Search Results

Search found 15935 results on 638 pages for 'background color'.

Page 122/638 | < Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >

  • Painting with pixel shaders

    - by Gustavo Maciel
    I have an almost full understanding of how 2D Lighting works, saw this post and was tempted to try implementing this in HLSL. I planned to paint each of the layers with shaders, and then, combine them just drawing one on top of another, or just pass the 3 textures to the shader and getting a better way to combine them. Working almost as planned, but I got a little question in the matter. I'm drawing each layer this way: GraphicsDevice.SetRenderTarget(lighting); GraphicsDevice.Clear(Color.Transparent); //... Setup shader SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.None, RasterizerState.CullNone, lightingShader); SpriteBatch.Draw(texture, fullscreen, Color.White); SpriteBatch.End(); GraphicsDevice.SetRenderTarget(darkMask); GraphicsDevice.Clear(Color.Transparent); //... Setup shader SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.None, RasterizerState.CullNone, darkMaskShader); SpriteBatch.Draw(texture, fullscreen, Color.White); SpriteBatch.End(); Where lightingShader and darkMaskShader are shaders that, with parameters (view and proj matrices, light pos, color and range, etc) generate a texture meant to be that layer. It works fine, but I'm not sure if drawing a transparent quad on top of a transparent render target is the best way of doing it. Because I actually just need the position and params. Concluding: Can I paint a texture with shaders without having to clear it and then draw a transparent texture on top of it?

    Read the article

  • Why doesn't my cube hold a position?

    - by Christian Frantz
    I gave up a previous method of creating cubes so I went with a list to hold my cube objects. The list is being populated from an array like so: #region MAP float[,] map = { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0} }; #endregion MAP for (int x = 0; x < mapWidth; x++) { for (int z = 0; z < mapHeight; z++) { cubes.Add(new Cube(device, new Vector3(x, map[x,z], z), Color.Green)); } } The cube follows all the parameters of what I had before. This is just easier to deal with. But when I debug, every cube has a position of (0, 0, 0) and there's just one black cube in the middle of my screen. What could I be doing wrong here? public Vector3 cubePosition { get; set; } public Cube(GraphicsDevice graphicsDevice, Vector3 Position, Color color) { device = graphicsDevice; color = Color.Green; Position = cubePosition; SetUpIndices(); SetUpVerticesArray(); } That's the cube constructor. All variables are being passed correctly I think

    Read the article

  • error trying to display semi transparent rectangle

    - by scott lafoy
    I am trying to draw a semi transparent rectangle and I keep getting an error when setting the textures data. The size of the data passed in is too large or too small for this resource. dummyRectangle = new Rectangle(0, 0, 8, 8); Byte transparency_amount = 100; //0 transparent; 255 opaque dummyTexture = new Texture2D(ScreenManager.GraphicsDevice, 8, 8); Color[] c = new Color[1]; c[0] = Color.FromNonPremultiplied(255, 255, 255, transparency_amount); dummyTexture.SetData<Color>(0, dummyRectangle, c, 0, 1); the error is on the SetData line: "The size of the data passed in is too large or too small for this resource." Any help would be appreciated. Thank you.

    Read the article

  • Just too bright

    - by Bunch
    Like a lot of folks I am using SSMS and VS pretty much all day. But staring at the text on the stark white background can be a bit much for my eyes after a while. I have seen quite a few different “themes” for these apps which change all the colors around to make it easier on your eyes. Some of them are pretty cool but all I really wanted was to dim the background a little not radically change the way everything looked. Since the stock colors for comments, breakpoints, keywords and the like are so familiar I wanted a background that did not interfere with those colors. So I picked the following custom color for the item background. It comes off as a parchment type color. Hue: 42        Red: 244 Sat: 123    Green: 245 Lum: 221    Blue: 224

    Read the article

  • Tip: Recording Non-Maximized Applications in UPK

    - by Marc Santosusso
    Have you ever wanted to record an application that would not maximize, or an application that would look strange maximized? Or perhaps your Windows Desktop has become cluttered with icons and you don't want to capture the clutter in your recordings. Here's a tip that will help: create a background for your recording. Create a blank HTML file with a black background in your favorite HTML editor. Or download this sample file: UPK_Recording_Background.html (right click to save). If you would prefer a different color background in the sample file, open it in Notepad and change “#000” to a different HTML color. Open UPK_Recording_Background.html in its own web browser window. Press F11 to make the web browser window full screen. This should give you a completely black screen. (This works great in modern versions of the most popular browsers. I successfully used Firefox 15, Chrome 22, and IE 9. Open or switch to the desired application so that it sits on top of the full screen browser window. If the application you are recording is also in a browser, it is important that it be in a separate browser window from the UPK_Recording_Background.html. Record your topic normally. The above steps create a recording background using an HTML file and a web browser. This is just one method, for instance you could do the same thing with an image editor and an image viewer with a full screen view. Now you can record a non-maximized application without a distracting background. I hope you find this to be a helpful tip. Let us know what you think in the comments.

    Read the article

  • Incorrect lighting results with deferred rendering

    - by Lasse
    I am trying to render a light-pass to a texture which I will later apply on the scene. But I seem to calculate the light position wrong. I am working on view-space. In the image above, I am outputting the attenuation of a point light which is currently covering the whole screen. The light is at 0,10,0 position, and I transform it to view-space first: Vector4 pos; Vector4 tmp = new Vector4 (light.Position, 1); // Transform light position for shader Vector4.Transform (ref tmp, ref Camera.ViewMatrix, out pos); shader.SendUniform ("LightViewPosition", ref pos); Now to me that does not look as it should. What I think it should look like is that the white area should be on the center of the scene. The camera is at the corner of the scene, and it seems as if the light would move along with the camera. Here's the fragment shader code: void main(){ // default black color vec3 color = vec3(0); // Pixel coordinates on screen without depth vec2 PixelCoordinates = gl_FragCoord.xy / ScreenSize; // Get pixel position using depth from texture vec4 depthtexel = texture( DepthTexture, PixelCoordinates ); float depthSample = unpack_depth(depthtexel); // Get pixel coordinates on camera-space by multiplying the // coordinate on screen-space by inverse projection matrix vec4 world = (ImP * RemapMatrix * vec4(PixelCoordinates, depthSample, 1.0)); // Undo the perspective calculations vec3 pixelPosition = (world.xyz / world.w) * 3; // How far the light should reach from it's point of origin float lightReach = LightColor.a / 2; // Vector in between light and pixel vec3 lightDir = (LightViewPosition.xyz - pixelPosition); float lightDistance = length(lightDir); vec3 lightDirN = normalize(lightDir); // Discard pixels too far from light source //if(lightReach < lightDistance) discard; // Get normal from texture vec3 normal = normalize((texture( NormalTexture, PixelCoordinates ).xyz * 2) - 1); // Half vector between the light direction and eye, used for specular component vec3 halfVector = normalize(lightDirN + normalize(-pixelPosition)); // Dot product of normal and light direction float NdotL = dot(normal, lightDirN); float attenuation = pow(lightReach / lightDistance, LightFalloff); // If pixel is lit by the light if(NdotL > 0) { // I have moved stuff from here to above so I can debug them. // Diffuse light color color += LightColor.rgb * NdotL * attenuation; // Specular light color color += LightColor.xyz * pow(max(dot(halfVector, normal), 0.0), 4.0) * attenuation; } RT0 = vec4(color, 1); //RT0 = vec4(pixelPosition, 1); //RT0 = vec4(depthSample, depthSample, depthSample, 1); //RT0 = vec4(NdotL, NdotL, NdotL, 1); RT0 = vec4(attenuation, attenuation, attenuation, 1); //RT0 = vec4(lightReach, lightReach, lightReach, 1); //RT0 = depthtexel; //RT0 = 100 / vec4(lightDistance, lightDistance, lightDistance, 1); //RT0 = vec4(lightDirN, 1); //RT0 = vec4(halfVector, 1); //RT0 = vec4(LightColor.xyz,1); //RT0 = vec4(LightViewPosition.xyz/100, 1); //RT0 = vec4(LightPosition.xyz, 1); //RT0 = vec4(normal,1); } What am I doing wrong here?

    Read the article

  • Masking OpenGL texture by a pattern

    - by user1304844
    Tiled terrain. User wants to build a structure. He presses build and for each tile there is an "allow" or "disallow" tile sprite added to the scene. FPS drops right away, since there are 600+ tiles added to the screen. Since map equals screen, there is no scrolling. I came to an idea to make an allow grid covering the whole map and mask the disallow fields. Approach 1: Create allow and disallow grid textures. Draw a polygon on screen. Pass both textures to the fragment shader. Determine the position inside the polygon and use color from allowTexture if the fragment belongs to the allow field, disallow otherwise Problem: How do I know if I'm on the field that isn't allowed if I cannot pass the matrix representing the map (enum FieldStatus[][] (Allow / Disallow)) to the shader? Therefore, inside the shader I don't know which fragments should be masked. Approach 2: Create allow texture. Create an empty texture buffer same size as the allow texture Memset the pixels of the empty texture to desired color for each pixel that doesn't allow building. Draw a polygon on screen. Pass both textures to the fragment shader. Use texture2 color if alpha 0, texture1 color otherwise. Problem: I'm not sure what is the right way to manipulate pixels on a texture. Do I just make a buffer with width*height*4 size and memcpy the color[] to desired coordinates or is there anything else to it? Would I have to call glTexImage2D after every change to the texture? Another problem with this approach is that it takes a lot more work to get a prettier effect since I'm manipulating the color pixels instead of just masking two textures. varying vec2 TexCoordOut; uniform sampler2D Texture1; uniform sampler2D Texture2; void main(void){ vec4 allowColor = texture2D(Texture1, TexCoordOut); vec4 disallowColor = texture2D(Texture2, TexCoordOut); if(disallowColor.a > 0){ gl_FragColor= disallowColor; }else{ gl_FragColor= allowColor; }} I'm working with OpenGL on Windows. Any other suggestion is welcome.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Biome Transition in a Grid & Borderless World

    - by API-Beast
    I have a universe: a list of "Systems", each with their own center, type and radius. A small part of such a universe could look like this: Systems: Can be very close to a different system, e.g. overlap Can be inside another, much bigger system Can be very far away from any other systems Spawn system specific entities and particles inside the system radius Have some properties like background color So far so good. However, the player can fly around freely, inside and outside of systems, in real time. How do I interpolate and determine things like the background color now, depending on camera position? E.g. if you are halfway between a green and a red system you should see a background halfway between red and green, or if you are inside a lilac system near the center and at the border of a green system you should get a mostly lilac background etc.

    Read the article

  • Is creating a separate pool for each individual image created from a png appropriate?

    - by Panzercrisis
    I'm still possibly a little green about object-pooling, and I want to make sure something like this is a sound design pattern before really embarking upon it. Take the following code (which uses the Starling framework in ActionScript 3): [Embed(source = "/../assets/images/game/misc/red_door.png")] private const RED_DOOR:Class; private const RED_DOOR_TEXTURE:Texture = Texture.fromBitmap(new RED_DOOR()); private const m_vRedDoorPool:Vector.<Image> = new Vector.<Image>(50, true); . . . public function produceRedDoor():Image { // get a Red Door image } public function retireRedDoor(pImage:Image):void { // retire a Red Door Image } Except that there are four colors: red, green, blue, and yellow. So now we have a separate pool for each color, a separate produce function for each color, and a separate retire function for each color. Additionally there are several items in the game that follow this 4-color pattern, so for each of them, we have four pools, four produce functions, and four retire functions. There are more colors involved in the images themselves than just their predominant one, so trying to throw all the doors, for instance, in a single pool, and then changing their color properties around isn't going to work. Also the nonexistence of the static keyword is due to its slowness in AS3. Is this the right way to do things?

    Read the article

  • Is creating a separate pool for each individual png image in the same class appropriate?

    - by Panzercrisis
    I'm still possibly a little green about object-pooling, and I want to make sure something like this is a sound design pattern before really embarking upon it. Take the following code (which uses the Starling framework in ActionScript 3): [Embed(source = "/../assets/images/game/misc/red_door.png")] private const RED_DOOR:Class; private const RED_DOOR_TEXTURE:Texture = Texture.fromBitmap(new RED_DOOR()); private const m_vRedDoorPool:Vector.<Image> = new Vector.<Image>(50, true); . . . public function produceRedDoor():Image { // get a Red Door image } public function retireRedDoor(pImage:Image):void { // retire a Red Door Image } Except that there are four colors: red, green, blue, and yellow. So now we have a separate pool for each color, a separate produce function for each color, and a separate retire function for each color. Additionally there are several items in the game that follow this 4-color pattern, so for each of them, we have four pools, four produce functions, and four retire functions. There are more colors involved in the images themselves than just their predominant one, so trying to throw all the doors, for instance, in a single pool, and then changing their color properties around isn't going to work. Also the nonexistence of the static keyword is due to its slowness in AS3. Is this the right way to do things?

    Read the article

  • Drawing 2D Grid in 3D View - Need help with method

    - by Deukalion
    I'm trying to draw a simple 2D grid for an editor, to able to navigate more clearly around the 3D space, but I can't render it: Grid2D class, creates a grid of a certain size at a location and should just draw lines. public class Grid2D : IShape { private VertexPositionColor[] _vertices; private Vector2 _size; private Vector3 _location; private int _faces; public Grid2D(Vector2 size, Vector3 location, Color color) { float x = 0, y = 0; if (size.X < 1f) { size.X = 1f; } if (size.Y < 1f) { size.Y = 1f; } _size = size; _location = location; List<VertexPositionColor> vertices = new List<VertexPositionColor>(); _faces = 0; for (y = -size.Y; y <= size.Y; y++) { vertices.Add(new VertexPositionColor(location + new Vector3(-size.X, y, 0), color)); vertices.Add(new VertexPositionColor(location + new Vector3(size.X, y, 0), color)); _faces++; } for (x = -size.X; x <= size.X; x++) { vertices.Add(new VertexPositionColor(location + new Vector3(x, -size.Y, 0), color)); vertices.Add(new VertexPositionColor(location + new Vector3(x, size.Y, 0), color)); _faces++; } _vertices = vertices.ToArray(); } public void Render(GraphicsDevice device) { device.DrawUserPrimitives<VertexPositionColor>(PrimitiveType.LineList, _vertices, 0, _faces); } } Like this: +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ Anyone knows what I'm doing wrong? If I add a Shape without texture, it's set automatically to VertexColorEnabled and TextureEnabled = false. This is how I render it: foreach (RenderObject render in _renderObjects) { render.Effect.Projection = projection; render.Effect.View = view; render.Effect.World = world; foreach (EffectPass pass in render.Effect.CurrentTechnique.Passes) { pass.Apply(); try { // Could be a Grid2D render.Shape.Render(_device); } catch { throw; } } } Exception is thrown: The current vertex shader declaration does not include all the elements required by the current Vertex Shader. Normal0 is missing. Simply put, I can't figure out how to draw a few lines. I want to draw them one at a time and I guess that's the problem I haven't figured out, and even when I tried rendering vertices[i], vertices[i+1] and primitiveCount = 1, vertices = 2, and so on it didn't work either. Any suggestions?

    Read the article

  • Data Binding to Attached Properties

    - by Chris Gardner
    Originally posted on: http://geekswithblogs.net/freestylecoding/archive/2013/06/14/data-binding-to-attached-properties.aspx When I was working on my C#/XAML game framework, I discovered I wanted to try to data bind my sprites to background objects. That way, I could update my objects and the draw functionality would take care of the work for me. After a little experimenting and web searching, it appeared this concept was an impossible dream. Of course, when has that ever stopped me? In my typical way, I started to massively dive down the rabbit hole. I created a sprite on a canvas, and I bound it to a background object. <Canvas Name="GameField" Background="Black"> <Image Name="PlayerStrite" Source="Assets/Ship.png" Width="50" Height="50" Canvas.Left="{Binding X}" Canvas.Top="{Binding Y}"/> </Canvas> Now, we wire the UI item to the background item. public MainPage() { this.InitializeComponent(); this.Loaded += StartGame; }   void StartGame( object sender, RoutedEventArgs e ) { BindingPlayer _Player = new BindingPlayer(); _Player.X = Window.Current.Bounds.Height - PlayerSprite.Height; _Player.X = ( Window.Current.Bounds.Width - PlayerSprite.Width ) / 2.0; } Of course, now we need to actually have our background object. public class BindingPlayer : INotifyPropertyChanged { private double m_X; public double X { get { return m_X; } set { m_X = value; NotifyPropertyChanged(); } }   private double m_Y; public double Y { get { return m_Y; } set { m_Y = value; NotifyPropertyChanged(); } }   public event PropertyChangedEventHandler PropertyChanged; protected void NotifyPropertyChanged( [CallerMemberName] string p_PropertyName = null ) { if( PropertyChanged != null ) PropertyChanged( this, new PropertyChangedEventArgs( p_PropertyName ) ); } } I fired this baby up, and my sprite was correctly positioned on the screen. Maybe the sky wasn't falling after all. Wouldn't it be great if that was the case? I created some code to allow me to move the sprite, but nothing happened. This seems odd. So, I start debugging the application and stepping through code. Everything appears to be working. Time to dig a little deeper. After much profanity was spewed, I stumbled upon a breakthrough. The code only looked like it was working. What was really happening is that there was an exception being thrown in the background thread that I never saw. Apparently, the key call was the one to PropertyChanged. If PropertyChanged is not called on the UI thread, the UI thread ignores the call. Actually, it throws an exception and the background thread silently crashes. Of course, you'll never see this unless you're looking REALLY carefully. This seemed to be a simple problem. I just need to marshal this to the UI thread. Unfortunately, this object has no knowledge of this mythical UI Thread in which we speak. So, I had to pull the UI Thread out of thin air. Let's change our PropertyChanged call to look this. public event PropertyChangedEventHandler PropertyChanged; protected void NotifyPropertyChanged( [CallerMemberName] string p_PropertyName = null ) { if( PropertyChanged != null ) Windows.ApplicationModel.Core.CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync( Windows.UI.Core.CoreDispatcherPriority.Normal, new Windows.UI.Core.DispatchedHandler( () => { PropertyChanged( this, new PropertyChangedEventArgs( p_PropertyName ) ); } ) ); } Now, we raised our notification on the UI thread. Everything is fine, people are happy, and the world moves on. You may have noticed that I didn't await my call to the dispatcher. This was intentional. If I am trying to update a slew of sprites, I don't want thread being hung while I wait my turn. Thus, I send the message and move on. It is worth nothing that this is NOT the most efficient way to do this for game programming. We'll get to that in another blog post. However, it is perfectly acceptable for a business app that is running a background task that would like to notify the UI thread of progress on a periodic basis. It is worth noting that this code was written for a Windows Store App. You can do the same thing with WP8 and WPF. The call to the marshaler changes, but it is the same idea.

    Read the article

  • Upgrade to 14.04 broke gsettings

    - by zrneely
    I have a cron job which runs every 30 minutes that changes the background image by running this bash script: #!/bin/bash export DISPLAY=:0 export GSETTINGS_BACKEND=dconf wpdir="/home/username/Pictures/wallpapers/" prefix="file://" file=`ls $wpdir | shuf -n 1` gsettings set org.gnome.desktop.background picture-uri "$prefix$wpdir$file" This worked perfectly until I upgraded to 14.04. Now, running the script produces this output: (process:27459): dconf-WARNING **: failed to commit changes to dconf: Could not connect: Connection refused What can I do to fix this? Google didn't turn up any useful results. EDIT: I noticed that running this does change the background displayed on the lock screen, but it does not affect the desktop background.

    Read the article

  • changing system terminal colours?

    - by user88561
    So I have my computer set up just the way I want, with gnome 3 in my favorite color scheme, and the terminal in a matching background/text color scheme. Even the login screen has my Desktop background. However it is a little jarring when I shut down/use grubby and its in the default maroon and white scheme. Is there any way to change this to make it more similar to my own color scheme in terminal?

    Read the article

  • Access Master Page Controls II

    - by Bunch
    Here is another way to access master page controls. This way has a bit less coding then my previous post on the subject. The scenario would be that you have a master page with a few navigation buttons at the top for users to navigate the app. After a button is clicked the corresponding aspx page would load in the ContentPlaceHolder. To make it easier for the users to see what page they are on I wanted the clicked navigation button to change color. This would be a quick visual for the user and is useful when inevitably they are interrupted with something else and cannot get back to what they were doing for a little while. Anyway the code is something like this. Master page: <body>     <form id="form1" runat="server">     <div id="header">     <asp:Panel ID="Panel1" runat="server" CssClass="panelHeader" Width="100%">        <center>            <label style="font-size: large; color: White;">Test Application</label>        </center>       <asp:Button ID="btnPage1" runat="server" Text="Page1" PostBackUrl="~/Page1.aspx" CssClass="navButton"/>       <asp:Button ID="btnPage2" runat="server" Text="Page2" PostBackUrl="~/Page2.aspx" CssClass="navButton"/>       <br />     </asp:Panel>     <br />     </div>     <div>         <asp:scriptmanager ID="Scriptmanager1" runat="server"></asp:scriptmanager>         <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">         </asp:ContentPlaceHolder>     </div>     </form> </body> Page 1: VB Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load     Dim clickedButton As Button = Master.FindControl("btnPage1")     clickedButton.CssClass = "navButtonClicked" End Sub CSharp protected void Page_Load(object sender, EventArgs e) {     Button clickedButton;     clickedButton = (Button)Master.FindControl("btnPage1");     clickedButton.CssClass = "navButtonClicked"; } CSS: .navButton {     background-color: White;     border: 1px #4e667d solid;     color: #2275a7;     display: inline;     line-height: 1.35em;     text-decoration: none;     white-space: nowrap;     width: 100px;     text-align: center;     margin-bottom: 10px;     margin-left: 5px;     height: 30px; } .navButtonClicked {     background-color:#FFFF86;     border: 1px #4e667d solid;     color: #2275a7;     display: inline;     line-height: 1.35em;     text-decoration: none;     white-space: nowrap;     width: 100px;     text-align: center;     margin-bottom: 10px;     margin-left: 5px;     height: 30px; } The idea is pretty simple, use FindControl for the master page in the page load of your aspx page. In the example I changed the CssClass for the aspx page's corresponding button to navButtonClicked which has a different background-color and makes the clicked button stand out. Technorati Tags: ASP.Net,CSS,CSharp,VB.Net

    Read the article

  • Please Help - PHP Form, when no text is entered [migrated]

    - by Joe Turner
    I'm creating a mobile landing page and I have also created a form that allows me to create more, by duplicating a folder that's host to a template file. The script then takes you to a page where you input the company details one by one and press submit. Then the page is created. My problem is, when a field is left out (YouTube for instance), the button is created and is blank. I would like there to be a default text for when there is no text. I've tried a few things and have been struggling to make this work for DAYS! <?php $company = $_POST["company"]; $phone = $_POST["phone"]; $colour = $_POST["colour"]; $email = $_POST["email"]; $website = $_POST["website"]; $video = $_POST["video"]; ?> <div id="contact-area"> <form method="post" action="generate.php"><br> <input type="text" name="company" placeholder="Company Name" /><br> <input type="text" name="slogan" placeholder="Slogan" /><br> <input class="color {required:false}" name="colour" placeholder="Company Colour"><br> <input type="text" name="phone" placeholder="Phone Number" /><br> <input type="text" name="email" placeholder="Email Address" /><br> <input type="text" name="website" placeholder="Full Website - Include http://" /><br> <input type="text" name="video" placeholder="Video URL" /><br> <input type="submit" value="Generate QuickLinks" style="background:url(images/submit.png) repeat-x; color:#FFF"/> </form> That's the form. It takes the variables and post's them to the file below. <?php $File = "includes/details.php"; $Handle = fopen($File, 'w'); ?> <?php $File = "includes/details.php"; $Handle = fopen($File, 'w'); $Data = "<div id='logo'> <h1 style='color:#$_POST[colour]'>$_POST[company]</h1> <h2>$_POST[slogan]</h2> </div> <ul data-role='listview' data-inset='true' data-theme='b'> <li style='background-color:#$_POST[colour]'><a href='tel:$_POST[phone]'>Phone Us</a></li> <li style='background-color:#$_POST[colour]'><a href='mailto:$_POST[email]'>Email Us</a></li> <li style='background-color:#$_POST[colour]'><a href='$_POST[website]'>View Full Website</a></li> <li style='background-color:#$_POST[colour]'><a href='$_POST[video]'>Watch Us</a></li> </ul> \n"; fwrite($Handle, $Data); fclose($Handle); ?> and there is what the form turns into. I need there to be a default link put in incase the field is left blank, witch it is sometimes. Thanks in advance guys.

    Read the article

  • Efficiently rendering to 3D texture

    - by TravisG
    I have an existing depth texture and some other color textures, and want to process the information in them by rendering to a 3D texture (based on the depth contained in the depth texture, i.e. a point at (x/y) in the depth texture will be rendered to (x/y/texture(depth,uv)) in the 3D texture). Simply doing one manual draw call for each slice of the 3D texture (via glFramebufferTextureLayer) is terribly slow, since I don't know beforehand to what slice of the 3D texture a given texel from one of the color textures or the depth texture belongs. This means the entire process is effectively for each slice for each texel in depth texture process color textures and render to slice So I have to sample the depth texture completely per each slice, and I also have to go through the processing (at least until to discard;) for all texels in it. It would be much faster if I could rearrange the process to for each texel in depth texture figure out what slice it should end up in process color textures and render to slice Is this possible? If so, how? What I'm actually trying to do: the color textures contain lighting information (as seen from light view, it's a reflective shadow map). I want to accumulate that information in the 3D texture and then later use it to light the scene. More specifically I'm trying to implement Cryteks Light Propagation Volumes algorithm.

    Read the article

  • How to shade a texture two different colors?

    - by Venesectrix
    To give an example of what I'm asking about, I'll use Saints Row 3 since I've been playing that lately. In that game you can customize your looks and your car's appearance a lot. Your coat can have a primary color and a trim color. Your car can have a primary color and a stripe color, etc. Is there just a single coat texture that is being shaded two different colors somehow or are they overlaying a transparent second texture for the trim/stripes that gets shaded differently? If it's just one texture I'd like to know how it's done. If it's two different textures it seems like it's a waste of space. The second texture would be the same size as the first one but mostly transparent if you just wanted to lay it on top of the first one. Or are they just carefully positioning a second, smaller texture so that it aligns properly with the first one?

    Read the article

  • Gnome 3 - Old fashioned buttons and menus

    - by vigs1990
    I've upgraded to Gnome 3 and the problem I'm facing is that when I restart, sometimes the menus and buttons look old-fashioned like this: whereas sometimes, it looks modern and neat like this: Notice the differences between the two: here are a few differences: The menu bar (notice the difference in fonts, dark grey color of Snapshot1 vs the light grey color in Snapshot2 in the background) The file navigation bar bellow the menu bar (notice the 'Home' button there and also the left arrow button) The left-hand side navigation bar (font, background color and color of selected folder) The old style look effects the GTK aspects of the interface, such as the menu, buttons, mouse pointer etc. Another observation is that changing the GTK themes does using gnome-tweak-tool when the old style look is loaded does NOT work. However, this works when the regular look is loaded. How can I ensure that the old-fashioned look does not load on boot?

    Read the article

  • Problem with alleg42.dll / program crashes / Allegro & Codeblocks

    - by user24152
    I'm having a serious problem with allegro. The program should display random pixels on the screen and when I build and run it I get the following error message: Below is the full code of my program: #include <stdio.h> #include <stdlib.h> #include <time.h> #include "allegro.h" #define Text_Color_Red makecol(255,0,0) int main() { int ret; int color_depth = 32; int x; int y; int red; int green; int blue; int color; //init allegro allegro_init(); //install keyboard install_keyboard(); //set color depth to 32 bits set_color_depth(color_depth); //init random seed srand(time(NULL)); //init video mode to 640 x 480 ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED,640,480,0,0); if(ret !=0) { allegro_message(allegro_error); return 1; } //Display string textprintf(screen,font,0,0,10,0,Text_Color_Red,"Screen Resolution is: %dx%d -- Press ESC to quit !",SCREEN_W,SCREEN_H); //display pixels until ESC key is pressed //wait for keypress while(!key[KEY_ESC]) { //set a random location x = 10 + rand() % (SCREEN_W-20); y = 10 + rand() % (SCREEN_H-20); //set a random color red = rand() % 255; green = rand() % 255; blue = rand() % 255; color = makecol(red,green,blue); //draw the pixel putpixel(screen, x, y, color); } //quit allegro allegro_exit(); } END_OF_MAIN() Error message: AllegroPixels1.exe has encountered a problem and needs to close. We are sorry for the inconvenience. Error signature: AppName: allegropixels1.exe AppVer: 0.0.0.0 ModName: alleg42.dll ModVer: 4.2.3.0 Offset: 0006c05c I am using Windows XP inside a virtual machine under Parallels 7.0

    Read the article

  • Colored Collision Detection

    - by tugrul büyükisik
    Several years ago, i made a fast collision detection for 2D, it was just checking a bullets front-pixel's color to check if it were to hit something. Lets say the target rgb color is (124,200,255) then it just checks for that color. After the collision detection, it paints the target with appropriate picture. So, collision detection is made in background without drawing but then painted and drawed. How can i do this in 3D? Because, a vertex is not just exist like a 2D picture's pixel. I looked at some java3D and other programs and understood that 3D world is made of objects. Not just pictures. Is there a program that truly fills the world with vertices ? But it could be needing terabytes of ram even more. Do you know an easy way to interpolate the color of a vertex in java3D or similar program? Note: for a rgb color-identifier, i can make 255*255*255 different 2D objects in background.

    Read the article

  • Why is my primitive xna square not drawn/shown?

    - by Mech0z
    I have made this class to draw a rectangle, but I cant get it to be drawn, I have no issues displaying a 3d model created in 3dmax, but shown these primitives seems much harder I use this to create it board = new Board(Vector3.Zero, 1000, 1000, Color.Yellow); And here is the implementation using System; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Ink; using System.Windows.Input; using System.Windows.Shapes; using Quadro.Models; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; namespace Quadro { public class Board : IGraphicObject { //Private Fields private Vector3 modelPosition; private BasicEffect effect; private VertexPositionColor[] vertices; private Matrix rotationMatrix; private GraphicsDevice graphicsDevice; private Matrix cameraProjection; //Constructor public Board(Vector3 position, float length, float width, Color color) { var _color = color; vertices = new VertexPositionColor[6]; vertices[0].Position = new Vector3(position.X, position.Y, position.Z); vertices[1].Position = new Vector3(position.X, position.Y + width, position.Z); vertices[2].Position = new Vector3(position.X + length, position.Y, position.Z); vertices[3].Position = new Vector3(position.X + length, position.Y, position.Z); vertices[4].Position = new Vector3(position.X, position.Y + width, position.Z); vertices[5].Position = new Vector3(position.X + length, position.Y + width, position.Z); for(int i = 0; i < vertices.Length; i++) { vertices[i].Color = color; } initFields(); } private void initFields() { graphicsDevice = SharedGraphicsDeviceManager.Current.GraphicsDevice; effect = new BasicEffect(graphicsDevice); modelPosition = Vector3.Zero; float screenWidth = (float)graphicsDevice.Viewport.Width; float screenHeight = (float)graphicsDevice.Viewport.Height; float aspectRatio = screenWidth / screenHeight; this.cameraProjection = Matrix.CreatePerspectiveFieldOfView(MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); this.rotationMatrix = Matrix.Identity; } //Public Methods public void Update(GameTimerEventArgs e) { } public void Draw(Vector3 cameraPosition, GameTimerEventArgs e) { Matrix cameraView = Matrix.CreateLookAt(cameraPosition, Vector3.Zero, Vector3.Up); foreach (EffectPass pass in effect.CurrentTechnique.Passes) { pass.Apply(); effect.World = rotationMatrix * Matrix.CreateTranslation(modelPosition); effect.View = cameraView; effect.Projection = cameraProjection; graphicsDevice.DrawUserPrimitives(PrimitiveType.TriangleList, vertices, 0, 2, VertexPositionColor.VertexDeclaration); } } public void Rotate(Matrix rotationMatrix) { this.rotationMatrix = rotationMatrix; } public void Move(Vector3 moveVector) { this.modelPosition += moveVector; } } }

    Read the article

  • GLSL per pixel lighting with custom light type

    - by Justin
    Ok, I am having a big problem here. I just got into GLSL yesterday, so the code will be terrible, I'm sure. Basically, I am attempting to make a light that can be passed into the fragment shader (for learning purposes). I have four input values: one for the position of the light, one for the color, one for the distance it can travel, and one for the intensity. I want to find the distance between the light and the fragment, then calculate the color from there. The code I have gives me a simply gorgeous ring of light that get's twisted and widened as the matrix is modified. I love the results, but it is not even close to what I am after. I want the light to be moved with all of the vertices, so it is always in the same place in relation to the objects. I can easily take it from there, but getting that to work seems to be impossible with my current structure. Can somebody give me a few pointers (pun not intended)? Vertex shader: attribute vec4 position; attribute vec4 color; attribute vec2 textureCoordinates; varying vec4 colorVarying; varying vec2 texturePosition; varying vec4 fposition; varying vec4 lightPosition; varying float lightDistance; varying float lightIntensity; varying vec4 lightColor; void main() { vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; vec3 tnorm = normalize(vec3 (gl_NormalMatrix * gl_Normal)); fposition = ftransform(); gl_Position = fposition; gl_TexCoord[0] = gl_MultiTexCoord0; fposition = ECposition; lightPosition = vec4(0.0, 0.0, 5.0, 0.0) * gl_ModelViewMatrix * gl_Vertex; lightDistance = 5.0; lightIntensity = 1.0; lightColor = vec4(0.2, 0.2, 0.2, 1.0); } Fragment shader: varying vec4 colorVarying; varying vec2 texturePosition; varying vec4 fposition; varying vec4 lightPosition; varying float lightDistance; varying float lightIntensity; varying vec4 lightColor; uniform sampler2D texture; void main() { float l_distance = sqrt((gl_FragCoord.x * lightPosition.x) + (gl_FragCoord.y * lightPosition.y) + (gl_FragCoord.z * lightPosition.z)); float l_value = lightIntensity / (l_distance / lightDistance); vec4 l_color = vec4(l_value * lightColor.r, l_value * lightColor.g, l_value * lightColor.b, l_value * lightColor.a); vec4 color; color = texture2D(texture, gl_TexCoord[0].st); gl_FragColor = l_color * color; //gl_FragColor = fposition; }

    Read the article

  • FBO rendering different result between Glaxay S2 and S3

    - by BruceJones
    I'm working on a pong game and have recently set up FBO rendering so that I can apply some post-processing shaders. This proceeds as so: Bind texture A to framebuffer Draw balls Bind texture B to framebuffer Draw texture A using fade shader on fullscreen quad Bind screen to framebuffer Draw texture B using normal textured quad shader Neither texture A or B are cleared at any point, this way the balls leave trails on screen, see below for the fade shader. Fade Shader private final String fragmentShaderCode = "precision highp float;" + "uniform sampler2D u_Texture;" + "varying vec2 v_TexCoordinate;" + "vec4 color;" + "void main(void)" + "{" + " color = texture2D(u_Texture, v_TexCoordinate);" + " color.a *= 0.8;" + " gl_FragColor = color;" + "}"; This works fine with the Samsung Galaxy S3/ Note2, but cause a strange effect doesnt work on Galaxy S2 or Note1. See pictures: Galaxy S3/Note2 Galaxy S3/Note2 Galaxy S2/Note Galaxy S2/Note Can anyone explain the difference?

    Read the article

< Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >