Search Results

Search found 14034 results on 562 pages for 'interface inheritance'.

Page 134/562 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • Cannot ping router with a static IP assigned?

    - by Uriah
    Alright. I am running Ubuntu LTS 12.04 and am trying to configure a local caching/master DNS server so I am using Bind9. First, here are some things via default DHCP: /etc/network/interfaces cat /etc/network/interfaces # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp # The primary network interface - STATIC #auto eth0 #iface eth0 inet static # address 192.168.2.113 # netmask 255.255.255.0 # network 192.168.2.0 # broadcast 192.168.2.255 # gateway 192.168.2.1 # dns-search uclemmer.net # dns-nameservers 192.168.2.113 8.8.8.8 /etc/resolv.conf cat /etc/resolv.conf # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8) # DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN nameserver 192.168.2.1 search uclemmer.net ifconfig ifconfig eth0 Link encap:Ethernet HWaddr 00:14:2a:82:d4:9e inet addr:192.168.2.103 Bcast:192.168.2.255 Mask:255.255.255.0 inet6 addr: fe80::214:2aff:fe82:d49e/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1067 errors:0 dropped:0 overruns:0 frame:0 TX packets:2504 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:153833 (153.8 KB) TX bytes:214129 (214.1 KB) Interrupt:23 Base address:0x8800 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:915 errors:0 dropped:0 overruns:0 frame:0 TX packets:915 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:71643 (71.6 KB) TX bytes:71643 (71.6 KB) ping ping -c 4 192.168.2.1 PING 192.168.2.1 (192.168.2.1) 56(84) bytes of data. 64 bytes from 192.168.2.1: icmp_req=1 ttl=64 time=0.368 ms 64 bytes from 192.168.2.1: icmp_req=2 ttl=64 time=0.224 ms 64 bytes from 192.168.2.1: icmp_req=3 ttl=64 time=0.216 ms 64 bytes from 192.168.2.1: icmp_req=4 ttl=64 time=0.237 ms --- 192.168.2.1 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 2997ms rtt min/avg/max/mdev = 0.216/0.261/0.368/0.063 ms ping -c 4 google.com PING google.com (74.125.134.102) 56(84) bytes of data. 64 bytes from www.google-analytics.com (74.125.134.102): icmp_req=1 ttl=48 time=15.1 ms 64 bytes from www.google-analytics.com (74.125.134.102): icmp_req=2 ttl=48 time=11.4 ms 64 bytes from www.google-analytics.com (74.125.134.102): icmp_req=3 ttl=48 time=11.6 ms 64 bytes from www.google-analytics.com (74.125.134.102): icmp_req=4 ttl=48 time=11.5 ms --- google.com ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3003ms rtt min/avg/max/mdev = 11.488/12.465/15.118/1.537 ms ip route ip route default via 192.168.2.1 dev eth0 metric 100 192.168.2.0/24 dev eth0 proto kernel scope link src 192.168.2.103 As you can see, with DHCP everything seems to work fine. Now, here are things with static IP: /etc/network/interfaces cat /etc/network/interfaces # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface #auto eth0 #iface eth0 inet dhcp # The primary network interface - STATIC auto eth0 iface eth0 inet static address 192.168.2.113 netmask 255.255.255.0 network 192.168.2.0 broadcast 192.168.2.255 gateway 192.168.2.1 dns-search uclemmer.net dns-nameservers 192.168.2.1 8.8.8.8 I have tried dns-nameservers in various combos of *.2.1, *.2.113, and other reliable, public nameservers. /etc/resolv.conf cat /etc/resolv.conf # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8) # DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN nameserver 192.168.2.1 nameserver 8.8.8.8 search uclemmer.net Obviously, when I change the nameservers in the /etc/network/interfaces file, the nameservers change here too. ifconfig ifconfig eth0 Link encap:Ethernet HWaddr 00:14:2a:82:d4:9e inet addr:192.168.2.113 Bcast:192.168.2.255 Mask:255.255.255.0 inet6 addr: fe80::214:2aff:fe82:d49e/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1707 errors:0 dropped:0 overruns:0 frame:0 TX packets:2906 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:226230 (226.2 KB) TX bytes:263497 (263.4 KB) Interrupt:23 Base address:0x8800 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:985 errors:0 dropped:0 overruns:0 frame:0 TX packets:985 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:78625 (78.6 KB) TX bytes:78625 (78.6 KB) ping ping -c 4 192.168.2.1 PING 192.168.2.1 (192.168.2.1) 56(84) bytes of data. --- 192.168.2.1 ping statistics --- 4 packets transmitted, 0 received, 100% packet loss, time 3023ms ping -c 4 google.com ping: unknown host google.com Lastly, here are my bind zone files: /etc/bind/named.conf.options cat /etc/bind/named.conf.options options { directory "/etc/bind"; // // // query-source address * port 53; notify-source * port 53; transfer-source * port 53; // If there is a firewall between you and nameservers you want // to talk to, you may need to fix the firewall to allow multiple // ports to talk. See http://www.kb.cert.org/vuls/id/800113 // If your ISP provided one or more IP addresses for stable // nameservers, you probably want to use them as forwarders. // Uncomment the following block, and insert the addresses replacing // the all-0's placeholder. // forwarders { // 0.0.0.0; // }; forwarders { // My local 192.168.2.113; // Comcast 75.75.75.75; 75.75.76.76; // Google 8.8.8.8; 8.8.4.4; // DNSAdvantage 156.154.70.1; 156.154.71.1; // OpenDNS 208.67.222.222; 208.67.220.220; // Norton 198.153.192.1; 198.153.194.1; // Verizon 4.2.2.1; 4.2.2.2; 4.2.2.3; 4.2.2.4; 4.2.2.5; 4.2.2.6; // Scrubit 67.138.54.100; 207.255.209.66; }; // // // //allow-query { localhost; 192.168.2.0/24; }; //allow-transfer { localhost; 192.168.2.113; }; //also-notify { 192.168.2.113; }; //allow-recursion { localhost; 192.168.2.0/24; }; //======================================================================== // If BIND logs error messages about the root key being expired, // you will need to update your keys. See https://www.isc.org/bind-keys //======================================================================== dnssec-validation auto; auth-nxdomain no; # conform to RFC1035 listen-on-v6 { any; }; }; /etc/bind/named.conf.local cat /etc/bind/named.conf.local // // Do any local configuration here // // Consider adding the 1918 zones here, if they are not used in your // organization //include "/etc/bind/zones.rfc1918"; zone "example.com" { type master; file "/etc/bind/zones/db.example.com"; }; zone "2.168.192.in-addr.arpa" { type master; file "/etc/bind/zones/db.2.168.192.in-addr.arpa"; /etc/bind/zones/db.example.com cat /etc/bind/zones/db.example.com ; ; BIND data file for example.com interface ; $TTL 604800 @ IN SOA yossarian.example.com. root.example.com. ( 1343171970 ; Serial 604800 ; Refresh 86400 ; Retry 2419200 ; Expire 604800 ) ; Negative Cache TTL ; @ IN NS yossarian.example.com. @ IN A 192.168.2.113 @ IN AAAA ::1 @ IN MX 10 yossarian.example.com. ; yossarian IN A 192.168.2.113 router IN A 192.168.2.1 printer IN A 192.168.2.200 ; ns01 IN CNAME yossarian.example.com. www IN CNAME yossarian.example.com. ftp IN CNAME yossarian.example.com. ldap IN CNAME yossarian.example.com. mail IN CNAME yossarian.example.com. /etc/bind/zones/db.2.168.192.in-addr.arpa cat /etc/bind/zones/db.2.168.192.in-addr.arpa ; ; BIND reverse data file for 2.168.192.in-addr interface ; $TTL 604800 @ IN SOA yossarian.example.com. root.example.com. ( 1343171970 ; Serial 604800 ; Refresh 86400 ; Retry 2419200 ; Expire 604800 ) ; Negative Cache TTL ; @ IN NS yossarian.example.com. @ IN A 255.255.255.0 ; 113 IN PTR yossarian.example.com. 1 IN PTR router.example.com. 200 IN PTR printer.example.com. ip route ip route default via 192.168.2.1 dev eth0 metric 100 192.168.2.0/24 dev eth0 proto kernel scope link src 192.168.2.113 I can SSH in to the machine locally at *.2.113 or at whatever address is dynamically assigned when in DHCP "mode". *2.113 is in my router's range and I have ports open and forwarding to the server. Pinging is enabled on the router too. I briefly had a static configuration working but it died after the first reboot. Please let me know what other info you might need. I am beyond frustrated/baffled.

    Read the article

  • Interfaces and Virtuals Everywhere????

    - by David V. Corbin
    First a disclaimer; this post is about micro-optimization of C# programs and does not apply to most common scenarios - but when it does, it is important to know. Many developers are in the habit of declaring member virtual to allow for future expansion or using interface based designs1. Few of these developers think about what the runtime performance impact of this decision is. A simple test will show that this decision can have a serious impact. For our purposes, we used a simple loop to time the execution of 1 billion calls to both non-virtual and virtual implementations of a method that took no parameters and had a void return type: Direct Call:     1.5uS Virtual Call:   13.0uS The overhead of the call increased by nearly an order of magnitude! Once again, it is important to realize that if the method does anything of significance then this ratio drops quite quickly. If the method does just 1mS of work, then the differential only accounts for a 1% decrease in performance. Additionally the method in question must be called thousands of times in order to produce a meaqsurable impact at the application level. Yet let us consider a situation such as the per-pixel processing of a graphics processing application. Here we may have a method which is called millions of times and even the slightest increase in overhead can have significant ramification. In this case using either explicit virtuals or interface based constructs is likely to be a mistake. In conclusion, good design principles should always be the driving force behind descisions such as these; but remember that these decisions do not come for free.   1) When a concrete class member implements an interface it does not need to be explicitly marked as virtual (unless, of course, it is to be overriden in a derived concerete class). Nevertheless, when accessed via the interface it behaves exactly as if it had been marked as virtual.

    Read the article

  • Question about separating game core engine from game graphics engine...

    - by Conrad Clark
    Suppose I have a SquareObject class, which implements IDrawable, an interface which contains the method void Draw(). I want to separate drawing logic itself from the game core engine. My main idea is to create a static class which is responsible to dispatch actions to the graphic engine. public static class DrawDispatcher<T> { private static Action<T> DrawAction = new Action<T>((ObjectToDraw)=>{}); public static void SetDrawAction(Action<T> action) { DrawAction = action; } public static void Dispatch(this T Obj) { DrawAction(Obj); } } public static class Extensions { public static void DispatchDraw<T>(this object Obj) { DrawDispatcher<T>.DispatchDraw((T)Obj); } } Then, on the core side: public class SquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<SquareObject>(); } #endregion } And on the graphics side: public static class SquareRender{ //stuff here public static void Initialize(){ DrawDispatcher<SquareObject>.SetDrawAction((Square)=>{//my square rendering logic}); } } Do this "pattern" follow best practices? And a plus, I could easily change the render scheme of each object by changing the DispatchDraw parameter, as in: public class SuperSquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<SquareObject>(); } #endregion } public class RedSquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<RedSquareObject>(); } #endregion } RedSquareObject would have its own render method, but SuperSquareObject would render as a normal SquareObject I'm just asking because i do not want to reinvent the wheel, and there may be a design pattern similar (and better) to this that I may be not acknowledged of. Thanks in advance!

    Read the article

  • Decorator not calling the decorated instance - alternative design needed

    - by Daniel Hilgarth
    Assume I have a simple interface for translating text (sample code in C#): public interface ITranslationService { string GetTranslation(string key, CultureInfo targetLanguage); // some other methods... } A first simple implementation of this interface already exists and simply goes to the database for every method call. Assuming a UI that is being translated at start up this results in one database call per control. To improve this, I want to add the following behavior: As soon as a request for one language comes in, fetch all translations from this language and cache them. All translation requests are served from the cache. I thought about implementing this new behavior as a decorator, because all other methods of that interface implemented by the decorater would simple delegate to the decorated instance. However, the implementation of GetTranslation wouldn't use GetTranslation of the decorated instance at all to get all translations of a certain language. It would fire its own query against the database. This breaks the decorator pattern, because every functionality provided by the decorated instance is simply skipped. This becomes a real problem if there are other decorators involved. My understanding is that a Decorator should be additive. In this case however, the decorator is replacing the behavior of the decorated instance. I can't really think of a nice solution for this - how would you solve it? Everything is allowed, even a complete re-design of ITranslationService itself.

    Read the article

  • How do I connect to Ubuntu One after changing the password?

    - by rumtscho
    I changed my password for Ubuntu One using the Web interface, and added a new computer. Since then, the old computer does not synchronize with Ubuntu One. It doesn't show any error messages or such, but files uploaded from the web interface or changed on the newly added computer don't appear/change on the old computer. I guess that it can't connect because it is still using the old password. The problem is that I can't find an interface to change the password the client is using to connect to the service. The "manage account" option opens the Web interface. I looked into the keyring, and found the key for Ubuntu One, but there I only see an encrypted version of the password, so I can't change it there. So what is the correct way to tell my client that my account password has changed? Edit this is what I see when I open Preferences -- Ubuntu One. Is there something wrong with it? It also stubbornly insists that it has successfully synchronized. But the files I have added from other computers are not in my Ubuntu One folder.

    Read the article

  • Refactoring and Open / Closed principle

    - by Giorgio
    I have recently being reading a web site about clean code development (I do not put a link here because it is not in English). One of the principles advertised by this site is the Open Closed Principle: each software component should be open for extension and closed for modification. E.g., when we have implemented and tested a class, we should only modify it to fix bugs or to add new functionality (e.g. new methods that do not influence the existing ones). The existing functionality and implementation should not be changed. I normally apply this principle by defining an interface I and a corresponding implementation class A. When class A has become stable (implemented and tested), I normally do not modify it too much (possibly, not at all), i.e. If new requirements arrive (e.g. performance, or a totally new implementation of the interface) that require big changes to the code, I write a new implementation B, and keep using A as long as B is not mature. When B is mature, all that is needed is to change how I is instantiated. If the new requirements suggest a change to the interface as well, I define a new interface I' and a new implementation A'. So I, A are frozen and remain the implementation for the production system as long as I' and A' are not stable enough to replace them. So, in view of these observation, I was a bit surprised that the web page then suggested the use of complex refactorings, "... because it is not possible to write code directly in its final form." Isn't there a contradiction / conflict between enforcing the Open / Closed Principle and suggesting the use of complex refactorings as a best practice? Or the idea here is that one can use complex refactorings during the development of a class A, but when that class has been tested successfully it should be frozen?

    Read the article

  • wireless is disabled by hardware lenovo 3000g430

    - by sudheer
    sir i have problem with my wifi switch sir please tell me solution for my problem (wifi is disabled by hardware). output of sudo lshw -C network is sudo] password for sudheer: *-network DISABLED description: Wireless interface product: BCM4312 802.11b/g LP-PHY vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:06:00.0 logical name: eth2 version: 01 serial: 00:21:00:72:3a:93 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=5.100.82.38 latency=0 multicast=yes wireless=IEEE 802.11bg resources: irq:19 memory:f4700000-f4703fff *-network description: Ethernet interface product: NetLink BCM5906M Fast Ethernet PCI Express vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:07:00.0 logical name: eth0 version: 02 serial: 00:1e:68:ad:24:0b size: 100Mbit/s capacity: 100Mbit/s width: 64 bits clock: 33MHz capabilities: pm vpd msi pciexpress bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=tg3 driverversion=3.121 duplex=full firmware=sb v3.04 ip=172.16.52.79 latency=0 link=yes multicast=yes port=twisted pair speed=100Mbit/s resources: irq:47 memory:f4600000-f460ffff output of iwconfig is lo no wireless extensions. eth2 IEEE 802.11 Access Point: Not-Associated Link Quality:5 Signal level:0 Noise level:0 Rx invalid nwid:0 invalid crypt:0 invalid misc:0 eth0 no wireless extensions. sudheer@sudheer:~$ sudo iwlistscanning sudo: iwlistscanning: command not found ***sudheer@sudheer:~$ sudo iwlist scanning*** lo Interface doesn't support scanning. eth2 Failed to read scan data : Invalid argument eth0 Interface doesn't support scanning.

    Read the article

  • Is it a good programming practice to have a class with several .h files?

    - by Jim Thio
    I suppose the class have several different interfaces. Some it shows to some class, some it shows to other classes. Are there any good reason for that? One thing I can think of is with one .h per class, interface would either be public or private. What about if I want some interface to be available to some friends' class and some interface to be truly public? Sample: @interface listNewController:BadgerStandardViewViewController <UITableViewDelegate,UITableViewDataSource,UITextFieldDelegate,NSFetchedResultsControllerDelegate,UIScrollViewDelegate,UIGestureRecognizerDelegate> { } @property (nonatomic) IBOutlet NSFetchedResultsController *FetchController; @property (nonatomic) IBOutlet UITextField *searchBar1; @property (nonatomic) IBOutlet UITableView *tableViewA; + (listNewController *) singleton; //For Easier Access -(void)collapseAll; -(void)TitleViewClicked:(TitleView *) theTitleView; -(NSUInteger) countOfEachSection:(NSInteger)section; @end Many of those public properties and function are only ever called by just one other classes. I wonder why I need to make them available to many classes. It's in Objective-c by the way

    Read the article

  • Extension objects pattern

    - by voroninp
    In this MSDN Magazine article Peter Vogel describes Extension Objects partten. What is not clear is whether extensions can be later implemented by client code residing in a separate assembly. And if so how in this case can extension get acces to private members of the objet being extended? I quite often need to set different access levels for different classes. Sometimes I really need that descendants does not have access to the mebmer but separate class does. (good old friend classes) Now I solve this in C# by exposing callback properties in interface of the external class and setting them with private methods. This also alows to adjust access: read only or read|write depending on the desired interface. class Parent { private int foo; public void AcceptExternal(IFoo external) { external.GetFooCallback = () => this.foo; } } interface IFoo { Func<int> GetFooCallback {get;set;} } Other way is to explicitly implement particular interface. But I suspect more aspproaches exist.

    Read the article

  • Two components offering the same functionality, required by different dependencies

    - by kander
    I'm building an application in PHP, using Zend Framework 1 and Doctrine2 as the ORM layer. All is going well. Now, I happened to notice that both ZF1 and Doctrine2 come with, and rely on, their own caching implementation. I've evaluated both, and while each has its own pro's and cons, neither of them stand out as superior to the other for my simple needs. Both libraries also seem to be written against their respective interfaces, not their implementations. Reasons why I feel this is an issue is that during the bootstrapping of my application, I have to configure two caching drivers - each with its own syntax. A mismatch is easily created this way, and it feels inefficient to set up two connections to the caching backend because of this. I'm trying to determine what the best way forward is, and would welcome any insights you may be able to offer. What I've thought up so far are four options: Do nothing, accept that two classes offering caching functionality are present. Create a Facade class to stick Zend's interface onto Doctrine's caching implementation. Option 2, the other way around - create a Facade to map Doctrine's interface on a Zend Framework backend. Use multiple-interface-inheritance to create one interface to rule them all, and pray that there aren't any overlaps (ie: if both have a "save" method, they'll need to accept params in the same order due to PHP's lack of proper polymorphism). What option is best, or is there a "None of the above" variant that I'm not aware of?

    Read the article

  • Class-Level Model Validation with EF Code First and ASP.NET MVC 3

    - by ScottGu
    Earlier this week the data team released the CTP5 build of the new Entity Framework Code-First library.  In my blog post a few days ago I talked about a few of the improvements introduced with the new CTP5 build.  Automatic support for enforcing DataAnnotation validation attributes on models was one of the improvements I discussed.  It provides a pretty easy way to enable property-level validation logic within your model layer. You can apply validation attributes like [Required], [Range], and [RegularExpression] – all of which are built-into .NET 4 – to your model classes in order to enforce that the model properties are valid before they are persisted to a database.  You can also create your own custom validation attributes (like this cool [CreditCard] validator) and have them be automatically enforced by EF Code First as well.  This provides a really easy way to validate property values on your models.  I showed some code samples of this in action in my previous post. Class-Level Model Validation using IValidatableObject DataAnnotation attributes provides an easy way to validate individual property values on your model classes.  Several people have asked - “Does EF Code First also support a way to implement class-level validation methods on model objects, for validation rules than need to span multiple property values?”  It does – and one easy way you can enable this is by implementing the IValidatableObject interface on your model classes. IValidatableObject.Validate() Method Below is an example of using the IValidatableObject interface (which is built-into .NET 4 within the System.ComponentModel.DataAnnotations namespace) to implement two custom validation rules on a Product model class.  The two rules ensure that: New units can’t be ordered if the Product is in a discontinued state New units can’t be ordered if there are already more than 100 units in stock We will enforce these business rules by implementing the IValidatableObject interface on our Product class, and by implementing its Validate() method like so: The IValidatableObject.Validate() method can apply validation rules that span across multiple properties, and can yield back multiple validation errors. Each ValidationResult returned can supply both an error message as well as an optional list of property names that caused the violation (which is useful when displaying error messages within UI). Automatic Validation Enforcement EF Code-First (starting with CTP5) now automatically invokes the Validate() method when a model object that implements the IValidatableObject interface is saved.  You do not need to write any code to cause this to happen – this support is now enabled by default. This new support means that the below code – which violates one of our above business rules – will automatically throw an exception (and abort the transaction) when we call the “SaveChanges()” method on our Northwind DbContext: In addition to reactively handling validation exceptions, EF Code First also allows you to proactively check for validation errors.  Starting with CTP5, you can call the “GetValidationErrors()” method on the DbContext base class to retrieve a list of validation errors within the model objects you are working with.  GetValidationErrors() will return a list of all validation errors – regardless of whether they are generated via DataAnnotation attributes or by an IValidatableObject.Validate() implementation.  Below is an example of proactively using the GetValidationErrors() method to check (and handle) errors before trying to call SaveChanges(): ASP.NET MVC 3 and IValidatableObject ASP.NET MVC 2 included support for automatically honoring and enforcing DataAnnotation attributes on model objects that are used with ASP.NET MVC’s model binding infrastructure.  ASP.NET MVC 3 goes further and also honors the IValidatableObject interface.  This combined support for model validation makes it easy to display appropriate error messages within forms when validation errors occur.  To see this in action, let’s consider a simple Create form that allows users to create a new Product: We can implement the above Create functionality using a ProductsController class that has two “Create” action methods like below: The first Create() method implements a version of the /Products/Create URL that handles HTTP-GET requests - and displays the HTML form to fill-out.  The second Create() method implements a version of the /Products/Create URL that handles HTTP-POST requests - and which takes the posted form data, ensures that is is valid, and if it is valid saves it in the database.  If there are validation issues it redisplays the form with the posted values.  The razor view template of our “Create” view (which renders the form) looks like below: One of the nice things about the above Controller + View implementation is that we did not write any validation logic within it.  The validation logic and business rules are instead implemented entirely within our model layer, and the ProductsController simply checks whether it is valid (by calling the ModelState.IsValid helper method) to determine whether to try and save the changes or redisplay the form with errors. The Html.ValidationMessageFor() helper method calls within our view simply display the error messages our Product model’s DataAnnotations and IValidatableObject.Validate() method returned.  We can see the above scenario in action by filling out invalid data within the form and attempting to submit it: Notice above how when we hit the “Create” button we got an error message.  This was because we ticked the “Discontinued” checkbox while also entering a value for the UnitsOnOrder (and so violated one of our business rules).  You might ask – how did ASP.NET MVC know to highlight and display the error message next to the UnitsOnOrder textbox?  It did this because ASP.NET MVC 3 now honors the IValidatableObject interface when performing model binding, and will retrieve the error messages from validation failures with it. The business rule within our Product model class indicated that the “UnitsOnOrder” property should be highlighted when the business rule we hit was violated: Our Html.ValidationMessageFor() helper method knew to display the business rule error message (next to the UnitsOnOrder edit box) because of the above property name hint we supplied: Keeping things DRY ASP.NET MVC and EF Code First enables you to keep your validation and business rules in one place (within your model layer), and avoid having it creep into your Controllers and Views.  Keeping the validation logic in the model layer helps ensure that you do not duplicate validation/business logic as you add more Controllers and Views to your application.  It allows you to quickly change your business rules/validation logic in one single place (within your model layer) – and have all controllers/views across your application immediately reflect it.  This help keep your application code clean and easily maintainable, and makes it much easier to evolve and update your application in the future. Summary EF Code First (starting with CTP5) now has built-in support for both DataAnnotations and the IValidatableObject interface.  This allows you to easily add validation and business rules to your models, and have EF automatically ensure that they are enforced anytime someone tries to persist changes of them to a database.  ASP.NET MVC 3 also now supports both DataAnnotations and IValidatableObject as well, which makes it even easier to use them with your EF Code First model layer – and then have the controllers/views within your web layer automatically honor and support them as well.  This makes it easy to build clean and highly maintainable applications. You don’t have to use DataAnnotations or IValidatableObject to perform your validation/business logic.  You can always roll your own custom validation architecture and/or use other more advanced validation frameworks/patterns if you want.  But for a lot of applications this built-in support will probably be sufficient – and provide a highly productive way to build solutions. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Code Contracts: Hiding ContractException

    - by DigiMortal
    It’s time to move on and improve my randomizer I wrote for an example of static checking of code contracts. In this posting I will modify contracts and give some explanations about pre-conditions and post-conditions. Also I will show you how to avoid ContractExceptions and how to replace them with your own exceptions. As a first thing let’s take a look at my randomizer. public class Randomizer {     public static int GetRandomFromRange(int min, int max)     {         var rnd = new Random();         return rnd.Next(min, max);     }       public static int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires(min < max, "Min must be less than max");           var rnd = new Random();         return rnd.Next(min, max);     } } We have some problems here. We need contract for method output and we also need some better exception handling mechanism. As ContractException as type is hidden from us we have to switch from ContractException to some other Exception type that we can catch. Adding post-condition Pre-conditions are contracts for method’s input interface. Read it as follows: pre-conditions make sure that all conditions for method’s successful run are met. Post-conditions are contracts for output interface of method. So, post-conditions are for output arguments and return value. My code misses the post-condition that checks return value. Return value in this case must be greater or equal to minimum value and less or equal to maximum value. To make sure that method can run only the correct value I added call to Contract.Ensures() method. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires(min < max, "Min must be less than max");       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );       var rnd = new Random();     return rnd.Next(min, max); } I think that the line I added does not need any further comments. Avoiding ContractException for input interface ContractException lives in hidden namespace and we cannot see it at design time. But it is common exception type for all contract exceptions that we do not switch over to some other type. The case of Contract.Requires() method is simple: we can tell it what kind of exception we need if something goes wrong with contract it ensures. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires<ArgumentOutOfRangeException>(         min < max,         "Min must be less than max"     );       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );       var rnd = new Random();     return rnd.Next(min, max); } Now, if we violate the input interface contract giving min value that is not less than max value we get ArgumentOutOfRangeException. Avoiding ContractException for output interface Output interface is more complex to control. We cannot give exception type there and hope that this type of exception will be thrown if something goes wrong. Instead we have to use delegate that gathers information about problem and throws the exception we expect to be thrown. From documentation you can find the following example about the delegate I mentioned. Contract.ContractFailed += (sender, e) => {     e.SetHandled();     e.SetUnwind(); // cause code to abort after event     Assert.Fail(e.FailureKind.ToString() + ":" + e.DebugMessage); }; We can use this delegate to throw the Exception. Let’s move the code to separate method too. Here is our method that uses now ContractException hiding. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires(min < max, "Min must be less than max");       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );     Contract.ContractFailed += Contract_ContractFailed;       var rnd = new Random();     return rnd.Next(min, max)+1000; } And here is the delegate that creates exception. public static void Contract_ContractFailed(object sender,     ContractFailedEventArgs e) {     e.SetHandled();     e.SetUnwind();       throw new Exception(e.FailureKind.ToString() + ":" + e.Message); } Basically we can do in this delegate whatever we like to do with output interface errors. We can even introduce our own contract exception type. As you can see later then ContractFailed event is very useful at unit testing.

    Read the article

  • Building extensions for Expression Blend 4 using MEF

    - by Timmy Kokke
    Introduction Although it was possible to write extensions for Expression Blend and Expression Design, it wasn’t very easy and out of the box only one addin could be used. With Expression Blend 4 it is possible to write extensions using MEF, the Managed Extensibility Framework. Until today there’s no documentation on how to build these extensions, so look thru the code with Reflector is something you’ll have to do very often. Because Blend and Design are build using WPF searching the visual tree with Snoop and Mole belong to the tools you’ll be using a lot exploring the possibilities.  Configuring the extension project Extensions are regular .NET class libraries. To create one, load up Visual Studio 2010 and start a new project. Because Blend is build using WPF, choose a WPF User Control Library from the Windows section and give it a name and location. I named mine DemoExtension1. Because Blend looks for addins named *.extension.dll  you’ll have to tell Visual Studio to use that in the Assembly Name. To change the Assembly Name right click your project and go to Properties. On the Application tab, add .Extension to name already in the Assembly name text field. To be able to debug this extension, I prefer to set the output path on the Build tab to the extensions folder of Expression Blend. This means that everything that used to go into the Debug folder is placed in the extensions folder. Including all referenced assemblies that have the copy local property set to false. One last setting. To be able to debug your extension you could start Blend and attach the debugger by hand. I like it to be able to just hit F5. Go to the Debug tab and add the the full path to Blend.exe in the Start external program text field. Extension Class Add a new class to the project.  This class needs to be inherited from the IPackage interface. The IPackage interface can be found in the Microsoft.Expression.Extensibility namespace. To get access to this namespace add Microsoft.Expression.Extensibility.dll to your references. This file can be found in the same folder as the (Expression Blend 4 Beta) Blend.exe file. Make sure the Copy Local property is set to false in this reference. After implementing the interface the class would look something like: using Microsoft.Expression.Extensibility; namespace DemoExtension1 { public class DemoExtension1:IPackage { public void Load(IServices services) { } public void Unload() { } } } These two methods are called when your addin is loaded and unloaded. The parameter passed to the Load method, IServices services, is your main entry point into Blend. The IServices interface exposes the GetService<T> method. You will be using this method a lot. Almost every part of Blend can be accessed thru a service. For example, you can use to get to the commanding services of Blend by calling GetService<ICommandService>() or to get to the Windowing services by calling GetService<IWindowService>(). To get Blend to load the extension we have to implement MEF. (You can get up to speed on MEF on the community site or read the blog of Mr. MEF, Glenn Block.)  In the case of Blend extensions, all that needs to be done is mark the class with an Export attribute and pass it the type of IPackage. The Export attribute can be found in the System.ComponentModel.Composition namespace which is part of the .NET 4 framework. You need to add this to your references. using System.ComponentModel.Composition; using Microsoft.Expression.Extensibility;   namespace DemoExtension1 { [Export(typeof(IPackage))] public class DemoExtension1:IPackage { Blend is able to find your addin now. Adding UI The addin doesn’t do very much at this point. The WPF User Control Library came with a UserControl so lets use that in this example. I just drop a Button and a TextBlock onto the surface of the control to have something to show in the demo. To get the UserControl to work in Blend it has to be registered with the WindowService.  Call GetService<IWindowService>() on the IServices interface to get access to the windowing services. The UserControl will be used in Blend on a Palette and has to be registered to enable it. This is done by calling the RegisterPalette on the IWindowService interface and passing it an identifier, an instance of the UserControl and a caption for the palette. public void Load(IServices services) { IWindowService windowService = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(); windowService.RegisterPalette("DemoExtension", uc, "Demo Extension"); } After hitting F5 to start debugging Expression Blend will start. You should be able to find the addin in the Window menu now. Activating this window will show the “Demo Extension” palette with the UserControl, style according to the settings of Blend. Now what? Because little is publicly known about how to access different parts of Blend adding breakpoints in Debug mode and browsing thru objects using the Quick Watch feature of Visual Studio is something you have to do very often. This demo extension can be used for that purpose very easily. Add the click event handler to the button on the UserControl. Change the contructor to take the IServices interface and store this in a field. Set a breakpoint in the Button_Click method. public partial class UserControl1 : UserControl { private readonly IServices _services;   public UserControl1(IServices services) { _services = services; InitializeComponent(); }   private void button1_Click(object sender, RoutedEventArgs e) { } } Change the call to the constructor in the load method and pass it the services property. public void Load(IServices services) { IWindowService service = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(services); service.RegisterPalette("DemoExtension", uc, "Demo Extension"); } Hit F5 to compile and start Blend. Got to the window menu and start show the addin. Click on  the button to hit the breakpoint. Now place the carrot text _services text in the code window and hit Shift+F9 to show the Quick Watch window. Now start exploring and discovering where to find everything you need.  More Information The are no official resources available yet. Microsoft has released one extension for expression Blend that is very useful as a reference, the Microsoft Expression Blend® Add-in Preview for Windows® Phone. This will install a .extension.dll file in the extension folder of Blend. You can load this file with Reflector and have a peek at how Microsoft is building his addins. Conclusion I hope this gives you something to get started building extensions for Expression Blend. Until Microsoft releases the final version, which hopefully includes more information about building extensions, we’ll have to work on documenting it in the community.

    Read the article

  • Dynamic Code for type casting Generic Types 'generically' in C#

    - by Rick Strahl
    C# is a strongly typed language and while that's a fundamental feature of the language there are more and more situations where dynamic types make a lot of sense. I've written quite a bit about how I use dynamic for creating new type extensions: Dynamic Types and DynamicObject References in C# Creating a dynamic, extensible C# Expando Object Creating a dynamic DataReader for dynamic Property Access Today I want to point out an example of a much simpler usage for dynamic that I use occasionally to get around potential static typing issues in C# code especially those concerning generic types. TypeCasting Generics Generic types have been around since .NET 2.0 I've run into a number of situations in the past - especially with generic types that don't implement specific interfaces that can be cast to - where I've been unable to properly cast an object when it's passed to a method or assigned to a property. Granted often this can be a sign of bad design, but in at least some situations the code that needs to be integrated is not under my control so I have to make due with what's available or the parent object is too complex or intermingled to be easily refactored to a new usage scenario. Here's an example that I ran into in my own RazorHosting library - so I have really no excuse, but I also don't see another clean way around it in this case. A Generic Example Imagine I've implemented a generic type like this: public class RazorEngine<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase, new() You can now happily instantiate new generic versions of this type with custom template bases or even a non-generic version which is implemented like this: public class RazorEngine : RazorEngine<RazorTemplateBase> { public RazorEngine() : base() { } } To instantiate one: var engine = new RazorEngine<MyCustomRazorTemplate>(); Now imagine that the template class receives a reference to the engine when it's instantiated. This code is fired as part of the Engine pipeline when it gets ready to execute the template. It instantiates the template and assigns itself to the template: var template = new TBaseTemplateType() { Engine = this } The problem here is that possibly many variations of RazorEngine<T> can be passed. I can have RazorTemplateBase, RazorFolderHostTemplateBase, CustomRazorTemplateBase etc. as generic parameters and the Engine property has to reflect that somehow. So, how would I cast that? My first inclination was to use an interface on the engine class and then cast to the interface.  Generally that works, but unfortunately here the engine class is generic and has a few members that require the template type in the member signatures. So while I certainly can implement an interface: public interface IRazorEngine<TBaseTemplateType> it doesn't really help for passing this generically templated object to the template class - I still can't cast it if multiple differently typed versions of the generic type could be passed. I have the exact same issue in that I can't specify a 'generic' generic parameter, since there's no underlying base type that's common. In light of this I decided on using object and the following syntax for the property (and the same would be true for a method parameter): public class RazorTemplateBase :MarshalByRefObject,IDisposable { public object Engine {get;set; } } Now because the Engine property is a non-typed object, when I need to do something with this value, I still have no way to cast it explicitly. What I really would need is: public RazorEngine<> Engine { get; set; } but that's not possible. Dynamic to the Rescue Luckily with the dynamic type this sort of thing can be mitigated fairly easily. For example here's a method that uses the Engine property and uses the well known class interface by simply casting the plain object reference to dynamic and then firing away on the properties and methods of the base template class that are common to all templates:/// <summary> /// Allows rendering a dynamic template from a string template /// passing in a model. This is like rendering a partial /// but providing the input as a /// </summary> public virtual string RenderTemplate(string template,object model) { if (template == null) return string.Empty; // if there's no template markup if(!template.Contains("@")) return template; // use dynamic to get around generic type casting dynamic engine = Engine; string result = engine.RenderTemplate(template, model); if (result == null) throw new ApplicationException("RenderTemplate failed: " + engine.ErrorMessage); return result; } Prior to .NET 4.0  I would have had to use Reflection for this sort of thing which would have a been a heck of a lot more verbose, but dynamic makes this so much easier and cleaner and in this case at least the overhead is negliable since it's a single dynamic operation on an otherwise very complex operation call. Dynamic as  a Bailout Sometimes this sort of thing often reeks of a design flaw, and I agree that in hindsight this could have been designed differently. But as is often the case this particular scenario wasn't planned for originally and removing the generic signatures from the base type would break a ton of other code in the framework. Given the existing fairly complex engine design, refactoring an interface to remove generic types just to make this particular code work would have been overkill. Instead dynamic provides a nice and simple and relatively clean solution. Now if there were many other places where this occurs I would probably consider reworking the code to make this cleaner but given this isolated instance and relatively low profile operation use of dynamic seems a valid choice for me. This solution really works anywhere where you might end up with an inheritance structure that doesn't have a common base or interface that is sufficient. In the example above I know what I'm getting but there's no common base type that I can cast to. All that said, it's a good idea to think about use of dynamic before you rush in. In many situations there are alternatives that can still work with static typing. Dynamic definitely has some overhead compared to direct static access of objects, so if possible we should definitely stick to static typing. In the example above the application already uses dynamics extensively for dynamic page page templating and passing models around so introducing dynamics here has very little additional overhead. The operation itself also fires of a fairly resource heavy operation where the overhead of a couple of dynamic member accesses are not a performance issue. So, what's your experience with dynamic as a bailout mechanism? © Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Secure Your Wireless Router: 8 Things You Can Do Right Now

    - by Chris Hoffman
    A security researcher recently discovered a backdoor in many D-Link routers, allowing anyone to access the router without knowing the username or password. This isn’t the first router security issue and won’t be the last. To protect yourself, you should ensure that your router is configured securely. This is about more than just enabling Wi-Fi encryption and not hosting an open Wi-Fi network. Disable Remote Access Routers offer a web interface, allowing you to configure them through a browser. The router runs a web server and makes this web page available when you’re on the router’s local network. However, most routers offer a “remote access” feature that allows you to access this web interface from anywhere in the world. Even if you set a username and password, if you have a D-Link router affected by this vulnerability, anyone would be able to log in without any credentials. If you have remote access disabled, you’d be safe from people remotely accessing your router and tampering with it. To do this, open your router’s web interface and look for the “Remote Access,” “Remote Administration,” or “Remote Management” feature. Ensure it’s disabled — it should be disabled by default on most routers, but it’s good to check. Update the Firmware Like our operating systems, web browsers, and every other piece of software we use, router software isn’t perfect. The router’s firmware — essentially the software running on the router — may have security flaws. Router manufacturers may release firmware updates that fix such security holes, although they quickly discontinue support for most routers and move on to the next models. Unfortunately, most routers don’t have an auto-update feature like Windows and our web browsers do — you have to check your router manufacturer’s website for a firmware update and install it manually via the router’s web interface. Check to be sure your router has the latest available firmware installed. Change Default Login Credentials Many routers have default login credentials that are fairly obvious, such as the password “admin”. If someone gained access to your router’s web interface through some sort of vulnerability or just by logging onto your Wi-Fi network, it would be easy to log in and tamper with the router’s settings. To avoid this, change the router’s password to a non-default password that an attacker couldn’t easily guess. Some routers even allow you to change the username you use to log into your router. Lock Down Wi-Fi Access If someone gains access to your Wi-Fi network, they could attempt to tamper with your router — or just do other bad things like snoop on your local file shares or use your connection to downloaded copyrighted content and get you in trouble. Running an open Wi-Fi network can be dangerous. To prevent this, ensure your router’s Wi-Fi is secure. This is pretty simple: Set it to use WPA2 encryption and use a reasonably secure passphrase. Don’t use the weaker WEP encryption or set an obvious passphrase like “password”. Disable UPnP A variety of UPnP flaws have been found in consumer routers. Tens of millions of consumer routers respond to UPnP requests from the Internet, allowing attackers on the Internet to remotely configure your router. Flash applets in your browser could use UPnP to open ports, making your computer more vulnerable. UPnP is fairly insecure for a variety of reasons. To avoid UPnP-based problems, disable UPnP on your router via its web interface. If you use software that needs ports forwarded — such as a BitTorrent client, game server, or communications program — you’ll have to forward ports on your router without relying on UPnP. Log Out of the Router’s Web Interface When You’re Done Configuring It Cross site scripting (XSS) flaws have been found in some routers. A router with such an XSS flaw could be controlled by a malicious web page, allowing the web page to configure settings while you’re logged in. If your router is using its default username and password, it would be easy for the malicious web page to gain access. Even if you changed your router’s password, it would be theoretically possible for a website to use your logged-in session to access your router and modify its settings. To prevent this, just log out of your router when you’re done configuring it — if you can’t do that, you may want to clear your browser cookies. This isn’t something to be too paranoid about, but logging out of your router when you’re done using it is a quick and easy thing to do. Change the Router’s Local IP Address If you’re really paranoid, you may be able to change your router’s local IP address. For example, if its default address is 192.168.0.1, you could change it to 192.168.0.150. If the router itself were vulnerable and some sort of malicious script in your web browser attempted to exploit a cross site scripting vulnerability, accessing known-vulnerable routers at their local IP address and tampering with them, the attack would fail. This step isn’t completely necessary, especially since it wouldn’t protect against local attackers — if someone were on your network or software was running on your PC, they’d be able to determine your router’s IP address and connect to it. Install Third-Party Firmwares If you’re really worried about security, you could also install a third-party firmware such as DD-WRT or OpenWRT. You won’t find obscure back doors added by the router’s manufacturer in these alternative firmwares. Consumer routers are shaping up to be a perfect storm of security problems — they’re not automatically updated with new security patches, they’re connected directly to the Internet, manufacturers quickly stop supporting them, and many consumer routers seem to be full of bad code that leads to UPnP exploits and easy-to-exploit backdoors. It’s smart to take some basic precautions. Image Credit: Nuscreen on Flickr     

    Read the article

  • Trying to find USB device on iphone with IOKit.framework

    - by HuGeek
    Hi all, i'm working on a project were i need the usb port to communicate with a external device. I have been looking for exemple on the net (Apple and /developer/IOKit/usb exemple) and trying some other but i can't even find the device. In my code i blocking at the place where the fucntion looks for a next iterator (pointer in fact) with the function getNextIterator but never returns a good value so the code is blocking. By the way i am using toolchain and added IOKit.framework in my project. All i what right now is the communicate or do like a ping to someone on the USB bus!! I blocking in the 'FindDevice'....i can't manage to enter in the while because the variable usbDevice is always = to 0....i have tested my code in a small mac program and it works... Thanks Here is my code : IOReturn ConfigureDevice(IOUSBDeviceInterface **dev) { UInt8 numConfig; IOReturn result; IOUSBConfigurationDescriptorPtr configDesc; //Get the number of configurations result = (*dev)->GetNumberOfConfigurations(dev, &numConfig); if (!numConfig) { return -1; } // Get the configuration descriptor result = (*dev)->GetConfigurationDescriptorPtr(dev, 0, &configDesc); if (result) { NSLog(@"Couldn't get configuration descriptior for index %d (err=%08x)\n", 0, result); return -1; } ifdef OSX_DEBUG NSLog(@"Number of Configurations: %d\n", numConfig); endif // Configure the device result = (*dev)->SetConfiguration(dev, configDesc->bConfigurationValue); if (result) { NSLog(@"Unable to set configuration to value %d (err=%08x)\n", 0, result); return -1; } return kIOReturnSuccess; } IOReturn FindInterfaces(IOUSBDeviceInterface *dev, IOUSBInterfaceInterface **itf) { IOReturn kr; IOUSBFindInterfaceRequest request; io_iterator_t iterator; io_service_t usbInterface; IOUSBInterfaceInterface **intf = NULL; IOCFPlugInInterface **plugInInterface = NULL; HRESULT res; SInt32 score; UInt8 intfClass; UInt8 intfSubClass; UInt8 intfNumEndpoints; int pipeRef; CFRunLoopSourceRef runLoopSource; NSLog(@"Debut FindInterfaces \n"); request.bInterfaceClass = kIOUSBFindInterfaceDontCare; request.bInterfaceSubClass = kIOUSBFindInterfaceDontCare; request.bInterfaceProtocol = kIOUSBFindInterfaceDontCare; request.bAlternateSetting = kIOUSBFindInterfaceDontCare; kr = (*dev)->CreateInterfaceIterator(dev, &request, &iterator); usbInterface = IOIteratorNext(iterator); IOObjectRelease(iterator); NSLog(@"Interface found.\n"); kr = IOCreatePlugInInterfaceForService(usbInterface, kIOUSBInterfaceUserClientTypeID, kIOCFPlugInInterfaceID, &plugInInterface, &score); kr = IOObjectRelease(usbInterface); // done with the usbInterface object now that I have the plugin if ((kIOReturnSuccess != kr) || !plugInInterface) { NSLog(@"unable to create a plugin (%08x)\n", kr); return -1; } // I have the interface plugin. I need the interface interface res = (*plugInInterface)->QueryInterface(plugInInterface, CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID), (LPVOID*) &intf); (*plugInInterface)->Release(plugInInterface); // done with this if (res || !intf) { NSLog(@"couldn't create an IOUSBInterfaceInterface (%08x)\n", (int) res); return -1; } // Now open the interface. This will cause the pipes to be instantiated that are // associated with the endpoints defined in the interface descriptor. kr = (*intf)->USBInterfaceOpen(intf); if (kIOReturnSuccess != kr) { NSLog(@"unable to open interface (%08x)\n", kr); (void) (*intf)->Release(intf); return -1; } kr = (*intf)->CreateInterfaceAsyncEventSource(intf, &runLoopSource); if (kIOReturnSuccess != kr) { NSLog(@"unable to create async event source (%08x)\n", kr); (void) (*intf)->USBInterfaceClose(intf); (void) (*intf)->Release(intf); return -1; } CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode); if (!intf) { NSLog(@"Interface is NULL!\n"); } else { *itf = intf; } NSLog(@"End of FindInterface \n \n"); return kr; } unsigned int FindDevice(void *refCon, io_iterator_t iterator) { kern_return_t kr; io_service_t usbDevice; IOCFPlugInInterface **plugInInterface = NULL; HRESULT result; SInt32 score; UInt16 vendor; UInt16 product; UInt16 release; unsigned int count = 0; NSLog(@"Searching Device....\n"); while (usbDevice = IOIteratorNext(iterator)) { // create intermediate plug-in NSLog(@"Found a device!\n"); kr = IOCreatePlugInInterfaceForService(usbDevice, kIOUSBDeviceUserClientTypeID, kIOCFPlugInInterfaceID, &plugInInterface, &score); kr = IOObjectRelease(usbDevice); if ((kIOReturnSuccess != kr) || !plugInInterface) { NSLog(@"Unable to create a plug-in (%08x)\n", kr); continue; } // Now create the device interface result = (*plugInInterface)->QueryInterface(plugInInterface, CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID), (LPVOID)&dev); // Don't need intermediate Plug-In Interface (*plugInInterface)->Release(plugInInterface); if (result || !dev) { NSLog(@"Couldn't create a device interface (%08x)\n", (int)result); continue; } // check these values for confirmation kr = (*dev)->GetDeviceVendor(dev, &vendor); kr = (*dev)->GetDeviceProduct(dev, &product); //kr = (*dev)->GetDeviceReleaseNumber(dev, &release); //if ((vendor != LegoUSBVendorID) || (product != LegoUSBProductID) || (release != LegoUSBRelease)) { if ((vendor != LegoUSBVendorID) || (product != LegoUSBProductID)) { NSLog(@"Found unwanted device (vendor = %d != %d, product = %d != %d, release = %d)\n", vendor, kUSBVendorID, product, LegoUSBProductID, release); (void) (*dev)-Release(dev); continue; } // Open the device to change its state kr = (*dev)->USBDeviceOpen(dev); if (kr == kIOReturnSuccess) { count++; } else { NSLog(@"Unable to open device: %08x\n", kr); (void) (*dev)->Release(dev); continue; } // Configure device kr = ConfigureDevice(dev); if (kr != kIOReturnSuccess) { NSLog(@"Unable to configure device: %08x\n", kr); (void) (*dev)->USBDeviceClose(dev); (void) (*dev)->Release(dev); continue; } break; } return count; } // USB rcx Init IOUSBInterfaceInterface** osx_usb_rcx_init (void) { CFMutableDictionaryRef matchingDict; kern_return_t result; IOUSBInterfaceInterface **intf = NULL; unsigned int device_count = 0; // Create master handler result = IOMasterPort(MACH_PORT_NULL, &gMasterPort); if (result || !gMasterPort) { NSLog(@"ERR: Couldn't create master I/O Kit port(%08x)\n", result); return NULL; } else { NSLog(@"Created Master Port.\n"); NSLog(@"Master port 0x:08X \n \n", gMasterPort); } // Set up the matching dictionary for class IOUSBDevice and its subclasses matchingDict = IOServiceMatching(kIOUSBDeviceClassName); if (!matchingDict) { NSLog(@"Couldn't create a USB matching dictionary \n"); mach_port_deallocate(mach_task_self(), gMasterPort); return NULL; } else { NSLog(@"USB matching dictionary : %08X \n", matchingDict); } CFDictionarySetValue(matchingDict, CFSTR(kUSBVendorID), CFNumberCreate(kCFAllocatorDefault, kCFNumberShortType, &LegoUSBVendorID)); CFDictionarySetValue(matchingDict, CFSTR(kUSBProductID), CFNumberCreate(kCFAllocatorDefault, kCFNumberShortType, &LegoUSBProductID)); result = IOServiceGetMatchingServices(gMasterPort, matchingDict, &gRawAddedIter); matchingDict = 0; // this was consumed by the above call // Iterate over matching devices to access already present devices NSLog(@"RawAddedIter : 0x:%08X \n", &gRawAddedIter); device_count = FindDevice(NULL, gRawAddedIter); if (device_count == 1) { result = FindInterfaces(dev, &intf); if (kIOReturnSuccess != result) { NSLog(@"unable to find interfaces on device: %08x\n", result); (*dev)-USBDeviceClose(dev); (*dev)-Release(dev); return NULL; } // osx_usb_rcx_wakeup(intf); return intf; } else if (device_count 1) { NSLog(@"too many matching devices (%d) !\n", device_count); } else { NSLog(@"no matching devices found\n"); } return NULL; } int main(int argc, char *argv[]) { int returnCode; NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; NSLog(@"Debut du programme \n \n"); osx_usb_rcx_init(); NSLog(@"Fin du programme \n \n"); return 0; // returnCode = UIApplicationMain(argc, argv, @"Untitled1App", @"Untitled1App"); // [pool release]; // return returnCode; }

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Updating the managed debugging API for .NET v4

    - by Brian Donahue
    In any successful investigation, the right tools play a big part in collecting evidence about the state of the "crime scene" as it was before the detectives arrived. Unfortunately for the Crash Scene Investigator, we don't have the budget to fly out to the customer's site, chalk the outline, and eat their doughnuts. We have to rely on the end-user to collect the evidence for us, which means giving them the fingerprint dust and the evidence baggies and leaving them to it. With that in mind, the Red Gate support team have been writing tools that can collect vital clues with a minimum of fuss. Years ago we would have asked for a memory dump, where we used to get the customer to run CDB.exe and produce dumps that we could analyze in-house, but those dumps were pretty unwieldy (500MB files) and the debugger often didn't dump exactly where we wanted, or made five or more dumps. What we wanted was just the minimum state information from the program at the time of failure, so we produced a managed debugger that captured every first and second-chance exception and logged the stack and a minimal amount of variables from the memory of the application, which could all be exported as XML. This caused less inconvenience to the end-user because it is much easier to send a 65KB XML file in an email than a 500MB file containing all of the application's memory. We don't need to have the entire victim shipped out to us when we just want to know what was under the fingernails. The thing that made creating a managed debugging tool possible was the MDbg Engine example written by Microsoft as part of the Debugging Tools for Windows distribution. Since the ICorDebug interface is a bit difficult to understand, they had kindly created some wrappers that provided an event-driven debugging model that was perfect for our needs, but .NET 4 applications under debugging started complaining that "The debugger's protocol is incompatible with the debuggee". The introduction of .NET Framework v4 had changed the managed debugging API significantly, however, without an update for the MDbg Engine code! After a few hours of research, I had finally worked out that most of the version 4 ICorDebug interface still works much the same way in "legacy" v2 mode and there was a relatively easy fix for the problem in that you can still get a reference to legacy ICorDebug by changing the way the interface is created. In .NET v2, the interface was acquired using the CreateDebuggingInterfaceFromVersion method in mscoree.dll. In v4, you must first create IClrMetaHost, enumerate the runtimes, get an ICLRRuntimeInfo interface to the .NET 4 runtime from that, and use the GetInterface method in mscoree.dll to return a "legacy" ICorDebug interface. The rest of the MDbg Engine will continue working the old way. Here is how I had changed the MDbg Engine code to support .NET v4: private void InitFromVersion(string debuggerVersion){if( debuggerVersion.StartsWith("v1") ){throw new ArgumentException( "Can't debug a version 1 CLR process (\"" + debuggerVersion + "\"). Run application in a version 2 CLR, or use a version 1 debugger instead." );} ICorDebug rawDebuggingAPI=null;if (debuggerVersion.StartsWith("v4")){Guid CLSID_MetaHost = new Guid("9280188D-0E8E-4867-B30C-7FA83884E8DE"); Guid IID_MetaHost = new Guid("D332DB9E-B9B3-4125-8207-A14884F53216"); ICLRMetaHost metahost = (ICLRMetaHost)NativeMethods.ClrCreateInterface(CLSID_MetaHost, IID_MetaHost); IEnumUnknown runtimes = metahost.EnumerateInstalledRuntimes(); ICLRRuntimeInfo runtime = GetRuntime(runtimes, debuggerVersion); //Defined in metahost.hGuid CLSID_CLRDebuggingLegacy = new Guid(0xDF8395B5, 0xA4BA, 0x450b, 0xA7, 0x7C, 0xA9, 0xA4, 0x77, 0x62, 0xC5, 0x20);Guid IID_ICorDebug = new Guid("3D6F5F61-7538-11D3-8D5B-00104B35E7EF"); Object res;runtime.GetInterface(ref CLSID_CLRDebuggingLegacy, ref IID_ICorDebug, out res); rawDebuggingAPI = (ICorDebug)res; }elserawDebuggingAPI = NativeMethods.CreateDebuggingInterfaceFromVersion((int)CorDebuggerVersion.Whidbey,debuggerVersion);if (rawDebuggingAPI != null)InitFromICorDebug(rawDebuggingAPI);elsethrow new ArgumentException("Support for debugging version " + debuggerVersion + " is not yet implemented");} The changes above will ensure that the debugger can support .NET Framework v2 and v4 applications with the same codebase, but we do compile two different applications: one targeting v2 and the other v4. As a footnote I need to add that some missing native methods and wrappers, along with the EnumerateRuntimes method code, came from the Mindbg project on Codeplex. Another change is that when using the MDbgEngine.CreateProcess to launch a process in the debugger, do not supply a null as the final argument. This does not work any more because GetCORVersion always returns "v2.0.50727" as the function has been deprecated in .NET v4. What's worse is that on a system with only .NET 4, the user will be prompted to download and install .NET v2! Not nice! This works much better: proc = m_Debugger.CreateProcess(ProcessName, ProcessArgs, DebugModeFlag.Default,String.Format("v{0}.{1}.{2}",System.Environment.Version.Major,System.Environment.Version.Minor,System.Environment.Version.Build)); Microsoft "unofficially" plan on updating the MDbg samples soon, but if you have an MDbg-based application, you can get it working right now by changing one method a bit and adding a few new interfaces (ICLRMetaHost, IEnumUnknown, and ICLRRuntimeInfo). The new, non-legacy implementation of MDbg Engine will add new, interesting features like dump-file support and by association I assume garbage-collection/managed object stats, so it will be well worth looking into if you want to extend the functionality of a managed debugger going forward.

    Read the article

  • How to use TCP/IP Nagle algorithm at Apple Push Notification

    - by Mahbubur R Aaman
    From Apple's Developer Library The binary interface employs a plain TCP socket for binary content that is streaming in nature. For optimum performance, you should batch multiple notifications in a single transmission over the interface, either explicitly or using a TCP/IP Nagle algorithm. How to use TCP/IP Nagle algorithm in case Apple's Push Notification? How to batch multiple notification in a single transmission over the interface? Additional # In Apple's Push Notification Urban Airship is a familiar name to send large amount of push notification within several minutes. Does they use TCP/IP Nagle algorithm?

    Read the article

  • MVVM Light V4 preview 2 (BL0015) #mvvmlight

    - by Laurent Bugnion
    Over the past few weeks, I have worked hard on a few new features for MVVM Light V4. Here is a second early preview (consider this pre-alpha if you wish). The features are unit-tested, but I am now looking for feedback and there might be bugs! Bug correction: Messenger.CleanupList is now thread safe This was an annoying bug that is now corrected: In some circumstances, an exception could be thrown when the Messenger’s recipients list was cleaned up (i.e. the “dead” instances were removed). The method is called now and then and the exception was thrown apparently at random. In fact it was really a multi-threading issue, which is now corrected. Bug correction: AllowPartiallyTrustedCallers prevents EventToCommand to work This is a particularly annoying regression bug that was introduced in BL0014. In order to allow MVVM Light to work in XBAPs too, I added the AllowPartiallyTrustedCallers attribute to the assemblies. However, we just found out that this causes issues when using EventToCommand. In order to allow EventToCommand to continue working, I reverted to the previous state by removing the AllowPartiallyTrustedCallers attribute for now. I will work with my friends at Microsoft to try and find a solution. Stay tuned. Bug correction: XML documentation file is now generated in Release configuration The XML documentation file was not generated for the Release configuration. This was a simple flag in the project file that I had forgotten to set. This is corrected now. Applying EventToCommand to non-FrameworkElements This feature has been requested in order to be able to execute a command when a Storyboard is completed. I implemented this, but unfortunately found out that EventToCommand can only be added to Storyboards in Silverlight 3 and Silverlight 4, but not in WPF or in Windows Phone 7. This obviously limits the usefulness of this change, but I decided to publish it anyway, because it is pretty damn useful in Silverlight… Why not in WPF? In WPF, Storyboards added to a resource dictionary are frozen. This is a feature of WPF which allows to optimize certain objects for performance: By freezing them, it is a contract where we say “this object will not be modified anymore, so do your perf optimization on them without worrying too much”. Unfortunately, adding a Trigger (such as EventTrigger) to an object in resources does not work if this object is frozen… and unfortunately, there is no way to tell WPF not to freeze the Storyboard in the resources… so there is no way around that (at least none I can see. In Silverlight, objects are not frozen, so an EventTrigger can be added without problems. Why not in WP7? In Windows Phone 7, there is a totally different issue: Adding a Trigger can only be done to a FrameworkElement, which Storyboard is not. Here I think that we might see a change in a future version of the framework, so maybe this small trick will work in the future. Workaround? Since you cannot use the EventToCommand on a Storyboard in WPF and in WP7, the workaround is pretty obvious: Handle the Completed event in the code behind, and call the Command from there on the ViewModel. This object can be obtained by casting the DataContext to the ViewModel type. This means that the View needs to know about the ViewModel, but I never had issues with that anyway. New class: NotifyPropertyChanged Sometimes when you implement a model object (for example Customer), you would like to have it implement INotifyPropertyChanged, but without having all the frills of a ViewModelBase. A new class named NotifyPropertyChanged allows you to do that. This class is a simple implementation of INotifyPropertyChaned (with all the overloads of RaisePropertyChanged that were implemented in BL0014). In fact, ViewModelBase inherits NotifyPropertyChanged. ViewModelBase does not implement IDisposable anymore The IDisposable interface and the Dispose method had been marked obsolete in the ViewModelBase class already in V3. Now they have been removed. Note: By this, I do not mean that IDisposable is a bad interface, or that it shouldn’t be used on viewmodels. In the contrary, I know that this interface is very useful in certain circumstances. However, I think that having it by default on every instance of ViewModelBase was sending a wrong message. This interface has a strong meaning in .NET: After Dispose has been executed, the instance should not be used anymore, and should be ready for garbage collection. What I really wanted to have on ViewModelBase was rather a simple cleanup method, something that can be executed now and then during runtime. This is fulfilled by the ICleanup interface and its Cleanup method. If your ViewModels need IDisposable, you can still use it! You will just have to implement the interface on the class itself, because it is not available on ViewModelBase anymore. What’s next? I have a couple exciting new features implemented already but that need more testing before they go live… Just stay tuned and by MIX11 (12-14 April 2011), we should see at least a major addition to MVVM Light Toolkit, as well as another smaller feature which is pretty cool nonetheless More about this later! Happy Coding Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Script to setup Ubuntu as a wireless access point on a bridge mode

    - by nixnotwin
    I use the following script to make my netbook a full-fledged wireless access point. It creates a bridge with eth0 and wlan0 and starts hostapd. #!/bin/bash service network-manager stop ifconfig eth0 0.0.0.0 #remove IP from eth0 ifconfig eth0 up #ensure the interface is up ifconfig wlan0 0.0.0.0 #remove IP from eth1 ifconfig wlan0 up #ensure the interface is up brctl addbr br0 #create br0 node hostapd -d /etc/hostapd/hostapd.conf > /var/log/hostapd.log & sleep 5 brctl addif br0 eth0 #add eth0 to bridge br0 brctl addif br0 wlan0 #add wlan0 to bridge br0 ifconfig br0 192.168.1.15 netmask 255.255.255.0 #ip for bridge ifconfig br0 up #bring up interface route add default gw 192.168.1.1 # gateway This script works efficiently. But if I want to revert back to use Network Manager, I cannot do it. The bridge simply cannot be deleted. How can I modify this script so that if I run bridge_script --stop, the bridge gets deleted, network manager starts and interfaces behave as if the machine had a fresh reboot.

    Read the article

  • Upcoming Webcast: Basic Troubleshooting Information For Stuck Sales Order Issues

    - by Oracle_EBS
    ADVISOR WEBCAST: Basic Troubleshooting Information For Stuck Sales Order IssuesPRODUCT FAMILY: Logistics April 18, 2012 at 1 pm ET, 11 am MT, 10 am PT This one-hour session is recommended for technical and functional users who deal with stuck sales order issues in Inventory module.TOPICS WILL INCLUDE: General Overview about Open Transactions Interface How sales order records are interface to Oracle Inventory How to track sales order cycle flow once the records are interface into MTL_TRANSACTIONS_INTERFACE table How to troubleshoot sales order stuck in MTL_TRANSACTIONS_INTERFACE What to look for when reviewing screen shots and diagnostics A short, live demonstration (only if applicable) and question and answer period will be included. Oracle Advisor Webcasts are dedicated to building your awareness around our products and services. This session does not replace offerings from Oracle Global Support Services. Current Schedule can be found on Note 740966.1 Post Presentation Recordings can be found on Note 740964.1

    Read the article

  • Wifi hotspot to connect to Android using non-AP supported cards

    - by 3l4ng
    I'm running Ubuntu 13.10 64b on a Dell Inspiron N5010. My wireless device (found using lspci) is Broadcom Corporation BCM4313 802.11bgn Wireless Network Adapter (rev 01). I bought a new android phone and want to connect to Internet by using the laptop as a Wireless Access Point (ad-hoc doesn't work with Android). I tried following tutorials like the one at How to setup a wi-fi hotspot (access point mode)?. The relevant output from iw list was Supported interface modes: * IBSS * managed Running sudo hostapd /path/to/conf/file gave me (eth1 is the wireless, verified by iwconfig) Failed to create interface mon.eth1: -95 (Operation not supported) Could not set channel for kernel driver eth1: Unable to setup interface. Could not connect to kernel driver. I am able to use Connectify and Virtualrouter on Windows, and the phone works great. How do I get an access point running on Ubuntu? I'm open to other alternatives as well.

    Read the article

  • Can You Have "Empty" Abstract/Classes?

    - by ShrimpCrackers
    Of course you can, I'm just wondering if it's rational to design in such a way. I'm making a breakout clone and was doing some class design. I wanted to use inheritance, even though I don't have to, to apply what I've learned in C++. I was thinking about class design and came up with something like this: GameObject - base class (consists of data members like x and y offsets, and a vector of SDL_Surface* MovableObject : GameObject - abstract class + derived class of GameObject (one method void move() = 0; ) NonMovableObject : GameObject - empty class...no methods or data members other than constructor and destructor(at least for now?). Later I was planning to derive a class from NonMovableObject, like Tileset : NonMovableObject. I was just wondering if "empty" abstract classes or just empty classes are often used...I notice that the way I'm doing this, I'm just creating the class NonMovableObject just for sake of categorization. I know I'm overthinking things just to make a breakout clone, but my focus is less on the game and more on using inheritance and designing some sort of game framework.

    Read the article

  • Getting overwhelmed after starting a new project

    - by Kian Mayne
    I started a project (a Windows based timetable program that helps you stay organised with your subjects and assignments). The problem is that I'm not sure how I should manage this project and what order to build things. I.e. Should I build all the different interface elements then write the code or should I make an interface, code it, make another interface then code that? So my question is; how do I split up this longish project into small, ordered pieces to complete; and how should I order this?

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >