Search Results

Search found 15884 results on 636 pages for 'non photorealistic render'.

Page 128/636 | < Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >

  • Spotlight: How Scandinavia's Largest Nuclear Power Plant Increased Productivity and Reduced Costs wi

    - by [email protected]
    Ringhals nuclear power plant, which is part of the Vattenfall Group, is located about 60 km south-west of the beautiful coastal city of Gothenburg in Sweden. A deep concern to reduce environmental impact coupled with an effort to increase plant safety and operational efficiency have led to a recent surge in investments and initiatives around plant modification and plant optimization at Ringhals. A multitude of challenges were faced by the users in various groups that were involved in these projects. First, it was very difficult for users to easily access complex and layered asset and engineering information, which was critical to increased productivity and completing projects on time. Moreover, the 20 or so different solutions that were being used to view various document formats, not only resulted in collaboration complexity but also escalated IT administration costs and woes. Finally, there was a considerable non-engineering community comprising non-CAD specialists that needed easy access to plant data in an effort to minimize engineering disruption. Oracle's AutoVue significantly simplified the ability to efficiently view and use digital asset information by providing a standardized visualization solution for the enterprise. The key benefits achieved by Ringhals include: Increased productivity of plant optimization and plant modification by 3% Saved around $ 500 K annually Cut IT maintenance costs by 50% by using a single solution Reduced engineering disruption by allowing non-CAD users easy access to digital plant data The complete case-study can be found here

    Read the article

  • The Stub Proto: Not Just For Stub Objects Anymore

    - by user9154181
    One of the great pleasures of programming is to invent something for a narrow purpose, and then to realize that it is a general solution to a broader problem. In hindsight, these things seem perfectly natural and obvious. The stub proto area used to build the core Solaris consolidation has turned out to be one of those things. As discussed in an earlier article, the stub proto area was invented as part of the effort to use stub objects to build the core ON consolidation. Its purpose was merely as a place to hold stub objects. However, we keep finding other uses for it. It turns out that the stub proto should be more properly thought of as an auxiliary place to put things that we would like to put into the proto to help us build the product, but which we do not wish to package or deliver to the end user. Stub objects are one example, but private lint libraries, header files, archives, and relocatable objects, are all examples of things that might profitably go into the stub proto. Without a stub proto, these items were handled in a variety of ad hoc ways: If one part of the workspace needed private header files, libraries, or other such items, it might modify its Makefile to reach up and over to the place in the workspace where those things live and use them from there. There are several problems with this: Each component invents its own approach, meaning that programmers maintaining the system have to invest extra effort to understand what things mean. In the past, this has created makefile ghettos in which only the person who wrote the makefiles feels confident to modify them, while everyone else ignores them. This causes many difficulties and benefits no one. These interdependencies are not obvious to the make, utility, and can lead to races. They are not obvious to the human reader, who may therefore not realize that they exist, and break them. Our policy in ON is not to deliver files into the proto unless those files are intended to be packaged and delivered to the end user. However, sometimes non-shipping files were copied into the proto anyway, causing a different set of problems: It requires a long list of exceptions to silence our normal unused proto item error checking. In the past, we have accidentally shipped files that we did not intend to deliver to the end user. Mixing cruft with valuable items makes it hard to discern which is which. The stub proto area offers a convenient and robust solution. Files needed to build the workspace that are not delivered to the end user can instead be installed into the stub proto. No special exceptions or custom make rules are needed, and the intent is always clear. We are already accessing some private lint libraries and compilation symlinks in this manner. Ultimately, I'd like to see all of the files in the proto that have a packaging exception delivered to the stub proto instead, and for the elimination of all existing special case makefile rules. This would include shared objects, header files, and lint libraries. I don't expect this to happen overnight — it will be a long term case by case project, but the overall trend is clear. The Stub Proto, -z assert_deflib, And The End Of Accidental System Object Linking We recently used the stub proto to solve an annoying build issue that goes back to the earliest days of Solaris: How to ensure that we're linking to the OS bits we're building instead of to those from the running system. The Solaris product is made up of objects and files from a number of different consolidations, each of which is built separately from the others from an independent code base called a gate. The core Solaris OS consolidation is ON, which stands for "Operating System and Networking". You will frequently also see ON called the OSnet. There are consolidations for X11 graphics, the desktop environment, open source utilities, compilers and development tools, and many others. The collection of consolidations that make up Solaris is known as the "Wad Of Stuff", usually referred to simply as the WOS. None of these consolidations is self contained. Even the core ON consolidation has some dependencies on libraries that come from other consolidations. The build server used to build the OSnet must be running a relatively recent version of Solaris, which means that its objects will be very similar to the new ones being built. However, it is necessarily true that the build system objects will always be a little behind, and that incompatible differences may exist. The objects built by the OSnet link to other objects. Some of these dependencies come from the OSnet, while others come from other consolidations. The objects from other consolidations are provided by the standard library directories on the build system (/lib, /usr/lib). The objects from the OSnet itself are supposed to come from the proto areas in the workspace, and not from the build server. In order to achieve this, we make use of the -L command line option to the link-editor. The link-editor finds dependencies by looking in the directories specified by the caller using the -L command line option. If the desired dependency is not found in one of these locations, ld will then fall back to looking at the default locations (/lib, /usr/lib). In order to use OSnet objects from the workspace instead of the system, while still accessing non-OSnet objects from the system, our Makefiles set -L link-editor options that point at the workspace proto areas. In general, this works well and dependencies are found in the right places. However, there have always been failures: Building objects in the wrong order might mean that an OSnet dependency hasn't been built before an object that needs it. If so, the dependency will not be seen in the proto, and the link-editor will silently fall back to the one on the build server. Errors in the makefiles can wipe out the -L options that our top level makefiles establish to cause ld to look at the workspace proto first. In this case, all objects will be found on the build server. These failures were rarely if ever caught. As I mentioned earlier, the objects on the build server are generally quite close to the objects built in the workspace. If they offer compatible linking interfaces, then the objects that link to them will behave properly, and no issue will ever be seen. However, if they do not offer compatible linking interfaces, the failure modes can be puzzling and hard to pin down. Either way, there won't be a compile-time warning or error. The advent of the stub proto eliminated the first type of failure. With stub objects, there is no dependency ordering, and the necessary stub object dependency will always be in place for any OSnet object that needs it. However, makefile errors do still occur, and so, the second form of error was still possible. While working on the stub object project, we realized that the stub proto was also the key to solving the second form of failure caused by makefile errors: Due to the way we set the -L options to point at our workspace proto areas, any valid object from the OSnet should be found via a path specified by -L, and not from the default locations (/lib, /usr/lib). Any OSnet object found via the default locations means that we've linked to the build server, which is an error we'd like to catch. Non-OSnet objects don't exist in the proto areas, and so are found via the default paths. However, if we were to create a symlink in the stub proto pointing at each non-OSnet dependency that we require, then the non-OSnet objects would also be found via the paths specified by -L, and not from the link-editor defaults. Given the above, we should not find any dependency objects from the link-editor defaults. Any dependency found via the link-editor defaults means that we have a Makefile error, and that we are linking to the build server inappropriately. All we need to make use of this fact is a linker option to produce a warning when it happens. Although warnings are nice, we in the OSnet have a zero tolerance policy for build noise. The -z fatal-warnings option that was recently introduced with -z guidance can be used to turn the warnings into fatal build errors, forcing the programmer to fix them. This was too easy to resist. I integrated 7021198 ld option to warn when link accesses a library via default path PSARC/2011/068 ld -z assert-deflib option into snv_161 (February 2011), shortly after the stub proto was introduced into ON. This putback introduced the -z assert-deflib option to the link-editor: -z assert-deflib=[libname] Enables warning messages for libraries specified with the -l command line option that are found by examining the default search paths provided by the link-editor. If a libname value is provided, the default library warning feature is enabled, and the specified library is added to a list of libraries for which no warnings will be issued. Multiple -z assert-deflib options can be specified in order to specify multiple libraries for which warnings should not be issued. The libname value should be the name of the library file, as found by the link-editor, without any path components. For example, the following enables default library warnings, and excludes the standard C library. ld ... -z assert-deflib=libc.so ... -z assert-deflib is a specialized option, primarily of interest in build environments where multiple objects with the same name exist and tight control over the library used is required. If is not intended for general use. Note that the definition of -z assert-deflib allows for exceptions to be specified as arguments to the option. In general, the idea of using a symlink from the stub proto is superior because it does not clutter up the link command with a long list of objects. When building the OSnet, we usually use the plain from of -z deflib, and make symlinks for the non-OSnet dependencies. The exception to this are dependencies supplied by the compiler itself, which are usually found at whatever arbitrary location the compiler happens to be installed at. To handle these special cases, the command line version works better. Following the integration of the link-editor change, I made use of -z assert-deflib in OSnet builds with 7021896 Prevent OSnet from accidentally linking to build system which integrated into snv_162 (March 2011). Turning on -z assert-deflib exposed between 10 and 20 existing errors in our Makefiles, which were all fixed in the same putback. The errors we found in our Makefiles underscore how difficult they can be prevent without an automatic system in place to catch them. Conclusions The stub proto is proving to be a generally useful construct for ON builds that goes beyond serving as a place to hold stub objects. Although invented to hold stub objects, it has already allowed us to simplify a number of previously difficult situations in our makefiles and builds. I expect that we'll find uses for it beyond those described here as we go forward.

    Read the article

  • Language redirect affecting pagerank and search listing?

    - by Janoszen
    Preface We have a number of sites that use the same redirect mechanism across the board. We recently transitioned one site from non-localised to localised and detected that the Google+ integration doesn't show up on the search results any more AND the PageRank is gone from 2 to 0. How the redirect works If the UA sends a cookie (e.g. lang=en), redirect the user to /language (e.g. /en) If the UA is a bot (.*bot.*), redirect to /en If the Accept-Language header contains a usable, non-English language, redirect to /language (English is the default on many browsers in non-English regions) If there is a valid GeoIP lookup and the detected region is linked to a supported language, redirect to /language Redirect to /en We do of course on all pages have the proper markup to indicate the alternate language: <link hreflang="de" href="/de" rel="alternate" /> As far as we can tell, we follow all publicly available guidelines from Google, so we are a bit at odds if this is a bug in Google or we have done something wrong. Question Does not having content on the root URL of a domain adversely affect search engine rankings and if yes, how does one implement a proper language redirection?

    Read the article

  • Get to Know a Candidate (6 of 25): Jill Stein&ndash;Green Party

    - by Brian Lanham
    DISCLAIMER: This is not a post about “Romney” or “Obama”. This is not a post for whom I am voting. Information sourced for Wikipedia. Stein is a physician with degrees from Harvard College and Harvard Medical School.  She serves on the boards of Greater Boston Physicians for Social Responsibility and MassVoters for Fair Elections, and has been active with the Massachusetts Coalition for Healthy Communities Jill Stein advocates a "Green New Deal" in which renewable energy jobs would be created to address climate change and environmental issues with the objective of employing "every American willing and able to work". Citing the research of Dr. Phillip Harvey, Professor of Law & Economics at Rutgers University, as evidence of the successful economic effects of the 1930s' New Deal projects, Stein would fund the plan with a 30% reduction in the U.S. military budget, returning US troops home, and increasing taxes on areas such as capital gains, offshore tax havens and multimillion dollar real estate. Stein plans on impacting what she sees as a growing convergence of environmental crises in water, soil, fisheries and forests, through the creation of sustainable infrastructure based in clean renewable energy generation and sustainable communities principles such as increasing intra-city mass transit and inter-city railroads, creating 'complete streets' that safely encourage bike and pedestrian traffic and regional food systems based on sustainable organic agriculture The Green Party of the United States was founded in 1991 as a voluntary association of state green parties. With its founding, the Green Party of the United States became the primary national Green organization in the United States, eclipsing the Greens/Green Party USA, which emphasized non-electoral movement building. The Green Party of the United States of America emphasizes environmentalism, non-hierarchical participatory democracy, social justice, respect for diversity, peace and nonviolence. Their "Ten Key Values," which are described as non-authoritative guiding principles, are as follows: Grassroots democracy Social justice and equal opportunity Ecological wisdom Nonviolence Decentralization Community-based economics Feminism and gender equality Respect for diversity Personal and global responsibility Future focus and sustainability The Green Party does not accept donations from corporations. Thus, the party's platforms and rhetoric critique any corporate influence and control over government, media, and American society at large. Stein has access to 403 electoral votes and is a write-in candidate in GA, IN, and MS Learn more about Jill Stein and Green Party on Wikipedia.

    Read the article

  • Thinking skills to be a good programmer

    - by Paul
    I have been programming for last 15 years with non-CS degree. Main reason I got into programming was that I liked to learn new things and apply them to my work. And I was able to find and fix programming errors and their causes faster than others. But I never find myself a a guru or an expert, maybe due to my non-CS major. And when I saw great programmers, I observed they are very good, much better than me of course, at solving problems. One skill I found good in my mid-career is thinking of requirements and tasks in a reverse order and in abstract. In that way, I can see what is really required for me to do without detail and can quickly find parts of solution that already exist. So I wonder if there are other thinking skills to be a good programmer. I've followed Q&As below and actually read some of books recommended there. But I couldn't really pickup good methods directly applicable for my programming work. What non-programming books should a programmer read to help develop programming/thinking skills? Skills and habits to develop to be good at programming (I'm a newbie)

    Read the article

  • NoSQL

    - by NoReasoning
    Last night, (Tuesday, June 28), at the KC .NET User group meeting, George Westwater gave a terrific presentation on NoSQL. The best way to define it (the best way is to see George explain it, and he says he will record his presentation and make it available through his blog – link above)  is databases  that does not use relational technology. And his point, and this is true – I have been around awhile – is that non-relational databases have been used for over 50 years in the business. He points out that Wall Street firms have been using non-relational technology ever since they started using computers. IBM still fully supports IMS, now in version 11 (12 is in beta), because these firms are still using this product and will continue to do so for a long time. Of course, like a lot of computer business technology, there are a lot of new NoSQL products available these days, simply as a reaction to the problems of scaling relational databases for internet use. As a result, it almost looks as though NoSQL is something new. And there are a lot, I mean a LOT, I mean a L-O-T , of new products out there for this technology. The best resource to cover all of these products is http://nosql-database.org/, which has a huge listing of what is available. My interest in the subject is primarily due to my interest in Windows Azure and the fact that Windows Azure storage is all non-relational, even the table storage. It is very fascinating and most of all, far cheaper than using SQL Azure for storage in the “cloud."

    Read the article

  • Blank screen during boot after clean Ubuntu 11.10 install (Intel N10 graphics)

    - by Coen
    After a clean install of Ubuntu 11.10 on my Asus eee PC 1005p, Ubuntu seems to boot correctly, except for initialization of the LCD screen. What I observe: I choose Ubuntu 11.10 in the GRUB 2 menu A blank screen with a blinking cursor in the top left of the screen, for 15-20 seconds. The ubuntu logo with 5 red dots in the center of the screen, for 1 second. The LCD screen is entirely blank The startup sound plays (Ubuntu is configured to auto-login) Still, the LCD screen is entirely blank. When I press Fn-F8 (the switch between LCD screen and external VGA), the LCD screen shows my desktop correctly and everything seems to work fine. Except for the adjust contrast buttons (Fn-F5 and Fn-F6), these seem to cycle through random brightness modes. Something like: 0% - 50% - 20% - 0% - 20% - 0% Any ideas what's causing this or how to solve this? coen@elpicu:~$ lspci -v 00:02.0 VGA compatible controller: Intel Corporation N10 Family Integrated Graphics Controller (prog-if 00 [VGA controller]) Subsystem: ASUSTeK Computer Inc. Device 83ac Flags: bus master, fast devsel, latency 0, IRQ 44 Memory at f7e00000 (32-bit, non-prefetchable) [size=512K] I/O ports at dc00 [size=8] Memory at d0000000 (32-bit, prefetchable) [size=256M] Memory at f7d00000 (32-bit, non-prefetchable) [size=1M] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: i915 00:02.1 Display controller: Intel Corporation N10 Family Integrated Graphics Controller Subsystem: ASUSTeK Computer Inc. Device 83ac Flags: bus master, fast devsel, latency 0 Memory at f7e80000 (32-bit, non-prefetchable) [size=512K] Capabilities: <access denied>

    Read the article

  • What's New in ASP.NET 4

    - by Navaneeth
    The .NET Framework version 4 includes enhancements for ASP.NET 4 in targeted areas. Visual Studio 2010 and Microsoft Visual Web Developer Express also include enhancements and new features for improved Web development. This document provides an overview of many of the new features that are included in the upcoming release. This topic contains the following sections: ASP.NET Core Services ASP.NET Web Forms ASP.NET MVC Dynamic Data ASP.NET Chart Control Visual Web Developer Enhancements Web Application Deployment with Visual Studio 2010 Enhancements to ASP.NET Multi-Targeting ASP.NET Core Services ASP.NET 4 introduces many features that improve core ASP.NET services such as output caching and session state storage. Extensible Output Caching Since the time that ASP.NET 1.0 was released, output caching has enabled developers to store the generated output of pages, controls, and HTTP responses in memory. On subsequent Web requests, ASP.NET can serve content more quickly by retrieving the generated output from memory instead of regenerating the output from scratch. However, this approach has a limitation — generated content always has to be stored in memory. On servers that experience heavy traffic, the memory requirements for output caching can compete with memory requirements for other parts of a Web application. ASP.NET 4 adds extensibility to output caching that enables you to configure one or more custom output-cache providers. Output-cache providers can use any storage mechanism to persist HTML content. These storage options can include local or remote disks, cloud storage, and distributed cache engines. Output-cache provider extensibility in ASP.NET 4 lets you design more aggressive and more intelligent output-caching strategies for Web sites. For example, you can create an output-cache provider that caches the "Top 10" pages of a site in memory, while caching pages that get lower traffic on disk. Alternatively, you can cache every vary-by combination for a rendered page, but use a distributed cache so that the memory consumption is offloaded from front-end Web servers. You create a custom output-cache provider as a class that derives from the OutputCacheProvider type. You can then configure the provider in the Web.config file by using the new providers subsection of the outputCache element For more information and for examples that show how to configure the output cache, see outputCache Element for caching (ASP.NET Settings Schema). For more information about the classes that support caching, see the documentation for the OutputCache and OutputCacheProvider classes. By default, in ASP.NET 4, all HTTP responses, rendered pages, and controls use the in-memory output cache. The defaultProvider attribute for ASP.NET is AspNetInternalProvider. You can change the default output-cache provider used for a Web application by specifying a different provider name for defaultProvider attribute. In addition, you can select different output-cache providers for individual control and for individual requests and programmatically specify which provider to use. For more information, see the HttpApplication.GetOutputCacheProviderName(HttpContext) method. The easiest way to choose a different output-cache provider for different Web user controls is to do so declaratively by using the new providerName attribute in a page or control directive, as shown in the following example: <%@ OutputCache Duration="60" VaryByParam="None" providerName="DiskCache" %> Preloading Web Applications Some Web applications must load large amounts of data or must perform expensive initialization processing before serving the first request. In earlier versions of ASP.NET, for these situations you had to devise custom approaches to "wake up" an ASP.NET application and then run initialization code during the Application_Load method in the Global.asax file. To address this scenario, a new application preload manager (autostart feature) is available when ASP.NET 4 runs on IIS 7.5 on Windows Server 2008 R2. The preload feature provides a controlled approach for starting up an application pool, initializing an ASP.NET application, and then accepting HTTP requests. It lets you perform expensive application initialization prior to processing the first HTTP request. For example, you can use the application preload manager to initialize an application and then signal a load-balancer that the application was initialized and ready to accept HTTP traffic. To use the application preload manager, an IIS administrator sets an application pool in IIS 7.5 to be automatically started by using the following configuration in the applicationHost.config file: <applicationPools> <add name="MyApplicationPool" startMode="AlwaysRunning" /> </applicationPools> Because a single application pool can contain multiple applications, you specify individual applications to be automatically started by using the following configuration in the applicationHost.config file: <sites> <site name="MySite" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PrewarmMyCache" > <!-- Additional content --> </application> </site> </sites> <!-- Additional content --> <serviceAutoStartProviders> <add name="PrewarmMyCache" type="MyNamespace.CustomInitialization, MyLibrary" /> </serviceAutoStartProviders> When an IIS 7.5 server is cold-started or when an individual application pool is recycled, IIS 7.5 uses the information in the applicationHost.config file to determine which Web applications have to be automatically started. For each application that is marked for preload, IIS7.5 sends a request to ASP.NET 4 to start the application in a state during which the application temporarily does not accept HTTP requests. When it is in this state, ASP.NET instantiates the type defined by the serviceAutoStartProvider attribute (as shown in the previous example) and calls into its public entry point. You create a managed preload type that has the required entry point by implementing the IProcessHostPreloadClient interface, as shown in the following example: public class CustomInitialization : System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // Perform initialization. } } After your initialization code runs in the Preload method and after the method returns, the ASP.NET application is ready to process requests. Permanently Redirecting a Page Content in Web applications is often moved over the lifetime of the application. This can lead to links to be out of date, such as the links that are returned by search engines. In ASP.NET, developers have traditionally handled requests to old URLs by using the Redirect method to forward a request to the new URL. However, the Redirect method issues an HTTP 302 (Found) response (which is used for a temporary redirect). This results in an extra HTTP round trip. ASP.NET 4 adds a RedirectPermanent helper method that makes it easy to issue HTTP 301 (Moved Permanently) responses, as in the following example: RedirectPermanent("/newpath/foroldcontent.aspx"); Search engines and other user agents that recognize permanent redirects will store the new URL that is associated with the content, which eliminates the unnecessary round trip made by the browser for temporary redirects. Session State Compression By default, ASP.NET provides two options for storing session state across a Web farm. The first option is a session state provider that invokes an out-of-process session state server. The second option is a session state provider that stores data in a Microsoft SQL Server database. Because both options store state information outside a Web application's worker process, session state has to be serialized before it is sent to remote storage. If a large amount of data is saved in session state, the size of the serialized data can become very large. ASP.NET 4 introduces a new compression option for both kinds of out-of-process session state providers. By using this option, applications that have spare CPU cycles on Web servers can achieve substantial reductions in the size of serialized session state data. You can set this option using the new compressionEnabled attribute of the sessionState element in the configuration file. When the compressionEnabled configuration option is set to true, ASP.NET compresses (and decompresses) serialized session state by using the .NET Framework GZipStreamclass. The following example shows how to set this attribute. <sessionState mode="SqlServer" sqlConnectionString="data source=dbserver;Initial Catalog=aspnetstate" allowCustomSqlDatabase="true" compressionEnabled="true" /> ASP.NET Web Forms Web Forms has been a core feature in ASP.NET since the release of ASP.NET 1.0. Many enhancements have been in this area for ASP.NET 4, such as the following: The ability to set meta tags. More control over view state. Support for recently introduced browsers and devices. Easier ways to work with browser capabilities. Support for using ASP.NET routing with Web Forms. More control over generated IDs. The ability to persist selected rows in data controls. More control over rendered HTML in the FormView and ListView controls. Filtering support for data source controls. Enhanced support for Web standards and accessibility Setting Meta Tags with the Page.MetaKeywords and Page.MetaDescription Properties Two properties have been added to the Page class: MetaKeywords and MetaDescription. These two properties represent corresponding meta tags in the HTML rendered for a page, as shown in the following example: <head id="Head1" runat="server"> <title>Untitled Page</title> <meta name="keywords" content="keyword1, keyword2' /> <meta name="description" content="Description of my page" /> </head> These two properties work like the Title property does, and they can be set in the @ Page directive. For more information, see Page.MetaKeywords and Page.MetaDescription. Enabling View State for Individual Controls A new property has been added to the Control class: ViewStateMode. You can use this property to disable view state for all controls on a page except those for which you explicitly enable view state. View state data is included in a page's HTML and increases the amount of time it takes to send a page to the client and post it back. Storing more view state than is necessary can cause significant decrease in performance. In earlier versions of ASP.NET, you could reduce the impact of view state on a page's performance by disabling view state for specific controls. But sometimes it is easier to enable view state for a few controls that need it instead of disabling it for many that do not need it. For more information, see Control.ViewStateMode. Support for Recently Introduced Browsers and Devices ASP.NET includes a feature that is named browser capabilities that lets you determine the capabilities of the browser that a user is using. Browser capabilities are represented by the HttpBrowserCapabilities object which is stored in the HttpRequest.Browser property. Information about a particular browser's capabilities is defined by a browser definition file. In ASP.NET 4, these browser definition files have been updated to contain information about recently introduced browsers and devices such as Google Chrome, Research in Motion BlackBerry smart phones, and Apple iPhone. Existing browser definition files have also been updated. For more information, see How to: Upgrade an ASP.NET Web Application to ASP.NET 4 and ASP.NET Web Server Controls and Browser Capabilities. The browser definition files that are included with ASP.NET 4 are shown in the following list: •blackberry.browser •chrome.browser •Default.browser •firefox.browser •gateway.browser •generic.browser •ie.browser •iemobile.browser •iphone.browser •opera.browser •safari.browser A New Way to Define Browser Capabilities ASP.NET 4 includes a new feature referred to as browser capabilities providers. As the name suggests, this lets you build a provider that in turn lets you write custom code to determine browser capabilities. In ASP.NET version 3.5 Service Pack 1, you define browser capabilities in an XML file. This file resides in a machine-level folder or an application-level folder. Most developers do not need to customize these files, but for those who do, the provider approach can be easier than dealing with complex XML syntax. The provider approach makes it possible to simplify the process by implementing a common browser definition syntax, or a database that contains up-to-date browser definitions, or even a Web service for such a database. For more information about the new browser capabilities provider, see the What's New for ASP.NET 4 White Paper. Routing in ASP.NET 4 ASP.NET 4 adds built-in support for routing with Web Forms. Routing is a feature that was introduced with ASP.NET 3.5 SP1 and lets you configure an application to use URLs that are meaningful to users and to search engines because they do not have to specify physical file names. This can make your site more user-friendly and your site content more discoverable by search engines. For example, the URL for a page that displays product categories in your application might look like the following example: http://website/products.aspx?categoryid=12 By using routing, you can use the following URL to render the same information: http://website/products/software The second URL lets the user know what to expect and can result in significantly improved rankings in search engine results. the new features include the following: The PageRouteHandler class is a simple HTTP handler that you use when you define routes. You no longer have to write a custom route handler. The HttpRequest.RequestContext and Page.RouteData properties make it easier to access information that is passed in URL parameters. The RouteUrl expression provides a simple way to create a routed URL in markup. The RouteValue expression provides a simple way to extract URL parameter values in markup. The RouteParameter class makes it easier to pass URL parameter values to a query for a data source control (similar to FormParameter). You no longer have to change the Web.config file to enable routing. For more information about routing, see the following topics: ASP.NET Routing Walkthrough: Using ASP.NET Routing in a Web Forms Application How to: Define Routes for Web Forms Applications How to: Construct URLs from Routes How to: Access URL Parameters in a Routed Page Setting Client IDs The new ClientIDMode property makes it easier to write client script that references HTML elements rendered for server controls. Increasing use of Microsoft Ajax makes the need to do this more common. For example, you may have a data control that renders a long list of products with prices and you want to use client script to make a Web service call and update individual prices in the list as they change without refreshing the entire page. Typically you get a reference to an HTML element in client script by using the document.GetElementById method. You pass to this method the value of the id attribute of the HTML element you want to reference. In the case of elements that are rendered for ASP.NET server controls earlier versions of ASP.NET could make this difficult or impossible. You were not always able to predict what id values ASP.NET would generate, or ASP.NET could generate very long id values. The problem was especially difficult for data controls that would generate multiple rows for a single instance of the control in your markup. ASP.NET 4 adds two new algorithms for generating id attributes. These algorithms can generate id attributes that are easier to work with in client script because they are more predictable and that are easier to work with because they are simpler. For more information about how to use the new algorithms, see the following topics: ASP.NET Web Server Control Identification Walkthrough: Making Data-Bound Controls Easier to Access from JavaScript Walkthrough: Making Controls Located in Web User Controls Easier to Access from JavaScript How to: Access Controls from JavaScript by ID Persisting Row Selection in Data Controls The GridView and ListView controls enable users to select a row. In previous versions of ASP.NET, row selection was based on the row index on the page. For example, if you select the third item on page 1 and then move to page 2, the third item on page 2 is selected. In most cases, is more desirable not to select any rows on page 2. ASP.NET 4 supports Persisted Selection, a new feature that was initially supported only in Dynamic Data projects in the .NET Framework 3.5 SP1. When this feature is enabled, the selected item is based on the row data key. This means that if you select the third row on page 1 and move to page 2, nothing is selected on page 2. When you move back to page 1, the third row is still selected. This is a much more natural behavior than the behavior in earlier versions of ASP.NET. Persisted selection is now supported for the GridView and ListView controls in all projects. You can enable this feature in the GridView control, for example, by setting the EnablePersistedSelection property, as shown in the following example: <asp:GridView id="GridView2" runat="server" PersistedSelection="true"> </asp:GridView> FormView Control Enhancements The FormView control is enhanced to make it easier to style the content of the control with CSS. In previous versions of ASP.NET, the FormView control rendered it contents using an item template. This made styling more difficult in the markup because unexpected table row and table cell tags were rendered by the control. The FormView control supports RenderOuterTable, a property in ASP.NET 4. When this property is set to false, as show in the following example, the table tags are not rendered. This makes it easier to apply CSS style to the contents of the control. <asp:FormView ID="FormView1" runat="server" RenderTable="false"> For more information, see FormView Web Server Control Overview. ListView Control Enhancements The ListView control, which was introduced in ASP.NET 3.5, has all the functionality of the GridView control while giving you complete control over the output. This control has been made easier to use in ASP.NET 4. The earlier version of the control required that you specify a layout template that contained a server control with a known ID. The following markup shows a typical example of how to use the ListView control in ASP.NET 3.5. <asp:ListView ID="ListView1" runat="server"> <LayoutTemplate> <asp:PlaceHolder ID="ItemPlaceHolder" runat="server"></asp:PlaceHolder> </LayoutTemplate> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> In ASP.NET 4, the ListView control does not require a layout template. The markup shown in the previous example can be replaced with the following markup: <asp:ListView ID="ListView1" runat="server"> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> For more information, see ListView Web Server Control Overview. Filtering Data with the QueryExtender Control A very common task for developers who create data-driven Web pages is to filter data. This traditionally has been performed by building Where clauses in data source controls. This approach can be complicated, and in some cases the Where syntax does not let you take advantage of the full functionality of the underlying database. To make filtering easier, a new QueryExtender control has been added in ASP.NET 4. This control can be added to EntityDataSource or LinqDataSource controls in order to filter the data returned by these controls. Because the QueryExtender control relies on LINQ, but you do not to need to know how to write LINQ queries to use the query extender. The QueryExtender control supports a variety of filter options. The following lists QueryExtender filter options. Term Definition SearchExpression Searches a field or fields for string values and compares them to a specified string value. RangeExpression Searches a field or fields for values in a range specified by a pair of values. PropertyExpression Compares a specified value to a property value in a field. If the expression evaluates to true, the data that is being examined is returned. OrderByExpression Sorts data by a specified column and sort direction. CustomExpression Calls a function that defines custom filter in the page. For more information, see QueryExtenderQueryExtender Web Server Control Overview. Enhanced Support for Web Standards and Accessibility Earlier versions of ASP.NET controls sometimes render markup that does not conform to HTML, XHTML, or accessibility standards. ASP.NET 4 eliminates most of these exceptions. For details about how the HTML that is rendered by each control meets accessibility standards, see ASP.NET Controls and Accessibility. CSS for Controls that Can be Disabled In ASP.NET 3.5, when a control is disabled (see WebControl.Enabled), a disabled attribute is added to the rendered HTML element. For example, the following markup creates a Label control that is disabled: <asp:Label id="Label1" runat="server"   Text="Test" Enabled="false" /> In ASP.NET 3.5, the previous control settings generate the following HTML: <span id="Label1" disabled="disabled">Test</span> In HTML 4.01, the disabled attribute is not considered valid on span elements. It is valid only on input elements because it specifies that they cannot be accessed. On display-only elements such as span elements, browsers typically support rendering for a disabled appearance, but a Web page that relies on this non-standard behavior is not robust according to accessibility standards. For display-only elements, you should use CSS to indicate a disabled visual appearance. Therefore, by default ASP.NET 4 generates the following HTML for the control settings shown previously: <span id="Label1" class="aspNetDisabled">Test</span> You can change the value of the class attribute that is rendered by default when a control is disabled by setting the DisabledCssClass property. CSS for Validation Controls In ASP.NET 3.5, validation controls render a default color of red as an inline style. For example, the following markup creates a RequiredFieldValidator control: <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"   ErrorMessage="Required Field" ControlToValidate="RadioButtonList1" /> ASP.NET 3.5 renders the following HTML for the validator control: <span id="RequiredFieldValidator1"   style="color:Red;visibility:hidden;">RequiredFieldValidator</span> By default, ASP.NET 4 does not render an inline style to set the color to red. An inline style is used only to hide or show the validator, as shown in the following example: <span id="RequiredFieldValidator1"   style"visibility:hidden;">RequiredFieldValidator</span> Therefore, ASP.NET 4 does not automatically show error messages in red. For information about how to use CSS to specify a visual style for a validation control, see Validating User Input in ASP.NET Web Pages. CSS for the Hidden Fields Div Element ASP.NET uses hidden fields to store state information such as view state and control state. These hidden fields are contained by a div element. In ASP.NET 3.5, this div element does not have a class attribute or an id attribute. Therefore, CSS rules that affect all div elements could unintentionally cause this div to be visible. To avoid this problem, ASP.NET 4 renders the div element for hidden fields with a CSS class that you can use to differentiate the hidden fields div from others. The new classvalue is shown in the following example: <div class="aspNetHidden"> CSS for the Table, Image, and ImageButton Controls By default, in ASP.NET 3.5, some controls set the border attribute of rendered HTML to zero (0). The following example shows HTML that is generated by the Table control in ASP.NET 3.5: <table id="Table2" border="0"> The Image control and the ImageButton control also do this. Because this is not necessary and provides visual formatting information that should be provided by using CSS, the attribute is not generated in ASP.NET 4. CSS for the UpdatePanel and UpdateProgress Controls In ASP.NET 3.5, the UpdatePanel and UpdateProgress controls do not support expando attributes. This makes it impossible to set a CSS class on the HTMLelements that they render. In ASP.NET 4 these controls have been changed to accept expando attributes, as shown in the following example: <asp:UpdatePanel runat="server" class="myStyle"> </asp:UpdatePanel> The following HTML is rendered for this markup: <div id="ctl00_MainContent_UpdatePanel1" class="expandoclass"> </div> Eliminating Unnecessary Outer Tables In ASP.NET 3.5, the HTML that is rendered for the following controls is wrapped in a table element whose purpose is to apply inline styles to the entire control: FormView Login PasswordRecovery ChangePassword If you use templates to customize the appearance of these controls, you can specify CSS styles in the markup that you provide in the templates. In that case, no extra outer table is required. In ASP.NET 4, you can prevent the table from being rendered by setting the new RenderOuterTable property to false. Layout Templates for Wizard Controls In ASP.NET 3.5, the Wizard and CreateUserWizard controls generate an HTML table element that is used for visual formatting. In ASP.NET 4 you can use a LayoutTemplate element to specify the layout. If you do this, the HTML table element is not generated. In the template, you create placeholder controls to indicate where items should be dynamically inserted into the control. (This is similar to how the template model for the ListView control works.) For more information, see the Wizard.LayoutTemplate property. New HTML Formatting Options for the CheckBoxList and RadioButtonList Controls ASP.NET 3.5 uses HTML table elements to format the output for the CheckBoxList and RadioButtonList controls. To provide an alternative that does not use tables for visual formatting, ASP.NET 4 adds two new options to the RepeatLayout enumeration: UnorderedList. This option causes the HTML output to be formatted by using ul and li elements instead of a table. OrderedList. This option causes the HTML output to be formatted by using ol and li elements instead of a table. For examples of HTML that is rendered for the new options, see the RepeatLayout enumeration. Header and Footer Elements for the Table Control In ASP.NET 3.5, the Table control can be configured to render thead and tfoot elements by setting the TableSection property of the TableHeaderRow class and the TableFooterRow class. In ASP.NET 4 these properties are set to the appropriate values by default. CSS and ARIA Support for the Menu Control In ASP.NET 3.5, the Menu control uses HTML table elements for visual formatting, and in some configurations it is not keyboard-accessible. ASP.NET 4 addresses these problems and improves accessibility in the following ways: The generated HTML is structured as an unordered list (ul and li elements). CSS is used for visual formatting. The menu behaves in accordance with ARIA standards for keyboard access. You can use arrow keys to navigate menu items. (For information about ARIA, see Accessibility in Visual Studio and ASP.NET.) ARIA role and property attributes are added to the generated HTML. (Attributes are added by using JavaScript instead of included in the HTML, to avoid generating HTML that would cause markup validation errors.) Styles for the Menu control are rendered in a style block at the top of the page, instead of inline with the rendered HTML elements. If you want to use a separate CSS file so that you can modify the menu styles, you can set the Menu control's new IncludeStyleBlock property to false, in which case the style block is not generated. Valid XHTML for the HtmlForm Control In ASP.NET 3.5, the HtmlForm control (which is created implicitly by the <form runat="server"> tag) renders an HTML form element that has both name and id attributes. The name attribute is deprecated in XHTML 1.1. Therefore, this control does not render the name attribute in ASP.NET 4. Maintaining Backward Compatibility in Control Rendering An existing ASP.NET Web site might have code in it that assumes that controls are rendering HTML the way they do in ASP.NET 3.5. To avoid causing backward compatibility problems when you upgrade the site to ASP.NET 4, you can have ASP.NET continue to generate HTML the way it does in ASP.NET 3.5 after you upgrade the site. To do so, you can set the controlRenderingCompatibilityVersion attribute of the pages element to "3.5" in the Web.config file of an ASP.NET 4 Web site, as shown in the following example: <system.web>   <pages controlRenderingCompatibilityVersion="3.5"/> </system.web> If this setting is omitted, the default value is the same as the version of ASP.NET that the Web site targets. (For information about multi-targeting in ASP.NET, see .NET Framework Multi-Targeting for ASP.NET Web Projects.) ASP.NET MVC ASP.NET MVC helps Web developers build compelling standards-based Web sites that are easy to maintain because it decreases the dependency among application layers by using the Model-View-Controller (MVC) pattern. MVC provides complete control over the page markup. It also improves testability by inherently supporting Test Driven Development (TDD). Web sites created using ASP.NET MVC have a modular architecture. This allows members of a team to work independently on the various modules and can be used to improve collaboration. For example, developers can work on the model and controller layers (data and logic), while the designer work on the view (presentation). For tutorials, walkthroughs, conceptual content, code samples, and a complete API reference, see ASP.NET MVC 2. Dynamic Data Dynamic Data was introduced in the .NET Framework 3.5 SP1 release in mid-2008. This feature provides many enhancements for creating data-driven applications, such as the following: A RAD experience for quickly building a data-driven Web site. Automatic validation that is based on constraints defined in the data model. The ability to easily change the markup that is generated for fields in the GridView and DetailsView controls by using field templates that are part of your Dynamic Data project. For ASP.NET 4, Dynamic Data has been enhanced to give developers even more power for quickly building data-driven Web sites. For more information, see ASP.NET Dynamic Data Content Map. Enabling Dynamic Data for Individual Data-Bound Controls in Existing Web Applications You can use Dynamic Data features in existing ASP.NET Web applications that do not use scaffolding by enabling Dynamic Data for individual data-bound controls. Dynamic Data provides the presentation and data layer support for rendering these controls. When you enable Dynamic Data for data-bound controls, you get the following benefits: Setting default values for data fields. Dynamic Data enables you to provide default values at run time for fields in a data control. Interacting with the database without creating and registering a data model. Automatically validating the data that is entered by the user without writing any code. For more information, see Walkthrough: Enabling Dynamic Data in ASP.NET Data-Bound Controls. New Field Templates for URLs and E-mail Addresses ASP.NET 4 introduces two new built-in field templates, EmailAddress.ascx and Url.ascx. These templates are used for fields that are marked as EmailAddress or Url using the DataTypeAttribute attribute. For EmailAddress objects, the field is displayed as a hyperlink that is created by using the mailto: protocol. When users click the link, it opens the user's e-mail client and creates a skeleton message. Objects typed as Url are displayed as ordinary hyperlinks. The following example shows how to mark fields. [DataType(DataType.EmailAddress)] public object HomeEmail { get; set; } [DataType(DataType.Url)] public object Website { get; set; } Creating Links with the DynamicHyperLink Control Dynamic Data uses the new routing feature that was added in the .NET Framework 3.5 SP1 to control the URLs that users see when they access the Web site. The new DynamicHyperLink control makes it easy to build links to pages in a Dynamic Data site. For information, see How to: Create Table Action Links in Dynamic Data Support for Inheritance in the Data Model Both the ADO.NET Entity Framework and LINQ to SQL support inheritance in their data models. An example of this might be a database that has an InsurancePolicy table. It might also contain CarPolicy and HousePolicy tables that have the same fields as InsurancePolicy and then add more fields. Dynamic Data has been modified to understand inherited objects in the data model and to support scaffolding for the inherited tables. For more information, see Walkthrough: Mapping Table-per-Hierarchy Inheritance in Dynamic Data. Support for Many-to-Many Relationships (Entity Framework Only) The Entity Framework has rich support for many-to-many relationships between tables, which is implemented by exposing the relationship as a collection on an Entity object. New field templates (ManyToMany.ascx and ManyToMany_Edit.ascx) have been added to provide support for displaying and editing data that is involved in many-to-many relationships. For more information, see Working with Many-to-Many Data Relationships in Dynamic Data. New Attributes to Control Display and Support Enumerations The DisplayAttribute has been added to give you additional control over how fields are displayed. The DisplayNameAttribute attribute in earlier versions of Dynamic Data enabled you to change the name that is used as a caption for a field. The new DisplayAttribute class lets you specify more options for displaying a field, such as the order in which a field is displayed and whether a field will be used as a filter. The attribute also provides independent control of the name that is used for the labels in a GridView control, the name that is used in a DetailsView control, the help text for the field, and the watermark used for the field (if the field accepts text input). The EnumDataTypeAttribute class has been added to let you map fields to enumerations. When you apply this attribute to a field, you specify an enumeration type. Dynamic Data uses the new Enumeration.ascx field template to create UI for displaying and editing enumeration values. The template maps the values from the database to the names in the enumeration. Enhanced Support for Filters Dynamic Data 1.0 had built-in filters for Boolean columns and foreign-key columns. The filters did not let you specify the order in which they were displayed. The new DisplayAttribute attribute addresses this by giving you control over whether a column appears as a filter and in what order it will be displayed. An additional enhancement is that filtering support has been rewritten to use the new QueryExtender feature of Web Forms. This lets you create filters without requiring knowledge of the data source control that the filters will be used with. Along with these extensions, filters have also been turned into template controls, which lets you add new ones. Finally, the DisplayAttribute class mentioned earlier allows the default filter to be overridden, in the same way that UIHint allows the default field template for a column to be overridden. For more information, see Walkthrough: Filtering Rows in Tables That Have a Parent-Child Relationship and QueryableFilterRepeater. ASP.NET Chart Control The ASP.NET chart server control enables you to create ASP.NET pages applications that have simple, intuitive charts for complex statistical or financial analysis. The chart control supports the following features: Data series, chart areas, axes, legends, labels, titles, and more. Data binding. Data manipulation, such as copying, splitting, merging, alignment, grouping, sorting, searching, and filtering. Statistical formulas and financial formulas. Advanced chart appearance, such as 3-D, anti-aliasing, lighting, and perspective. Events and customizations. Interactivity and Microsoft Ajax. Support for the Ajax Content Delivery Network (CDN), which provides an optimized way for you to add Microsoft Ajax Library and jQuery scripts to your Web applications. For more information, see Chart Web Server Control Overview. Visual Web Developer Enhancements The following sections provide information about enhancements and new features in Visual Studio 2010 and Visual Web Developer Express. The Web page designer in Visual Studio 2010 has been enhanced for better CSS compatibility, includes additional support for HTML and ASP.NET markup snippets, and features a redesigned version of IntelliSense for JScript. Improved CSS Compatibility The Visual Web Developer designer in Visual Studio 2010 has been updated to improve CSS 2.1 standards compliance. The designer better preserves HTML source code and is more robust than in previous versions of Visual Studio. HTML and JScript Snippets In the HTML editor, IntelliSense auto-completes tag names. The IntelliSense Snippets feature auto-completes whole tags and more. In Visual Studio 2010, IntelliSense snippets are supported for JScript, alongside C# and Visual Basic, which were supported in earlier versions of Visual Studio. Visual Studio 2010 includes over 200 snippets that help you auto-complete common ASP.NET and HTML tags, including required attributes (such as runat="server") and common attributes specific to a tag (such as ID, DataSourceID, ControlToValidate, and Text). You can download additional snippets, or you can write your own snippets that encapsulate the blocks of markup that you or your team use for common tasks. For more information on HTML snippets, see Walkthrough: Using HTML Snippets. JScript IntelliSense Enhancements In Visual 2010, JScript IntelliSense has been redesigned to provide an even richer editing experience. IntelliSense now recognizes objects that have been dynamically generated by methods such as registerNamespace and by similar techniques used by other JavaScript frameworks. Performance has been improved to analyze large libraries of script and to display IntelliSense with little or no processing delay. Compatibility has been significantly increased to support almost all third-party libraries and to support diverse coding styles. Documentation comments are now parsed as you type and are immediately leveraged by IntelliSense. Web Application Deployment with Visual Studio 2010 For Web application projects, Visual Studio now provides tools that work with the IIS Web Deployment Tool (Web Deploy) to automate many processes that had to be done manually in earlier versions of ASP.NET. For example, the following tasks can now be automated: Creating an IIS application on the destination computer and configuring IIS settings. Copying files to the destination computer. Changing Web.config settings that must be different in the destination environment. Propagating changes to data or data structures in SQL Server databases that are used by the Web application. For more information about Web application deployment, see ASP.NET Deployment Content Map. Enhancements to ASP.NET Multi-Targeting ASP.NET 4 adds new features to the multi-targeting feature to make it easier to work with projects that target earlier versions of the .NET Framework. Multi-targeting was introduced in ASP.NET 3.5 to enable you to use the latest version of Visual Studio without having to upgrade existing Web sites or Web services to the latest version of the .NET Framework. In Visual Studio 2008, when you work with a project targeted for an earlier version of the .NET Framework, most features of the development environment adapt to the targeted version. However, IntelliSense displays language features that are available in the current version, and property windows display properties available in the current version. In Visual Studio 2010, only language features and properties available in the targeted version of the .NET Framework are shown. For more information about multi-targeting, see the following topics: .NET Framework Multi-Targeting for ASP.NET Web Projects ASP.NET Side-by-Side Execution Overview How to: Host Web Applications That Use Different Versions of the .NET Framework on the Same Server How to: Deploy Web Site Projects Targeted for Earlier Versions of the .NET Framework

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • ASP.NET MVC 3: Razor’s @: and <text> syntax

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (today) In today’s post I’m going to discuss two useful syntactical features of the new Razor view-engine – the @: and <text> syntax support. Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post.  Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a list of products: When run, it generates output like:   One of the techniques that Razor uses to implicitly identify when a code block ends is to look for tag/element content to denote the beginning of a content region.  For example, in the code snippet above Razor automatically treated the inner <li></li> block within our foreach loop as an HTML content block because it saw the opening <li> tag sequence and knew that it couldn’t be valid C#.  This particular technique – using tags to identify content blocks within code – is one of the key ingredients that makes Razor so clean and productive with scenarios involving HTML creation. Using @: to explicitly indicate the start of content Not all content container blocks start with a tag element tag, though, and there are scenarios where the Razor parser can’t implicitly detect a content block. Razor addresses this by enabling you to explicitly indicate the beginning of a line of content by using the @: character sequence within a code block.  The @: sequence indicates that the line of content that follows should be treated as a content block: As a more practical example, the below snippet demonstrates how we could output a “(Out of Stock!)” message next to our product name if the product is out of stock: Because I am not wrapping the (Out of Stock!) message in an HTML tag element, Razor can’t implicitly determine that the content within the @if block is the start of a content block.  We are using the @: character sequence to explicitly indicate that this line within our code block should be treated as content. Using Code Nuggets within @: content blocks In addition to outputting static content, you can also have code nuggets embedded within a content block that is initiated using a @: character sequence.  For example, we have two @: sequences in the code snippet below: Notice how within the second @: sequence we are emitting the number of units left within the content block (e.g. - “(Only 3 left!”). We are doing this by embedding a @p.UnitsInStock code nugget within the line of content. Multiple Lines of Content Razor makes it easy to have multiple lines of content wrapped in an HTML element.  For example, below the inner content of our @if container is wrapped in an HTML <p> element – which will cause Razor to treat it as content: For scenarios where the multiple lines of content are not wrapped by an outer HTML element, you can use multiple @: sequences: Alternatively, Razor also allows you to use a <text> element to explicitly identify content: The <text> tag is an element that is treated specially by Razor. It causes Razor to interpret the inner contents of the <text> block as content, and to not render the containing <text> tag element (meaning only the inner contents of the <text> element will be rendered – the tag itself will not).  This makes it convenient when you want to render multi-line content blocks that are not wrapped by an HTML element.  The <text> element can also optionally be used to denote single-lines of content, if you prefer it to the more concise @: sequence: The above code will render the same output as the @: version we looked at earlier.  Razor will automatically omit the <text> wrapping element from the output and just render the content within it.  Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s smart detection of <tag> elements to identify the beginning of content regions is one of the reasons that the Razor approach works so well with HTML generation scenarios, and it enables you to avoid having to explicitly mark the beginning/ending of content regions in about 95% of if/else and foreach scenarios. Razor’s @: and <text> syntax can then be used for scenarios where you want to avoid using an HTML element within a code container block, and need to more explicitly denote a content region. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • libgdx setOrigin and setPosition not working as expected?

    - by shino
    I create a camera: camera = new OrthographicCamera(5.0f, 5.0f * h/w); Create a sprite: ballTexture = new Texture(Gdx.files.internal("data/ball.png")); ballTexture.setFilter(TextureFilter.Linear, TextureFilter.Linear); TextureRegion region = new TextureRegion(ballTexture, 0, 0, ballTexture.getWidth(), ballTexture.getHeight()); ball = new Sprite(region); Set the origin, size, and position: ball.setOrigin(ball.getWidth()/2,ball.getHeight()/2); ball.setSize(0.5f, 0.5f * ball.getHeight()/ball.getWidth()); ball.setPosition(0.0f, 0.0f); Then render it: batch.setProjectionMatrix(camera.combined); batch.begin(); ball.draw(batch); batch.end(); But when I render it, the bottom left of my ball sprite is at (0, 0), not the center of it, as I would expect it to be because I set the origin to the center of the sprite. What am I missing?

    Read the article

  • 3D Huge mesh rendering

    - by Keyhan Asghari
    I am writing a program, that as input, I have a huge 3d mesh (with mostly structured and cubic shaped elements), and I want to realtime render it, but not as real-time as a game. But speed of rendering is somehow important. The most important point is, I don't need any special lighting nor any shadows. Also, the objects to render are static, and they do not move. I've read about ray tracing methods, but I don't know if there is any good libraries for this purpose, or I have to implement everything by myself. Thanks a lot.

    Read the article

  • Error in destroying object in Box2D/LibGDX

    - by Crypted
    I'm trying to delete an object when a collision happens. I have put the following code in the render method of the object so it would be outside of the physics calculations. public void render(SpriteBatch spriteBatch) { // some other code... body.setActive(false); body.getWorld().destroyBody(body); But I'm getting an run-time error which crashes the JVM and shows, AL lib: alc_cleanup: 1 device not closed Assertion failed! Program: C:\Program Files\Java\jre6\bin\javaw.exe File: /var/lib/hudson/jobs/libgdx-git/workspace/gdx/jni/Box2D/Dynamics/b2World.cpp, Line 133 Expression: m_bodyCount 0 Can anyone help me here?

    Read the article

  • MVC Automatic Menu

    - by Nuri Halperin
    An ex-colleague of mine used to call his SQL script generator "Super-Scriptmatic 2000". It impressed our then boss little, but was fun to say and use. We called every batch job and script "something 2000" from that day on. I'm tempted to call this one Menu-Matic 2000, except it's waaaay past 2000. Oh well. The problem: I'm developing a bunch of stuff in MVC. There's no PM to generate mounds of requirements and there's no Ux Architect to create wireframe. During development, things change. Specifically, actions get renamed, moved from controller x to y etc. Well, as the site grows, it becomes a major pain to keep a static menu up to date, because the links change. The HtmlHelper doesn't live up to it's name and provides little help. How do I keep this growing list of pesky little forgotten actions reigned in? The general plan is: Decorate every action you want as a menu item with a custom attribute Reflect out all menu items into a structure at load time Render the menu using as CSS  friendly <ul><li> HTML. The MvcMenuItemAttribute decorates an action, designating it to be included as a menu item: [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)] public class MvcMenuItemAttribute : Attribute {   public string MenuText { get; set; }   public int Order { get; set; }   public string ParentLink { get; set; }   internal string Controller { get; set; }   internal string Action { get; set; }     #region ctor   public MvcMenuItemAttribute(string menuText) : this(menuText, 0) { } public MvcMenuItemAttribute(string menuText, int order) { MenuText = menuText; Order = order; }       internal string Link { get { return string.Format("/{0}/{1}", Controller, this.Action); } }   internal MvcMenuItemAttribute ParentItem { get; set; } #endregion } The MenuText allows overriding the text displayed on the menu. The Order allows the items to be ordered. The ParentLink allows you to make this item a child of another menu item. An example action could then be decorated thusly: [MvcMenuItem("Tracks", Order = 20, ParentLink = "/Session/Index")] . All pretty straightforward methinks. The challenge with menu hierarchy becomes fairly apparent when you try to render a menu and highlight the "current" item or render a breadcrumb control. Both encounter an  ambiguity if you allow a data source to have more than one menu item with the same URL link. The issue is that there is no great way to tell which link a person click. Using referring URL will fail if a user bookmarked the page. Using some extra query string to disambiguate duplicate URLs essentially changes the links, and also ads a chance of collision with other query parameters. Besides, that smells. The stock ASP.Net sitemap provider simply disallows duplicate URLS. I decided not to, and simply pick the first one encountered as the "current". Although it doesn't solve the issue completely – one might say they wanted the second of the 2 links to be "current"- it allows one to include a link twice (home->deals and products->deals etc), and the logic of deciding "current" is easy enough to explain to the customer. Now that we got that out of the way, let's build the menu data structure: public static List<MvcMenuItemAttribute> ListMenuItems(Assembly assembly) { var result = new List<MvcMenuItemAttribute>(); foreach (var type in assembly.GetTypes()) { if (!type.IsSubclassOf(typeof(Controller))) { continue; } foreach (var method in type.GetMethods()) { var items = method.GetCustomAttributes(typeof(MvcMenuItemAttribute), false) as MvcMenuItemAttribute[]; if (items == null) { continue; } foreach (var item in items) { if (String.IsNullOrEmpty(item.Controller)) { item.Controller = type.Name.Substring(0, type.Name.Length - "Controller".Length); } if (String.IsNullOrEmpty(item.Action)) { item.Action = method.Name; } result.Add(item); } } } return result.OrderBy(i => i.Order).ToList(); } Using reflection, the ListMenuItems method takes an assembly (you will hand it your MVC web assembly) and generates a list of menu items. It digs up all the types, and for each one that is an MVC Controller, digs up the methods. Methods decorated with the MvcMenuItemAttribute get plucked and added to the output list. Again, pretty simple. To make the structure hierarchical, a LINQ expression matches up all the items to their parent: public static void RegisterMenuItems(List<MvcMenuItemAttribute> items) { _MenuItems = items; _MenuItems.ForEach(i => i.ParentItem = items.FirstOrDefault(p => String.Equals(p.Link, i.ParentLink, StringComparison.InvariantCultureIgnoreCase))); } The _MenuItems is simply an internal list to keep things around for later rendering. Finally, to package the menu building for easy consumption: public static void RegisterMenuItems(Type mvcApplicationType) { RegisterMenuItems(ListMenuItems(Assembly.GetAssembly(mvcApplicationType))); } To bring this puppy home, a call in Global.asax.cs Application_Start() registers the menu. Notice the ugliness of reflection is tucked away from the innocent developer. All they have to do is call the RegisterMenuItems() and pass in the type of the application. When you use the new project template, global.asax declares a class public class MvcApplication : HttpApplication and that is why the Register call passes in that type. protected void Application_Start() { AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes);   MvcMenu.RegisterMenuItems(typeof(MvcApplication)); }   What else is left to do? Oh, right, render! public static void ShowMenu(this TextWriter output) { var writer = new HtmlTextWriter(output);   renderHierarchy(writer, _MenuItems, null); }   public static void ShowBreadCrumb(this TextWriter output, Uri currentUri) { var writer = new HtmlTextWriter(output); string currentLink = "/" + currentUri.GetComponents(UriComponents.Path, UriFormat.Unescaped);   var menuItem = _MenuItems.FirstOrDefault(m => m.Link.Equals(currentLink, StringComparison.CurrentCultureIgnoreCase)); if (menuItem != null) { renderBreadCrumb(writer, _MenuItems, menuItem); } }   private static void renderBreadCrumb(HtmlTextWriter writer, List<MvcMenuItemAttribute> menuItems, MvcMenuItemAttribute current) { if (current == null) { return; } var parent = current.ParentItem; renderBreadCrumb(writer, menuItems, parent); writer.Write(current.MenuText); writer.Write(" / ");   }     static void renderHierarchy(HtmlTextWriter writer, List<MvcMenuItemAttribute> hierarchy, MvcMenuItemAttribute root) { if (!hierarchy.Any(i => i.ParentItem == root)) return;   writer.RenderBeginTag(HtmlTextWriterTag.Ul); foreach (var current in hierarchy.Where(element => element.ParentItem == root).OrderBy(i => i.Order)) { if (ItemFilter == null || ItemFilter(current)) {   writer.RenderBeginTag(HtmlTextWriterTag.Li); writer.AddAttribute(HtmlTextWriterAttribute.Href, current.Link); writer.AddAttribute(HtmlTextWriterAttribute.Alt, current.MenuText); writer.RenderBeginTag(HtmlTextWriterTag.A); writer.WriteEncodedText(current.MenuText); writer.RenderEndTag(); // link renderHierarchy(writer, hierarchy, current); writer.RenderEndTag(); // li } } writer.RenderEndTag(); // ul } The ShowMenu method renders the menu out to the provided TextWriter. In previous posts I've discussed my partiality to using well debugged, time test HtmlTextWriter to render HTML rather than writing out angled brackets by hand. In addition, writing out using the actual writer on the actual stream rather than generating string and byte intermediaries (yes, StringBuilder being no exception) disturbs me. To carry out the rendering of an hierarchical menu, the recursive renderHierarchy() is used. You may notice that an ItemFilter is called before rendering each item. I figured that at some point one might want to exclude certain items from the menu based on security role or context or something. That delegate is the hook for such future feature. To carry out rendering of a breadcrumb recursion is used again, this time simply to unwind the parent hierarchy from the leaf node, then rendering on the return from the recursion rather than as we go along deeper. I guess I was stuck in LISP that day.. recursion is fun though.   Now all that is left is some usage! Open your Site.Master or wherever you'd like to place a menu or breadcrumb, and plant one of these calls: <% MvcMenu.ShowBreadCrumb(this.Writer, Request.Url); %> to show a breadcrumb trail (notice lack of "=" after <% and the semicolon). <% MvcMenu.ShowMenu(Writer); %> to show the menu.   As mentioned before, the HTML output is nested <UL> <LI> tags, which should make it easy to style using abundant CSS to produce anything from static horizontal or vertical to dynamic drop-downs.   This has been quite a fun little implementation and I was pleased that the code size remained low. The main crux was figuring out how to pass parent information from the attribute to the hierarchy builder because attributes have restricted parameter types. Once I settled on that implementation, the rest falls into place quite easily.

    Read the article

  • Metro: Creating a Master/Detail View with a WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to explain how you can create a simple master/detail view by using the WinJS ListView and Template controls. In particular, I explain how you can use a ListView control to display a list of movies and how you can use a Template control to display the details of the selected movie. Creating a master/detail view requires completing the following four steps: Create the data source – The data source contains the list of movies. Declare the ListView control – The ListView control displays the entire list of movies. It is the master part of the master/detail view. Declare the Details Template control – The Details Template control displays the details for the selected movie. It is the details part of the master/detail view. Handle the selectionchanged event – You handle the selectionchanged event to display the details for a movie when a new movie is selected. Creating the Data Source There is nothing special about our data source. We initialize a WinJS.Binding.List object to represent a list of movies: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })(); The data source is exposed to the rest of our application with the name ListViewDemos.movies. Declaring the ListView Control The ListView control is declared with the following markup: <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> The data-win-options attribute is used to set the following properties of the ListView control: itemDataSource – The ListView is bound to the list of movies which we created in the previous section. Notice that the ListView is bound to ListViewDemos.movies.dataSource and not just ListViewDemos.movies. itemTemplate – The item template contains the template used for rendering each item in the ListView. The markup for this template is included below. tabBehavior – This enumeration determines what happens when you tap or click on an item in the ListView. The possible values are directSelect, toggleSelect, invokeOnly, none. Because we want to handle the selectionchanged event, we set tapBehavior to the value directSelect. selectionMode – This enumeration determines whether you can select multiple items or only a single item. The possible values are none, single, multi. In the code above, this property is set to the value single. layout – You can use ListLayout or GridLayout with a ListView. If you want to display a vertical ListView, then you should select ListLayout. You must associate a ListView with an item template if you want to render anything interesting. The ListView above is associated with an item template named #masterItemTemplate. Here’s the markup for the masterItemTemplate: <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> This template simply renders the title of each movie. Declaring the Details Template Control The details part of the master/detail view is created with the help of a Template control. Here’s the markup used to declare the Details Template control: <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> The Details Template control displays the movie title and director.   Handling the selectionchanged Event The ListView control can raise two types of events: the iteminvoked and selectionchanged events. The iteminvoked event is raised when you click on a ListView item. The selectionchanged event is raised when one or more ListView items are selected. When you set the tapBehavior property of the ListView control to the value “directSelect” then tapping or clicking a list item raised both the iteminvoked and selectionchanged event. Tapping a list item causes the item to be selected and the item appears with a checkmark. In our code, we handle the selectionchanged event to update the movie details Template when you select a new movie. Here’s the code from the default.js file used to handle the selectionchanged event: var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); The code above sets up an event handler (listener) for the selectionchanged event. The event handler first verifies that an item has been selected in the ListView (selection.count() > 0). Next, the details for the movie are rendered using the movie details Template (we created this Template in the previous section). The Complete Code For the sake of completeness, I’ve included the complete code for the master/detail view below. I’ve included both the default.html, default.js, and movies.js files. Here is the final code for the default.html file: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewMasterDetail</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewMasterDetail references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/movies.js"></script> <style type="text/css"> body { font-size: xx-large; } .movie { padding: 5px; } #masterDetail { display: -ms-box; } #movieList { width: 300px; margin: 20px; } #movieDetails { margin: 20px; } </style> </head> <body> <!-- Templates --> <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> <!-- Master/Detail --> <div id="masterDetail"> <!-- Master --> <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> <!-- Detail --> <div id="movieDetails"></div> </div> </body> </html> Here is the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll(); var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); } }; app.start(); })();   Here is the movies.js file: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })();   Summary The purpose of this blog entry was to describe how to create a simple master/detail view by taking advantage of the WinJS ListView control. We handled the selectionchanged event of the ListView control to display movie details when you select a movie in the ListView.

    Read the article

  • Metro: Creating a Master/Detail View with a WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to explain how you can create a simple master/detail view by using the WinJS ListView and Template controls. In particular, I explain how you can use a ListView control to display a list of movies and how you can use a Template control to display the details of the selected movie. Creating a master/detail view requires completing the following four steps: Create the data source – The data source contains the list of movies. Declare the ListView control – The ListView control displays the entire list of movies. It is the master part of the master/detail view. Declare the Details Template control – The Details Template control displays the details for the selected movie. It is the details part of the master/detail view. Handle the selectionchanged event – You handle the selectionchanged event to display the details for a movie when a new movie is selected. Creating the Data Source There is nothing special about our data source. We initialize a WinJS.Binding.List object to represent a list of movies: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })(); The data source is exposed to the rest of our application with the name ListViewDemos.movies. Declaring the ListView Control The ListView control is declared with the following markup: <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> The data-win-options attribute is used to set the following properties of the ListView control: itemDataSource – The ListView is bound to the list of movies which we created in the previous section. Notice that the ListView is bound to ListViewDemos.movies.dataSource and not just ListViewDemos.movies. itemTemplate – The item template contains the template used for rendering each item in the ListView. The markup for this template is included below. tabBehavior – This enumeration determines what happens when you tap or click on an item in the ListView. The possible values are directSelect, toggleSelect, invokeOnly, none. Because we want to handle the selectionchanged event, we set tapBehavior to the value directSelect. selectionMode – This enumeration determines whether you can select multiple items or only a single item. The possible values are none, single, multi. In the code above, this property is set to the value single. layout – You can use ListLayout or GridLayout with a ListView. If you want to display a vertical ListView, then you should select ListLayout. You must associate a ListView with an item template if you want to render anything interesting. The ListView above is associated with an item template named #masterItemTemplate. Here’s the markup for the masterItemTemplate: <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> This template simply renders the title of each movie. Declaring the Details Template Control The details part of the master/detail view is created with the help of a Template control. Here’s the markup used to declare the Details Template control: <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> The Details Template control displays the movie title and director.   Handling the selectionchanged Event The ListView control can raise two types of events: the iteminvoked and selectionchanged events. The iteminvoked event is raised when you click on a ListView item. The selectionchanged event is raised when one or more ListView items are selected. When you set the tapBehavior property of the ListView control to the value “directSelect” then tapping or clicking a list item raised both the iteminvoked and selectionchanged event. Tapping a list item causes the item to be selected and the item appears with a checkmark. In our code, we handle the selectionchanged event to update the movie details Template when you select a new movie. Here’s the code from the default.js file used to handle the selectionchanged event: var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); The code above sets up an event handler (listener) for the selectionchanged event. The event handler first verifies that an item has been selected in the ListView (selection.count() > 0). Next, the details for the movie are rendered using the movie details Template (we created this Template in the previous section). The Complete Code For the sake of completeness, I’ve included the complete code for the master/detail view below. I’ve included both the default.html, default.js, and movies.js files. Here is the final code for the default.html file: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewMasterDetail</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewMasterDetail references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/movies.js"></script> <style type="text/css"> body { font-size: xx-large; } .movie { padding: 5px; } #masterDetail { display: -ms-box; } #movieList { width: 300px; margin: 20px; } #movieDetails { margin: 20px; } </style> </head> <body> <!-- Templates --> <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> <!-- Master/Detail --> <div id="masterDetail"> <!-- Master --> <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> <!-- Detail --> <div id="movieDetails"></div> </div> </body> </html> Here is the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll(); var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); } }; app.start(); })();   Here is the movies.js file: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })();   Summary The purpose of this blog entry was to describe how to create a simple master/detail view by taking advantage of the WinJS ListView control. We handled the selectionchanged event of the ListView control to display movie details when you select a movie in the ListView.

    Read the article

  • Using SurfaceFormat.Single and HLSL for GPGPU with XNA

    - by giancarlo todone
    I'm trying to implement a so-called ping-pong technique in XNA; you basically have two RenderTarget2D A and B and at each iteration you use one as texture and the other as target - and vice versa - for a quad rendered through an HLSL pixel shader. step1: A--PS--B step2: B--PS--A step3: A--PS--B ... In my setup, both RenderTargets are SurfaceFormat.Single. In my .fx file, I have a tachnique to do the update, and another to render the "current buffer" to the screen. Before starting the "ping-pong", buffer A is filled with test data with SetData<float>(float[]) function: this seems to work properly, because if I render a quad on the screen through the "Draw" pixel shader, i do see the test data being correctly rendered. However, if i do update buffer B, something does not function proerly and the next rendering to screen will be all black. For debug purposes, i replaced the "Update" HLSL pixel shader with one that should simply copy buffer A into B (or B into A depending on which among "ping" and "pong" phases we are...). From some examples i found on the net, i see that in order to correctly fetch a float value from a texture sampler from HLSL code, i should only need to care for the red channel. So, basically the debug "Update" HLSL function is: float4 ComputePS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,0,0,1); } which still doesn't work and results in a all-zeroes ouput. Here's the "Draw" function that seems to properly display initial data: float4 DrawPS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,v1,v1,1); } Now: playing around with HLSL doesn't change anything, so maybe I'm missing something on the c# side of this, so here's the infamous Update() function: _effect.Parameters["bufTexture"].SetValue(buf[_currentBuf]); _graphicsDevice.SetRenderTarget(buf[1 - _currentBuf]); _graphicsDevice.Clear(Color.Black); // probably not needed since RenderTargetUsage is DiscardContents _effect.CurrentTechnique = _computeTechnique; _computeTechnique.Passes[0].Apply(); _quadRender.Render(); _graphicsDevice.SetRenderTarget(null); _currentBuf = 1 - _currentBuf; Any clue?

    Read the article

  • Drawing territories border in 2d map

    - by Gabriel A. Zorrilla
    I'm programming a little web strategy game. In the country map I pretend to display each country with a national color. The issue is how to render the borders in a simple and efficient way. Right now I'm planning to set a field to each tile called "border" with values from 0 to 8. The algorithm would check for EVERY tile is its adjacent has a different "owner". If the tile is inside the territory, the border value would be 0, because would not have adjacent any tile with different owner, if not, would vary between 1 (north) clockwise to 9 (north-west) and then draw the border. I find this simple but too processor-intensive. Are there any other "pro" choices to render territories borders?

    Read the article

  • Using your own gameloop logic on iphone?

    - by kkan
    I'm currently working on moving some android-ndk code to the iphone and have hit a wall. I'm new to iphone development, and from looking at some samples it seems that the main loop is handled for you and all you've got to do is override the render method on the view to handle the rendering and add a selector to handle the update methods. The render method itself lookslike it's attached to the windows refresh. But in android I've got my own game loop that controls the rendering and updates using c++ time.h. is it possible to implement the same here bypassing apple's loop? I'd really like the keep the structures of the code similar. Thanks!

    Read the article

  • Frameskipping in Android gameloop causing choppy sprites (Open GL ES 2.0)

    - by user22241
    I have written a simple 2d platform game for Android and am wondering how one deals with frame-skipping? Are there any alternatives? Let me explain further. So, my game loop allows for the rendering to be skipped if game updates and rendering do not fit into my fixed time-slice (16.667ms). This allows my game to run at identically perceived speeds on different devices. And this works great, things do run at the same speed. However, when the gameloop skips a render call for even one frame, the sprite glitches. And thinking about it, why wouldn't it? You're seeing a sprite move say, an average of 10 pixels every 1.6 seconds, then suddenly, there is a pause of 3.2ms, and the sprite then appears to jump 20 pixels. When this happens 3 or 4 times in close succession, the result is very ugly and not something I want in my game. Therfore, my question is how does one deal with these 'pauses' and 'jumps' - I've read every article on game loops I can find (see below) and my loops are even based off of code from these articles. The articles specifically mention frame skipping but they don't make any reference to how to deal with visual glitches that result from it. I've attempted various game-loops. My loop must have a mechanism in-place to allow rendering to be skipped to keep game-speed constant across multiple devices (or alternative, if one exists) I've tried interpolation but this doesn't eliminate this specific problem (although it looks like it may mitigate the issue slightly as when it eventually draws the sprite it 'moves it back' between the old and current positions so the 'jump' isn't so big. I've also tried a form of extrapolation which does seem to keep things smooth considerably, but I find it to be next to completely useless because it plays havoc with my collision detection (even when drawing with a 'display only' coordinate - see extrapolation-breaks-collision-detection) I've tried a loop that uses Thread.sleep when drawing / updating completes with time left over, no frame skipping in this one, again fairly smooth, but runs differently on different devices so no good. And I've tried spawning my own, third thread for logic updates, but this, was extremely messy to deal with and the performance really wasn't good. (upon reading tons of forums, most people seem to agree a 2 thread loops ( so UI and GL threads) is safer / easier). Now if I remove frame skipping, then all seems to run nice and smooth, with or without inter/extrapolation. However, this isn't an option because the game then runs at different speeds on different devices as it falls behind from not being able to render fast enough. I'm running logic at 60 Ticks per second and rendering as fast as I can. I've read, as far as I can see every article out there, I've tried the loops from My Secret Garden and Fix your timestep. I've also read: Against the grain deWITTERS Game Loop Plus various other articles on Game-loops. A lot of the others are derived from the above articles or just copied word for word. These are all great, but they don't touch on the issues I'm experiencing. I really have tried everything I can think of over the course of a year to eliminate these glitches to no avail, so any and all help would be appreciated. A couple of examples of my game loops (Code follows): From My Secret Room public void onDrawFrame(GL10 gl) { //Rre-set loop back to 0 to start counting again loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip) { SceneManager.getInstance().getCurrentScene().updateLogic(); nextGameTick += skipTicks; timeCorrection += (1000d / ticksPerSecond) % 1; nextGameTick += timeCorrection; timeCorrection %= 1; loops++; } extrapolation = (float)(System.currentTimeMillis() + skipTicks - nextGameTick) / (float)skipTicks; render(extrapolation); } And from Fix your timestep double t = 0.0; double dt2 = 0.01; double currentTime = System.currentTimeMillis()*0.001; double accumulator = 0.0; double newTime; double frameTime; @Override public void onDrawFrame(GL10 gl) { newTime = System.currentTimeMillis()*0.001; frameTime = newTime - currentTime; if ( frameTime > (dt*5)) //Allow 5 'skips' frameTime = (dt*5); currentTime = newTime; accumulator += frameTime; while ( accumulator >= dt ) { SceneManager.getInstance().getCurrentScene().updateLogic(); previousState = currentState; accumulator -= dt; } interpolation = (float) (accumulator / dt); render(interpolation); }

    Read the article

  • Blender Object Appearing Gray when all Lights are Off

    - by celestialorb
    I have an issue with Blender where, when I turn my only light off (a sun lamp) and render the image my object appears gray rather than black (and thus, not appear to the camera). I can't figure out why this is happening. Here's what I just did in my scene: Added a new UV Sphere mesh (to make a total of two spheres), made it visible to the camera, turned off the sun lamp (by setting energy to 0), and rendered. The result I obtained is below. I discovered this when attempting to render the first sphere with a material/texture on it and it was too bright. The material on the spheres (which are different) are very basic, there's no emit, diffuse and specular are at default values. Could there be an issue with the way my camera is setup? Thanks in advance!

    Read the article

  • Multi threaded game - updating, rendering, and how to split them

    - by CodeBunny
    From the StackOverflow post (it was recommended I move this): So, I'm working on a game engine, and I've made pretty good progress. However, my engine is single-threaded, and the advantages of splitting updating and rendering into separate threads sounds like a very good idea. How should I do this? Single threaded game engines are (conceptually) very easy to make, you have a loop where you update - render - sleep - repeat. However, I can't think of a good way to break updating and rendering apart, especially if I change their update rates (say I go through the update loop 25x a second, and have 60fps for rendering) - what if I begin updating halfway through a render loop, or vice versa?

    Read the article

  • Metro: Dynamically Switching Templates with a WinJS ListView

    - by Stephen.Walther
    Imagine that you want to display a list of products using the WinJS ListView control. Imagine, furthermore, that you want to use different templates to display different products. In particular, when a product is on sale, you want to display the product using a special “On Sale” template. In this blog entry, I explain how you can switch templates dynamically when displaying items with a ListView control. In other words, you learn how to use more than one template when displaying items with a ListView control. Creating the Data Source Let’s start by creating the data source for the ListView. Nothing special here – our data source is a list of products. Two of the products, Oranges and Apples, are on sale. (function () { "use strict"; var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44 }, { name: "Oranges", price: 1.99, onSale: true }, { name: "Wine", price: 8.55 }, { name: "Apples", price: 2.44, onSale: true }, { name: "Steak", price: 1.99 }, { name: "Eggs", price: 2.44 }, { name: "Mushrooms", price: 1.99 }, { name: "Yogurt", price: 2.44 }, { name: "Soup", price: 1.99 }, { name: "Cereal", price: 2.44 }, { name: "Pepsi", price: 1.99 } ]); WinJS.Namespace.define("ListViewDemos", { products: products }); })(); The file above is saved with the name products.js and referenced by the default.html page described below. Declaring the Templates and ListView Control Next, we need to declare the ListView control and the two Template controls which we will use to display template items. The markup below appears in the default.html file: <!-- Templates --> <div id="productItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productOnSaleTemplate" data-win-control="WinJS.Binding.Template"> <div class="product onSale"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> (On Sale!) </div> </div> <!-- ListView --> <div id="productsListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.products.dataSource, layout: { type: WinJS.UI.ListLayout } }"> </div> In the markup above, two Template controls are declared. The first template is used when rendering a normal product and the second template is used when rendering a product which is on sale. The second template, unlike the first template, includes the text “(On Sale!)”. The ListView control is bound to the data source which we created in the previous section. The ListView itemDataSource property is set to the value ListViewDemos.products.dataSource. Notice that we do not set the ListView itemTemplate property. We set this property in the default.js file. Switching Between Templates All of the magic happens in the default.js file. The default.js file contains the JavaScript code used to switch templates dynamically. Here’s the entire contents of the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll().then(function () { var productsListView = document.getElementById("productsListView"); productsListView.winControl.itemTemplate = itemTemplateFunction; });; } }; function itemTemplateFunction(itemPromise) { return itemPromise.then(function (item) { // Select either normal product template or on sale template var itemTemplate = document.getElementById("productItemTemplate"); if (item.data.onSale) { itemTemplate = document.getElementById("productOnSaleTemplate"); }; // Render selected template to DIV container var container = document.createElement("div"); itemTemplate.winControl.render(item.data, container); return container; }); } app.start(); })(); In the code above, a function is assigned to the ListView itemTemplate property with the following line of code: productsListView.winControl.itemTemplate = itemTemplateFunction;   The itemTemplateFunction returns a DOM element which is used for the template item. Depending on the value of the product onSale property, the DOM element is generated from either the productItemTemplate or the productOnSaleTemplate template. Using Binding Converters instead of Multiple Templates In the previous sections, I explained how you can use different templates to render normal products and on sale products. There is an alternative approach to displaying different markup for normal products and on sale products. Instead of creating two templates, you can create a single template which contains separate DIV elements for a normal product and an on sale product. The following default.html file contains a single item template and a ListView control bound to the template. <!-- Template --> <div id="productItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="product" data-win-bind="style.display: onSale ListViewDemos.displayNormalProduct"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> <div class="product onSale" data-win-bind="style.display: onSale ListViewDemos.displayOnSaleProduct"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> (On Sale!) </div> </div> <!-- ListView --> <div id="productsListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.products.dataSource, itemTemplate: select('#productItemTemplate'), layout: { type: WinJS.UI.ListLayout } }"> </div> The first DIV element is used to render a normal product: <div class="product" data-win-bind="style.display: onSale ListViewDemos.displayNormalProduct"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> The second DIV element is used to render an “on sale” product: <div class="product onSale" data-win-bind="style.display: onSale ListViewDemos.displayOnSaleProduct"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> (On Sale!) </div> Notice that both templates include a data-win-bind attribute. These data-win-bind attributes are used to show the “normal” template when a product is not on sale and show the “on sale” template when a product is on sale. These attributes set the Cascading Style Sheet display attribute to either “none” or “block”. The data-win-bind attributes take advantage of binding converters. The binding converters are defined in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll(); } }; WinJS.Namespace.define("ListViewDemos", { displayNormalProduct: WinJS.Binding.converter(function (onSale) { return onSale ? "none" : "block"; }), displayOnSaleProduct: WinJS.Binding.converter(function (onSale) { return onSale ? "block" : "none"; }) }); app.start(); })(); The ListViewDemos.displayNormalProduct binding converter converts the value true or false to the value “none” or “block”. The ListViewDemos.displayOnSaleProduct binding converter does the opposite; it converts the value true or false to the value “block” or “none” (Sadly, you cannot simply place a NOT operator before the onSale property in the binding expression – you need to create both converters). The end result is that you can display different markup depending on the value of the product onSale property. Either the contents of the first or second DIV element are displayed: Summary In this blog entry, I’ve explored two approaches to displaying different markup in a ListView depending on the value of a data item property. The bulk of this blog entry was devoted to explaining how you can assign a function to the ListView itemTemplate property which returns different templates. We created both a productItemTemplate and productOnSaleTemplate and displayed both templates with the same ListView control. We also discussed how you can create a single template and display different markup by using binding converters. The binding converters are used to set a DIV element’s display property to either “none” or “block”. We created a binding converter which displays normal products and a binding converter which displays “on sale” products.

    Read the article

< Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >