Search Results

Search found 3436 results on 138 pages for 'math grad'.

Page 125/138 | < Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >

  • Ranking - an Introduction

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved Ranking Ranking is quite common in the internet. Readers are asked to rank their latest reading by clicking on one of 5 (sometimes 10) stars. The number of stars is then converted to a number and the average number of stars as selected by all the readers is proudly (or shamefully) displayed for future readers. SharePoint 2007 lacked this feature altogether. SharePoint 2010 allows the users to rank items in a list or documents in a library (the two are actually the same because a library is actually a list). But in SP2010 the computation of the average is done later on a timer rather than on-the-spot as it should be. I suspect that the reason for this shortcoming is that they did not involve a mathematician! Let me explain. Ranking is kept in a related list. When a user rates a document the rank-list is added an item with the item id, the user name, and his number of stars. The fact that a user already ranked an item prevents him from ranking it again. This prevents the creator of the item from asking his mother to rank it a 5 and do it 753 times, thus stacking the ballot. Some systems will allow a user to change his rating and this will be done by updating the rank-list item. Now, when the timer kicks off, the list is spanned and for each item the rank-list items containing this id are summed up and divided by the number of votes thus yielding the new average. This is obviously very time consuming and very server intensive. In the 18th century an early actuary named James Dodson used what the great Augustus De Morgan (of De Morgan’s law) later named Commutation tables. The labor involved in computing a life insurance premium was staggering and also very error prone. Clerks with pencil and paper would multiply and add mountains of numbers to do the task. The more steps the greater the probability of error and the more expensive the process. Commutation tables created a “summary” of many steps and reduced the work 100 fold. So had Microsoft taken a lesson in the history of computation, they would have developed a much faster way for rating that may be done in real-time and is also 100 times faster and less CPU intensive. How do we do this? We use a form of commutation. We always keep the number of votes and the total of stars. One simple division gives us the average. So we write an event receiver. When a vote is added, we just add the stars to the total-stars and 1 to the number of votes. We then recomputed the average. When a vote is updated, we reduce the total by the old vote, increase it by the new vote and leave the number of votes the same. Again we do the division to get the new average. When a vote is deleted (highly unlikely and maybe even prohibited), we reduce the total by that vote and reduce the number of votes by 1… Gone are the days of spanning lists, counting items, and tallying votes and we have no need for a timer process to run it all. This is the first of a few treatises on ranking. Even though I discussed the math and the history thereof, in here I am only going to solve the presentation issue. I wanted to create the CSS and Jscript needed to display the stars, create the various effects like hovering and clicking (onmouseover, onmouseout, onclick, etc.) and I wanted to create a general solution with any number of stars. When I had it all done, I created the ranking game so that I could test it. The game is interesting in and on itself, so here it is (or go to the games page and select “rank the stars”). BTW, when you play it, look at the source code and see how it was all done.  Next, how the 5 stars are displayed in the New and Update forms. When the whole set of articles will be done, you’ll be able to create the complete solution. That’s all folks!

    Read the article

  • Flood fill algorithm for Game of Go

    - by Jackson Borghi
    I'm having a hell of a time trying to figure out how to make captured stones disappear. I've read everywhere that I should use the flood fill algorithm, but I haven't had any luck with that so far. Any help would be amazing! Here is my code: package Go; import static java.lang.Math.*; import static stdlib.StdDraw.*; import java.awt.Color; public class Go2 { public static Color opposite(Color player) { if (player == WHITE) { return BLACK; } return WHITE; } public static void drawGame(Color[][] board) { Color[][][] unit = new Color[400][19][19]; for (int h = 0; h < 400; h++) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { unit[h][x][y] = YELLOW; } } } setXscale(0, 19); setYscale(0, 19); clear(YELLOW); setPenColor(BLACK); line(0, 0, 0, 19); line(19, 19, 19, 0); line(0, 19, 19, 19); line(0, 0, 19, 0); for (double i = 0; i < 19; i++) { line(0.0, i, 19, i); line(i, 0.0, i, 19); } for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (board[x][y] != YELLOW) { setPenColor(board[x][y]); filledCircle(x, y, 0.47); setPenColor(GRAY); circle(x, y, 0.47); } } } int h = 0; } public static void main(String[] args) { int px; int py; Color[][] temp = new Color[19][19]; Color[][] board = new Color[19][19]; Color player = WHITE; for (int i = 0; i < 19; i++) { for (int h = 0; h < 19; h++) { board[i][h] = YELLOW; temp[i][h] = YELLOW; } } while (true) { drawGame(board); while (!mousePressed()) { } px = (int) round(mouseX()); py = (int) round(mouseY()); board[px][py] = player; while (mousePressed()) { } floodFill(px, py, player, board, temp); System.out.print("XXXXX = "+ temp[px][py]); if (checkTemp(temp, board, px, py)) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (temp[x][y] == GRAY) { board[x][y] = YELLOW; } } } } player = opposite(player); } } private static boolean checkTemp(Color[][] temp, Color[][] board, int x, int y) { if (x < 19 && x > -1 && y < 19 && y > -1) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 18) { if (temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (y == 18) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW) { return false; } } if (y == 0) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 0) { if (temp[x + 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } else { if (x < 19) { if (temp[x + 1][y] == GRAY) { checkTemp(temp, board, x + 1, y); } } if (x >= 0) { if (temp[x - 1][y] == GRAY) { checkTemp(temp, board, x - 1, y); } } if (y < 19) { if (temp[x][y + 1] == GRAY) { checkTemp(temp, board, x, y + 1); } } if (y >= 0) { if (temp[x][y - 1] == GRAY) { checkTemp(temp, board, x, y - 1); } } } return true; } private static void floodFill(int x, int y, Color player, Color[][] board, Color[][] temp) { if (board[x][y] != player) { return; } else { temp[x][y] = GRAY; System.out.println("x = " + x + " y = " + y); if (x < 19) { floodFill(x + 1, y, player, board, temp); } if (x >= 0) { floodFill(x - 1, y, player, board, temp); } if (y < 19) { floodFill(x, y + 1, player, board, temp); } if (y >= 0) { floodFill(x, y - 1, player, board, temp); } } } }

    Read the article

  • Camera Projection back Into 3D world, offset error

    - by Anthony
    I'm using XNA to simulate a robot in a 3D world and then do image analysis on what the camera sees. I have my camera looking down in front of the direction that the robot is going, and I have the robot detecting white pixels. I'm trying to take the white pixels that it finds and project them back into the 3D world so that I can see if it is actually detecting the correct pixels. I almost have it working, but there is an offset between where the white is in in the World and were I put my orange triangles (which represent what the robot things is white). /// <summary> /// Takes a bool map of and makes vertex positions based on the map. /// </summary> /// <param name="c"> The bool map</param> private void ProjectBoolMapOnGroundAnthony2(bool[,] c) { float triangleSize = 0.04f; // Point of interest in World W cordinate system. Vector3 pointOfInterest_W = Vector3.Zero; // Point of interest in Robot Cordinate system R Vector3 pointOfInterest_R = Vector3.Zero; // alpha is the angle from the robot camera to where it is looking in the center. //double alpha = Math.Atan(1.8f / 1); /// Matrix representation of the view determined by the position, target, and updirection. Matrix View = ((SimulationMain)Game).mainRobot.robotCameraView.View; /// Matrix representation of the view determined by the angle of the field of view (Pi/4), aspectRatio, nearest plane visible (1), and farthest plane visible (1200) Matrix Projection = ((SimulationMain)Game).mainRobot.robotCameraView.Projection; /// Matrix representing how the real world cordinates differ from that of the rendering by the camera. Matrix World = ((SimulationMain)Game).mainRobot.robotCameraView.World; Plane groundPlan = new Plane(Vector3.UnitZ, 0.0f); for (int x = 0; x < this.screenWidth; x++) { for (int y = 0; y < this.screenHeight; ) { if (c[x, y] == true && this.count1D < 62000) { int j = 1; Vector3 nearPlanePoint = Game.GraphicsDevice.Viewport.Unproject(new Vector3(x, y, 0), Projection, View, World); Vector3 farPlanePoint = Game.GraphicsDevice.Viewport.Unproject(new Vector3(x, y, 1), Projection, View, World); //Vector3 pointOfInterest_W = Vector3.in Ray ray = new Ray(nearPlanePoint, farPlanePoint); pointOfInterest_W = ray.Position + ray.Direction * (float) ray.Intersects(groundPlan); this.vertexArray2[this.count1D + 0].Position.X = pointOfInterest_W.X - triangleSize; this.vertexArray2[this.count1D + 0].Position.Y = pointOfInterest_W.Y - triangleSize * j; this.vertexArray2[this.count1D + 0].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 0].Color = Color.DarkOrange; // Put another vertex a the position but +1 in the X direction triangleSize //this.vertexArray2[this.count1D + 1].Position.X = pointOnGroud.X + 3; //this.vertexArray2[this.count1D + 1].Position.Y = pointOnGroud.Y + j; this.vertexArray2[this.count1D + 1].Position.X = pointOfInterest_W.X; this.vertexArray2[this.count1D + 1].Position.Y = pointOfInterest_W.Y + triangleSize * j; this.vertexArray2[this.count1D + 1].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 1].Color = Color.Red; // Put another vertex a the position but +1 in the X direction //this.vertexArray2[this.count1D + 0].Position.X = pointOnGroud.X; //this.vertexArray2[this.count1D + 0].Position.Y = pointOnGroud.Y + 3 + j; this.vertexArray2[this.count1D + 2].Position.X = pointOfInterest_W.X + triangleSize; this.vertexArray2[this.count1D + 2].Position.Y = pointOfInterest_W.Y - triangleSize * j; this.vertexArray2[this.count1D + 2].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 2].Color = Color.Orange; this.count1D += 3; y += j; } else { y++; } } } } The world is a grass texture with lines on it. The world plane is normal at (0,0,1). Any ideas on why there is an offset? Any Ideas? Thanks for the help, Anthony G.

    Read the article

  • FloodFill Algorithm for Game of Go

    - by Jackson Borghi
    I'm having a hell of a time trying to figure out how to make captured stones disappear. I've read everywhere that I should use the FloodFill algorithm, but I havent had any luck with that so far. Any help would be amazing! Here is my code: package Go; import static java.lang.Math.; import static stdlib.StdDraw.; import java.awt.Color; public class Go2 { public static Color opposite(Color player) { if (player == WHITE) { return BLACK; } return WHITE; } public static void drawGame(Color[][] board) { Color[][][] unit = new Color[400][19][19]; for (int h = 0; h < 400; h++) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { unit[h][x][y] = YELLOW; } } } setXscale(0, 19); setYscale(0, 19); clear(YELLOW); setPenColor(BLACK); line(0, 0, 0, 19); line(19, 19, 19, 0); line(0, 19, 19, 19); line(0, 0, 19, 0); for (double i = 0; i < 19; i++) { line(0.0, i, 19, i); line(i, 0.0, i, 19); } for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (board[x][y] != YELLOW) { setPenColor(board[x][y]); filledCircle(x, y, 0.47); setPenColor(GRAY); circle(x, y, 0.47); } } } int h = 0; } public static void main(String[] args) { int px; int py; Color[][] temp = new Color[19][19]; Color[][] board = new Color[19][19]; Color player = WHITE; for (int i = 0; i < 19; i++) { for (int h = 0; h < 19; h++) { board[i][h] = YELLOW; temp[i][h] = YELLOW; } } while (true) { drawGame(board); while (!mousePressed()) { } px = (int) round(mouseX()); py = (int) round(mouseY()); board[px][py] = player; while (mousePressed()) { } floodFill(px, py, player, board, temp); System.out.print("XXXXX = "+ temp[px][py]); if (checkTemp(temp, board, px, py)) { for (int x = 0; x < 19; x++) { for (int y = 0; y < 19; y++) { if (temp[x][y] == GRAY) { board[x][y] = YELLOW; } } } } player = opposite(player); } } private static boolean checkTemp(Color[][] temp, Color[][] board, int x, int y) { if (x < 19 && x > -1 && y < 19 && y > -1) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 18) { if (temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (y == 18) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y - 1] == YELLOW) { return false; } } if (y == 0) { if (temp[x + 1][y] == YELLOW || temp[x - 1][y] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } if (x == 0) { if (temp[x + 1][y] == YELLOW || temp[x][y - 1] == YELLOW || temp[x][y + 1] == YELLOW) { return false; } } else { if (x < 19) { if (temp[x + 1][y] == GRAY) { checkTemp(temp, board, x + 1, y); } } if (x >= 0) { if (temp[x - 1][y] == GRAY) { checkTemp(temp, board, x - 1, y); } } if (y < 19) { if (temp[x][y + 1] == GRAY) { checkTemp(temp, board, x, y + 1); } } if (y >= 0) { if (temp[x][y - 1] == GRAY) { checkTemp(temp, board, x, y - 1); } } } return true; } private static void floodFill(int x, int y, Color player, Color[][] board, Color[][] temp) { if (board[x][y] != player) { return; } else { temp[x][y] = GRAY; System.out.println("x = " + x + " y = " + y); if (x < 19) { floodFill(x + 1, y, player, board, temp); } if (x >= 0) { floodFill(x - 1, y, player, board, temp); } if (y < 19) { floodFill(x, y + 1, player, board, temp); } if (y >= 0) { floodFill(x, y - 1, player, board, temp); } } } }

    Read the article

  • SQL SERVER – Number-Crunching with SQL Server – Exceed the Functionality of Excel

    - by Pinal Dave
    Imagine this. Your users have developed an Excel spreadsheet that extracts data from your SQL Server database, manipulates that data through the use of Excel formulas and, possibly, some VBA code which is then used to calculate P&L, hedging requirements or even risk numbers. Management comes to you and tells you that they need to get rid of the spreadsheet and that the results of the spreadsheet calculations need to be persisted on the database. SQL Server has a very small set of functions for analyzing data. Excel has hundreds of functions for analyzing data, with many of them focused on specific financial and statistical calculations. Is it even remotely possible that you can use SQL Server to replace the complex calculations being done in a spreadsheet? Westclintech has developed a library of functions that match or exceed the functionality of Excel’s functions and contains many functions that are not available in EXCEL. Their XLeratorDB library of functions contains over 700 functions that can be incorporated into T-SQL statements. XLeratorDB takes advantage of the SQL CLR architecture introduced in SQL Server 2005. SQL CLR permits managed code to be compiled into the database and run alongside built-in SQL Server functions like COUNT or SUM. The Westclintech developers have taken advantage of this architecture to bring robust analytical functions to the database. In our hypothetical spreadsheet, let’s assume that our users are using the YIELD function and that the data are extracted from a table in our database called BONDS. Here’s what the spreadsheet might look like. We go to column G and see that it contains the following formula. Obviously, SQL Server does not offer a native YIELD function. However, with XLeratorDB we can replicate this calculation in SQL Server with the following statement: SELECT *, wct.YIELD(CAST(GETDATE() AS date),Maturity,Rate,Price,100,Frequency,Basis) AS YIELD FROM BONDS This produces the following result. This illustrates one of the best features about XLeratorDB; it is so easy to use. Since I knew that the spreadsheet was using the YIELD function I could use the same function with the same calling structure to do the calculation in SQL Server. I didn’t need to know anything at all about the mechanics of calculating the yield on a bond. It was pretty close to cut and paste. In fact, that’s one way to construct the SQL. Just copy the function call from the cell in the spreadsheet and paste it into SMS and change the cell references to column names. I built the SQL for this query by starting with this. SELECT * ,YIELD(TODAY(),B2,C2,D2,100,E2,F2) FROM BONDS I then changed the cell references to column names. SELECT * --,YIELD(TODAY(),B2,C2,D2,100,E2,F2) ,YIELD(TODAY(),Maturity,Rate,Price,100,Frequency,Basis) FROM BONDS Finally, I replicated the TODAY() function using GETDATE() and added the schema name to the function name. SELECT * --,YIELD(TODAY(),B2,C2,D2,100,E2,F2) --,YIELD(TODAY(),Maturity,Rate,Price,100,Frequency,Basis) ,wct.YIELD(GETDATE(),Maturity,Rate,Price,100,Frequency,Basis) FROM BONDS Then I am able to execute the statement returning the results seen above. The XLeratorDB libraries are heavy on financial, statistical, and mathematical functions. Where there is an analog to an Excel function, the XLeratorDB function uses the same naming conventions and calling structure as the Excel function, but there are also hundreds of additional functions for SQL Server that are not found in Excel. You can find the functions by opening Object Explorer in SQL Server Management Studio (SSMS) and expanding the Programmability folder under the database where the functions have been installed. The  Functions folder expands to show 3 sub-folders: Table-valued Functions; Scalar-valued functions, Aggregate Functions, and System Functions. You can expand any of the first three folders to see the XLeratorDB functions. Since the wct.YIELD function is a scalar function, we will open the Scalar-valued Functions folder, scroll down to the wct.YIELD function and and click the plus sign (+) to display the input parameters. The functions are also Intellisense-enabled, with the input parameters displayed directly in the query tab. The Westclintech website contains documentation for all the functions including examples that can be copied directly into a query window and executed. There are also more one hundred articles on the site which go into more detail about how some of the functions work and demonstrate some of the extensive business processes that can be done in SQL Server using XLeratorDB functions and some T-SQL. XLeratorDB is organized into libraries: finance, statistics; math; strings; engineering; and financial options. There is also a windowing library for SQL Server 2005, 2008, and 2012 which provides functions for calculating things like running and moving averages (which were introduced in SQL Server 2012), FIFO inventory calculations, financial ratios and more, without having to use triangular joins. To get started you can download the XLeratorDB 15-day free trial from the Westclintech web site. It is a fully-functioning, unrestricted version of the software. If you need more than 15 days to evaluate the software, you can simply download another 15-day free trial. XLeratorDB is an easy and cost-effective way to start adding sophisticated data analysis to your SQL Server database without having to know anything more than T-SQL. Get XLeratorDB Today and Now! Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Excel

    Read the article

  • Mixed Emotions: Humans React to Natural Language Computer

    - by Applications User Experience
    There was a big event in Silicon Valley on Tuesday, November 15. Watson, the natural language computer developed at IBM Watson Research Center in Yorktown Heights, New York, and its inventor and principal research investigator, David Ferrucci, were guests at the Computer History Museum in Mountain View, California for another round of the television game Jeopardy. You may have read about or watched on YouTube how Watson beat Ken Jennings and Brad Rutter, two top Jeopardy competitors, last February. This time, Watson swept the floor with two Silicon Valley high-achievers, one a venture capitalist with a background  in math, computer engineering, and physics, and the other a technology and finance writer well-versed in all aspects of culture and humanities. Watson is the product of the DeepQA research project, which attempts to create an artificially intelligent computing system through advances in natural language processing (NLP), among other technologies. NLP is a computing strategy that seeks to provide answers by processing large amounts of unstructured data contained in multiple large domains of human knowledge. There are several ways to perform NLP, but one way to start is by recognizing key words, then processing  contextual  cues associated with the keyword concepts so that you get many more “smart” (that is, human-like) deductions,  rather than a series of “dumb” matches.  Jeopardy questions often require more than key word matching to get the correct answer; typically several pieces of information put together, often from vastly different categories, to come up with a satisfactory word string solution that can be rephrased as a question.  Smarter than your average search engine, but is it as smart as a human? Watson was especially fast at descrambling mixed-up state capital names, and recalling and pairing movie titles where one started and the other ended in the same word (e.g., Billion Dollar Baby Boom, where both titles used the word Baby). David said they had basically removed the variable of how fast Watson hit the buzzer compared to human contestants, but frustration frequently appeared on the faces of the contestants beaten to the punch by Watson. David explained that top Jeopardy winners like Jennings achieved their success with a similar strategy, timing their buzz to the end of the reading of the clue,  and “running the board”, being first to respond on about 60% of the clues.  Similar results for Watson. It made sense that Watson would be good at the technical and scientific stuff, so I figured the venture capitalist was toast. But I thought for sure Watson would lose to the writer in categories such as pop culture, wines and foods, and other humanities. Surprisingly, it held its own. I was amazed it could recognize a word definition of a syllogism in the category of philosophy. So what was the audience reaction to all of this? We started out expecting our formidable human contestants to easily run some of their categories; however, they started off on the wrong foot with the state capitals which Watson could unscramble so efficiently. By the end of the first round, contestants and the audience were feeling a little bit, well, …. deflated. Watson was winning by about $13,000, and the humans had gone into negative dollars. The IBM host said he was going to “slow Watson down a bit,” and the humans came back with respectable scores in Double Jeopardy. This was partially thanks to a very sympathetic audience (and host, also a human) providing “group-think” on many questions, especially baseball ‘s most valuable players, which by the way, couldn’t have been hard because even I knew them.  Yes, that’s right, the humans cheated. Since Watson could speak but not hear us (it didn’t have speech recognition capability), it was probably unaware of this. In Final Jeopardy, the single question had to do with law. I was sure Watson would blow this one, but all contestants were able to answer correctly about a copyright law. In a career devoted to making computers more helpful to people, I think I may have seen how a computer can do too much. I’m not sure I’d want to work side-by-side with a Watson doing my job. Certainly listening and empathy are important traits we humans still have over Watson.  While there was great enthusiasm in the packed room of computer scientists and their friends for this standing-room-only show, I think it made several of us uneasy (especially the poor human contestants whose egos were soundly bashed in the first round). This computer system, by the way , only took 4 years to program. David Ferrucci mentioned several practical uses for Watson, including medical diagnoses and legal strategies. Are you “the expert” in your job? Imagine NLP computing on an Oracle database.   This may be the user interface of the future to enable users to better process big data. How do you think you’d like it? Postscript: There were three little boys sitting in front of me in the very first row. They looked, how shall I say it, … unimpressed!

    Read the article

  • About Me

    - by Jeffrey West
    I’m new to blogging.  This is the second blog post that I have written, and before I go too much further I wanted the readers of my blog to know a bit more about me… Kid’s Stuff By trade, I am a programmer (or coder, developer, engineer, architect, etc).  I started programming when I was 12 years old.  When I was 7, we got our first ‘family’ computer – an Apple IIc.  It was great to play games on, and of course what else was a 7-year-old going to do with it.  I did have one problem with it, though.  When I put in my 5.25” floppy to play a game, sometimes, instead loading my game I would get a mysterious ‘]’ on the screen with a flashing cursor.  This, of course, was not my game.  Much like the standard ‘Microsoft fix’ is to reboot, back then you would take the floppy out, shake it, and restart the computer and pray for a different result. One day, I learned at school that I could topple my nemesis – the ‘]’ and flashing cursor – by typing ‘load’ and pressing enter.  Most of the time, this would load my game and then I would get to play.  Problem solved.  However, I began to wonder – what else can I make it do? When I was in 5th grade my dad got a bright idea to buy me a Tandy 1000HX.  He didn’t know what I was going to do with it, and neither did I.  Least of all, my mom wasn’t happy about buying a 5th grader a $1,000 computer.  Nonetheless, Over time, I learned how to write simple basic programs out of the back of my Math book: 10 x=5 20 y=6 30 PRINT x+y That was fun for all of about 5 minutes.  I needed more – more challenges, more things that I could make the computer do.  In order to quench this thirst my parents sent me to National Computer Camps in Connecticut.  It was one of the best experiences of my childhood, and I spent 3 weeks each summer after that learning BASIC, Pascal, Turbo C and some C++.  There weren’t many kids at the time who knew anything about computers, and lets just say my knowledge of and interest in computers didn’t score me many ‘cool’ points.  My experiences at NCC set me on the path that I find myself on now, and I am very thankful for the experience.  Real Life I have held various positions in the past at different levels within the IT layer cake.  I started out as a Software Developer for a startup in the Dallas, TX area building software for semiconductor testing statistical process control and sampling.  I was the second Java developer that was hired, and the ninth employee overall, so I got a great deal of experience developing software.  Since there weren’t that many people in the organization, I also got a lot of field experience which meant that if I screwed up the code, I got yelled at (figuratively) by both my boss AND the customer.  Fun Times!  What made it better was that I got to help run pilot programs in Taiwan, Singapore, Malaysia and Malta.  Getting yelled at in Taiwan is slightly less annoying that getting yelled at in Dallas… I spent the next 5 years at Accenture doing systems integration in the ‘SOA’ group.  I joined as a Consultant and left as a Senior Manager.  I started out writing code in WebLogic Integration and left after I wrapped up project where I led a team of 25 to develop the next generation of a digital media platform to deliver HD content in a digital format.  At Accenture, I had the pleasure of working with some truly amazing people – mentoring some and learning from many others – and on some incredible real-world IT projects.  Given my background with the BEA stack of products I was often called in to troubleshoot and tune WebLogic, ALBPM and ALSB installations and have logged many hours digging through thread dumps, running performance tests with SoapUI and decompiling Java classes we didn’t have the source for so I could see what was going on in the code. I am now a Senior Principal Product Manager at Oracle in the Application Grid practice.  The term ‘Application Grid’ refers to a collection of software and hardware products within Oracle that enables customers to build horizontally scalable systems.  This collection of products includes WebLogic, GlassFish, Coherence, Tuxedo and the JRockit/HotSpot JVMs (HotSprocket, maybe?).  Now, with the introduction of Exalogic it has grown to include hardware as well. Wrapping it up… I love technology and have a diverse background ranging from software development to HW and network architecture & tuning.  I have held certifications for being an Oracle Certified DBA, MSCE and Cisco Certified Network Professional (CCNP), among others and I have put those to great use over my career.  I am excited about programming & technology and I enjoy helping people learn and be successful.  If you are having challenges with WebLogic, BPM or Service Bus feel free to reach out to me and I’ll be happy to help as I have time. Thanks for stopping by!   --Jeff

    Read the article

  • JDK bug migration: components and subcomponents

    - by darcy
    One subtask of the JDK migration from the legacy bug tracking system to JIRA was reclassifying bugs from a three-level taxonomy in the legacy system, (product, category, subcategory), to a fundamentally two-level scheme in our customized JIRA instance, (component, subcomponent). In the JDK JIRA system, there is technically a third project-level classification, but by design a large majority of JDK-related bugs were migrated into a single "JDK" project. In the end, over 450 legacy subcategories were simplified into about 120 subcomponents in JIRA. The 120 subcomponents are distributed among 17 components. A rule of thumb used was that a subcategory had to have at least 50 bugs in it for it to be retained. Below is a listing the component / subcomponent classification of the JDK JIRA project along with some notes and guidance on which OpenJDK email addresses cover different areas. Eventually, a separate incidents project to host new issues filed at bugs.sun.com will use a slightly simplified version of this scheme. The preponderance of bugs and subcomponents for the JDK are in library-related areas, with components named foo-libs and subcomponents primarily named after packages. While there was an overall condensation of subcomponents in the migration, in some cases long-standing informal divisions in core libraries based on naming conventions in the description were promoted to formal subcomponents. For example, hundreds of bugs in the java.util subcomponent whose descriptions started with "(coll)" were moved into java.util:collections. Likewise, java.lang bugs starting with "(reflect)" and "(proxy)" were moved into java.lang:reflect. client-libs (Predominantly discussed on 2d-dev and awt-dev and swing-dev.) 2d demo java.awt java.awt:i18n java.beans (See beans-dev.) javax.accessibility javax.imageio javax.sound (See sound-dev.) javax.swing core-libs (See core-libs-dev.) java.io java.io:serialization java.lang java.lang.invoke java.lang:class_loading java.lang:reflect java.math java.net java.nio (Discussed on nio-dev.) java.nio.charsets java.rmi java.sql java.sql:bridge java.text java.util java.util.concurrent java.util.jar java.util.logging java.util.regex java.util:collections java.util:i18n javax.annotation.processing javax.lang.model javax.naming (JNDI) javax.script javax.script:javascript javax.sql org.openjdk.jigsaw (See jigsaw-dev.) security-libs (See security-dev.) java.security javax.crypto (JCE: includes SunJCE/MSCAPI/UCRYPTO/ECC) javax.crypto:pkcs11 (JCE: PKCS11 only) javax.net.ssl (JSSE, includes javax.security.cert) javax.security javax.smartcardio javax.xml.crypto org.ietf.jgss org.ietf.jgss:krb5 other-libs corba corba:idl corba:orb corba:rmi-iiop javadb other (When no other subcomponent is more appropriate; use judiciously.) Most of the subcomponents in the xml component are related to jaxp. xml jax-ws jaxb javax.xml.parsers (JAXP) javax.xml.stream (JAXP) javax.xml.transform (JAXP) javax.xml.validation (JAXP) javax.xml.xpath (JAXP) jaxp (JAXP) org.w3c.dom (JAXP) org.xml.sax (JAXP) For OpenJDK, most JVM-related bugs are connected to the HotSpot Java virtual machine. hotspot (See hotspot-dev.) build compiler (See hotspot-compiler-dev.) gc (garbage collection, see hotspot-gc-dev.) jfr (Java Flight Recorder) jni (Java Native Interface) jvmti (JVM Tool Interface) mvm (Multi-Tasking Virtual Machine) runtime (See hotspot-runtime-dev.) svc (Servicability) test core-svc (See serviceability-dev.) debugger java.lang.instrument java.lang.management javax.management tools The full JDK bug database contains entries related to legacy virtual machines that predate HotSpot as well as retired APIs. vm-legacy jit (Sun Exact VM) jit_symantec (Symantec VM, before Exact VM) jvmdi (JVM Debug Interface ) jvmpi (JVM Profiler Interface ) runtime (Exact VM Runtime) Notable command line tools in the $JDK/bin directory have corresponding subcomponents. tools appletviewer apt (See compiler-dev.) hprof jar javac (See compiler-dev.) javadoc(tool) (See compiler-dev.) javah (See compiler-dev.) javap (See compiler-dev.) jconsole launcher updaters (Timezone updaters, etc.) visualvm Some aspects of JDK infrastructure directly affect JDK Hg repositories, but other do not. infrastructure build (See build-dev and build-infra-dev.) licensing (Covers updates to the third party readme, licenses, and similar files.) release_eng (Release engineering) staging (Staging of web pages related to JDK releases.) The specification subcomponent encompasses the formal language and virtual machine specifications. specification language (The Java Language Specification) vm (The Java Virtual Machine Specification) The code for the deploy and install areas is not currently included in OpenJDK. deploy deployment_toolkit plugin webstart install auto_update install servicetags In the JDK, there are a number of cross-cutting concerns whose organization is essentially orthogonal to other areas. Since these areas generally have dedicated teams working on them, it is easier to find bugs of interest if these bugs are grouped first by their cross-cutting component rather than by the affected technology. docs doclet guides hotspot release_notes tools tutorial embedded build hotspot libraries globalization locale-data translation performance hotspot libraries The list of subcomponents will no doubt grow over time, but my inclination is to resist that growth since the addition of each subcomponent makes the system as a whole more complicated and harder to use. When the system gets closer to being externalized, I plan to post more blog entries describing recommended use of various custom fields in the JDK project.

    Read the article

  • CSM DX11 issues

    - by KaiserJohaan
    I got CSM to work in OpenGL, and now Im trying to do the same in directx. I'm using the same math library and all and I'm pretty much using the alghorithm straight off. I am using right-handed, column major matrices from GLM. The light is looking (-1, -1, -1). The problem I have is twofolds; For some reason, the ground floor is causing alot of (false) shadow artifacts, like the vast shadowed area you see. I confirmed this when I disabled the ground for the depth pass, but thats a hack more than anything else The shadows are inverted compared to the shadowmap. If you squint you can see the chairs shadows should be mirrored instead. This is the first cascade shadow map, in range of the alien and the chair: I can't figure out why this is. This is the depth pass: for (uint32_t cascadeIndex = 0; cascadeIndex < NUM_SHADOWMAP_CASCADES; cascadeIndex++) { mShadowmap.BindDepthView(context, cascadeIndex); CameraFrustrum cameraFrustrum = CalculateCameraFrustrum(degreesFOV, aspectRatio, nearDistArr[cascadeIndex], farDistArr[cascadeIndex], cameraViewMatrix); lightVPMatrices[cascadeIndex] = CreateDirLightVPMatrix(cameraFrustrum, lightDir); mVertexTransformPass.RenderMeshes(context, renderQueue, meshes, lightVPMatrices[cascadeIndex]); lightVPMatrices[cascadeIndex] = gBiasMatrix * lightVPMatrices[cascadeIndex]; farDistArr[cascadeIndex] = -farDistArr[cascadeIndex]; } CameraFrustrum CalculateCameraFrustrum(const float fovDegrees, const float aspectRatio, const float minDist, const float maxDist, const Mat4& cameraViewMatrix) { CameraFrustrum ret = { Vec4(1.0f, 1.0f, -1.0f, 1.0f), Vec4(1.0f, -1.0f, -1.0f, 1.0f), Vec4(-1.0f, -1.0f, -1.0f, 1.0f), Vec4(-1.0f, 1.0f, -1.0f, 1.0f), Vec4(1.0f, -1.0f, 1.0f, 1.0f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, -1.0f, 1.0f, 1.0f), }; const Mat4 perspectiveMatrix = PerspectiveMatrixFov(fovDegrees, aspectRatio, minDist, maxDist); const Mat4 invMVP = glm::inverse(perspectiveMatrix * cameraViewMatrix); for (Vec4& corner : ret) { corner = invMVP * corner; corner /= corner.w; } return ret; } Mat4 CreateDirLightVPMatrix(const CameraFrustrum& cameraFrustrum, const Vec3& lightDir) { Mat4 lightViewMatrix = glm::lookAt(Vec3(0.0f), -glm::normalize(lightDir), Vec3(0.0f, -1.0f, 0.0f)); Vec4 transf = lightViewMatrix * cameraFrustrum[0]; float maxZ = transf.z, minZ = transf.z; float maxX = transf.x, minX = transf.x; float maxY = transf.y, minY = transf.y; for (uint32_t i = 1; i < 8; i++) { transf = lightViewMatrix * cameraFrustrum[i]; if (transf.z > maxZ) maxZ = transf.z; if (transf.z < minZ) minZ = transf.z; if (transf.x > maxX) maxX = transf.x; if (transf.x < minX) minX = transf.x; if (transf.y > maxY) maxY = transf.y; if (transf.y < minY) minY = transf.y; } Mat4 viewMatrix(lightViewMatrix); viewMatrix[3][0] = -(minX + maxX) * 0.5f; viewMatrix[3][1] = -(minY + maxY) * 0.5f; viewMatrix[3][2] = -(minZ + maxZ) * 0.5f; viewMatrix[0][3] = 0.0f; viewMatrix[1][3] = 0.0f; viewMatrix[2][3] = 0.0f; viewMatrix[3][3] = 1.0f; Vec3 halfExtents((maxX - minX) * 0.5, (maxY - minY) * 0.5, (maxZ - minZ) * 0.5); return OrthographicMatrix(-halfExtents.x, halfExtents.x, -halfExtents.y, halfExtents.y, halfExtents.z, -halfExtents.z) * viewMatrix; } And this is the pixel shader used for the lighting stage: #define DEPTH_BIAS 0.0005 #define NUM_CASCADES 4 cbuffer DirectionalLightConstants : register(CBUFFER_REGISTER_PIXEL) { float4x4 gSplitVPMatrices[NUM_CASCADES]; float4x4 gCameraViewMatrix; float4 gSplitDistances; float4 gLightColor; float4 gLightDirection; }; Texture2D gPositionTexture : register(TEXTURE_REGISTER_POSITION); Texture2D gDiffuseTexture : register(TEXTURE_REGISTER_DIFFUSE); Texture2D gNormalTexture : register(TEXTURE_REGISTER_NORMAL); Texture2DArray gShadowmap : register(TEXTURE_REGISTER_DEPTH); SamplerComparisonState gShadowmapSampler : register(SAMPLER_REGISTER_DEPTH); float4 ps_main(float4 position : SV_Position) : SV_Target0 { float4 worldPos = gPositionTexture[uint2(position.xy)]; float4 diffuse = gDiffuseTexture[uint2(position.xy)]; float4 normal = gNormalTexture[uint2(position.xy)]; float4 camPos = mul(gCameraViewMatrix, worldPos); uint index = 3; if (camPos.z > gSplitDistances.x) index = 0; else if (camPos.z > gSplitDistances.y) index = 1; else if (camPos.z > gSplitDistances.z) index = 2; float3 projCoords = (float3)mul(gSplitVPMatrices[index], worldPos); float viewDepth = projCoords.z - DEPTH_BIAS; projCoords.z = float(index); float visibilty = gShadowmap.SampleCmpLevelZero(gShadowmapSampler, projCoords, viewDepth); float angleNormal = clamp(dot(normal, gLightDirection), 0, 1); return visibilty * diffuse * angleNormal * gLightColor; } As you can see I am using depth bias and a bias matrix. Any hints on why this behaves so wierdly?

    Read the article

  • obj-c classes and sub classes (Cocos2d) conversion

    - by Lewis
    Hi I'm using this version of cocos2d: https://github.com/krzysztofzablocki/CCNode-SFGestureRecognizers Which supports the UIGestureRecognizer within a CCLayer in a cocos2d scene like so: @interface HelloWorldLayer : CCLayer <UIGestureRecognizerDelegate> { } Now I want to make this custom gesture work within the scene, attaching it to a sprite in cocos2d: #import <Foundation/Foundation.h> #import <UIKit/UIGestureRecognizerSubclass.h> @protocol OneFingerRotationGestureRecognizerDelegate <NSObject> @optional - (void) rotation: (CGFloat) angle; - (void) finalAngle: (CGFloat) angle; @end @interface OneFingerRotationGestureRecognizer : UIGestureRecognizer { CGPoint midPoint; CGFloat innerRadius; CGFloat outerRadius; CGFloat cumulatedAngle; id <OneFingerRotationGestureRecognizerDelegate> target; } - (id) initWithMidPoint: (CGPoint) midPoint innerRadius: (CGFloat) innerRadius outerRadius: (CGFloat) outerRadius target: (id) target; - (void)reset; - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event; @end #include <math.h> #import "OneFingerRotationGestureRecognizer.h" @implementation OneFingerRotationGestureRecognizer // private helper functions CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2); CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB); - (id) initWithMidPoint: (CGPoint) _midPoint innerRadius: (CGFloat) _innerRadius outerRadius: (CGFloat) _outerRadius target: (id <OneFingerRotationGestureRecognizerDelegate>) _target { if ((self = [super initWithTarget: _target action: nil])) { midPoint = _midPoint; innerRadius = _innerRadius; outerRadius = _outerRadius; target = _target; } return self; } /** Calculates the distance between point1 and point 2. */ CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2) { CGFloat dx = point1.x - point2.x; CGFloat dy = point1.y - point2.y; return sqrt(dx*dx + dy*dy); } CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB) { CGFloat a = endLineA.x - beginLineA.x; CGFloat b = endLineA.y - beginLineA.y; CGFloat c = endLineB.x - beginLineB.x; CGFloat d = endLineB.y - beginLineB.y; CGFloat atanA = atan2(a, b); CGFloat atanB = atan2(c, d); // convert radiants to degrees return (atanA - atanB) * 180 / M_PI; } #pragma mark - UIGestureRecognizer implementation - (void)reset { [super reset]; cumulatedAngle = 0; } - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesBegan:touches withEvent:event]; if ([touches count] != 1) { self.state = UIGestureRecognizerStateFailed; return; } } - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesMoved:touches withEvent:event]; if (self.state == UIGestureRecognizerStateFailed) return; CGPoint nowPoint = [[touches anyObject] locationInView: self.view]; CGPoint prevPoint = [[touches anyObject] previousLocationInView: self.view]; // make sure the new point is within the area CGFloat distance = distanceBetweenPoints(midPoint, nowPoint); if ( innerRadius <= distance && distance <= outerRadius) { // calculate rotation angle between two points CGFloat angle = angleBetweenLinesInDegrees(midPoint, prevPoint, midPoint, nowPoint); // fix value, if the 12 o'clock position is between prevPoint and nowPoint if (angle > 180) { angle -= 360; } else if (angle < -180) { angle += 360; } // sum up single steps cumulatedAngle += angle; // call delegate if ([target respondsToSelector: @selector(rotation:)]) { [target rotation:angle]; } } else { // finger moved outside the area self.state = UIGestureRecognizerStateFailed; } } - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesEnded:touches withEvent:event]; if (self.state == UIGestureRecognizerStatePossible) { self.state = UIGestureRecognizerStateRecognized; if ([target respondsToSelector: @selector(finalAngle:)]) { [target finalAngle:cumulatedAngle]; } } else { self.state = UIGestureRecognizerStateFailed; } cumulatedAngle = 0; } - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesCancelled:touches withEvent:event]; self.state = UIGestureRecognizerStateFailed; cumulatedAngle = 0; } @end Header file for view controller: #import "OneFingerRotationGestureRecognizer.h" @interface OneFingerRotationGestureViewController : UIViewController <OneFingerRotationGestureRecognizerDelegate> @property (nonatomic, strong) IBOutlet UIImageView *image; @property (nonatomic, strong) IBOutlet UITextField *textDisplay; @end then this is in the .m file: gestureRecognizer = [[OneFingerRotationGestureRecognizer alloc] initWithMidPoint: midPoint innerRadius: outRadius / 3 outerRadius: outRadius target: self]; [self.view addGestureRecognizer: gestureRecognizer]; Now my question is, is it possible to add this custom gesture into the cocos2d project found on that github, and if so, what do I need to change in the OneFingerRotationGestureRecognizerDelegate to get it to work within cocos2d. Because at the minute it is setup in a standard iOS project and not a cocos2d project and I do not know enough about UIViews and classing/ sub classing in obj-c to get this to work. Also it seems to inherit from a UIView where cocos2d uses CCLayer. Kind regards, Lewis. I also realise I may have not included enough code from the custom gesture project for readers to interpret it fully, so the full project can be found here: https://github.com/melle/OneFingerRotationGestureDemo

    Read the article

  • Opposite Force to Apply to a Collided Rigid Body?

    - by Milo
    I'm working on the physics for my GTA2-like game so I can learn more about game physics. The collision detection and resolution are working great. I'm now just unsure how to compute the force to apply to a body after it collides with a wall. My rigid body looks like this: /our simulation object class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private float mass; private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); private static Vector2D acceleration = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position.x,position.y, getWidth(), getHeight(), angle); rectChanged(); } public Vector2D getPosition() { return getRect().getCenter(); } @Override public void update(float timeStep) { doUpdate(timeStep); } public void doUpdate(float timeStep) { //integrate physics //linear acceleration.x = forces.x / mass; acceleration.y = forces.y / mass; velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; //angular float angAcc = torque / inertia; angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return relWorldVec; } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); worldRelVec.x = Vector2Ds[0]; worldRelVec.y = Vector2Ds[1]; return worldRelVec; } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; pointVelVec.x = (tangent.x * angularVelocity) + velocity.x; pointVelVec.y = (tangent.y * angularVelocity) + velocity.y; return pointVelVec; } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } } The way it is given force is by the applyForce method, this method considers angular torque. I'm just not sure how to come up with the vectors in the case where: RigidBody hits static entity RigidBody hits other RigidBody that may or may not be in motion. Would anyone know a way (without too complex math) that I could figure out the opposite force I need to apply to the car? I know the normal it is colliding with and how deep it collided. My main goal is so that say I hit a building from the side, well the car should not just stay there, it should slowly rotate out of it if I'm more than 45 degrees. Right now when I hit a wall I only change the velocity directly which does not consider angular force. Thanks!

    Read the article

  • About Solaris 11 and UltraSPARC II/III/IV/IV+

    - by nospam(at)example.com (Joerg Moellenkamp)
    I know that I will get the usual amount of comments like "Oh, Jörg ? you can't be negative about Oracle" for this article. However as usual I want to explain the logic behind my reasoning. Yes ? I know that there is a lot of UltraSPARC III, IV and IV+ gear out there. But there are some very basic questions: Does your application you are currently running on this gear stops running just because you can't run Solaris 11 on it? What is the need to upgrade a system already in production to Solaris 11? I have the impression, that some people think that the systems get useless in the moment Oracle releases Solaris 11. I know that Sun sold UltraSPARC IV+ systems until 2009. The Sun SF490 introduced 2004 for example, that was a Sun SF480 with UltraSPARC IV and later with UltraSPARC IV+. And yes, Sun made some speedbumps. At that time the systems of the UltraSPARC III to IV+ generations were supported on Solaris 8, on Solaris 9 and on Solaris 10. However from my perspective we sold them to customers, which weren't able to migrate to Solaris 10 because they used applications not supported on Solaris 9 or who just didn't wanted to migrate to Solaris 10. Believe it or not ? I personally know two customers that migrated core systems to Solaris 10 in ? well 2008/9. This was especially true when the M3000 was announced in 2008 when it closed the darned single socket gap. It may be different at you site, however that's what I remember about that time when talking with customers. At first: Just because there is no Solaris 11 for UltraSPARC III, IV and IV+, it doesn't mean that Solaris 10 will go away anytime soon. I just want to point you to "Expect Lifetime Support - Hardware and Operating Systems". It states about Premier Support:Maintenance and software upgrades are included for Oracle operating systems and Oracle VM for a minimum of eight years from the general availability date.GA for Solaris 10 was in 2005. Plus 8 years ? 2013 ? at minimum. Then you can still opt for 3 years of "Extended Support" ? 2016 ? at minimum. 2016 your systems purchased in 2009 are 7 years old. Even on systems purchased at the very end of the lifetime of that system generation. That are the rules as written in the linked document. I said minimum The actual dates are even further in the future: Premier Support for Solaris 10 ends in 2015, Extended support ends 2018. Sustaining support ? indefinite. You will find this in the document "Oracle Lifetime Support Policy: Oracle Hardware and Operating Systems".So I don't understand when some people write, that Oracle is less protective about hardware investments than Sun. And for hardware it's the same as with Sun: Service 5 years after EOL as part of Premier Support. I would like to write about a different perspective as well: I have to be a little cautious here, because this is going in the roadmap area, so I will mention the public sources here: John Fowler told last year that we have to expect at at least 3x the single thread performance of T3 for T4. We have 8 cores in T4, as stated by Rick Hetherington. Let's assume for a moment that a T4 core will have the performance of a UltraSPARC core (just to simplify math and not to disclosing anything about the performance, all existing SPARC cores are considered equal). So given this pieces of information, you could consolidate 8 V215, 4 or 8 V245, 2 full blown V445,2 full blown 490, 2 full blown M3000 on a single T4 SPARC processor. The Fowler roadmap prezo talked about 4-socket systems with T4. So 32 V215, 16 to 8 V245, 8 fullblown V445, 8 full blown V490, 8 full blown M3000 in a system image. I think you get the idea. That said, most of the systems we are talking about have already amortized and perhaps it's just time to invest in new systems to yield other advantages like reduced space consumptions, like reduced power consumption, like some of the neat features sun4v gives you, and yes ? reduced number of processor licenses for Oracle and less money for Oracle HW/SW support. As much as I dislike it myself that my own UltraSPARC III and UltraSPARC II based systems won't run on Solaris 11 (and I have quite a few of them in my personal lab), I really think that the impact on production environments will be much less than most people think now. By the way: The reason for this move is a quite significant new feature. I will tell you that it was this feature, when it's out. I assume, telling just a word more could lead to much more time to blog.

    Read the article

  • On Reflector Pricing

    - by Nick Harrison
    I have heard a lot of outrage over Red Gate's decision to charge for Reflector. In the interest of full disclosure, I am a fan of Red Gate. I have worked with them on several usability tests. They also sponsor Simple Talk where I publish articles. They are a good company. I am also a BIG fan of Reflector. I have used it since Lutz originally released it. I have written my own add-ins. I have written code to host reflector and use its object model in my own code. Reflector is a beautiful tool. The care that Lutz took to incorporate extensibility is amazing. I have never had difficulty convincing my fellow developers that it is a wonderful tool. Almost always, once anyone sees it in action, it becomes their favorite tool. This wide spread adoption and usability has made it an icon and pivotal pillar in the DotNet community. Even folks with the attitude that if it did not come out of Redmond then it must not be any good, still love it. It is ironic to hear everyone clamoring for it to be released as open source. Reflector was never open source, it was free, but you never were able to peruse the source code and contribute your own changes. You could not even use Reflector to view the source code. From the very beginning, it was never anyone's intention for just anyone to examine the source code and make their own contributions aside from the add-in model. Lutz chose to hand over the reins to Red Gate because he believed that they would be able to build on his original vision and keep the product viable and effective. He did not choose to make it open source, hoping that the community would be up to the challenge. The simplicity and elegance may well have been lost with the "design by committee" nature of open source. Despite being a wonderful and beloved tool, Reflector cannot be an easy tool to maintain. Maybe because it is so wonderful and beloved, it is even more difficult to maintain. At any rate, we have high expectations. Reflector must continue to be able to reasonably disassemble every language construct that the framework and core languages dream up. We want it to be fast, and we also want it to continue to be simple to use. No small order. Red Gate tried to keep the core product free. Sadly there was not enough interest in the Pro version to subsidize the rest of the expenses. $35 is a reasonable cost, more than reasonable. I have read the blog posts and forum posts complaining about the time associated with getting the expense approved. I have heard people complain about the cost being unreasonable if you are a developer from certain countries. Let's do the math. How much of a productivity boost is Reflector? How many hours do you think it saves you in a typical project? The next question is a little easier if you are a contractor or a consultant, but what is your hourly rate? If you are not a contractor, you can probably figure out an hourly rate. How long does it take to get a return on your investment? The value added proposition is not a difficult one to make. I have read people clamoring that Red Gate sucks and is evil. They complain about broken promises and conflicts of interest. Relax! Red Gate is not evil. The world is not coming to an end. The sun will come up tomorrow. I am sure that Red Gate will come up with options for volume licensing or site licensing for companies that want to get a licensed copy for their entire team. Don't panic, and I am sure that many great improvements are on the horizon. Switching the UI to WPF and including a tabbed interface opens up lots of possibilities.

    Read the article

  • Triangle Picking Picking Back faces

    - by Tangeleno
    I'm having a bit of trouble with 3D picking, at first I thought my ray was inaccurate but it turns out that the picking is happening on faces facing the camera and faces facing away from the camera which I'm currently culling. Here's my ray creation code, I'm pretty sure the problem isn't here but I've been wrong before. private uint Pick() { Ray cursorRay = CalculateCursorRay(); Vector3? point = Control.Mesh.RayCast(cursorRay); if (point != null) { Tile hitTile = Control.TileMesh.GetTileAtPoint(point); return hitTile == null ? uint.MaxValue : (uint)(hitTile.X + hitTile.Y * Control.Generator.TilesWide); } return uint.MaxValue; } private Ray CalculateCursorRay() { Vector3 nearPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 0f)); Vector3 farPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 1f)); Vector3 direction = farPoint - nearPoint; direction.Normalize(); return new Ray(nearPoint, direction); } public Vector3 Camera.Unproject(Vector3 source) { Vector4 result; result.X = (source.X - _control.ClientRectangle.X) * 2 / _control.ClientRectangle.Width - 1; result.Y = (source.Y - _control.ClientRectangle.Y) * 2 / _control.ClientRectangle.Height - 1; result.Z = source.Z - 1; if (_farPlane - 1 == 0) result.Z = 0; else result.Z = result.Z / (_farPlane - 1); result.W = 1f; result = Vector4.Transform(result, Matrix4.Invert(ProjectionMatrix)); result = Vector4.Transform(result, Matrix4.Invert(ViewMatrix)); result = Vector4.Transform(result, Matrix4.Invert(_world)); result = Vector4.Divide(result, result.W); return new Vector3(result.X, result.Y, result.Z); } And my triangle intersection code. Ripped mainly from the XNA picking sample. public float? Intersects(Ray ray) { float? closestHit = Bounds.Intersects(ray); if (closestHit != null && Vertices.Length == 3) { Vector3 e1, e2; Vector3.Subtract(ref Vertices[1].Position, ref Vertices[0].Position, out e1); Vector3.Subtract(ref Vertices[2].Position, ref Vertices[0].Position, out e2); Vector3 directionCrossEdge2; Vector3.Cross(ref ray.Direction, ref e2, out directionCrossEdge2); float determinant; Vector3.Dot(ref e1, ref directionCrossEdge2, out determinant); if (determinant > -float.Epsilon && determinant < float.Epsilon) return null; float inverseDeterminant = 1.0f/determinant; Vector3 distanceVector; Vector3.Subtract(ref ray.Position, ref Vertices[0].Position, out distanceVector); float triangleU; Vector3.Dot(ref distanceVector, ref directionCrossEdge2, out triangleU); triangleU *= inverseDeterminant; if (triangleU < 0 || triangleU > 1) return null; Vector3 distanceCrossEdge1; Vector3.Cross(ref distanceVector, ref e1, out distanceCrossEdge1); float triangleV; Vector3.Dot(ref ray.Direction, ref distanceCrossEdge1, out triangleV); triangleV *= inverseDeterminant; if (triangleV < 0 || triangleU + triangleV > 1) return null; float rayDistance; Vector3.Dot(ref e2, ref distanceCrossEdge1, out rayDistance); rayDistance *= inverseDeterminant; if (rayDistance < 0) return null; return rayDistance; } return closestHit; } I'll admit I don't fully understand all of the math behind the intersection and that is something I'm working on, but my understanding was that if rayDistance was less than 0 the face was facing away from the camera, and shouldn't be counted as a hit. So my question is, is there an issue with my intersection or ray creation code, or is there another check I need to perform to tell if the face is facing away from the camera, and if so any hints on what that check might contain would be appreciated.

    Read the article

  • Increasing efficiency of N-Body gravity simulation

    - by Postman
    I'm making a space exploration type game, it will have many planets and other objects that will all have realistic gravity. I currently have a system in place that works, but if the number of planets goes above 70, the FPS decreases an practically exponential rates. I'm making it in C# and XNA. My guess is that I should be able to do gravity calculations between 100 objects without this kind of strain, so clearly my method is not as efficient as it should be. I have two files, Gravity.cs and EntityEngine.cs. Gravity manages JUST the gravity calculations, EntityEngine creates an instance of Gravity and runs it, along with other entity related methods. EntityEngine.cs public void Update() { foreach (KeyValuePair<string, Entity> e in Entities) { e.Value.Update(); } gravity.Update(); } (Only relevant piece of code from EntityEngine, self explanatory. When an instance of Gravity is made in entityEngine, it passes itself (this) into it, so that gravity can have access to entityEngine.Entities (a dictionary of all planet objects)) Gravity.cs namespace ExplorationEngine { public class Gravity { private EntityEngine entityEngine; private Vector2 Force; private Vector2 VecForce; private float distance; private float mult; public Gravity(EntityEngine e) { entityEngine = e; } public void Update() { //First loop foreach (KeyValuePair<string, Entity> e in entityEngine.Entities) { //Reset the force vector Force = new Vector2(); //Second loop foreach (KeyValuePair<string, Entity> e2 in entityEngine.Entities) { //Make sure the second value is not the current value from the first loop if (e2.Value != e.Value ) { //Find the distance between the two objects. Because Fg = G * ((M1 * M2) / r^2), using Vector2.Distance() and then squaring it //is pointless and inefficient because distance uses a sqrt, squaring the result simple cancels that sqrt. distance = Vector2.DistanceSquared(e2.Value.Position, e.Value.Position); //This makes sure that two planets do not attract eachother if they are touching, completely unnecessary when I add collision, //For now it just makes it so that the planets are not glitchy, performance is not significantly improved by removing this IF if (Math.Sqrt(distance) > (e.Value.Texture.Width / 2 + e2.Value.Texture.Width / 2)) { //Calculate the magnitude of Fg (I'm using my own gravitational constant (G) for the sake of time (I know it's 1 at the moment, but I've been changing it) mult = 1.0f * ((e.Value.Mass * e2.Value.Mass) / distance); //Calculate the direction of the force, simply subtracting the positions and normalizing works, this fixes diagonal vectors //from having a larger value, and basically makes VecForce a direction. VecForce = e2.Value.Position - e.Value.Position; VecForce.Normalize(); //Add the vector for each planet in the second loop to a force var. Force = Vector2.Add(Force, VecForce * mult); //I have tried Force += VecForce * mult, and have not noticed much of an increase in speed. } } } //Add that force to the first loop's planet's position (later on I'll instead add to acceleration, to account for inertia) e.Value.Position += Force; } } } } I have used various tips (about gravity optimizing, not threading) from THIS question (that I made yesterday). I've made this gravity method (Gravity.Update) as efficient as I know how to make it. This O(N^2) algorithm still seems to be eating up all of my CPU power though. Here is a LINK (google drive, go to File download, keep .Exe with the content folder, you will need XNA Framework 4.0 Redist. if you don't already have it) to the current version of my game. Left click makes a planet, right click removes the last planet. Mouse moves the camera, scroll wheel zooms in and out. Watch the FPS and Planet Count to see what I mean about performance issues past 70 planets. (ALL 70 planets must be moving, I've had 100 stationary planets and only 5 or so moving ones while still having 300 fps, the issue arises when 70+ are moving around) After 70 planets are made, performance tanks exponentially. With < 70 planets, I get 330 fps (I have it capped at 300). At 90 planets, the FPS is about 2, more than that and it sticks around at 0 FPS. Strangely enough, when all planets are stationary, the FPS climbs back up to around 300, but as soon as something moves, it goes right back down to what it was, I have no systems in place to make this happen, it just does. I considered multithreading, but that previous question I asked taught me a thing or two, and I see now that that's not a viable option. I've also thought maybe I could do the calculations on my GPU instead, though I don't think it should be necessary. I also do not know how to do this, it is not a simple concept and I want to avoid it unless someone knows a really noob friendly simple way to do it that will work for an n-body gravity calculation. (I have an NVidia gtx 660) Lastly I've considered using a quadtree type system. (Barnes Hut simulation) I've been told (in the previous question) that this is a good method that is commonly used, and it seems logical and straightforward, however the implementation is way over my head and I haven't found a good tutorial for C# yet that explains it in a way I can understand, or uses code I can eventually figure out. So my question is this: How can I make my gravity method more efficient, allowing me to use more than 100 objects (I can render 1000 planets with constant 300+ FPS without gravity calculations), and if I can't do much to improve performance (including some kind of quadtree system), could I use my GPU to do the calculations?

    Read the article

  • Openlayers - Redraw() layer. Add / Remove layer.

    - by Ozaki
    TLDR: I have an Openlayers map with a layer called 'track' I want to remove track and add track back in. I have an image 'imageFeature' on a layer that rotates on load to the direction being set. I want it to update this rotation that is set in 'styleMap' on a layer called 'tracking'. I set the var 'stylemap' to apply the external image & rotation. The 'imageFeature' is added to the layer at the coords specified. 'imageFeature' is removed. 'imageFeature' is added again in its new location. Rotation is not applied.. As the 'styleMap' applies to the layer I think that I have to remove the layer and add it again rather than just the 'imageFeature' Layer: var tracking = new OpenLayers.Layer.GML("Tracking", "coordinates.json", { format: OpenLayers.Format.GeoJSON, styleMap: styleMap }); styleMap: var styleMap = new OpenLayers.StyleMap({ fillOpacity: 1, pointRadius: 10, rotation: heading, }); Now wrapped in a timed function the imageFeature: map.layers[3].addFeatures(new OpenLayers.Feature.Vector( new OpenLayers.Geometry.Point(longitude, latitude), {rotation: heading, type: parseInt(Math.random() * 3)} )); Type refers to a lookup of 1 of 3 images.: styleMap.addUniqueValueRules("default", "type", lookup); var lookup = { 0: {externalGraphic: "Image1.png", rotation: heading}, 1: {externalGraphic: "Image2.png", rotation: heading}, 2: {externalGraphic: "Image3.png", rotation: heading} } I have tried the 'redraw()' function: but it returns "tracking is undefined" or "map.layers[2]" is undefined. tracking.redraw(true); map.layers[2].redraw(true); Heading is a variable: from a JSON feed. var heading = 13.542; But so far can't get anything to work it will only rotate the image onload. The image will move in coordinates as it should though. So what am I doing wrong with the redraw function or how can I get this image to rotate live? Thanks in advance -Ozaki Add: I managed to get map.layers[2].redraw(true); to sucessfully redraw layer 2. But it still does not update the rotation. I am thinking because the stylemap is updating. But it runs through the style map every n sec, but no updates to rotation and the variable for heading is updating correctly if i put a watch on it in firebug.

    Read the article

  • Help with Nicedit - removeFormat function

    - by Franck
    Hello, I'm trying to get around Nicedit, and especially the "removeFormat" function. The problem is I cannot find the "removeFormat" method source code in the code below. The JS syntax looks strange to me. Can someone help me ? /* NicEdit - Micro Inline WYSIWYG * Copyright 2007-2008 Brian Kirchoff * * NicEdit is distributed under the terms of the MIT license * For more information visit http://nicedit.com/ * Do not remove this copyright message */ var bkExtend = function(){ var A = arguments; if (A.length == 1) { A = [this, A[0]] } for (var B in A[1]) { A[0][B] = A[1][B] } return A[0] }; function bkClass(){ } bkClass.prototype.construct = function(){ }; bkClass.extend = function(C){ var A = function(){ if (arguments[0] !== bkClass) { return this.construct.apply(this, arguments) } }; var B = new this(bkClass); bkExtend(B, C); A.prototype = B; A.extend = this.extend; return A }; var bkElement = bkClass.extend({ construct: function(B, A){ if (typeof(B) == "string") { B = (A || document).createElement(B) } B = $BK(B); return B }, appendTo: function(A){ A.appendChild(this); return this }, appendBefore: function(A){ A.parentNode.insertBefore(this, A); return this }, addEvent: function(B, A){ bkLib.addEvent(this, B, A); return this }, setContent: function(A){ this.innerHTML = A; return this }, pos: function(){ var C = curtop = 0; var B = obj = this; if (obj.offsetParent) { do { C += obj.offsetLeft; curtop += obj.offsetTop } while (obj = obj.offsetParent) } var A = (!window.opera) ? parseInt(this.getStyle("border-width") || this.style.border) || 0 : 0; return [C + A, curtop + A + this.offsetHeight] }, noSelect: function(){ bkLib.noSelect(this); return this }, parentTag: function(A){ var B = this; do { if (B && B.nodeName && B.nodeName.toUpperCase() == A) { return B } B = B.parentNode } while (B); return false }, hasClass: function(A){ return this.className.match(new RegExp("(\s|^)nicEdit-" + A + "(\s|$)")) }, addClass: function(A){ if (!this.hasClass(A)) { this.className += " nicEdit-" + A } return this }, removeClass: function(A){ if (this.hasClass(A)) { this.className = this.className.replace(new RegExp("(\s|^)nicEdit-" + A + "(\s|$)"), " ") } return this }, setStyle: function(A){ var B = this.style; for (var C in A) { switch (C) { case "float": B.cssFloat = B.styleFloat = A[C]; break; case "opacity": B.opacity = A[C]; B.filter = "alpha(opacity=" + Math.round(A[C] * 100) + ")"; break; case "className": this.className = A[C]; break; default: B[C] = A[C] } } return this }, getStyle: function(A, C){ var B = (!C) ? document.defaultView : C; if (this.nodeType == 1) { return (B && B.getComputedStyle) ? B.getComputedStyle(this, null).getPropertyValue(A) : this.currentStyle[bkLib.camelize(A)] } }, remove: function(){ this.parentNode.removeChild(this); return this }, setAttributes: function(A){ for (var B in A) { this[B] = A[B] } return this } }); var bkLib = { isMSIE: (navigator.appVersion.indexOf("MSIE") != -1), addEvent: function(C, B, A){ (C.addEventListener) ? C.addEventListener(B, A, false) : C.attachEvent("on" + B, A) }, toArray: function(C){ var B = C.length, A = new Array(B); while (B--) { A[B] = C[B] } return A }, noSelect: function(B){ if (B.setAttribute && B.nodeName.toLowerCase() != "input" && B.nodeName.toLowerCase() != "textarea") { B.setAttribute("unselectable", "on") } for (var A = 0; A < B.childNodes.length; A++) { bkLib.noSelect(B.childNodes[A]) } }, camelize: function(A){ return A.replace(/-(.)/g, function(B, C){ return C.toUpperCase() }) }, inArray: function(A, B){ return (bkLib.search(A, B) != null) }, search: function(A, C){ for (var B = 0; B < A.length; B++) { if (A[B] == C) { return B } } return null }, cancelEvent: function(A){ A = A || window.event; if (A.preventDefault && A.stopPropagation) { A.preventDefault(); A.stopPropagation() } return false }, domLoad: [], domLoaded: function(){ if (arguments.callee.done) { return } arguments.callee.done = true; for (i = 0; i < bkLib.domLoad.length; i++) { bkLib.domLoadi } }, onDomLoaded: function(A){ this.domLoad.push(A); if (document.addEventListener) { document.addEventListener("DOMContentLoaded", bkLib.domLoaded, null) } else { if (bkLib.isMSIE) { document.write(".nicEdit-main p { margin: 0; }<\/script"); $BK("__ie_onload").onreadystatechange = function(){ if (this.readyState == "complete") { bkLib.domLoaded() } } } } window.onload = bkLib.domLoaded } }; function $BK(A){ if (typeof(A) == "string") { A = document.getElementById(A) } return (A && !A.appendTo) ? bkExtend(A, bkElement.prototype) : A } var bkEvent = { addEvent: function(A, B){ if (B) { this.eventList = this.eventList || {}; this.eventList[A] = this.eventList[A] || []; this.eventList[A].push(B) } return this }, fireEvent: function(){ var A = bkLib.toArray(arguments), C = A.shift(); if (this.eventList && this.eventList[C]) { for (var B = 0; B < this.eventList[C].length; B++) { this.eventList[C][B].apply(this, A) } } } }; function __(A){ return A } Function.prototype.closure = function(){ var A = this, B = bkLib.toArray(arguments), C = B.shift(); return function(){ if (typeof(bkLib) != "undefined") { return A.apply(C, B.concat(bkLib.toArray(arguments))) } } }; Function.prototype.closureListener = function(){ var A = this, C = bkLib.toArray(arguments), B = C.shift(); return function(E){ E = E || window.event; if (E.target) { var D = E.target } else { var D = E.srcElement } return A.apply(B, [E, D].concat(C)) } }; var nicEditorConfig = bkClass.extend({ buttons: { 'bold': { name: _('Mettre en gras'), command: 'Bold', tags: ['B', 'STRONG'], css: { 'font-weight': 'bold' }, key: 'b' }, 'italic': { name: _('Mettre en italique'), command: 'Italic', tags: ['EM', 'I'], css: { 'font-style': 'italic' }, key: 'i' }, 'underline': { name: _('Souligner'), command: 'Underline', tags: ['U'], css: { 'text-decoration': 'underline' }, key: 'u' }, 'left': { name: _('Aligné à gauche'), command: 'justifyleft', noActive: true }, 'center': { name: _('Centré'), command: 'justifycenter', noActive: true }, 'right': { name: _('Aligné à droite'), command: 'justifyright', noActive: true }, 'justify': { name: _('Justifié'), command: 'justifyfull', noActive: true }, 'ol': { name: _('Liste non ordonnée'), command: 'insertorderedlist', tags: ['OL'] }, 'ul': { name: _('Liste non ordonnée'), command: 'insertunorderedlist', tags: ['UL'] }, 'subscript': { name: _('Placer en indice'), command: 'subscript', tags: ['SUB'] }, 'superscript': { name: _('Placer en exposant'), command: 'superscript', tags: ['SUP'] }, 'strikethrough': { name: _('Barrer le texte'), command: 'strikeThrough', css: { 'text-decoration': 'line-through' } }, 'removeformat': { name: _('Supprimer la mise en forme'), command: 'removeformat', noActive: true }, 'indent': { name: _('Indenter'), command: 'indent', noActive: true }, 'outdent': { name: _('Remove Indent'), command: 'outdent', noActive: true }, 'hr': { name: _('Ligne horizontale'), command: 'insertHorizontalRule', noActive: true } }, iconsPath: 'http://js.nicedit.com/nicEditIcons-latest.gif', buttonList: ['save', 'bold', 'italic', 'underline', 'left', 'center', 'right', 'justify', 'ol', 'ul', 'fontSize', 'fontFamily', 'fontFormat', 'indent', 'outdent', 'image', 'upload', 'link', 'unlink', 'forecolor', 'bgcolor'], iconList: { "xhtml": 1, "bgcolor": 2, "forecolor": 3, "bold": 4, "center": 5, "hr": 6, "indent": 7, "italic": 8, "justify": 9, "left": 10, "ol": 11, "outdent": 12, "removeformat": 13, "right": 14, "save": 25, "strikethrough": 16, "subscript": 17, "superscript": 18, "ul": 19, "underline": 20, "image": 21, "link": 22, "unlink": 23, "close": 24, "arrow": 26, "upload": 27, "question":2 } }); ; var nicEditors = { nicPlugins: [], editors: [], registerPlugin: function(B, A){ this.nicPlugins.push({ p: B, o: A }) }, allTextAreas: function(C){ var A = document.getElementsByTagName("textarea"); for (var B = 0; B < A.length; B++) { nicEditors.editors.push(new nicEditor(C).panelInstance(A[B])) } return nicEditors.editors }, findEditor: function(C){ var B = nicEditors.editors; for (var A = 0; A < B.length; A++) { if (B[A].instanceById(C)) { return B[A].instanceById(C) } } } }; var nicEditor = bkClass.extend({ construct: function(C){ this.options = new nicEditorConfig(); bkExtend(this.options, C); this.nicInstances = new Array(); this.loadedPlugins = new Array(); var A = nicEditors.nicPlugins; for (var B = 0; B < A.length; B++) { this.loadedPlugins.push(new A[B].p(this, A[B].o)) } nicEditors.editors.push(this); bkLib.addEvent(document.body, "mousedown", this.selectCheck.closureListener(this)) }, panelInstance: function(B, C){ B = this.checkReplace($BK(B)); var A = new bkElement("DIV").setStyle({ width: (parseInt(B.getStyle("width")) || B.clientWidth) + "px" }).appendBefore(B); this.setPanel(A); return this.addInstance(B, C) }, checkReplace: function(B){ var A = nicEditors.findEditor(B); if (A) { A.removeInstance(B); A.removePanel() } return B }, addInstance: function(B, C){ B = this.checkReplace($BK(B)); if (B.contentEditable || !!window.opera) { var A = new nicEditorInstance(B, C, this) } else { var A = new nicEditorIFrameInstance(B, C, this) } this.nicInstances.push(A); return this }, removeInstance: function(C){ C = $BK(C); var B = this.nicInstances; for (var A = 0; A < B.length; A++) { if (B[A].e == C) { B[A].remove(); this.nicInstances.splice(A, 1) } } }, removePanel: function(A){ if (this.nicPanel) { this.nicPanel.remove(); this.nicPanel = null } }, instanceById: function(C){ C = $BK(C); var B = this.nicInstances; for (var A = 0; A < B.length; A++) { if (B[A].e == C) { return B[A] } } }, setPanel: function(A){ this.nicPanel = new nicEditorPanel($BK(A), this.options, this); this.fireEvent("panel", this.nicPanel); return this }, nicCommand: function(B, A){ if (this.selectedInstance) { this.selectedInstance.nicCommand(B, A) } }, getIcon: function(D, A){ var C = this.options.iconList[D]; var B = (A.iconFiles) ? A.iconFiles[D] : ""; return { backgroundImage: "url('" + ((C) ? this.options.iconsPath : B) + "')", backgroundPosition: ((C) ? ((C - 1) * -18) : 0) + "px 0px" } }, selectCheck: function(C, A){ var B = false; do { if (A.className && A.className.indexOf("nicEdit") != -1) { return false } } while (A = A.parentNode); this.fireEvent("blur", this.selectedInstance, A); this.lastSelectedInstance = this.selectedInstance; this.selectedInstance = null; return false } }); nicEditor = nicEditor.extend(bkEvent); var nicEditorInstance = bkClass.extend({ isSelected: false, construct: function(G, D, C){ this.ne = C; this.elm = this.e = G; this.options = D || {}; newX = parseInt(G.getStyle("width")) || G.clientWidth; newY = parseInt(G.getStyle("height")) || G.clientHeight; this.initialHeight = newY - 8; var H = (G.nodeName.toLowerCase() == "textarea"); if (H || this.options.hasPanel) { var B = (bkLib.isMSIE && !((typeof document.body.style.maxHeight != "undefined") && document.compatMode == "CSS1Compat")); var E = { width: newX + "px", border: "1px solid #ccc", borderTop: 0, overflowY: "auto", overflowX: "hidden" }; E[(B) ? "height" : "maxHeight"] = (this.ne.options.maxHeight) ? this.ne.options.maxHeight + "px" : null; this.editorContain = new bkElement("DIV").setStyle(E).appendBefore(G); var A = new bkElement("DIV").setStyle({ width: (newX - 8) + "px", margin: "4px", minHeight: newY + "px" }).addClass("main").appendTo(this.editorContain); G.setStyle({ display: "none" }); A.innerHTML = G.innerHTML; if (H) { A.setContent(G.value); this.copyElm = G; var F = G.parentTag("FORM"); if (F) { bkLib.addEvent(F, "submit", this.saveContent.closure(this)) } } A.setStyle((B) ? { height: newY + "px" } : { overflow: "hidden" }); this.elm = A } this.ne.addEvent("blur", this.blur.closure(this)); this.init(); this.blur() }, init: function(){ this.elm.setAttribute("contentEditable", "true"); if (this.getContent() == "") { this.setContent("") } this.instanceDoc = document.defaultView; this.elm.addEvent("mousedown", this.selected.closureListener(this)).addEvent("keypress", this.keyDown.closureListener(this)).addEvent("focus", this.selected.closure(this)).addEvent("blur", this.blur.closure(this)).addEvent("keyup", this.selected.closure(this)); this.elm.addEvent("resizestart",function(){return false}); this.elm.addEvent("dragstart",function(){return false}); this.ne.fireEvent("add", this); }, remove: function(){ this.saveContent(); if (this.copyElm || this.options.hasPanel) { this.editorContain.remove(); this.e.setStyle({ display: "block" }); this.ne.removePanel() } this.disable(); this.ne.fireEvent("remove", this) }, disable: function(){ this.elm.setAttribute("contentEditable", "false") }, getSel: function(){ return (window.getSelection) ? window.getSelection() : document.selection }, getRng: function(){ var A = this.getSel(); if (!A) { return null } return (A.rangeCount 0) ? A.getRangeAt(0) : A.createRange() }, selRng: function(A, B){ if (window.getSelection) { B.removeAllRanges(); B.addRange(A) } else { A.select() } }, selElm: function(){ var C = this.getRng(); if (C.startContainer) { var D = C.startContainer; if (C.cloneContents().childNodes.length == 1) { for (var B = 0; B < D.childNodes.length; B++) { var A = D.childNodes[B].ownerDocument.createRange(); A.selectNode(D.childNodes[B]); if (C.compareBoundaryPoints(Range.START_TO_START, A) != 1 && C.compareBoundaryPoints(Range.END_TO_END, A) != -1) { return $BK(D.childNodes[B]) } } } return $BK(D) } else { return $BK((this.getSel().type == "Control") ? C.item(0) : C.parentElement()) } }, saveRng: function(){ this.savedRange = this.getRng(); this.savedSel = this.getSel() }, restoreRng: function(){ if (this.savedRange) { this.selRng(this.savedRange, this.savedSel) } }, keyDown: function(B, A){ if (B.ctrlKey) { this.ne.fireEvent("key", this, B) } }, selected: function(C, A){ if (!A) { A = this.selElm() } if (!C.ctrlKey) { var B = this.ne.selectedInstance; if (B != this) { if (B) { this.ne.fireEvent("blur", B, A) } this.ne.selectedInstance = this; this.ne.fireEvent("focus", B, A) } this.ne.fireEvent("selected", B, A); this.isFocused = true; this.elm.addClass("selected") } return false }, blur: function(){ this.isFocused = false; this.elm.removeClass("selected") }, saveContent: function(){ if (this.copyElm || this.options.hasPanel) { this.ne.fireEvent("save", this); (this.copyElm) ? this.copyElm.value = this.getContent() : this.e.innerHTML = this.getContent() } }, getElm: function(){ return this.elm }, getContent: function(){ this.content = this.getElm().innerHTML; this.ne.fireEvent("get", this); return this.content }, setContent: function(A){ this.content = A; this.ne.fireEvent("set", this); this.elm.innerHTML = this.content }, nicCommand: function(B, A){ document.execCommand(B, false, A) } }); var nicEditorIFrameInstance = nicEditorInstance.extend({ savedStyles: [], init: function(){ var B = this.elm.innerHTML.replace(/^\s+|\s+$/g, ""); this.elm.innerHTML = ""; (!B) ? B = "" : B; this.initialContent = B; this.elmFrame = new bkElement("iframe").setAttributes({ src: "javascript:;", frameBorder: 0, allowTransparency: "true", scrolling: "no" }).setStyle({ height: "100px", width: "100%" }).addClass("frame").appendTo(this.elm); if (this.copyElm) { this.elmFrame.setStyle({ width: (this.elm.offsetWidth - 4) + "px" }) } var A = ["font-size", "font-family", "font-weight", "color"]; for (itm in A) { this.savedStyles[bkLib.camelize(itm)] = this.elm.getStyle(itm) } setTimeout(this.initFrame.closure(this), 50) }, disable: function(){ this.elm.innerHTML = this.getContent() }, initFrame: function(){ var B = $BK(this.elmFrame.contentWindow.document); B.designMode = "on"; B.open(); var A = this.ne.options.externalCSS; B.write("" + ((A) ? '' : "") + '' + this.initialContent + ""); B.close(); this.frameDoc = B; this.frameWin = $BK(this.elmFrame.contentWindow); this.frameContent = $BK(this.frameWin.document.body).setStyle(this.savedStyles); this.instanceDoc = this.frameWin.document.defaultView; this.heightUpdate(); this.frameDoc.addEvent("mousedown", this.selected.closureListener(this)).addEvent("keyup", this.heightUpdate.closureListener(this)).addEvent("keydown", this.keyDown.closureListener(this)).addEvent("keyup", this.selected.closure(this)); this.ne.fireEvent("add", this) }, getElm: function(){ return this.frameContent }, setContent: function(A){ this.content = A; this.ne.fireEvent("set", this); this.frameContent.innerHTML = this.content; this.heightUpdate() }, getSel: function(){ return (this.frameWin) ? this.frameWin.getSelection() : this.frameDoc.selection }, heightUpdate: function(){ this.elmFrame.style.height = Math.max(this.frameContent.offsetHeight, this.initialHeight) + "px" }, nicCommand: function(B, A){ this.frameDoc.execCommand(B, false, A); setTimeout(this.heightUpdate.closure(this), 100) } }); var nicEditorPanel = bkClass.extend({ construct: function(E, B, A){ this.elm = E; this.options = B; this.ne = A; this.panelButtons = new Array(); this.buttonList = bkExtend([], this.ne.options.buttonList); this.panelContain = new bkElement("DIV").setStyle({ overflow: "hidden", width: "100%", border: "1px solid #cccccc", backgroundColor: "#efefef" }).addClass("panelContain"); this.panelElm = new bkElement("DIV").setStyle({ margin: "2px", marginTop: "0px", zoom: 1, overflow: "hidden" }).addClass("panel").appendTo(this.panelContain); this.panelContain.appendTo(E); var C = this.ne.options; var D = C.buttons; for (button in D) { this.addButton(button, C, true) } this.reorder(); E.noSelect() }, addButton: function(buttonName, options, noOrder){ var button = options.buttons[buttonName]; var type = (button.type) ? eval("(typeof(" + button.type + ') == "undefined") ? null : ' + button.type + ";") : nicEditorButton; var hasButton = bkLib.inArray(this.buttonList, buttonName); if (type && (hasButton || this.ne.options.fullPanel)) { this.panelButtons.push(new type(this.panelElm, buttonName, options, this.ne)); if (!hasButton) { this.buttonList.push(buttonName) } } }, findButton: function(B){ for (var A = 0; A < this.panelButtons.length; A++) { if (this.panelButtons[A].name == B) { return this.panelButtons[A] } } }, reorder: function(){ var C = this.buttonList; for (var B = 0; B < C.length; B++) { var A = this.findButton(C[B]); if (A) { this.panelElm.appendChild(A.margin) } } }, remove: function(){ this.elm.remove() } }); var nicEditorButton = bkClass.extend({ construct: function(D, A, C, B){ this.options = C.buttons[A]; this.name = A; this.ne = B; this.elm = D; this.margin = new bkElement("DIV").setStyle({ "float": "left", marginTop: "2px" }).appendTo(D); this.contain = new bkElement("DIV").setStyle({ width: "20px", height: "20px" }).addClass("buttonContain").appendTo(this.margin); this.border = new bkElement("DIV").setStyle({ backgroundColor: "#efefef", border: "1px solid #efefef" }).appendTo(this.contain); this.button = new bkElement("DIV").setStyle({ width: "18px", height: "18px", overflow: "hidden", zoom: 1, cursor: "pointer" }).addClass("button").setStyle(this.ne.getIcon(A, C)).appendTo(this.border); this.button.addEvent("mouseover", this.hoverOn.closure(this)).addEvent("mouseout", this.hoverOff.closure(this)).addEvent("mousedown", this.mouseClick.closure(this)).noSelect(); if (!window.opera) { this.button.onmousedown = this.button.onclick = bkLib.cancelEvent } B.addEvent("selected", this.enable.closure(this)).addEvent("blur", this.disable.closure(this)).addEvent("key", this.key.closure(this)); this.disable(); this.init() }, init: function(){ }, hide: function(){ this.contain.setStyle({ display: "none" }) }, updateState: function(){ if (this.isDisabled) { this.setBg() } else { if (this.isHover) { this.setBg("hover") } else { if (this.isActive) { this.setBg("active") } else { this.setBg() } } } }, setBg: function(A){ switch (A) { case "hover": var B = { border: "1px solid #666", backgroundColor: "#ddd" }; break; case "active": var B = { border: "1px solid #666", backgroundColor: "#ccc" }; break; default: var B = { border: "1px solid #efefef", backgroundColor: "#efefef" } } this.border.setStyle(B).addClass("button-" + A) }, checkNodes: function(A){ var B = A; do { if (this.options.tags && bkLib.inArray(this.options.tags, B.nodeName)) { this.activate(); return true } } while (B = B.parentNode && B.className != "nicEdit"); B = $BK(A); while (B.nodeType == 3) { B = $BK(B.parentNode) } if (this.options.css) { for (itm in this.options.css) { if (B.getStyle(itm, this.ne.selectedInstance.instanceDoc) == this.options.css[itm]) { this.activate(); return true } } } this.deactivate(); return false }, activate: function(){ if (!this.isDisabled) { this.isActive = true; this.updateState(); this.ne.fireEvent("buttonActivate", this) } }, deactivate: function(){ this.isActive = false; this.updateState(); if (!this.isDisabled) { th

    Read the article

  • Runge-Kutta (RK4) integration for game physics

    - by Kai
    Gaffer on Games has a great article about using RK4 integration for better game physics. The implementation is straightforward but the math behind it confuses me. I understand derivatives and integrals on a conceptual level but I haven't manipulated equations in a long time. Here's the brunt of Gaffer's implementation: void integrate(State &state, float t, float dt) { Derivative a = evaluate(state, t, 0.0f, Derivative()); Derivative b = evaluate(state, t+dt*0.5f, dt*0.5f, a); Derivative c = evaluate(state, t+dt*0.5f, dt*0.5f, b); Derivative d = evaluate(state, t+dt, dt, c); const float dxdt = 1.0f/6.0f * (a.dx + 2.0f*(b.dx + c.dx) + d.dx); const float dvdt = 1.0f/6.0f * (a.dv + 2.0f*(b.dv + c.dv) + d.dv) state.x = state.x + dxdt * dt; state.v = state.v + dvdt * dt; } Can anybody explain in simple terms how RK4 works? Specifically, why are we averaging the derivatives at 0.0f, 0.5f, 0.5f, and 1.0f? How is averaging derivatives up to the 4th order different from doing a simple euler integration with a smaller timestep? After reading the accepted answer below, and several other articles, I have a grasp on how RK4 works. To answer my own questions: Can anybody explain in simple terms how RK4 works? RK4 takes advantage of the fact that we can get a much better approximation of a function if we use its higher-order derivatives rather than just the first or second derivative. That's why the Taylor series converges much faster than Euler approximations. (take a look at the animation on the right side of that page) Specifically, why are we averaging the derivatives at 0.0f, 0.5f, 0.5f, and 1.0f? The Runge-Kutta method is an approximation of a function that samples derivatives of several points within a timestep, unlike the Taylor series which only samples derivatives of a single point. After sampling these derivatives we need to know how to weigh each sample to get the closest approximation possible. An easy way to do this is to pick constants that coincide with the Taylor series, which is how the constants of a Runge-Kutta equation are determined. This article made it clearer for me: http://web.mit.edu/10.001/Web/Course%5FNotes/Differential%5FEquations%5FNotes/node5.html. Notice how (15) is the Taylor series expansion while (17) is the Runge-Kutta derivation. How is averaging derivatives up to the 4th order different from doing a simple euler integration with a smaller timestep? Mathematically it converges much faster than doing many Euler approximations. Of course, with enough Euler approximations we can gain equal accuracy to RK4, but the computational power needed doesn't justify using Euler.

    Read the article

  • Python Memory leak - Solved, but still puzzled

    - by disappearedng
    Dear everyone, I have successfully debugged my own memory leak problems. However, I have noticed some very strange occurence. for fid, fv in freqDic.iteritems(): outf.write(fid+"\t") #ID for i, term in enumerate(domain): #Vector tfidf = self.tf(term, fv) * self.idf( term, docFreqDic) if i == len(domain) - 1: outf.write("%f\n" % tfidf) else: outf.write("%f\t" % tfidf) outf.flush() print "Memory increased by", int(self.memory_mon.usage()) - startMemory outf.close() def tf(self, term, freqVector): total = freqVector[TOTAL] if total == 0: return 0 if term not in freqVector: ## When you don't have these lines memory leaks occurs return 0 ## return float(freqVector[term]) / freqVector[TOTAL] def idf(self, term, docFrequencyPerTerm): if term not in docFrequencyPerTerm: return 0 return math.log( float(docFrequencyPerTerm[TOTAL])/docFrequencyPerTerm[term]) Basically let me describe my problem: 1) I am doing tfidf calculations 2) I traced that the source of memory leaks is coming from defaultdict. 3) I am using the memory_mon from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python 4) The reason for my memory leaks is as follows: a) in self.tf, if the lines: if term not in freqVector: return 0 are not added that will cause the memory leak. (I verified this myself using memory_mon and noticed a sharp increase in memory that kept on increasing) The solution to my problem was 1) since fv is a defaultdict, any reference to it that are not found in fv will create an entry. Over a very large domain, this will cause memory leaks. I decided to use dict instead of default dict and the memory problem did go away. My only puzzle is: since fv is created in "for fid, fv in freqDic.iteritems():" shouldn't fv be destroyed at the end of every for loop? I tried putting gc.collect() at the end of the for loop but gc was not able to collect everything (returns 0). Yes, the hypothesis is right, but the memory should stay fairly consistent with ever for loop if for loops do destroy all temp variables. This is what it looks like with that two line in self.tf: Memory increased by 12 Memory increased by 948 Memory increased by 28 Memory increased by 36 Memory increased by 36 Memory increased by 32 Memory increased by 28 Memory increased by 32 Memory increased by 32 Memory increased by 32 Memory increased by 40 Memory increased by 32 Memory increased by 32 Memory increased by 28 and without the the two line: Memory increased by 1652 Memory increased by 3576 Memory increased by 4220 Memory increased by 5760 Memory increased by 7296 Memory increased by 8840 Memory increased by 10456 Memory increased by 12824 Memory increased by 13460 Memory increased by 15000 Memory increased by 17448 Memory increased by 18084 Memory increased by 19628 Memory increased by 22080 Memory increased by 22708 Memory increased by 24248 Memory increased by 26704 Memory increased by 27332 Memory increased by 28864 Memory increased by 30404 Memory increased by 32856 Memory increased by 33552 Memory increased by 35024 Memory increased by 36564 Memory increased by 39016 Memory increased by 39924 Memory increased by 42104 Memory increased by 42724 Memory increased by 44268 Memory increased by 46720 Memory increased by 47352 Memory increased by 48952 Memory increased by 50428 Memory increased by 51964 Memory increased by 53508 Memory increased by 55960 Memory increased by 56584 Memory increased by 58404 Memory increased by 59668 Memory increased by 61208 Memory increased by 62744 Memory increased by 64400 I look forward to your answer

    Read the article

  • Return Json causes save file dialog in asp.net mvc

    - by Eran
    Hi, I'm integrating jquery fullcalendar into my application. Here is the code i'm using: in index.aspx: <script type="text/javascript"> $(document).ready(function() { $('#calendar').fullCalendar({ events: "/Scheduler/CalendarData" }); }); </script> <div id="calendar"> </div> Here is the code for Scheduler/CalendarData: public ActionResult CalendarData() { IList<CalendarDTO> tasksList = new List<CalendarDTO>(); tasksList.Add(new CalendarDTO { id = 1, title = "Google search", start = ToUnixTimespan(DateTime.Now), end = ToUnixTimespan(DateTime.Now.AddHours(4)), url = "www.google.com" }); tasksList.Add(new CalendarDTO { id = 1, title = "Bing search", start = ToUnixTimespan(DateTime.Now.AddDays(1)), end = ToUnixTimespan(DateTime.Now.AddDays(1).AddHours(4)), url = "www.bing.com" }); return Json(tasksList,JsonRequestBehavior.AllowGet); } private long ToUnixTimespan(DateTime date) { TimeSpan tspan = date.ToUniversalTime().Subtract( new DateTime(1970, 1, 1, 0, 0, 0)); return (long)Math.Truncate(tspan.TotalSeconds); } public ActionResult Index() { return View("Index"); } I also have the following code inside head tag in site.master: <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server" /> <link href="<%= Url.Content("~/Content/jquery-ui-1.7.2.custom.css") %>" rel="stylesheet" type="text/css" /> <link href="~Perspectiva/Content/Site.css" rel="stylesheet" type="text/css" /> <link href="~Perspectiva/Content/fullcalendar.css" rel="stylesheet" type="text/css" /> <script src="~Perspectiva/Scripts/jquery-1.4.2.js" type="text/javascript"></script> <script src="~Perspectiva/Scripts/fullcalendar.js" type="text/javascript"></script> <script src="/Scripts/MicrosoftAjax.debug.js" type="text/javascript"></script> <script src="/Scripts/MicrosoftMvcAjax.debug.js" type="text/javascript"></script> Everything I did was pretty much copied from http://szahariev.blogspot.com/2009/08/jquery-fullcalendar-and-aspnet-mvc.html When navigating to /scheduler/calendardata I get a prompt for saving the json data which contents are exactly what I created in the CalendarData function. What do I need to do in order to render the page correctly? Thanks in advance, Eran

    Read the article

  • Best programming aids for a quadriplegic programmer

    - by Peter Rowell
    Before you jump to conclusions, yes, this is programming related. It covers a situation that comes under the heading of, "There, but for the grace of God, go you or I." This is brand new territory for me so I'm asking for some serious help here. A young man, Honza Ripa, in a nearby town did the classic Dumb Thing two weeks after graduating from High School -- he dove into shallow water in the Russian River and had a C-4/C-5 break, sometimes called a Swimming Pool break. In a matter of seconds he went from an exceptional golfer and wrestler to a quadriplegic. (Read the story ... all of us should have been so lucky as to have a girlfriend like Brianna.) That was 10 months ago and he has regained only tiny amounts of control of his right index finger and a couple of other hand/foot motions, none of them fine-grained. His total control of his computer (currently running Win7, but we can change that as needed) is via voice command. Honza's not dumb. He had a 3.7 GPA with AP math and physics. The Problems: Since all of his input is via voice command, he is concerned that the predominance of special characters in programming will require vast amount of verbose commands. Does anyone know of any well done voice input system specifically designed for programmers? I'm thinking about something that might be modal--e.g. you say "Python input" and it goes into a macro mode for doing class definitions, etc. Given all of the RSI in programmer-land there's got to be something out there. What OS(es) does it run on? I am planning on teaching him Python, which is my preferred language for programming and teaching. Are there any applications / whatevers that are written in Python and would be a particularly good match for engaging him mentally while supporting his disability? One of his expressed interests is in stock investing, but that not might be a good starting point for a brand-new programmer. There are a lot of environments (Flash, JavaScript, etc) that are not particularly friendly to people with accessibility challenges. I vaguely remember (but cannot find) a research project that basically created an overlay system on top of a screen environment and then allowed macro command construction on top of the screen image. If we can get/train this system, we may be able to remove many hurdles to using the net. I am particularly interested in finding open source Python-based robotics and robotic prostheses projects so that he can simultaneously learn advanced programming concepts while learning to solve some of his own immediate problems. I've done a ton of googling on this, but I know there things I'm missing. I'm asking the SO community to step up to the plate here. I know this group has the answers, so let me hear them! Overwhelm me with the opportunities that any of us might have/need to still program after such a life-changing event.

    Read the article

  • How to write a buffer-overflow exploit in windows XP,x86?

    - by Mask
    void function(int a, int b, int c) { char buffer1[5]; char buffer2[10]; int *ret; ret = buffer1 + 12; (*ret) += 8;//why is it 8?? } void main() { int x; x = 0; function(1,2,3); x = 1; printf("%d\n",x); } The above demo is from here: http://insecure.org/stf/smashstack.html But it's not working here: D:\test>gcc -Wall -Wextra hw.cpp && a.exe hw.cpp: In function `void function(int, int, int)': hw.cpp:6: warning: unused variable 'buffer2' hw.cpp: At global scope: hw.cpp:4: warning: unused parameter 'a' hw.cpp:4: warning: unused parameter 'b' hw.cpp:4: warning: unused parameter 'c' 1 And I don't understand why it's 8 though the author thinks: A little math tells us the distance is 8 bytes. My gdb dump as called: Dump of assembler code for function main: 0x004012ee <main+0>: push %ebp 0x004012ef <main+1>: mov %esp,%ebp 0x004012f1 <main+3>: sub $0x18,%esp 0x004012f4 <main+6>: and $0xfffffff0,%esp 0x004012f7 <main+9>: mov $0x0,%eax 0x004012fc <main+14>: add $0xf,%eax 0x004012ff <main+17>: add $0xf,%eax 0x00401302 <main+20>: shr $0x4,%eax 0x00401305 <main+23>: shl $0x4,%eax 0x00401308 <main+26>: mov %eax,0xfffffff8(%ebp) 0x0040130b <main+29>: mov 0xfffffff8(%ebp),%eax 0x0040130e <main+32>: call 0x401b00 <_alloca> 0x00401313 <main+37>: call 0x4017b0 <__main> 0x00401318 <main+42>: movl $0x0,0xfffffffc(%ebp) 0x0040131f <main+49>: movl $0x3,0x8(%esp) 0x00401327 <main+57>: movl $0x2,0x4(%esp) 0x0040132f <main+65>: movl $0x1,(%esp) 0x00401336 <main+72>: call 0x4012d0 <function> 0x0040133b <main+77>: movl $0x1,0xfffffffc(%ebp) 0x00401342 <main+84>: mov 0xfffffffc(%ebp),%eax 0x00401345 <main+87>: mov %eax,0x4(%esp) 0x00401349 <main+91>: movl $0x403000,(%esp) 0x00401350 <main+98>: call 0x401b60 <printf> 0x00401355 <main+103>: leave 0x00401356 <main+104>: ret 0x00401357 <main+105>: nop 0x00401358 <main+106>: add %al,(%eax) 0x0040135a <main+108>: add %al,(%eax) 0x0040135c <main+110>: add %al,(%eax) 0x0040135e <main+112>: add %al,(%eax) End of assembler dump. Dump of assembler code for function function: 0x004012d0 <function+0>: push %ebp 0x004012d1 <function+1>: mov %esp,%ebp 0x004012d3 <function+3>: sub $0x38,%esp 0x004012d6 <function+6>: lea 0xffffffe8(%ebp),%eax 0x004012d9 <function+9>: add $0xc,%eax 0x004012dc <function+12>: mov %eax,0xffffffd4(%ebp) 0x004012df <function+15>: mov 0xffffffd4(%ebp),%edx 0x004012e2 <function+18>: mov 0xffffffd4(%ebp),%eax 0x004012e5 <function+21>: movzbl (%eax),%eax 0x004012e8 <function+24>: add $0x5,%al 0x004012ea <function+26>: mov %al,(%edx) 0x004012ec <function+28>: leave 0x004012ed <function+29>: ret In my case the distance should be - = 5,right?But it seems not working..

    Read the article

  • How to write a buffer-overflow exploit in GCC,windows XP,x86?

    - by Mask
    void function(int a, int b, int c) { char buffer1[5]; char buffer2[10]; int *ret; ret = buffer1 + 12; (*ret) += 8;//why is it 8?? } void main() { int x; x = 0; function(1,2,3); x = 1; printf("%d\n",x); } The above demo is from here: http://insecure.org/stf/smashstack.html But it's not working here: D:\test>gcc -Wall -Wextra hw.cpp && a.exe hw.cpp: In function `void function(int, int, int)': hw.cpp:6: warning: unused variable 'buffer2' hw.cpp: At global scope: hw.cpp:4: warning: unused parameter 'a' hw.cpp:4: warning: unused parameter 'b' hw.cpp:4: warning: unused parameter 'c' 1 And I don't understand why it's 8 though the author thinks: A little math tells us the distance is 8 bytes. My gdb dump as called: Dump of assembler code for function main: 0x004012ee <main+0>: push %ebp 0x004012ef <main+1>: mov %esp,%ebp 0x004012f1 <main+3>: sub $0x18,%esp 0x004012f4 <main+6>: and $0xfffffff0,%esp 0x004012f7 <main+9>: mov $0x0,%eax 0x004012fc <main+14>: add $0xf,%eax 0x004012ff <main+17>: add $0xf,%eax 0x00401302 <main+20>: shr $0x4,%eax 0x00401305 <main+23>: shl $0x4,%eax 0x00401308 <main+26>: mov %eax,0xfffffff8(%ebp) 0x0040130b <main+29>: mov 0xfffffff8(%ebp),%eax 0x0040130e <main+32>: call 0x401b00 <_alloca> 0x00401313 <main+37>: call 0x4017b0 <__main> 0x00401318 <main+42>: movl $0x0,0xfffffffc(%ebp) 0x0040131f <main+49>: movl $0x3,0x8(%esp) 0x00401327 <main+57>: movl $0x2,0x4(%esp) 0x0040132f <main+65>: movl $0x1,(%esp) 0x00401336 <main+72>: call 0x4012d0 <function> 0x0040133b <main+77>: movl $0x1,0xfffffffc(%ebp) 0x00401342 <main+84>: mov 0xfffffffc(%ebp),%eax 0x00401345 <main+87>: mov %eax,0x4(%esp) 0x00401349 <main+91>: movl $0x403000,(%esp) 0x00401350 <main+98>: call 0x401b60 <printf> 0x00401355 <main+103>: leave 0x00401356 <main+104>: ret 0x00401357 <main+105>: nop 0x00401358 <main+106>: add %al,(%eax) 0x0040135a <main+108>: add %al,(%eax) 0x0040135c <main+110>: add %al,(%eax) 0x0040135e <main+112>: add %al,(%eax) End of assembler dump. Dump of assembler code for function function: 0x004012d0 <function+0>: push %ebp 0x004012d1 <function+1>: mov %esp,%ebp 0x004012d3 <function+3>: sub $0x38,%esp 0x004012d6 <function+6>: lea 0xffffffe8(%ebp),%eax 0x004012d9 <function+9>: add $0xc,%eax 0x004012dc <function+12>: mov %eax,0xffffffd4(%ebp) 0x004012df <function+15>: mov 0xffffffd4(%ebp),%edx 0x004012e2 <function+18>: mov 0xffffffd4(%ebp),%eax 0x004012e5 <function+21>: movzbl (%eax),%eax 0x004012e8 <function+24>: add $0x5,%al 0x004012ea <function+26>: mov %al,(%edx) 0x004012ec <function+28>: leave 0x004012ed <function+29>: ret In my case the distance should be - = 5,right?But it seems not working.. Why function needs 56 bytes for local variables?( sub $0x38,%esp )

    Read the article

  • Bit Reversal using bitwise

    - by Yongwei Xing
    Hi all I am trying to do bit reversal in a byte. I use the code below static int BitReversal(int n) { int u0 = 0x55555555; // 01010101010101010101010101010101 int u1 = 0x33333333; // 00110011001100110011001100110011 int u2 = 0x0F0F0F0F; // 00001111000011110000111100001111 int u3 = 0x00FF00FF; // 00000000111111110000000011111111 int x, y, z; x = n; y = (x >> 1) & u0; z = (x & u0) << 1; x = y | z; y = (x >> 2) & u1; z = (x & u1) << 2; x = y | z; y = (x >> 4) & u2; z = (x & u2) << 4; x = y | z; y = (x >> 8) & u3; z = (x & u3) << 8; x = y | z; y = (x >> 16) & u4; z = (x & u4) << 16; x = y | z; return x; } It can reverser the bit (on a 32-bit machine), but there is a problem, For example, the input is 10001111101, I want to get 10111110001, but this method would reverse the whole byte including the heading 0s. The output is 10111110001000000000000000000000. Is there any method to only reverse the actual number? I do not want to convert it to string and reverser, then convert again. Is there any pure math method or bit operation method? Best Regards,

    Read the article

  • Lawler's Algorithm Implementation Assistance

    - by Richard Knop
    Here is my implemenation of Lawler's algorithm in PHP (I know... but I'm used to it): <?php $jobs = array(1, 2, 3, 4, 5, 6); $jobsSubset = array(2, 5, 6); $n = count($jobs); $processingTimes = array(2, 3, 4, 3, 2, 1); $dueDates = array(3, 15, 9, 7, 11, 20); $optimalSchedule = array(); foreach ($jobs as $j) { $optimalSchedule[] = 0; } $dicreasedCardinality = array(); for ($i = $n; $i >= 1; $i--) { $x = 0; $max = 0; // loop through all jobs for ($j = 0; $j < $i; $j++) { // ignore if $j already is in the $dicreasedCardinality array if (false === in_array($j, $dicreasedCardinality)) { // if the job has no succesor in $jobsSubset if (false === isset($jobs[$j+1]) || false === in_array($jobs[$j+1], $jobsSubset)) { // here I find an array index of a job with the maximum due date // amongst jobs with no sucessor in $jobsSubset if ($x < $dueDates[$j]) { $x = $dueDates[$j]; $max = $j; } } } } // move the job at the end of $optimalSchedule $optimalSchedule[$i-1] = $jobs[$max]; // decrease the cardinality of $jobs $dicreasedCardinality[] = $max; } print_r($optimalSchedule); Now the above returns an optimal schedule like this: Array ( [0] => 1 [1] => 1 [2] => 1 [3] => 3 [4] => 2 [5] => 6 ) Which doesn't seem right to me. The problem might be with my implementation of the algorithm because I am not sure I understand it correctly. I used this source to implement it: http://www.google.com/books?id=aSiBs6PDm9AC&pg=PA166&dq=lawler%27s+algorithm+code&lr=&hl=sk&cd=4#v=onepage&q=&f=false The description there is a little confusing. For example, I didn't quite get how is the subset D defined (I guess it is arbitrary). Could anyone help me out with this? I have been trying to find some sources with simpler explanation of the algorithm but all sources I found were even more complicated (with math proofs and such) so I am stuck with the link above. Yes, this is a homework, if it wasn't obvious. I still have few weeks to crack this but I have spent few days already trying to get how exactly this algorithm works with no success so I don't think I will get any brighter during that time.

    Read the article

< Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >