security/cert/Certificate; 0 2 sun/misc/AtomicLongCSImpl 0 3 sun/reflect/DelegatingMethodAccessorImpl 0 1 sun/security/util/ByteArrayLexOrder 0 1 sun/security/util/ByteArrayTagOrder 0 7 sun/security/x509/CertificateVersion 0 7 sun/security/x509/CertificateSerialNumber 0 7 sun/security/x509/SerialNumber 0 7 sun/security/x509/CertificateAlgorithmId 0 7 sun/security/x509/CertificateIssuerName 0 60 sun/security/x509/RDN 0 60 [Lsun/security/x509/AVA; 0 67 sun/security/util/DerInputStream 0 3 [Ljava/math/BigInteger; 0 2 com/ibm/nio/cs/Converter 0 2 sun/nio/cs/StreamEncoder$CharsetSE 0 35 java/lang/ref/SoftReference 0 2 java/nio/HeapByteBuffer 0 2 java/io/BufferedWriter 0 33 sun/misc/URLClassPath$JarLoader 0 4 java/lang/ThreadLocal$ThreadLocalMap$Entry 0 76 java/net/URL 0 1 sun/misc/Launcher$ExtClassLoader 0 1 sun/misc/Launcher$AppClassLoader 0 4 java/lang/Throwable 0 7 java/lang/reflect/Method 0 2 sun/misc/URLClassPath$FileLoader 0 2 java/security/CodeSource 0 2 java/security/Permissions 0 2 java/io/FilePermissionCollection 0 1 java/lang/ThreadLocal$ThreadLocalMap 0 1 javax/crypto/spec/SecretKeySpec 0 17 java/util/jar/Attributes$Name 0 1 [Ljava/lang/ThreadLocal$ThreadLocalMap$Entry; 0 1 java/security/SecureRandom 0 2 sun/security/provider/Sun 0 1 java/util/jar/JarFile$JarFileEntry 0 1 java/util/jar/JarVerifier 0 3 sun/reflect/NativeMethodAccessorImpl 0 116 sun/security/util/ObjectIdentifier 0 1 java/lang/Package 0 2 [S 0 104 java/math/BigInteger 0 20 sun/security/x509/AlgorithmId 0 14 sun/security/x509/X500Name 0 14 [Lsun/security/x509/RDN; 0 60 sun/security/x509/AVA 0 67 sun/security/util/DerValue 0 67 sun/security/util/DerInputBuffer 0 21 sun/security/x509/AVAKeyword 0 6 sun/security/x509/X509CertImpl 0 7 sun/security/x509/X509CertInfo 0 1 [Lsun/security/util/ObjectIdentifier; 0 1 [[Ljava/lang/Byte; 0 3 [[B 0 7 sun/security/provider/DSAPublicKey 0 7 sun/security/x509/AuthorityKeyIdentifierExtension 0 12 [Ljava/lang/Byte; 0 14 java/lang/Byte 0 7 sun/security/x509/CertificateSubjectName 0 7 sun/security/x509/CertificateX509Key 0 14 sun/security/x509/KeyIdentifier 0 4 [Z 0 5 sun/text/Normalizer$Mode 0 7 sun/security/x509/CertificateValidity 0 14 java/util/Date 0 7 sun/security/provider/DSAParameters 0 7 sun/security/util/BitArray 0 7 sun/security/x509/CertificateExtensions 0 7 java/security/AlgorithmParameters 0 7 sun/security/x509/SubjectKeyIdentifierExtension 0 5 sun/security/x509/BasicConstraintsExtension 0 2 sun/security/x509/KeyUsageExtension 0 1 sun/text/CompactCharArray 0 1 sun/text/CompactByteArray 0 1 sun/net/www/protocol/jar/JarFileFactory 0 1 java/util/Collections$EmptySet 0 1 java/util/Collections$EmptyList 0 1 java/util/Collections$ReverseComparator 0 1 com/ibm/security/jgss/i18n/PropertyResource 0 1 javax/crypto/b$0 0 1 sun/security/provider/X509Factory 0 1 sun/reflect/BootstrapConstructorAccessorImpl 1 1 sun/reflect/GeneratedConstructorAccessor3202134454 2 1 com/ibm/crypto/provider/IBMJCE 0 6 java/util/ResourceBundle$LoaderReference 0 1 [Lsun/security/x509/NetscapeCertTypeExtension$MapEntry; 0 1 com/sun/rsajca/Provider 0 1 com/ibm/security/cert/IBMCertPath 0 1 com/ibm/as400/ibmonly/net/ssl/Provider 0 1 com/ibm/jsse/IBMJSSEProvider 0 1 com/ibm/security/jgss/IBMJGSSProvider 0 5 org/ietf/jgss/Oid 0 1 java/util/PropertyResourceBundle 0 7 java/util/ResourceBundle$ResourceCacheKey 0 2 sun/net/www/protocol/jar/URLJarFile 0 6 sun/misc/SoftCache$ValueCell 0 1 java/util/Random 0 1 java/util/Collections$EmptyMap 0 112 com/ibm/security/util/ObjectIdentifier 0 5 java/security/Security$ProviderProperty 0 1 java/security/cert/CertificateFactory 0 1 sun/security/provider/SecureRandom 0 2 java/security/MessageDigest$Delegate 0 2 sun/security/provider/SHA 0 1 sun/util/calendar/ZoneInfo 0 4 com/ibm/security/x509/X500Name 0 2 [Ljava/security/cert/X509Certificate; 0 1 sun/reflect/DelegatingClassLoader 0 1 sun/security/x509/NetscapeCertTypeExtension 0 7 sun/security/x509/NetscapeCertTypeExtension$MapEntry 0 3 [[Ljava/lang/String; 0 3 java/util/Arrays$ArrayList 0 7 com/ibm/security/x509/NetscapeCertTypeExtension$MapEntry 0 1 com/ibm/security/validator/EndEntityChecker 0 1 java/util/AbstractList$Itr 0 1 com/ibm/security/util/ByteArrayLexOrder 0 1 com/ibm/security/util/ByteArrayTagOrder 0 18 [Lcom/ibm/security/x509/AVA; 0 18 com/ibm/security/util/DerInputStream 0 5 com/ibm/security/util/text/Normalizer$Mode 0 1 com/ibm/security/validator/SimpleValidator 0 1 [Lcom/ibm/security/x509/NetscapeCertTypeExtension$MapEntry; 0 4 [Lcom/ibm/security/x509/RDN; 0 1 java/util/Hashtable$Enumerator 0 4 java/util/LinkedHashMap$Entry 0 1 sun/text/resources/LocaleElements 0 1 sun/text/resources/LocaleElements_en 0 22 com/ibm/security/x509/AVAKeyword 0 4 javax/security/auth/x500/X500Principal 0 18 com/ibm/security/x509/RDN 0 18 com/ibm/security/x509/AVA 0 18 com/ibm/security/util/DerInputBuffer 0 18 com/ibm/security/util/DerValue 0 1 com/ibm/security/util/text/CompactCharArray 0 1 com/ibm/security/util/text/CompactByteArray 0 2 java/util/LinkedHashMap 0 1 java/net/InetAddress$1 0 2 [Ljava/net/InetAddress; 0 2 java/net/InetAddress$Cache 0 1 java/net/Inet4AddressImpl 0 3 java/net/Inet4Address 0 2 java/net/InetAddress$CacheEntry ........................................................................ . Global registry information . ........................................................................ Loader Objects Class name ------ ------- ---------- 0 23 [C 0 1017 java/lang/Class 0 1 java/lang/ref/Reference$ReferenceHandler 0 1 java/lang/ref/Finalizer$FinalizerThread 0 1 sun/misc/Launcher$AppClassLoader 0 32 java/io/RandomAccessFile 0 32 [B Can someone please advise me? Thanks a lot, Prasanna

    Read the article

  • Windows 7 deployment thru WDS

    - by vn
    Hello, I am deploying new systems on my network and I built my reference computer by installing the OS the manufacturers (Dell and a custom built system from some local business) gave with all drivers, installed all the desired applications. As for the settings part, I'm doing most of it thru GPOs. I want to image my reference computer and deploy it with WDS. i found several links on how to sysprep, but they're all doing it with some differences without explaining them. My questions : How do I manage (into sysprep) the domain join/computer naming part since (from what I understand) WDS manages that? How do I know/determine what I need to setup into my sysprep.xml? Can you sysprep a first time, try and if it fails, do some modifications and try again? I am thinking of doing a basis sysprep, checking what info can be automated and correct that in the answer file. What do I miss if skipping the "audit" mode? I don't plan on re-doing the reference computer... I read that when sysprepping, it resets settings from the reference computer like the computer name, activation/key and such... what setting is sysprep resetting by default that I should be aware of? I must admit I am quite lost about Win7, sysprep, RIS, MDI toolkit, WDS.. I understand the way of doing with XP, but it changed so much with Windows 7! The links I am reading are : http://far2paranoid.wordpress.com/2007/12/05/prep-for-sysprep/ http://blog.brianleejackson.com/sysprep-a-windows-7-machine-%E2%80%93-start-to-finish-v2 http://www.ehow.com/print/how_5392616_sysprep-machine-start-finish-v2.html Thank you VERY much for any answers, they are much appreciated.

    Read the article

  • DIR $file "File Not Found" vs DIR $filedir shows it....not permissions, not USB

    - by Kev
    I was having this problem before on a USB drive, but now it's happening on my main RAID5-backed hard disk: 2013-10-17 9:37 C:\>dir "C:\Shares\Shared\Reference\Safety Management System\Vid eo CD\AutoPlay\Docs\Manuel*" Volume in drive C has no label. Volume Serial Number is 3C18-E114 Directory of C:\Shares\Shared\Reference\Safety Management System\Video CD\AutoP lay\Docs 2003-09-09 11:29 PM 1,056,768 Manuel d'intervention d'urgence MFC.doc 2004-06-20 10:36 PM 139,849 Manuel d'intervention d'urgence MFC.pdf 2 File(s) 1,196,617 bytes 0 Dir(s) 196,068,691,968 bytes free 2013-10-17 9:38 C:\>dir "C:\Shares\Shared\Reference\Safety Management System\Vid eo CD\AutoPlay\Docs\Manuel d'intervention d'urgence MFC.doc" Volume in drive C has no label. Volume Serial Number is 3C18-E114 Directory of C:\Shares\Shared\Reference\Safety Management System\Video CD\AutoP lay\Docs File Not Found 2013-10-17 9:38 C:\> This is from a Command Prompt window where I went to Properties and told it I wanted to modify who it ran as. I opened it, had it run as me with the "restricted access" unchecked, then ran the above. The file in question has the following ACLs: Administrators, SYSTEM, and OurCompanyUsers. All three have full control of everything. Nobody has any Deny bits set. I am a member of Administrators. So I don't believe it's a permissions issue. It's not a USB drive, so this time there is no question of USB hardware. Windows Server 2003 Standard Edition SP2. What does this mean? Is this more likely a hardware or software problem?

    Read the article

< Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >