Search Results

Search found 16331 results on 654 pages for 'option'.

Page 141/654 | < Previous Page | 137 138 139 140 141 142 143 144 145 146 147 148  | Next Page >

  • Cisco 678 Will Not Work using PPPoE - Possibly Because I Configured it Incorrectly..?

    - by Brian Stinar
    I am attempting to configure a Cisco 678 because I am totally sick on my Actiontec. However, I am running into some problems. It seems as though the Cisco is able to train the line, but I am unable to ping out. I am all right at programming, but still learning a lot when it comes to being a system administrator. I apologize in advance if I did something ridiculous, or am attempting to configure this device to do something it was not designed to do. It is almost like I am not correctly configuring the device to grab it's IP using PPPoA (like my Actiontec.) The output from "show running" (below) makes me think this too. Below are the commands I ran in order to configure this: # en # set nvram erase # write # reboot # en # set nat enable # set dhcp server enable # set PPP wan0-0 ipcp 0.0.0.0 # set ppp wan0-0 dns 0.0.0.0 # set PPP wan0-0 login xxxxx // My actual login # set PPP wan0-0 password yyyyy // My actual password # set PPP restart enabled # set int wan0-0 close # set int wan0-0 vpi 0 # set int wan0-0 vci 32 # set int wan0-0 open # write # reboot Here is the output from a few commands I thought could provide some useful information: cbos#ping 74.125.224.113 Sending 1 8 byte ping(s) to 74.125.224.113 every 2 second(s) Request timed out cbos#show version Cisco Broadband Operating System CBOS (tm) 678 Software (C678-I-M), Version v2.4.9 - Release Software Copyright (c) 1986-2001 by cisco Systems, Inc. Compiled Nov 17 2004 15:26:29 DMT FULL firmware version G96 NVRAM image at 0x1030f000 cbos#show errors - Current Error Messages - ## Ticks Module Level Message 0 000:00:00:00 PPP Info IPCP Open Event on wan0-0 1 000:00:00:14 ATM Info Wan0 Up 2 000:00:00:14 PPP Info PPP Up Event on wan0-0 3 000:00:01:54 PPP Info PPP Down Event on wan0-0 Total Number of Error Messages: 4 cbos#show interface wan0 wan0 ADSL Physical Port Line Trained Actual Configuration: Overhead Framing: 3 Trellis Coding: Enabled Standard Compliance: T1.413 Downstream Data Rate: 1184 Kbps Upstream Data Rate: 928 Kbps Interleave S Downstream: 4 Interleave D Downstream: 16 Interleave R Downstream: 16 Interleave S Upstream: 4 Interleave D Upstream: 8 Interleave R Upstream: 16 Modem Microcode: G96 DSP version: 0 Operating State: Showtime/Data Mode Configured: Echo Cancellation: Disabled Overhead Framing: 3 Coding Gain: Auto TX Power Attenuation: 0dB Trellis Coding: Enabled Bit Swapping: Disabled Standard Compliance: T1.413 Remote Standard Compliance: T1.413 Tx Start Bin: 0x6 Tx End Bin: 0x1f Data Interface: Utopia L1 Status: Local SNR Margin: 19.0dB Local Coding Gain: 7.5dB Local Transmit Power: 12.5dB Local Attenuation: 46.0dB Remote Attenuation: 31.0dB Local Counters: Interleaved RS Corrected Bytes: 0 Interleaved Symbols with CRC Errors: 2 No Cell Delineation Interleaved: 0 Out of Cell Delineation Interleaved: 0 Header Error Check Counter Interleaved: 0 Count of Severely Errored Frames: 0 Count of Loss of Signal Frames: 0 Remote Counters: Interleaved RS Corrected Bytes: 0 Interleaved Symbols with CRC Errors: 1 No Cell Delineation Interleaved: 0 Header Error Check Counter Interleaved: 0 Count of Severely Errored Frames: 0 Count of Loss of Signal Frames: 0 cbos#show int wan0-0 WAN0-0 ATM Logical Port PVC (VPI 0, VCI 32) is configured. ScalaRate set to Auto AAL 5 UBR Traffic IP Port Enabled cbos#show running Warning: traffic may pause while NVRAM is being accessed [[ CBOS = Section Start ]] NSOS MD5 Enable Password = XXXX NSOS MD5 Root Password = XXXX NSOS MD5 Commander Password = XXXX [[ PPP Device Driver = Section Start ]] PPP Port User Name = 00, "XXXX" PPP Port User Password = 00, XXXX PPP Port Option = 00, IPCP,IP Address,3,Auto,Negotiation Not Required,Negotiable ,IP,0.0.0.0 PPP Port Option = 00, IPCP,Primary DNS Server,129,Auto,Negotiation Not Required, Negotiable,IP,0.0.0.0 PPP Port Option = 00, IPCP,Secondary DNS Server,131,Auto,Negotiation Not Require d,Negotiable,IP,0.0.0.0 [[ ATM WAN Device Driver = Section Start ]] ATM WAN Virtual Connection Parms = 00, 0, 32, 0 [[ DHCP = Section Start ]] DHCP Server = enabled [[ IP Routing = Section Start ]] IP NAT = enabled [[ WEB = Section Start ]] WEB = enabled cbos# wtf...? Thank you all very much for taking the time to read this, and the help.

    Read the article

  • Forwarding rsyslog to syslog-ng, with FQDN and facility separation

    - by Joshua Miller
    I'm attempting to configure my rsyslog clients to forward messages to my syslog-ng log repository systems. Forwarding messages works "out of the box", but my clients are logging short names, not FQDNs. As a result the messages on the syslog repo use short names as well, which is a problem because one can't determine which system the message originated from easily. My clients get their names through DHCP / DNS. I've tried a number of solutions trying to get this working, but without success. I'm using rsyslog 4.6.2 and syslog-ng 3.2.5. I've tried setting $PreserveFQDN on as the first directive in /etc/rsyslog.conf (and restarting rsyslog of course). It seems to have no effect. hostname --fqdn on the client returns the proper FQDN, so the problem isn't whether the system can actually figure out its own FQDN. $LocalHostName <fqdn> looked promising, but this directive isn't available in my version of rsyslog (Available since 4.7.4+, 5.7.3+, 6.1.3+). Upgrading isn't an option at the moment. Configuring the syslog-ng server to populate names based on reverse lookups via DNS isn't an option. There are complexities with reverse DNS and the public cloud. Specifying for the forwarder to use a custom template seems like a viable option at first glance. I can specify the following, which causes local logging to begin using the FQDN on the syslog-ng repo. $template MyTemplate, "%timestamp% <FQDN> %syslogtag%%msg%" $ActionForwardDefaultTemplate MyTemplate However, when I put this in place syslog-ng seems to be unable to categorize messages by facility or priority. Messages come in as FQDN, but everything is put in to user.log. When I don't use the custom template, messages are properly categorized under facility and priority, but with the short name. So, in summary, if I manually trick rsyslog into including the FQDN, priority and facility becomes lost details to syslog-ng. How can I get rsyslog to do FQDN logging which works properly going to a syslog-ng repository? rsyslog client config: $ModLoad imuxsock.so # provides support for local system logging (e.g. via logger command) $ModLoad imklog.so # provides kernel logging support (previously done by rklogd) $ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat *.info;mail.none;authpriv.none;cron.none /var/log/messages authpriv.* /var/log/secure mail.* -/var/log/maillog cron.* /var/log/cron *.emerg * uucp,news.crit /var/log/spooler local7.* /var/log/boot.log $WorkDirectory /var/spool/rsyslog # where to place spool files $ActionQueueFileName fwdRule1 # unique name prefix for spool files $ActionQueueMaxDiskSpace 1g # 1gb space limit (use as much as possible) $ActionQueueSaveOnShutdown on # save messages to disk on shutdown $ActionQueueType LinkedList # run asynchronously $ActionResumeRetryCount -1 # infinite retries if host is down *.* @syslog-ng1.example.com *.* @syslog-ng2.example.com syslog-ng configuration (abridged for brevity): options { flush_lines (0); time_reopen (10); log_fifo_size (1000); long_hostnames (off); use_dns (no); use_fqdn (yes); create_dirs (no); keep_hostname (yes); }; source src { unix-stream("/dev/log"); internal(); udp(ip(0.0.0.0) port(514)); }; destination per_host_destination { file( "/var/log/syslog-ng/devices/$HOST/$FACILITY.log" owner("root") group("root") perm(0644) dir_owner(root) dir_group(root) dir_perm(0775) create_dirs(yes)); }; log { source(src); destination(per_facility_destination); };

    Read the article

  • Using different SSDs types (not only SATA based) as system drive

    - by Hubert Kario
    Currently I have a Thinkpad X61s and want to make it both a bit faster and a bit more power efficient. For that reason I thought that adding SSD drive would make most sense. Unfortunately, because of financial reasons, buying SSD of over 200GB capacity is out of reach for me (not only it would be worth more than the rest of the laptop, but also I currently have a 500GB drive in it, so even such a drive would be kind of a downgrade for me). During preliminary testing with a cheap Transcend 4GB Class 6 (14MiB/s streaming, 9MiB/s random read) card I experienced boot times to be reduced by half so putting the OS only on it would already would be an improvement. Unfortunately, my system now is about 11GiB in size so anything less than 16GB would be constraining. In this laptop I can connect additional drives on at least 5 different ways: using SATA-ATA converter caddy in the X6 Ultrabase using internal mini PCIe slot using integrated SDHC slot using CardBus (a.k.a PCMCIA or PC Card) slot using USB Thankfully, because I use only Linux on this PC the bootability of them is irrelevant as I can put the /boot partition on internal HDD and / on any of the above mentioned Flash memories (as I already did for the SDHC test). From what I was able to research and from my own experience those options come with rather big downsides or other problems: SATA-ATA caddy It has three downsides: I have to carry the Ultrabse with me at all times (it's not really inconvenient, but those grams do add) and couldn't disconnect it when I want to disconnect the battery It makes the bay unusable for the optical drive and occasional quick access to other hard drives the only caddies I could buy have rather flaky controllers in them so putting my OS on it would hamper its stability Internal mini PCIe slot This would be an ideal solution, if only I could find real PCIe SSDs, not only devices that could talk only SATA or ATA over PCIe mechanical connection (the ones used in Dell Mini or Asus EEE). Theoretically Samsung did release such devices but I couldn't find them in retail anywhere. Integrated SDHC slot It's a nice solution with a single drawback: the fastest 16GB SDHC card on the market can only do around 35MiB/s read and 15MiB/s write while still costing like a normal 40GB SATA SSD that's 10 times faster. Not really cost-effective. CardBus (a.k.a PCMCIA or PC Card) slot Those cards are much faster than the SDHC option (there are ones that can do well over 50MiB/s read in benchmarks) and from what I could find the PCMCIA controller in my laptop does support UDMA so it should be able to deliver comparable speeds. They still cost similarly to SD cards but at least they provide streaming performance comparable to my current HDD. USB That's the worst option. Not only is it limited to 20-30MiB/s by the interface itself the drive would stick out of the laptop so it's a big no no. The question As such I think that going the "CF in a CardBus adapter" route will be the best option. My question is: did anyone try using CF cards in CardBus adapters as system drives with Linux on Thinkpad laptops? Laptops in general? What was the real-world performance? I don't have any CF cards so I can't check how well does it work with suspend/resume, or whatever it's easy to make it work in initramfs (I'm using ArchLinux and SD card was trivial — add 3 modules in single config line and rebuilding initramfs) so any tips/gotchas on this are welcome as well.

    Read the article

  • After each command tmux prints: ps1_update: command not found

    - by B.I.
    On Linux Ubuntu 11.04, after each command (cd, ls, vim...) successful or not, tmux prints out as a last line ps1_update: command not found. Is there any config option I am missing? Thank you very much! tmux.conf # http://lukaszwrobel.pl/blog/tmux-tutorial-split-terminal-windows-easily # just remember that after every modification, tmux must be refreshed # to take new settings into account. # This can be achieved either by restarting it or by typing in: # tmux source-file .tmux.conf # Here is a list of a few basic tmux commands: # Ctrl+b " - split pane horizontally. # Ctrl+b % - split pane vertically. # Ctrl+b arrow key - switch pane. # Hold Ctrl+b, don't release it and hold one of the arrow keys - resize pane. # !Ctrl+b c - (c)reate a new window. # !Ctrl+b n - move to the (n)ext window. # Ctrl+b p - move to the (p)revious window. # Shift+LMB - select text. # ALT+Arrows to move among panes. # rebind default prefix to C-a unbind C-b set -g prefix C-a # use ALT+Arrows to move around panes bind -n M-Left select-pane -L bind -n M-Right select-pane -R bind -n M-Up select-pane -U bind -n M-Down select-pane -D # activity monitoring setw -g monitor-activity on set -g visual-activity on # highlight current pane set-window-option -g window-status-current-bg yellow # enable pane switching with mouse set-option -g mouse-select-pane on # read bashrc source ~/.bashrc # Sane scrolling set -g terminal-overrides 'xterm*:smcup@:rmcup@' commandline print out ($(cat)user@tiki:~/.vim$ ls autoload bash_profile bashrc bundle README.md tmux.conf vimrc xmonad xmonad-ubuntu-conf xsessionrc ps1_update: command not found ($(cat)user@tiki:~/.vim$ ll total 56 drwxrwxr-x 2 user user 4096 Mar 17 10:20 autoload/ -rw-rw-r-- 1 user user 170 Mar 17 10:20 bash_profile -rw-rw-r-- 1 user user 4004 Apr 2 11:37 bashrc drwxrwxr-x 20 user user 4096 Aug 20 10:55 bundle/ -rw-rw-r-- 1 user user 11170 Aug 20 11:24 README.md -rw-rw-r-- 1 user user 1243 Mar 17 10:20 tmux.conf ps1_update: command not found ($(cat)user@tiki:~/.vim$ And the following is plain terminal output, without tmux running user@tiki:~$ ls backup_list.md Documents Dropbox examples.desktop hakers_and_painters.md~ hyundai Music projects ror Ubuntu One Videos windows.sh Desktop Downloads elif.txt hakers_and_painters.md help.txt maqola.txt Pictures Public tmp update_background.sh VirtualBox VMs user@tiki:~$ ll total 116 -rw-rw-r-- 1 user user 380 Aug 9 17:34 backup_list.md drwxr-xr-x 6 user user 4096 Jul 15 09:26 Desktop/ drwxr-xr-x 2 user user 4096 Jul 7 11:26 Documents/ drwxr-xr-x 11 user user 20480 Aug 20 13:53 Downloads/ -rwx------ 1 user user 729 May 7 14:45 update_background.sh* drwxr-xr-x 2 user user 4096 Dec 10 2013 Videos/ drwxrwxr-x 4 user user 4096 Sep 10 2013 VirtualBox VMs/ -rwxrwxr-x 1 user user 36 Jan 11 2014 windows.sh* user@tiki:~$ cd Desktop/ user@tiki:~/Desktop$ ll total 36 -rw-rw-r-- 1 user user 3388 Jul 14 17:10 daily--report.md -rw-rw-r-- 1 user user 71 Jan 28 2014 fernandez readme.md -rw-rw-r-- 1 user user 23 Jan 28 2014 fernandez readme.md~ drwx------ 4 user user 4096 Mar 23 14:02 my_docs/ drwx------ 2 user user 4096 Feb 3 2014 Origami/ drwx------ 7 user user 4096 Feb 1 2013 Plants_vs._Zombies_v1.2.0.1065/ -rwxr-xr-x 1 user user 301 Apr 15 11:28 Sky Fight.desktop* drwx------ 2 user user 4096 Feb 11 2014 webdesign/ -rwxrwxr-x 1 user user 26 Jan 11 2014 windows.sh~* user@tiki:~/Desktop$

    Read the article

  • SQL Server 2000 and SSL Encryption

    - by Angry_IT_Guru
    We are a datacenter that hsots a SQL Server 2000 environment which provides database services for a product we sell that is loaded as a rich-client applicatin at each of our many clients and their workstations. Currently today, the application uses straight ODBC connections from the client site to our datacenter. We need to begin encrypting the credentials -- since everything is clear-text today and the authentication is weakly encrypted -- and I'm trying to determine the best way to implement SSL on the server with minimizing the impact of the client. A few things, however: 1) We have our own Windows domain and all our servers are joined to our private domain. Our clietns no nothing of our domain. 2) Typically, our clients connect to our datacenter servers either by: a) Using TCP/IP address b) Using a DNS name that we publish via internet, zone transfers from our DNS servers to our customers, or the client can add static HOSTS entries. 3) From what I understand from enabling encryption is that I can go to the Network Utility and select the "encryption" option for the protocol that I wish to encrypt. Such as TCP/IP. 4) When the encryption option is selected, I have a choice of installing a third-party certificate or a self-signed. I have tested the self-signed, but do have potential issues. I'll explain in a bit. If I go with a third-party cert, such as Verisign, or Network solutions... what kind of certificate do I request? These aren't IIS certificates? When I go create a self-signed via Microsoft's certificate server, I have to select "Authentication certificate". What does this translate to in the third-party world? 5) If I create a self-signed certificate, I understand that the "issue to" name has to match the FQDN for the server that is running SQL. In my case, I have to use my private domain name. If I use this, what does this do for my clients when trying to connect to my SQL Server? Surely they cannot resolve my private DNS names on their network.... I've also verified that when the self-signed certificate is installed, it has to be in the local personal store for the user account that is running SQL Server. SQL Server will only start if the FQDN matches the "issue to" of the certificate and SQL is running under the account that has the certificate installed. If I use a self-signed certificate, does this mean I have to have every one of my clients install it to verify? 6) If I used a third-party certificate, which sounds like the best option, do all my clients have to have internet access when accessing my private servers of their private WAN connection to use to verify the certificate? What do I do about the FQDN? It sounds like they have to use my private domain name -- which is not published -- and can no longer use the one that I setup for them to use? 7) I plan on upgrading to SQL 2000 soon. Is setup of SSL any easier/better with SQL 2005 than SQL 2000? Any help or guiadance would be appreciated

    Read the article

  • x11vnc working in Ubuntu 10.10

    - by pablorc
    I'm trying to start x11vnc in a Ubuntu 10.10 (my server is in Amazon EC2), but I have the next error $ sudo x11vnc -forever -usepw -httpdir /usr/share/vnc-java/ -httpport 5900 -auth /usr/sbin/gdm 25/11/2010 13:29:51 passing arg to libvncserver: -httpport 25/11/2010 13:29:51 passing arg to libvncserver: 5900 25/11/2010 13:29:51 -usepw: found /home/ubuntu/.vnc/passwd 25/11/2010 13:29:51 x11vnc version: 0.9.10 lastmod: 2010-04-28 pid: 3504 25/11/2010 13:29:51 XOpenDisplay(":0.0") failed. 25/11/2010 13:29:51 Trying again with XAUTHLOCALHOSTNAME=localhost ... 25/11/2010 13:29:51 *************************************** 25/11/2010 13:29:51 *** XOpenDisplay failed (:0.0) *** x11vnc was unable to open the X DISPLAY: ":0.0", it cannot continue. *** There may be "Xlib:" error messages above with details about the failure. Some tips and guidelines: ** An X server (the one you wish to view) must be running before x11vnc is started: x11vnc does not start the X server. (however, see the -create option if that is what you really want). ** You must use -display <disp>, -OR- set and export your $DISPLAY environment variable to refer to the display of the desired X server. - Usually the display is simply ":0" (in fact x11vnc uses this if you forget to specify it), but in some multi-user situations it could be ":1", ":2", or even ":137". Ask your administrator or a guru if you are having difficulty determining what your X DISPLAY is. ** Next, you need to have sufficient permissions (Xauthority) to connect to the X DISPLAY. Here are some Tips: - Often, you just need to run x11vnc as the user logged into the X session. So make sure to be that user when you type x11vnc. - Being root is usually not enough because the incorrect MIT-MAGIC-COOKIE file may be accessed. The cookie file contains the secret key that allows x11vnc to connect to the desired X DISPLAY. - You can explicitly indicate which MIT-MAGIC-COOKIE file should be used by the -auth option, e.g.: x11vnc -auth /home/someuser/.Xauthority -display :0 x11vnc -auth /tmp/.gdmzndVlR -display :0 you must have read permission for the auth file. See also '-auth guess' and '-findauth' discussed below. ** If NO ONE is logged into an X session yet, but there is a greeter login program like "gdm", "kdm", "xdm", or "dtlogin" running, you will need to find and use the raw display manager MIT-MAGIC-COOKIE file. Some examples for various display managers: gdm: -auth /var/gdm/:0.Xauth -auth /var/lib/gdm/:0.Xauth kdm: -auth /var/lib/kdm/A:0-crWk72 -auth /var/run/xauth/A:0-crWk72 xdm: -auth /var/lib/xdm/authdir/authfiles/A:0-XQvaJk dtlogin: -auth /var/dt/A:0-UgaaXa Sometimes the command "ps wwwwaux | grep auth" can reveal the file location. Starting with x11vnc 0.9.9 you can have it try to guess by using: -auth guess (see also the x11vnc -findauth option.) Only root will have read permission for the file, and so x11vnc must be run as root (or copy it). The random characters in the filenames will of course change and the directory the cookie file resides in is system dependent. See also: http://www.karlrunge.com/x11vnc/faq.html I've already tried with some -auth options but the error persist. I have gdm running. Thank you in advance

    Read the article

  • Linux - Only first virtual interface can ping external gateway

    - by husvar
    I created 3 virtual interfaces with different mac addresses all linked to the same physical interface. I see that they successfully arp for the gw and they can ping (the request is coming in the packet capture in wireshark). However the ping utility does not count the responses. Does anyone knows the issue? I am running Ubuntu 14.04 in a VmWare. root@ubuntu:~# ip link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff inet6 fe80::20c:29ff:febc:fc8b/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip route sh root@ubuntu:~# ip link add link eth0 eth0.1 addr 00:00:00:00:00:11 type macvlan root@ubuntu:~# ip link add link eth0 eth0.2 addr 00:00:00:00:00:22 type macvlan root@ubuntu:~# ip link add link eth0 eth0.3 addr 00:00:00:00:00:33 type macvlan root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh root@ubuntu:~# dhclient -v eth0.1 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.1/00:00:00:00:00:11 Sending on LPF/eth0.1/00:00:00:00:00:11 Sending on Socket/fallback DHCPDISCOVER on eth0.1 to 255.255.255.255 port 67 interval 3 (xid=0x568eac05) DHCPREQUEST of 192.168.1.145 on eth0.1 to 255.255.255.255 port 67 (xid=0x568eac05) DHCPOFFER of 192.168.1.145 from 192.168.1.254 DHCPACK of 192.168.1.145 from 192.168.1.254 bound to 192.168.1.145 -- renewal in 1473 seconds. root@ubuntu:~# dhclient -v eth0.2 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.2/00:00:00:00:00:22 Sending on LPF/eth0.2/00:00:00:00:00:22 Sending on Socket/fallback DHCPDISCOVER on eth0.2 to 255.255.255.255 port 67 interval 3 (xid=0x21e3114e) DHCPREQUEST of 192.168.1.146 on eth0.2 to 255.255.255.255 port 67 (xid=0x21e3114e) DHCPOFFER of 192.168.1.146 from 192.168.1.254 DHCPACK of 192.168.1.146 from 192.168.1.254 bound to 192.168.1.146 -- renewal in 1366 seconds. root@ubuntu:~# dhclient -v eth0.3 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.3/00:00:00:00:00:33 Sending on LPF/eth0.3/00:00:00:00:00:33 Sending on Socket/fallback DHCPDISCOVER on eth0.3 to 255.255.255.255 port 67 interval 3 (xid=0x11dc5f03) DHCPREQUEST of 192.168.1.147 on eth0.3 to 255.255.255.255 port 67 (xid=0x11dc5f03) DHCPOFFER of 192.168.1.147 from 192.168.1.254 DHCPACK of 192.168.1.147 from 192.168.1.254 bound to 192.168.1.147 -- renewal in 1657 seconds. root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.145/24 brd 192.168.1.255 scope global eth0.1 valid_lft forever preferred_lft forever 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.146/24 brd 192.168.1.255 scope global eth0.2 valid_lft forever preferred_lft forever 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.147/24 brd 192.168.1.255 scope global eth0.3 valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh default via 192.168.1.254 dev eth0.1 192.168.1.0/24 dev eth0.1 proto kernel scope link src 192.168.1.145 192.168.1.0/24 dev eth0.2 proto kernel scope link src 192.168.1.146 192.168.1.0/24 dev eth0.3 proto kernel scope link src 192.168.1.147 root@ubuntu:~# arping -c 5 -I eth0.1 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.145 eth0.1 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 6.936ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.986ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 0.654ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.137ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.426ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.2 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.146 eth0.2 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.665ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.753ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 16.500ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.287ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 32.438ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.3 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.147 eth0.3 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 4.422ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.429ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.321ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 40.423ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.268ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# tcpdump -n -i eth0.1 -v & [1] 5317 root@ubuntu:~# ping -c5 -q -I eth0.1 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.145 eth0.1: 56(84) bytes of data. tcpdump: listening on eth0.1, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:37.612558 IP (tos 0x0, ttl 64, id 2595, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 2, length 64 13:18:37.618864 IP (tos 0x68, ttl 64, id 14493, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 2, length 64 13:18:37.743650 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:38.134997 IP (tos 0x0, ttl 128, id 23547, offset 0, flags [none], proto UDP (17), length 229) 192.168.1.86.138 > 192.168.1.255.138: NBT UDP PACKET(138) 13:18:38.614580 IP (tos 0x0, ttl 64, id 2596, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 3, length 64 13:18:38.793479 IP (tos 0x68, ttl 64, id 14495, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 3, length 64 13:18:39.151282 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:39.615612 IP (tos 0x0, ttl 64, id 2597, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 4, length 64 13:18:39.746981 IP (tos 0x68, ttl 64, id 14496, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 4, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4008ms rtt min/avg/max/mdev = 2.793/67.810/178.934/73.108 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 12 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.1 -v root@ubuntu:~# tcpdump -n -i eth0.2 -v & [1] 5320 root@ubuntu:~# ping -c5 -q -I eth0.2 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.146 eth0.2: 56(84) bytes of data. tcpdump: listening on eth0.2, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:41.536874 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.1.254 is-at 58:98:35:57:a0:70, length 46 13:18:41.536933 IP (tos 0x0, ttl 64, id 2599, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 1, length 64 13:18:41.539255 IP (tos 0x68, ttl 64, id 14507, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 1, length 64 13:18:42.127715 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:42.511725 IP (tos 0x0, ttl 64, id 2600, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 2, length 64 13:18:42.514385 IP (tos 0x68, ttl 64, id 14527, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 2, length 64 13:18:42.743856 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:43.511727 IP (tos 0x0, ttl 64, id 2601, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 3, length 64 13:18:43.513768 IP (tos 0x68, ttl 64, id 14528, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 3, length 64 13:18:43.637598 IP (tos 0x0, ttl 128, id 23551, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.641185 IP (tos 0x0, ttl 128, id 23552, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 192.168.1.255.17500: UDP, length 197 13:18:43.641201 IP (tos 0x0, ttl 128, id 23553, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.743890 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:44.510758 IP (tos 0x0, ttl 64, id 2602, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 4, length 64 13:18:44.512892 IP (tos 0x68, ttl 64, id 14538, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 4, length 64 13:18:45.510794 IP (tos 0x0, ttl 64, id 2603, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 5, length 64 13:18:45.519701 IP (tos 0x68, ttl 64, id 14539, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 5, length 64 13:18:49.287554 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:50.013463 IP (tos 0x0, ttl 255, id 50737, offset 0, flags [DF], proto UDP (17), length 73) 192.168.1.146.5353 > 224.0.0.251.5353: 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:50.218874 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:51.129961 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:52.197074 IP6 (hlim 255, next-header UDP (17) payload length: 53) 2001:818:d812:da00:200:ff:fe00:22.5353 > ff02::fb.5353: [udp sum ok] 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:54.128240 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4000ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 13:18:54.657731 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:54.743174 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 25 packets captured 26 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.2 -v root@ubuntu:~# tcpdump -n -i eth0.3 icmp & [1] 5324 root@ubuntu:~# ping -c5 -q -I eth0.3 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.147 eth0.3: 56(84) bytes of data. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0.3, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:56.373434 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 1, length 64 13:18:57.372116 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 2, length 64 13:18:57.381263 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 2, length 64 13:18:58.371141 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 3, length 64 13:18:58.373275 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 3, length 64 13:18:59.371165 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 4, length 64 13:18:59.373259 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 4, length 64 13:19:00.371211 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 5, length 64 13:19:00.373278 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 5, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 1 received, 80% packet loss, time 4001ms rtt min/avg/max/mdev = 13.666/13.666/13.666/0.000 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 10 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.3 icmp root@ubuntu:~# arp -n Address HWtype HWaddress Flags Mask Iface 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.1 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.2 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.3

    Read the article

  • Integrating JavaScript Unit Tests with Visual Studio

    - by Stephen Walther
    Modern ASP.NET web applications take full advantage of client-side JavaScript to provide better interactivity and responsiveness. If you are building an ASP.NET application in the right way, you quickly end up with lots and lots of JavaScript code. When writing server code, you should be writing unit tests. One big advantage of unit tests is that they provide you with a safety net that enable you to safely modify your existing code – for example, fix bugs, add new features, and make performance enhancements -- without breaking your existing code. Every time you modify your code, you can execute your unit tests to verify that you have not broken anything. For the same reason that you should write unit tests for your server code, you should write unit tests for your client code. JavaScript is just as susceptible to bugs as C#. There is no shortage of unit testing frameworks for JavaScript. Each of the major JavaScript libraries has its own unit testing framework. For example, jQuery has QUnit, Prototype has UnitTestJS, YUI has YUI Test, and Dojo has Dojo Objective Harness (DOH). The challenge is integrating a JavaScript unit testing framework with Visual Studio. Visual Studio and Visual Studio ALM provide fantastic support for server-side unit tests. You can easily view the results of running your unit tests in the Visual Studio Test Results window. You can set up a check-in policy which requires that all unit tests pass before your source code can be committed to the source code repository. In addition, you can set up Team Build to execute your unit tests automatically. Unfortunately, Visual Studio does not provide “out-of-the-box” support for JavaScript unit tests. MS Test, the unit testing framework included in Visual Studio, does not support JavaScript unit tests. As soon as you leave the server world, you are left on your own. The goal of this blog entry is to describe one approach to integrating JavaScript unit tests with MS Test so that you can execute your JavaScript unit tests side-by-side with your C# unit tests. The goal is to enable you to execute JavaScript unit tests in exactly the same way as server-side unit tests. You can download the source code described by this project by scrolling to the end of this blog entry. Rejected Approach: Browser Launchers One popular approach to executing JavaScript unit tests is to use a browser as a test-driver. When you use a browser as a test-driver, you open up a browser window to execute and view the results of executing your JavaScript unit tests. For example, QUnit – the unit testing framework for jQuery – takes this approach. The following HTML page illustrates how you can use QUnit to create a unit test for a function named addNumbers(). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Using QUnit</title> <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css" /> </head> <body> <h1 id="qunit-header">QUnit example</h1> <h2 id="qunit-banner"></h2> <div id="qunit-testrunner-toolbar"></div> <h2 id="qunit-userAgent"></h2> <ol id="qunit-tests"></ol> <div id="qunit-fixture">test markup, will be hidden</div> <script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script> <script type="text/javascript" src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script> <script type="text/javascript"> // The function to test function addNumbers(a, b) { return a+b; } // The unit test test("Test of addNumbers", function () { equals(4, addNumbers(1,3), "1+3 should be 4"); }); </script> </body> </html> This test verifies that calling addNumbers(1,3) returns the expected value 4. When you open this page in a browser, you can see that this test does, in fact, pass. The idea is that you can quickly refresh this QUnit HTML JavaScript test driver page in your browser whenever you modify your JavaScript code. In other words, you can keep a browser window open and keep refreshing it over and over while you are developing your application. That way, you can know very quickly whenever you have broken your JavaScript code. While easy to setup, there are several big disadvantages to this approach to executing JavaScript unit tests: You must view your JavaScript unit test results in a different location than your server unit test results. The JavaScript unit test results appear in the browser and the server unit test results appear in the Visual Studio Test Results window. Because all of your unit test results don’t appear in a single location, you are more likely to introduce bugs into your code without noticing it. Because your unit tests are not integrated with Visual Studio – in particular, MS Test -- you cannot easily include your JavaScript unit tests when setting up check-in policies or when performing automated builds with Team Build. A more sophisticated approach to using a browser as a test-driver is to automate the web browser. Instead of launching the browser and loading the test code yourself, you use a framework to automate this process. There are several different testing frameworks that support this approach: · Selenium – Selenium is a very powerful framework for automating browser tests. You can create your tests by recording a Firefox session or by writing the test driver code in server code such as C#. You can learn more about Selenium at http://seleniumhq.org/. LTAF – The ASP.NET team uses the Lightweight Test Automation Framework to test JavaScript code in the ASP.NET framework. You can learn more about LTAF by visiting the project home at CodePlex: http://aspnet.codeplex.com/releases/view/35501 jsTestDriver – This framework uses Java to automate the browser. jsTestDriver creates a server which can be used to automate multiple browsers simultaneously. This project is located at http://code.google.com/p/js-test-driver/ TestSwam – This framework, created by John Resig, uses PHP to automate the browser. Like jsTestDriver, the framework creates a test server. You can open multiple browsers that are automated by the test server. Learn more about TestSwarm by visiting the following address: https://github.com/jeresig/testswarm/wiki Yeti – This is the framework introduced by Yahoo for automating browser tests. Yeti uses server-side JavaScript and depends on Node.js. Learn more about Yeti at http://www.yuiblog.com/blog/2010/08/25/introducing-yeti-the-yui-easy-testing-interface/ All of these frameworks are great for integration tests – however, they are not the best frameworks to use for unit tests. In one way or another, all of these frameworks depend on executing tests within the context of a “living and breathing” browser. If you create an ASP.NET Unit Test then Visual Studio will launch a web server before executing the unit test. Why is launching a web server so bad? It is not the worst thing in the world. However, it does introduce dependencies that prevent your code from being tested in isolation. One of the defining features of a unit test -- versus an integration test – is that a unit test tests code in isolation. Another problem with launching a web server when performing unit tests is that launching a web server can be slow. If you cannot execute your unit tests quickly, you are less likely to execute your unit tests each and every time you make a code change. You are much more likely to fall into the pit of failure. Launching a browser when performing a JavaScript unit test has all of the same disadvantages as launching a web server when performing an ASP.NET unit test. Instead of testing a unit of JavaScript code in isolation, you are testing JavaScript code within the context of a particular browser. Using the frameworks listed above for integration tests makes perfect sense. However, I want to consider a different approach for creating unit tests for JavaScript code. Using Server-Side JavaScript for JavaScript Unit Tests A completely different approach to executing JavaScript unit tests is to perform the tests outside of any browser. If you really want to test JavaScript then you should test JavaScript and leave the browser out of the testing process. There are several ways that you can execute JavaScript on the server outside the context of any browser: Rhino – Rhino is an implementation of JavaScript written in Java. The Rhino project is maintained by the Mozilla project. Learn more about Rhino at http://www.mozilla.org/rhino/ V8 – V8 is the open-source Google JavaScript engine written in C++. This is the JavaScript engine used by the Chrome web browser. You can download V8 and embed it in your project by visiting http://code.google.com/p/v8/ JScript – JScript is the JavaScript Script Engine used by Internet Explorer (up to but not including Internet Explorer 9), Windows Script Host, and Active Server Pages. Internet Explorer is still the most popular web browser. Therefore, I decided to focus on using the JScript Script Engine to execute JavaScript unit tests. Using the Microsoft Script Control There are two basic ways that you can pass JavaScript to the JScript Script Engine and execute the code: use the Microsoft Windows Script Interfaces or use the Microsoft Script Control. The difficult and proper way to execute JavaScript using the JScript Script Engine is to use the Microsoft Windows Script Interfaces. You can learn more about the Script Interfaces by visiting http://msdn.microsoft.com/en-us/library/t9d4xf28(VS.85).aspx The main disadvantage of using the Script Interfaces is that they are difficult to use from .NET. There is a great series of articles on using the Script Interfaces from C# located at http://www.drdobbs.com/184406028. I picked the easier alternative and used the Microsoft Script Control. The Microsoft Script Control is an ActiveX control that provides a higher level abstraction over the Window Script Interfaces. You can download the Microsoft Script Control from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac After you download the Microsoft Script Control, you need to add a reference to it to your project. Select the Visual Studio menu option Project, Add Reference to open the Add Reference dialog. Select the COM tab and add the Microsoft Script Control 1.0. Using the Script Control is easy. You call the Script Control AddCode() method to add JavaScript code to the Script Engine. Next, you call the Script Control Run() method to run a particular JavaScript function. The reference documentation for the Microsoft Script Control is located at the MSDN website: http://msdn.microsoft.com/en-us/library/aa227633%28v=vs.60%29.aspx Creating the JavaScript Code to Test To keep things simple, let’s imagine that you want to test the following JavaScript function named addNumbers() which simply adds two numbers together: MvcApplication1\Scripts\Math.js function addNumbers(a, b) { return 5; } Notice that the addNumbers() method always returns the value 5. Right-now, it will not pass a good unit test. Create this file and save it in your project with the name Math.js in your MVC project’s Scripts folder (Save the file in your actual MVC application and not your MVC test application). Creating the JavaScript Test Helper Class To make it easier to use the Microsoft Script Control in unit tests, we can create a helper class. This class contains two methods: LoadFile() – Loads a JavaScript file. Use this method to load the JavaScript file being tested or the JavaScript file containing the unit tests. ExecuteTest() – Executes the JavaScript code. Use this method to execute a JavaScript unit test. Here’s the code for the JavaScriptTestHelper class: JavaScriptTestHelper.cs   using System; using System.IO; using Microsoft.VisualStudio.TestTools.UnitTesting; using MSScriptControl; namespace MvcApplication1.Tests { public class JavaScriptTestHelper : IDisposable { private ScriptControl _sc; private TestContext _context; /// <summary> /// You need to use this helper with Unit Tests and not /// Basic Unit Tests because you need a Test Context /// </summary> /// <param name="testContext">Unit Test Test Context</param> public JavaScriptTestHelper(TestContext testContext) { if (testContext == null) { throw new ArgumentNullException("TestContext"); } _context = testContext; _sc = new ScriptControl(); _sc.Language = "JScript"; _sc.AllowUI = false; } /// <summary> /// Load the contents of a JavaScript file into the /// Script Engine. /// </summary> /// <param name="path">Path to JavaScript file</param> public void LoadFile(string path) { var fileContents = File.ReadAllText(path); _sc.AddCode(fileContents); } /// <summary> /// Pass the path of the test that you want to execute. /// </summary> /// <param name="testMethodName">JavaScript function name</param> public void ExecuteTest(string testMethodName) { dynamic result = null; try { result = _sc.Run(testMethodName, new object[] { }); } catch { var error = ((IScriptControl)_sc).Error; if (error != null) { var description = error.Description; var line = error.Line; var column = error.Column; var text = error.Text; var source = error.Source; if (_context != null) { var details = String.Format("{0} \r\nLine: {1} Column: {2}", source, line, column); _context.WriteLine(details); } } throw new AssertFailedException(error.Description); } } public void Dispose() { _sc = null; } } }     Notice that the JavaScriptTestHelper class requires a Test Context to be instantiated. For this reason, you can use the JavaScriptTestHelper only with a Visual Studio Unit Test and not a Basic Unit Test (These are two different types of Visual Studio project items). Add the JavaScriptTestHelper file to your MVC test application (for example, MvcApplication1.Tests). Creating the JavaScript Unit Test Next, we need to create the JavaScript unit test function that we will use to test the addNumbers() function. Create a folder in your MVC test project named JavaScriptTests and add the following JavaScript file to this folder: MvcApplication1.Tests\JavaScriptTests\MathTest.js /// <reference path="JavaScriptUnitTestFramework.js"/> function testAddNumbers() { // Act var result = addNumbers(1, 3); // Assert assert.areEqual(4, result, "addNumbers did not return right value!"); }   The testAddNumbers() function takes advantage of another JavaScript library named JavaScriptUnitTestFramework.js. This library contains all of the code necessary to make assertions. Add the following JavaScriptnitTestFramework.js to the same folder as the MathTest.js file: MvcApplication1.Tests\JavaScriptTests\JavaScriptUnitTestFramework.js var assert = { areEqual: function (expected, actual, message) { if (expected !== actual) { throw new Error("Expected value " + expected + " is not equal to " + actual + ". " + message); } } }; There is only one type of assertion supported by this file: the areEqual() assertion. Most likely, you would want to add additional types of assertions to this file to make it easier to write your JavaScript unit tests. Deploying the JavaScript Test Files This step is non-intuitive. When you use Visual Studio to run unit tests, Visual Studio creates a new folder and executes a copy of the files in your project. After you run your unit tests, your Visual Studio Solution will contain a new folder named TestResults that includes a subfolder for each test run. You need to configure Visual Studio to deploy your JavaScript files to the test run folder or Visual Studio won’t be able to find your JavaScript files when you execute your unit tests. You will get an error that looks something like this when you attempt to execute your unit tests: You can configure Visual Studio to deploy your JavaScript files by adding a Test Settings file to your Visual Studio Solution. It is important to understand that you need to add this file to your Visual Studio Solution and not a particular Visual Studio project. Right-click your Solution in the Solution Explorer window and select the menu option Add, New Item. Select the Test Settings item and click the Add button. After you create a Test Settings file for your solution, you can indicate that you want a particular folder to be deployed whenever you perform a test run. Select the menu option Test, Edit Test Settings to edit your test configuration file. Select the Deployment tab and select your MVC test project’s JavaScriptTest folder to deploy. Click the Apply button and the Close button to save the changes and close the dialog. Creating the Visual Studio Unit Test The very last step is to create the Visual Studio unit test (the MS Test unit test). Add a new unit test to your MVC test project by selecting the menu option Add New Item and selecting the Unit Test project item (Do not select the Basic Unit Test project item): The difference between a Basic Unit Test and a Unit Test is that a Unit Test includes a Test Context. We need this Test Context to use the JavaScriptTestHelper class that we created earlier. Enter the following test method for the new unit test: [TestMethod] public void TestAddNumbers() { var jsHelper = new JavaScriptTestHelper(this.TestContext); // Load JavaScript files jsHelper.LoadFile("JavaScriptUnitTestFramework.js"); jsHelper.LoadFile(@"..\..\..\MvcApplication1\Scripts\Math.js"); jsHelper.LoadFile("MathTest.js"); // Execute JavaScript Test jsHelper.ExecuteTest("testAddNumbers"); } This code uses the JavaScriptTestHelper to load three files: JavaScripUnitTestFramework.js – Contains the assert functions. Math.js – Contains the addNumbers() function from your MVC application which is being tested. MathTest.js – Contains the JavaScript unit test function. Next, the test method calls the JavaScriptTestHelper ExecuteTest() method to execute the testAddNumbers() JavaScript function. Running the Visual Studio JavaScript Unit Test After you complete all of the steps described above, you can execute the JavaScript unit test just like any other unit test. You can use the keyboard combination CTRL-R, CTRL-A to run all of the tests in the current Visual Studio Solution. Alternatively, you can use the buttons in the Visual Studio toolbar to run the tests: (Unfortunately, the Run All Impacted Tests button won’t work correctly because Visual Studio won’t detect that your JavaScript code has changed. Therefore, you should use either the Run Tests in Current Context or Run All Tests in Solution options instead.) The results of running the JavaScript tests appear side-by-side with the results of running the server tests in the Test Results window. For example, if you Run All Tests in Solution then you will get the following results: Notice that the TestAddNumbers() JavaScript test has failed. That is good because our addNumbers() function is hard-coded to always return the value 5. If you double-click the failing JavaScript test, you can view additional details such as the JavaScript error message and the line number of the JavaScript code that failed: Summary The goal of this blog entry was to explain an approach to creating JavaScript unit tests that can be easily integrated with Visual Studio and Visual Studio ALM. I described how you can use the Microsoft Script Control to execute JavaScript on the server. By taking advantage of the Microsoft Script Control, we were able to execute our JavaScript unit tests side-by-side with all of our other unit tests and view the results in the standard Visual Studio Test Results window. You can download the code discussed in this blog entry from here: http://StephenWalther.com/downloads/Blog/JavaScriptUnitTesting/JavaScriptUnitTests.zip Before running this code, you need to first install the Microsoft Script Control which you can download from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac

    Read the article

  • West Wind WebSurge - an easy way to Load Test Web Applications

    - by Rick Strahl
    A few months ago on a project the subject of load testing came up. We were having some serious issues with a Web application that would start spewing SQL lock errors under somewhat heavy load. These sort of errors can be tough to catch, precisely because they only occur under load and not during typical development testing. To replicate this error more reliably we needed to put a load on the application and run it for a while before these SQL errors would flare up. It’s been a while since I’d looked at load testing tools, so I spent a bit of time looking at different tools and frankly didn’t really find anything that was a good fit. A lot of tools were either a pain to use, didn’t have the basic features I needed, or are extravagantly expensive. In  the end I got frustrated enough to build an initially small custom load test solution that then morphed into a more generic library, then gained a console front end and eventually turned into a full blown Web load testing tool that is now called West Wind WebSurge. I got seriously frustrated looking for tools every time I needed some quick and dirty load testing for an application. If my aim is to just put an application under heavy enough load to find a scalability problem in code, or to simply try and push an application to its limits on the hardware it’s running I shouldn’t have to have to struggle to set up tests. It should be easy enough to get going in a few minutes, so that the testing can be set up quickly so that it can be done on a regular basis without a lot of hassle. And that was the goal when I started to build out my initial custom load tester into a more widely usable tool. If you’re in a hurry and you want to check it out, you can find more information and download links here: West Wind WebSurge Product Page Walk through Video Download link (zip) Install from Chocolatey Source on GitHub For a more detailed discussion of the why’s and how’s and some background continue reading. How did I get here? When I started out on this path, I wasn’t planning on building a tool like this myself – but I got frustrated enough looking at what’s out there to think that I can do better than what’s available for the most common simple load testing scenarios. When we ran into the SQL lock problems I mentioned, I started looking around what’s available for Web load testing solutions that would work for our whole team which consisted of a few developers and a couple of IT guys both of which needed to be able to run the tests. It had been a while since I looked at tools and I figured that by now there should be some good solutions out there, but as it turns out I didn’t really find anything that fit our relatively simple needs without costing an arm and a leg… I spent the better part of a day installing and trying various load testing tools and to be frank most of them were either terrible at what they do, incredibly unfriendly to use, used some terminology I couldn’t even parse, or were extremely expensive (and I mean in the ‘sell your liver’ range of expensive). Pick your poison. There are also a number of online solutions for load testing and they actually looked more promising, but those wouldn’t work well for our scenario as the application is running inside of a private VPN with no outside access into the VPN. Most of those online solutions also ended up being very pricey as well – presumably because of the bandwidth required to test over the open Web can be enormous. When I asked around on Twitter what people were using– I got mostly… crickets. Several people mentioned Visual Studio Load Test, and most other suggestions pointed to online solutions. I did get a bunch of responses though with people asking to let them know what I found – apparently I’m not alone when it comes to finding load testing tools that are effective and easy to use. As to Visual Studio, the higher end skus of Visual Studio and the test edition include a Web load testing tool, which is quite powerful, but there are a number of issues with that: First it’s tied to Visual Studio so it’s not very portable – you need a VS install. I also find the test setup and terminology used by the VS test runner extremely confusing. Heck, it’s complicated enough that there’s even a Pluralsight course on using the Visual Studio Web test from Steve Smith. And of course you need to have one of the high end Visual Studio Skus, and those are mucho Dinero ($$$) – just for the load testing that’s rarely an option. Some of the tools are ultra extensive and let you run analysis tools on the target serves which is useful, but in most cases – just plain overkill and only distracts from what I tend to be ultimately interested in: Reproducing problems that occur at high load, and finding the upper limits and ‘what if’ scenarios as load is ramped up increasingly against a site. Yes it’s useful to have Web app instrumentation, but often that’s not what you’re interested in. I still fondly remember early days of Web testing when Microsoft had the WAST (Web Application Stress Tool) tool, which was rather simple – and also somewhat limited – but easily allowed you to create stress tests very quickly. It had some serious limitations (mainly that it didn’t work with SSL),  but the idea behind it was excellent: Create tests quickly and easily and provide a decent engine to run it locally with minimal setup. You could get set up and run tests within a few minutes. Unfortunately, that tool died a quiet death as so many of Microsoft’s tools that probably were built by an intern and then abandoned, even though there was a lot of potential and it was actually fairly widely used. Eventually the tools was no longer downloadable and now it simply doesn’t work anymore on higher end hardware. West Wind Web Surge – Making Load Testing Quick and Easy So I ended up creating West Wind WebSurge out of rebellious frustration… The goal of WebSurge is to make it drop dead simple to create load tests. It’s super easy to capture sessions either using the built in capture tool (big props to Eric Lawrence, Telerik and FiddlerCore which made that piece a snap), using the full version of Fiddler and exporting sessions, or by manually or programmatically creating text files based on plain HTTP headers to create requests. I’ve been using this tool for 4 months now on a regular basis on various projects as a reality check for performance and scalability and it’s worked extremely well for finding small performance issues. I also use it regularly as a simple URL tester, as it allows me to quickly enter a URL plus headers and content and test that URL and its results along with the ability to easily save one or more of those URLs. A few weeks back I made a walk through video that goes over most of the features of WebSurge in some detail: Note that the UI has slightly changed since then, so there are some UI improvements. Most notably the test results screen has been updated recently to a different layout and to provide more information about each URL in a session at a glance. The video and the main WebSurge site has a lot of info of basic operations. For the rest of this post I’ll talk about a few deeper aspects that may be of interest while also giving a glance at how WebSurge works. Session Capturing As you would expect, WebSurge works with Sessions of Urls that are played back under load. Here’s what the main Session View looks like: You can create session entries manually by individually adding URLs to test (on the Request tab on the right) and saving them, or you can capture output from Web Browsers, Windows Desktop applications that call services, your own applications using the built in Capture tool. With this tool you can capture anything HTTP -SSL requests and content from Web pages, AJAX calls, SOAP or REST services – again anything that uses Windows or .NET HTTP APIs. Behind the scenes the capture tool uses FiddlerCore so basically anything you can capture with Fiddler you can also capture with Web Surge Session capture tool. Alternately you can actually use Fiddler as well, and then export the captured Fiddler trace to a file, which can then be imported into WebSurge. This is a nice way to let somebody capture session without having to actually install WebSurge or for your customers to provide an exact playback scenario for a given set of URLs that cause a problem perhaps. Note that not all applications work with Fiddler’s proxy unless you configure a proxy. For example, .NET Web applications that make HTTP calls usually don’t show up in Fiddler by default. For those .NET applications you can explicitly override proxy settings to capture those requests to service calls. The capture tool also has handy optional filters that allow you to filter by domain, to help block out noise that you typically don’t want to include in your requests. For example, if your pages include links to CDNs, or Google Analytics or social links you typically don’t want to include those in your load test, so by capturing just from a specific domain you are guaranteed content from only that one domain. Additionally you can provide url filters in the configuration file – filters allow to provide filter strings that if contained in a url will cause requests to be ignored. Again this is useful if you don’t filter by domain but you want to filter out things like static image, css and script files etc. Often you’re not interested in the load characteristics of these static and usually cached resources as they just add noise to tests and often skew the overall url performance results. In my testing I tend to care only about my dynamic requests. SSL Captures require Fiddler Note, that in order to capture SSL requests you’ll have to install the Fiddler’s SSL certificate. The easiest way to do this is to install Fiddler and use its SSL configuration options to get the certificate into the local certificate store. There’s a document on the Telerik site that provides the exact steps to get SSL captures to work with Fiddler and therefore with WebSurge. Session Storage A group of URLs entered or captured make up a Session. Sessions can be saved and restored easily as they use a very simple text format that simply stored on disk. The format is slightly customized HTTP header traces separated by a separator line. The headers are standard HTTP headers except that the full URL instead of just the domain relative path is stored as part of the 1st HTTP header line for easier parsing. Because it’s just text and uses the same format that Fiddler uses for exports, it’s super easy to create Sessions by hand manually or under program control writing out to a simple text file. You can see what this format looks like in the Capture window figure above – the raw captured format is also what’s stored to disk and what WebSurge parses from. The only ‘custom’ part of these headers is that 1st line contains the full URL instead of the domain relative path and Host: header. The rest of each header are just plain standard HTTP headers with each individual URL isolated by a separator line. The format used here also uses what Fiddler produces for exports, so it’s easy to exchange or view data either in Fiddler or WebSurge. Urls can also be edited interactively so you can modify the headers easily as well: Again – it’s just plain HTTP headers so anything you can do with HTTP can be added here. Use it for single URL Testing Incidentally I’ve also found this form as an excellent way to test and replay individual URLs for simple non-load testing purposes. Because you can capture a single or many URLs and store them on disk, this also provides a nice HTTP playground where you can record URLs with their headers, and fire them one at a time or as a session and see results immediately. It’s actually an easy way for REST presentations and I find the simple UI flow actually easier than using Fiddler natively. Finally you can save one or more URLs as a session for later retrieval. I’m using this more and more for simple URL checks. Overriding Cookies and Domains Speaking of HTTP headers – you can also overwrite cookies used as part of the options. One thing that happens with modern Web applications is that you have session cookies in use for authorization. These cookies tend to expire at some point which would invalidate a test. Using the Options dialog you can actually override the cookie: which replaces the cookie for all requests with the cookie value specified here. You can capture a valid cookie from a manual HTTP request in your browser and then paste into the cookie field, to replace the existing Cookie with the new one that is now valid. Likewise you can easily replace the domain so if you captured urls on west-wind.com and now you want to test on localhost you can do that easily easily as well. You could even do something like capture on store.west-wind.com and then test on localhost/store which would also work. Running Load Tests Once you’ve created a Session you can specify the length of the test in seconds, and specify the number of simultaneous threads to run each session on. Sessions run through each of the URLs in the session sequentially by default. One option in the options list above is that you can also randomize the URLs so each thread runs requests in a different order. This avoids bunching up URLs initially when tests start as all threads run the same requests simultaneously which can sometimes skew the results of the first few minutes of a test. While sessions run some progress information is displayed: By default there’s a live view of requests displayed in a Console-like window. On the bottom of the window there’s a running total summary that displays where you’re at in the test, how many requests have been processed and what the requests per second count is currently for all requests. Note that for tests that run over a thousand requests a second it’s a good idea to turn off the console display. While the console display is nice to see that something is happening and also gives you slight idea what’s happening with actual requests, once a lot of requests are processed, this UI updating actually adds a lot of CPU overhead to the application which may cause the actual load generated to be reduced. If you are running a 1000 requests a second there’s not much to see anyway as requests roll by way too fast to see individual lines anyway. If you look on the options panel, there is a NoProgressEvents option that disables the console display. Note that the summary display is still updated approximately once a second so you can always tell that the test is still running. Test Results When the test is done you get a simple Results display: On the right you get an overall summary as well as breakdown by each URL in the session. Both success and failures are highlighted so it’s easy to see what’s breaking in your load test. The report can be printed or you can also open the HTML document in your default Web Browser for printing to PDF or saving the HTML document to disk. The list on the right shows you a partial list of the URLs that were fired so you can look in detail at the request and response data. The list can be filtered by success and failure requests. Each list is partial only (at the moment) and limited to a max of 1000 items in order to render reasonably quickly. Each item in the list can be clicked to see the full request and response data: This particularly useful for errors so you can quickly see and copy what request data was used and in the case of a GET request you can also just click the link to quickly jump to the page. For non-GET requests you can find the URL in the Session list, and use the context menu to Test the URL as configured including any HTTP content data to send. You get to see the full HTTP request and response as well as a link in the Request header to go visit the actual page. Not so useful for a POST as above, but definitely useful for GET requests. Finally you can also get a few charts. The most useful one is probably the Request per Second chart which can be accessed from the Charts menu or shortcut. Here’s what it looks like:   Results can also be exported to JSON, XML and HTML. Keep in mind that these files can get very large rather quickly though, so exports can end up taking a while to complete. Command Line Interface WebSurge runs with a small core load engine and this engine is plugged into the front end application I’ve shown so far. There’s also a command line interface available to run WebSurge from the Windows command prompt. Using the command line you can run tests for either an individual URL (similar to AB.exe for example) or a full Session file. By default when it runs WebSurgeCli shows progress every second showing total request count, failures and the requests per second for the entire test. A silent option can turn off this progress display and display only the results. The command line interface can be useful for build integration which allows checking for failures perhaps or hitting a specific requests per second count etc. It’s also nice to use this as quick and dirty URL test facility similar to the way you’d use Apache Bench (ab.exe). Unlike ab.exe though, WebSurgeCli supports SSL and makes it much easier to create multi-URL tests using either manual editing or the WebSurge UI. Current Status Currently West Wind WebSurge is still in Beta status. I’m still adding small new features and tweaking the UI in an attempt to make it as easy and self-explanatory as possible to run. Documentation for the UI and specialty features is also still a work in progress. I plan on open-sourcing this product, but it won’t be free. There’s a free version available that provides a limited number of threads and request URLs to run. A relatively low cost license  removes the thread and request limitations. Pricing info can be found on the Web site – there’s an introductory price which is $99 at the moment which I think is reasonable compared to most other for pay solutions out there that are exorbitant by comparison… The reason code is not available yet is – well, the UI portion of the app is a bit embarrassing in its current monolithic state. The UI started as a very simple interface originally that later got a lot more complex – yeah, that never happens, right? Unless there’s a lot of interest I don’t foresee re-writing the UI entirely (which would be ideal), but in the meantime at least some cleanup is required before I dare to publish it :-). The code will likely be released with version 1.0. I’m very interested in feedback. Do you think this could be useful to you and provide value over other tools you may or may not have used before? I hope so – it already has provided a ton of value for me and the work I do that made the development worthwhile at this point. You can leave a comment below, or for more extensive discussions you can post a message on the West Wind Message Board in the WebSurge section Microsoft MVPs and Insiders get a free License If you’re a Microsoft MVP or a Microsoft Insider you can get a full license for free. Send me a link to your current, official Microsoft profile and I’ll send you a not-for resale license. Send any messages to [email protected]. Resources For more info on WebSurge and to download it to try it out, use the following links. West Wind WebSurge Home Download West Wind WebSurge Getting Started with West Wind WebSurge Video© Rick Strahl, West Wind Technologies, 2005-2014Posted in ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • WinInet Apps failing when Internet Explorer is set to Offline Mode

    - by Rick Strahl
    Ran into a nasty issue last week when all of a sudden many of my old applications that are using WinInet for HTTP access started failing. Specifically, the WinInet HttpSendRequest() call started failing with an error of 2, which when retrieving the error boils down to: WinInet Error 2: The system cannot find the file specified Now this error can pop up in many legitimate scenarios with WinInet such as when no Internet connection is available or the HTTP configuration (usually configured in Internet Explorer’s options) is misconfigured. The error typically means that the server in question cannot be found or more specifically an Internet connection can’t be established. In this case the problem started suddenly and was causing some of my own applications (old Visual FoxPro apps using my own wwHttp library) and all Adobe Air applications (which apparently uses WinInet for its basic HTTP stack) along with a few more oddball applications to fail instantly when trying to connect via HTTP. Most other applications – all of my installed browsers, email clients, various social network updaters all worked just fine. It seems it was only WinInet apps that were failing. Yet oddly Internet Explorer appeared to be working. So the problem seemed to be isolated to those ‘classic’ applications using WinInet. WinInet’s base configuration uses the Internet Explorer options dialog. To check this out I typically go to the Internet Explorer options and find the Connection tab, and check out the LAN Setup. Make sure there are no rogue proxy settings or configuration scripts that are invalid. Trying with Auto-configuration on and off also can often fix ‘real’ configuration errors. This time however this wasn’t a problem – nothing in the LAN configuration was set (all default). I also played with the Automatic detection of settings which also had no effect. I also tried to use Fiddler to see if that would tell me something. Fiddler has a few additional WinInet configuration options in its configuration. Running Fiddler and hitting an HTTP request using WinInet would never actually hit Fiddler – the failure would occur before WinInet ever fired up the HTTP connection to go through the Fiddler HTTP proxy. And the Culprit is: Internet Explorer’s Work Offline Option The culprit in this situation was Internet Explorer which at some point, unknown to me switched into Offline Mode and was then shut down: When this Offline mode is checked when IE is running *or* if IE gets shut down with this flag set, all applications using WinInet by default assume that it’s running in offline mode. Depending on your caching HTTP headers and whether the page was cached previously you may or may not get a response or an error. For an independent non-browser application this will be highly unpredictable and likely result in failures getting online – especially if the application forces requests to always reload by disabling HTTP caching (as I do on most of my dynamic HTTP clients). What makes this especially tricky is that even when IE is in offline mode in the browser, you can still browse around the Web *if* you have a connection. IE will try to load anything it has cached from the local cache, but as soon as you hit a URL that isn’t cached it will automatically try to access that URL and uncheck the Work Offline option. Conversely if you get knocked off the Internet and browse in IE 9, IE will automatically go into offline mode. I never explicitly set offline mode – it just automatically sets itself on and off depending on the connection. Problem is if you’re not using IE all the time (as I do – rarely and just for testing so usually a few commonly used URLs) and you left it in offline mode when you exit, offline mode stays set which results in the above head scratcher. Ack. This isn’t new behavior in IE 9 BTW – this behavior has always been there, but I think what’s different is that IE now automatically switches between online and offline modes without notifying you at all, so it’s hard to tell when you are offline. Fixing the Issue in your Code If you have an application that is using WinInet, there’s a WinInet option called INTERNET_OPTION_IGNORE_OFFLINE. I just checked this out in my own applications and Internet Explorer 9 and it works, but apparently it’s been broken for some older releases (I can’t confirm how far back though) – lots of posts seem to suggest the flag doesn’t work. However, in IE 9 at least it does seem to work if you call InternetSetOption before you call HttpOpenRequest with the Http Session handle. In FoxPro code I use: DECLARE INTEGER InternetSetOption ;    IN WININET.DLL ;    INTEGER HINTERNET,;    INTEGER dwFlags,;    INTEGER @dwValue,;    INTEGER cbSize lnOptionValue = 1   && BOOL TRUE pass by reference   *** Set needed SSL flags lnResult=InternetSetOption(this.hHttpSession,;    INTERNET_OPTION_IGNORE_OFFLINE ,;  && 77    @lnOptionValue ,4)   DECLARE INTEGER HttpOpenRequest ;    IN WININET.DLL ;    INTEGER hHTTPHandle,;    STRING lpzReqMethod,;    STRING lpzPage,;    STRING lpzVersion,;    STRING lpzReferer,;    STRING lpzAcceptTypes,;    INTEGER dwFlags,;    INTEGER dwContextw     hHTTPResult=HttpOpenRequest(THIS.hHttpsession,;    lcVerb,;    tcPage,;    NULL,NULL,NULL,;    INTERNET_FLAG_RELOAD + ;    IIF(THIS.lsecurelink,INTERNET_FLAG_SECURE,0) + ;    this.nHTTPServiceFlags,0) …  And this fixes the issue at least for IE 9… In my FoxPro wwHttp class I now call this by default to never get bitten by this again… This solves the problem permanently for my HTTP client. I never want to see offline operation in an HTTP client API – it’s just too unpredictable in handling errors and the last thing you want is getting unpredictably stale data. Problem solved but this behavior is – well ugly. But then that’s to be expected from an API that’s based on Internet Explorer, eh?© Rick Strahl, West Wind Technologies, 2005-2011Posted in HTTP  Windows  

    Read the article

  • Why the “Toilet” Analogy for SQL might be bad

    - by Jonathan Kehayias
    Robert Davis(blog/twitter) recently blogged The Toilet Analogy … or Why I Never Recommend Increasing Worker Threads , in which he uses an analogy for why increasing the value for the ‘max worker threads’ sp_configure option can be bad inside of SQL Server.  While I can’t make an argument against Robert’s assertion that increasing worker threads may not improve performance, I can make an argument against his suggestion that, simply increasing the number of logical processors, for example from...(read more)

    Read the article

  • How to Reduce the Size of Your WinSXS Folder on Windows 7 or 8

    - by Chris Hoffman
    The WinSXS folder at C:\Windows\WinSXS is massive and continues to grow the longer you have Windows installed. This folder builds up unnecessary files over time, such as old versions of system components. This folder also contains files for uninstalled, disabled Windows components. Even if you don’t have a Windows component installed, it will be present in your WinSXS folder, taking up space. Why the WinSXS Folder Gets to Big The WinSXS folder contains all Windows system components. In fact, component files elsewhere in Windows are just links to files contained in the WinSXS folder. The WinSXS folder contains every operating system file. When Windows installs updates, it drops the new Windows component in the WinSXS folder and keeps the old component in the WinSXS folder. This means that every Windows Update you install increases the size of your WinSXS folder. This allows you to uninstall operating system updates from the Control Panel, which can be useful in the case of a buggy update — but it’s a feature that’s rarely used. Windows 7 dealt with this by including a feature that allows Windows to clean up old Windows update files after you install a new Windows service pack. The idea was that the system could be cleaned up regularly along with service packs. However, Windows 7 only saw one service pack — Service Pack 1 — released in 2010. Microsoft has no intention of launching another. This means that, for more than three years, Windows update uninstallation files have been building up on Windows 7 systems and couldn’t be easily removed. Clean Up Update Files To fix this problem, Microsoft recently backported a feature from Windows 8 to Windows 7. They did this without much fanfare — it was rolled out in a typical minor operating system update, the kind that don’t generally add new features. To clean up such update files, open the Disk Cleanup wizard (tap the Windows key, type “disk cleanup” into the Start menu, and press Enter). Click the Clean up System Files button, enable the Windows Update Cleanup option and click OK. If you’ve been using your Windows 7 system for a few years, you’ll likely be able to free several gigabytes of space. The next time you reboot after doing this, Windows will take a few minutes to clean up system files before you can log in and use your desktop. If you don’t see this feature in the Disk Cleanup window, you’re likely behind on your updates — install the latest updates from Windows Update. Windows 8 and 8.1 include built-in features that do this automatically. In fact, there’s a StartComponentCleanup scheduled task included with Windows that will automatically run in the background, cleaning up components 30 days after you’ve installed them. This 30-day period gives you time to uninstall an update if it causes problems. If you’d like to manually clean up updates, you can also use the Windows Update Cleanup option in the Disk Usage window, just as you can on Windows 7. (To open it, tap the Windows key, type “disk cleanup” to perform a search, and click the “Free up disk space by removing unnecessary files” shortcut that appears.) Windows 8.1 gives you more options, allowing you to forcibly remove all previous versions of uninstalled components, even ones that haven’t been around for more than 30 days. These commands must be run in an elevated Command Prompt — in other words, start the Command Prompt window as Administrator. For example, the following command will uninstall all previous versions of components without the scheduled task’s 30-day grace period: DISM.exe /online /Cleanup-Image /StartComponentCleanup The following command will remove files needed for uninstallation of service packs. You won’t be able to uninstall any currently installed service packs after running this command: DISM.exe /online /Cleanup-Image /SPSuperseded The following command will remove all old versions of every component. You won’t be able to uninstall any currently installed service packs or updates after this completes: DISM.exe /online /Cleanup-Image /StartComponentCleanup /ResetBase Remove Features on Demand Modern versions of Windows allow you to enable or disable Windows features on demand. You’ll find a list of these features in the Windows Features window you can access from the Control Panel. Even features you don’t have installed — that is, the features you see unchecked in this window — are stored on your hard drive in your WinSXS folder. If you choose to install them, they’ll be made available from your WinSXS folder. This means you won’t have to download anything or provide Windows installation media to install these features. However, these features take up space. While this shouldn’t matter on typical computers, users with extremely low amounts of storage or Windows server administrators who want to slim their Windows installs down to the smallest possible set of system files may want to get these files off their hard drives. For this reason, Windows 8 added a new option that allows you to remove these uninstalled components from the WinSXS folder entirely, freeing up space. If you choose to install the removed components later, Windows will prompt you to download the component files from Microsoft. To do this, open a Command Prompt window as Administrator. Use the following command to see the features available to you: DISM.exe /Online /English /Get-Features /Format:Table You’ll see a table of feature names and their states. To remove a feature from your system, you’d use the following command, replacing NAME with the name of the feature you want to remove. You can get the feature name you need from the table above. DISM.exe /Online /Disable-Feature /featurename:NAME /Remove If you run the /GetFeatures command again, you’ll now see that the feature has a status of “Disabled with Payload Removed” instead of just “Disabled.” That’s how you know it’s not taking up space on your computer’s hard drive. If you’re trying to slim down a Windows system as much as possible, be sure to check out our lists of ways to free up disk space on Windows and reduce the space used by system files.     

    Read the article

  • SQL SERVER – How to Recover SQL Database Data Deleted by Accident

    - by Pinal Dave
    In Repair a SQL Server database using a transaction log explorer, I showed how to use ApexSQL Log, a SQL Server transaction log viewer, to recover a SQL Server database after a disaster. In this blog, I’ll show you how to use another SQL Server disaster recovery tool from ApexSQL in a situation when data is accidentally deleted. You can download ApexSQL Recover here, install, and play along. With a good SQL Server disaster recovery strategy, data recovery is not a problem. You have a reliable full database backup with valid data, a full database backup and subsequent differential database backups, or a full database backup and a chain of transaction log backups. But not all situations are ideal. Here we’ll address some sub-optimal scenarios, where you can still successfully recover data. If you have only a full database backup This is the least optimal SQL Server disaster recovery strategy, as it doesn’t ensure minimal data loss. For example, data was deleted on Wednesday. Your last full database backup was created on Sunday, three days before the records were deleted. By using the full database backup created on Sunday, you will be able to recover SQL database records that existed in the table on Sunday. If there were any records inserted into the table on Monday or Tuesday, they will be lost forever. The same goes for records modified in this period. This method will not bring back modified records, only the old records that existed on Sunday. If you restore this full database backup, all your changes (intentional and accidental) will be lost and the database will be reverted to the state it had on Sunday. What you have to do is compare the records that were in the table on Sunday to the records on Wednesday, create a synchronization script, and execute it against the Wednesday database. If you have a full database backup followed by differential database backups Let’s say the situation is the same as in the example above, only you create a differential database backup every night. Use the full database backup created on Sunday, and the last differential database backup (created on Tuesday). In this scenario, you will lose only the data inserted and updated after the differential backup created on Tuesday. If you have a full database backup and a chain of transaction log backups This is the SQL Server disaster recovery strategy that provides minimal data loss. With a full chain of transaction logs, you can recover the SQL database to an exact point in time. To provide optimal results, you have to know exactly when the records were deleted, because restoring to a later point will not bring back the records. This method requires restoring the full database backup first. If you have any differential log backup created after the last full database backup, restore the most recent one. Then, restore transaction log backups, one by one, it the order they were created starting with the first created after the restored differential database backup. Now, the table will be in the state before the records were deleted. You have to identify the deleted records, script them and run the script against the original database. Although this method is reliable, it is time-consuming and requires a lot of space on disk. How to easily recover deleted records? The following solution enables you to recover SQL database records even if you have no full or differential database backups and no transaction log backups. To understand how ApexSQL Recover works, I’ll explain what happens when table data is deleted. Table data is stored in data pages. When you delete table records, they are not immediately deleted from the data pages, but marked to be overwritten by new records. Such records are not shown as existing anymore, but ApexSQL Recover can read them and create undo script for them. How long will deleted records stay in the MDF file? It depends on many factors, as time passes it’s less likely that the records will not be overwritten. The more transactions occur after the deletion, the more chances the records will be overwritten and permanently lost. Therefore, it’s recommended to create a copy of the database MDF and LDF files immediately (if you cannot take your database offline until the issue is solved) and run ApexSQL Recover on them. Note that a full database backup will not help here, as the records marked for overwriting are not included in the backup. First, I’ll delete some records from the Person.EmailAddress table in the AdventureWorks database.   I can delete these records in SQL Server Management Studio, or execute a script such as DELETE FROM Person.EmailAddress WHERE BusinessEntityID BETWEEN 70 AND 80 Then, I’ll start ApexSQL Recover and select From DELETE operation in the Recovery tab.   In the Select the database to recover step, first select the SQL Server instance. If it’s not shown in the drop-down list, click the Server icon right to the Server drop-down list and browse for the SQL Server instance, or type the instance name manually. Specify the authentication type and select the database in the Database drop-down list.   In the next step, you’re prompted to add additional data sources. As this can be a tricky step, especially for new users, ApexSQL Recover offers help via the Help me decide option.   The Help me decide option guides you through a series of questions about the database transaction log and advises what files to add. If you know that you have no transaction log backups or detached transaction logs, or the online transaction log file has been truncated after the data was deleted, select No additional transaction logs are available. If you know that you have transaction log backups that contain the delete transactions you want to recover, click Add transaction logs. The online transaction log is listed and selected automatically.   Click Add if to add transaction log backups. It would be best if you have a full transaction log chain, as explained above. The next step for this option is to specify the time range.   Selecting a small time range for the time of deletion will create the recovery script just for the accidentally deleted records. A wide time range might script the records deleted on purpose, and you don’t want that. If needed, you can check the script generated and manually remove such records. After that, for all data sources options, the next step is to select the tables. Be careful here, if you deleted some data from other tables on purpose, and don’t want to recover them, don’t select all tables, as ApexSQL Recover will create the INSERT script for them too.   The next step offers two options: to create a recovery script that will insert the deleted records back into the Person.EmailAddress table, or to create a new database, create the Person.EmailAddress table in it, and insert the deleted records. I’ll select the first one.   The recovery process is completed and 11 records are found and scripted, as expected.   To see the script, click View script. ApexSQL Recover has its own script editor, where you can review, modify, and execute the recovery script. The insert into statements look like: INSERT INTO Person.EmailAddress( BusinessEntityID, EmailAddressID, EmailAddress, rowguid, ModifiedDate) VALUES( 70, 70, N'[email protected]' COLLATE SQL_Latin1_General_CP1_CI_AS, 'd62c5b4e-c91f-403f-b630-7b7e0fda70ce', '20030109 00:00:00.000' ); To execute the script, click Execute in the menu.   If you want to check whether the records are really back, execute SELECT * FROM Person.EmailAddress WHERE BusinessEntityID BETWEEN 70 AND 80 As shown, ApexSQL Recover recovers SQL database data after accidental deletes even without the database backup that contains the deleted data and relevant transaction log backups. ApexSQL Recover reads the deleted data from the database data file, so this method can be used even for databases in the Simple recovery model. Besides recovering SQL database records from a DELETE statement, ApexSQL Recover can help when the records are lost due to a DROP TABLE, or TRUNCATE statement, as well as repair a corrupted MDF file that cannot be attached to as SQL Server instance. You can find more information about how to recover SQL database lost data and repair a SQL Server database on ApexSQL Solution center. There are solutions for various situations when data needs to be recovered. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Using an APT proxy for downloads during installation

    - by intuited
    During system installation from a Desktop LiveCD (10.10) I checked the "Download updates during installation" option. Before starting the install I had configured an apt proxy server; this had been used correctly for my various package installs prior to launching the system installation GUI. However, the downloads taking place during the installation are not using the proxy. Is there a way to force usage of an APT proxy during installation?

    Read the article

  • Convert a DVD Movie Directly to AVI with FairUse Wizard 2.9

    - by DigitalGeekery
    Are you looking for a way to backup your DVD movie collection to AVI?  Today we’ll show you how to rip a DVD movie directly to AVI with FairUse Wizard. About FairUse Wizard FairUse Wizard 2.9 uses the DivX, Xvid, or h.264 codec to convert DVD to an AVI file. It comes in both a free version and commercial version. The free, or “Light” version, can create files up 700MB while the commercial version can output a 1400MB file. This will allow you to back up your movies to CD, or even multiple movies on a single DVD. FairUse Wizard states that it does not work on copy protected discs, but we’ve seen it work on all but some of the most recent copy protection. For this tutorial we’re using the free Light Edition to convert a DVD to AVI. They also offer a commercial version that you can get for $29.99 and it offers even more encoding possibilities for converting video to you portable digital devices. Installation and Configuration Download and install FairUse Wizard. (Download link below). Once the install is complete, open FairUse Wizard by going to Start > All Programs >  FairUse Wizard 2 >  FairUse Wizard 2.   FairUse Wizard will open on the new project screen. Select “Create a new project” and type a project name into the text box. This will be used as the file output name.  Ex: A project name of Simpsons Movie will give you an output file of Simpsons Movie.avi.   Next, browse for a destination folder for the output file and temp files. Note that you will need a minimum of 6 GB of free disk space for the conversion process. Note: Much of that 6 GB will be used for temporary files that we will delete after the conversion process.   Click on the Options button at the bottom.   Under Preferences, choose your preferred video codec and file output size. XviD and x264 are installed by default. If you prefer to use DivX, you will have to install it separately. Also note the “Two pass” option. Checking the “Two pass” box will encode your video twice for higher quality, but will take more time. Un-checking the box will speed up the conversion process.   Under Audio track, note that English subtitles are enabled by default, so to remove the subtitles, you will need to change the dropdown list so it shows only a dash (-). You can also select “Use TV Mode” if your primary playback will be on a 4:3 TV screen. Click “Next.” Full Auto Mode vs. Manual Mode You should now be back to the initial screen. Next, we’ll need to determine whether or not we can use “Full Auto Mode” to convert the movie. The difference is that “Full Auto Mode” will automatically perform a few steps that you will otherwise have to do manually. If you choose the “Full Auto Mode” option, FairUse Wizard will look for the video on the DVD with the longest duration and assume it is the chain that it should convert to AVI. It’s possible, however, your disc may contain a few chains of similar size, such as a theatrical cut and director’s cut, and the longest chain may not be the one you wish to convert. Make sure that “Full auto mode” is not checked yet, and click “Next.”   FairUse Wizard will parse the IFO files and display all video chains longer than 60  seconds. In most cases, you will only find that the largest chain is the one closely matching the duration of the movie. In these instances, you can use “Full Auto Mode.” If you find more than one chain that are close in duration to the length of the movie, consult the literature on the DVD case, or search online, to find the actual running time of the movie. If the proper file chain is not the longest chain, you won’t be able to use “Full Auto Mode.”   Full Auto Mode To use “Full Auto Mode,” simply click the “Back” button to return to the initial screen Now, place a check in the “Full auto mode” check box. Click “Next.” You will then be prompted to chose your DVD drive, then click “OK.” FairUse Wizard will parse the IFO files… … and then prompt you to Select your drive that contains the DVD one more time before beginning the conversion process. Click “OK.”   Manual Mode If you cannot (or don’t wish to) use Full Auto Mode, choose the appropriate video chain and click “Next.” FairUse Wizard will first go through the process of indexing the video. Note: If you get a runtime error during this portion of the process, it likely means that FairUse Wizard cannot handle the copy protection, and thus cannot convert the DVD. FairUse Wizard will automatically detect a cropping region. If necessary, you can edit the cropping region by adjusting the cropping region settings to the left. Click “Next.” Next, click “Auto Detect” to choose the proper field combination. Click “OK” on the pop up window that displays your Field Mode. Then click “Next.” This next screen is mainly comprised of settings from the Options screen. You can make changes at this point such as codec or output size. Click “Next” when ready.   Video Conversion Now the video conversion process will begin. This may take a few hours depending on your system’s hardware. Note: There is a check box to “Shutdown computer when done” if you choose to run the conversion overnight or before leaving for work. The first phase will be video encoding… Then the audio… If you chose the “Two Pass” option, your video video will be encoded again on 2nd pass. Then you’re finished. Unfortunately, FairUse Wizard doesn’t clean up after itself very well. After the process is complete, you’ll want to browse to your output directory and delete all the temporary files as they take up a considerable amount of hard drive space. Now you’re ready to enjoy your movie. Conclusion FairUse Wizard is a nice way to backup your DVD movies to good quality .avi files. You can store them on your hard drive, watch them on a media PC, or burn them to disc. Many DVD players even allow for playback of DivX or XviD encoded video from a CD or DVD. For those of you with children, you can burn that AVI file to CD for your kids, and keep your original DVDs stored safely out of harms way. Download Download FairUse Wizard 2.9 LE Similar Articles Productive Geek Tips Kantaris is a Unique Media Player Based on VLCHow to Make/Edit a movie with Windows Movie Maker in Windows VistaAutomatically Mount and View ISO files in Windows 7 Media CenterTune Your ClearType Font Settings in Windows VistaAdd Images and Metadata to Windows 7 Media Center Movie Library TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Make your Joomla & Drupal Sites Mobile with OSMOBI Integrate Twitter and Delicious and Make Life Easier Design Your Web Pages Using the Golden Ratio Worldwide Growth of the Internet How to Find Your Mac Address Use My TextTools to Edit and Organize Text

    Read the article

  • Resolving IIS7 HTTP Error 500.19 - Internal Server Error

    - by fatherjack
    LiveJournal Tags: RedGate Tools,SQL Server,Tips and Tricks How To The requested page cannot be accessed because the related configuration data for the page is invalid. As part of my work recently I was moving SQL Monitor from the bespoke XSP web server to be hosted on IIS instead. This didn't go smoothly. I was lucky to be helped by Red Gate's support team (http://twitter.com/kickasssupport). I had SQL Monitor installed and working fine on the XSP site but wanted to move to IIS so I reinstalled the software and chose the IIS option. This wasn't possible as IIS wasn't installed on the server. I went to Control Panel, Windows features and installed IIS and then returned to the SQL Monitor installer. Everything went as planned but when I browsed the site I got a huge error with the message "HTTP Error 500.19 - Internal Server Error The requested page cannot be accessed because the related configuration data for the page is invalid." All links that I could find suggested it was a permissions issue, based on the directory where the config file was stored. I changed this any number of times and also tried the altering its location. Nothing resolved the error. It was only when I was trying the installation again that I read through the details from Red Gate and noted that they referred to ASP settings that I didn't have. Essentially I was seeing this. I had installed IIS using the default settings and that DOESN'T include ASP. When this dawned on me I went back through the windows components installation process and ticked the ASP service within the IIS role. Completing this and going back to the IIS management console I saw something like this; so many more options! When I clicked on the Authentication icon this time I got the option to not only enable Anonymous Authentication but also ASP.NET Impersonation (which is disabled by default). Once I had enabled this the SQL Monitor website worked without error. I think the HTTP Error 500.19 is misleading in this case and at the very least should be able to recognise if the ASP service is installed or not and then to include a hint that it should be. I hope this helps some people and avoids wasting as much of your time as it did mine. Let me know if it helps you.

    Read the article

  • Interface contracts – forcing code contracts through interfaces

    - by DigiMortal
    Sometimes we need a way to make different implementations of same interface follow same rules. One option is to duplicate contracts to all implementation but this is not good option because we have duplicated code then. The other option is to force contracts to all implementations at interface level. In this posting I will show you how to do it using interface contracts and contracts class. Using code from previous example about unit testing code with code contracts I will go further and force contracts at interface level. Here is the code from previous example. Take a careful look at it because I will talk about some modifications to this code soon. public interface IRandomGenerator {     int Next(int min, int max); }   public class RandomGenerator : IRandomGenerator {     private Random _random = new Random();       public int Next(int min, int max)     {         return _random.Next(min, max);     } }    public class Randomizer {     private IRandomGenerator _generator;       private Randomizer()     {         _generator = new RandomGenerator();     }       public Randomizer(IRandomGenerator generator)     {         _generator = generator;     }       public int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(             min < max,             "Min must be less than max"         );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return _generator.Next(min, max);     } } If we look at the GetRandomFromRangeContracted() method we can see that contracts set in this method are applicable to all implementations of IRandomGenerator interface. Although we can write new implementations as we want these implementations need exactly the same contracts. If we are using generators somewhere else then code contracts are not with them anymore. To solve the problem we will force code contracts at interface level. NB! To make the following code work you must enable Contract Reference Assembly building from project settings. Interface contracts and contracts class Interface contains no code – only definitions of members that implementing type must have. But code contracts must be defined in body of member they are part of. To get over this limitation, code contracts are defined in separate contracts class. Interface is bound to this class by special attribute and contracts class refers to interface through special attribute. Here is the IRandomGenerator with contracts and contracts class. Also I write simple fake so we can test contracts easily based only on interface mock. [ContractClass(typeof(RandomGeneratorContracts))] public interface IRandomGenerator {     int Next(int min, int max); }   [ContractClassFor(typeof(IRandomGenerator))] internal sealed class RandomGeneratorContracts : IRandomGenerator {     int IRandomGenerator.Next(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(                 min < max,                 "Min must be less than max"             );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return default(int);     } }   public class RandomFake : IRandomGenerator {     private int _testValue;       public RandomGen(int testValue)     {         _testValue = testValue;     }       public int Next(int min, int max)     {         return _testValue;     } } To try out these changes use the following code. var gen = new RandomFake(3);   try {     gen.Next(10, 1); } catch(Exception ex) {     Debug.WriteLine(ex.Message); }   try {     gen.Next(5, 10); } catch(Exception ex) {     Debug.WriteLine(ex.Message); } Now we can force code contracts to all types that implement our IRandomGenerator interface and we must test only the interface to make sure that contracts are defined correctly.

    Read the article

  • Facebook Application Development - Tips For Owners and Designers

    Facebook applications are an innovation aimed to help their owners to make the most of one of the largest social networks. But like any other popular novelty, this Facebook option raises a lot of questions too. In this article you will find tips and recommendations which can be helpful when planning, designing, and developing Facebook applications.

    Read the article

  • How do I install Ubuntu on a Sony Vaio SVT1311?

    - by Sonny
    I am wondering if I could get assistance of how to install Ubuntu on my Sony Vaio T. SVT131A11L is the hardware configuration code and the model number of the computer is one among the SVT1311 series. I contacted Sony customer service but their answer was to contact a Linux representative. The bugging error with Vaio devices is they are build to run windows and it doesnt come configured with a dual boot option, I am wondering if I could get any assistance of how to solve it, or where I could get related information.

    Read the article

  • Web Self Service installation on Windows

    - by Rajesh Sharma
    Web Self Service (WSS) installation on windows is pretty straight forward but you might face some issues if deployed under tomcat. Here's a step-by-step guide to install Oracle Utilities Web Self Service on windows.   Below installation steps are done on: Oracle Utilities Framework version 2.2.0 Oracle Utilities Application - Customer Care & Billing version 2.2.0 Application server - Apache Tomcat 6.0.13 on default port 6500 Other settings include: SPLBASE = C:\spl\CCBDEMO22 SPLENVIRON = CCBV22 SPLWAS = TCAT   Follow these steps for a Web Self Service installation on windows: Download Web Self Service application from edelivery.   Copy the delivery file Release-SelfService-V2.2.0.zip from the Oracle Utilities Customer Care and Billing version 2.2.0 Web Self Service folder on the installation media to a directory on your Windows box where you would like to install the application, in our case it's a temporary folder C:\wss_temp.   Setup application environment, execute splenviron.cmd -e <ENVIRON_NAME>   Create base folder for Self Service application named SelfService under %SPLEBASE%\splapp\applications   Install Oracle Utilities Web Self Service   C:\wss_temp\Release-SelfService-V2.2.0>install.cmd -d %SPLEBASE%\splapp\applications\SelfService   Web Self Service installation menu. Populate environment values for each item.   ******************************************************** Pick your installation options: ******************************************************** 1. Destination directory name for installation.             | C:\spl\CCBDEMO22\splapp\applications\SelfService 2. Web Server Host.                                         | CCBV22 3. Web Server Port Number.                                  | 6500 4. Mail SMTP Host.                                          | CCBV22 5. Top Product Installation directory.                      | C:\spl\CCBDEMO22 6.     Web Application Server Type.                         | TCAT 7.     When OAS: SPLWeb OC4J instance name is required.     | OC4J1 8.     When WAS: SPLWeb server instance name is required.   | server1   P. Process the installation. Each item in the above list should be configured for a successful installation. Choose option to configure or (P) to process the installation:  P   Option 7 and Option 8 can be ignored for TCAT.   Above step installs SelfService.war file in the destination directory. We need to explode this war file. Change directory to the installation destination folder, and   C:\spl\CCBDEMO22\splapp\applications\SelfService>jar -xf SelfService.war   Review SelfServiceConfig.properties and CMSelfServiceConfig.properties. Change any properties value within the file specific to your installation/site. Generally default settings apply, for this exercise assumes that WEB user already exists in your application database.   For more information on property file customization, refer to Oracle Utilities Web Self Service Configuration section in Customer Care & Billing Installation Guide.   Add context entry in server.xml located under tomcat-base folder C:\spl\CCBDEMO22\product\tomcatBase\conf   ... <!-- SPL Context -->           <Context path="" docBase="C:/spl/CCBDEMO22/splapp/applications/root" debug="0" privileged="true"/>           <Context path="/appViewer" docBase="C:/spl/CCBDEMO22/splapp/applications/appViewer" debug="0" privileged="true"/>           <Context path="/help" docBase="C:/spl/CCBDEMO22/splapp/applications/help" debug="0" privileged="true"/>           <Context path="/XAIApp" docBase="C:/spl/CCBDEMO22/splapp/applications/XAIApp" debug="0" privileged="true"/>           <Context path="/SelfService" docBase="C:/spl/CCBDEMO22/splapp/applications/SelfService" debug="0" privileged="true"/> ...   Add User in tomcat-users.xml file located under tomcat-base folder C:\spl\CCBDEMO22\product\tomcatBase\conf   <user username="WEB" password="selfservice" roles="cisusers"/>   Note the password is "selfservice", this is the default password set within the SelfServiceConfig.properties file with base64 encoding.   Restart the application (spl.cmd stop | start)   12.  Although Apache Tomcat version 6.0.13 does not come with the admin pack, you can verify whether SelfService application is loaded and running, go to following URL http://server:port/manager/list, in our case it'll be http://ccbv22:6500/manager/list Following output will be displayed   OK - Listed applications for virtual host localhost /admin:running:0:C:/tomcat/apache-tomcat-6.0.13/webapps/ROOT/admin /XAIApp:running:0:C:/spl/CCBDEMO22/splapp/applications/XAIApp /host-manager:running:0:C:/tomcat/apache-tomcat-6.0.13/webapps/host-manager /SelfService:running:0:C:/spl/CCBDEMO22/splapp/applications/SelfService /appViewer:running:0:C:/spl/CCBDEMO22/splapp/applications/appViewer /manager:running:1:C:/tomcat/apache-tomcat-6.0.13/webapps/manager /help:running:0:C:/spl/CCBDEMO22/splapp/applications/help /:running:0:C:/spl/CCBDEMO22/splapp/applications/root   Also ensure that the XAIApp is running.   Run Oracle Utilities Web Self Service application http://server:port/SelfService in our case it'll be  http://ccbv22:6500/SelfService   Still doesn't work? And you get '503 HTTP response' at the time of customer registration?     This is because XAI service is still unavailable. There is initialize.waittime set for a default value of 90 seconds for the XAI Application to come up.   Remember WSS uses XAI to perform actions/validations on the CC&B database.  

    Read the article

  • Make flash ignore transparent wmode — always display opaque background

    - by Tometzky
    How to make flash movie (an advertising banner) ignore <param name="wmode" value="transparent">? There are some CMS systems which insert flash movies automatically with transparent wmode option. Flash Player ignores banner's background color, makes it transparent and displays it on web page background. I can workaround it using additional layer at the bottom with a large rectangle of desired color, but I think it is inefficient and inelegant. How to do this better?

    Read the article

  • Analysis of nopCommerce

    - by chanva
    More and more medium-sized and small enterprises would like eCommerce website to sell their products or services.  Free and open source project should be the first choice.  I found out the nopCommerce is a good option, you could see the detailed analysis.

    Read the article

  • SQL SERVER – Extending SQL Azure with Azure worker role – Guest Post by Paras Doshi

    - by pinaldave
    This is guest post by Paras Doshi. Paras Doshi is a research Intern at SolidQ.com and a Microsoft student partner. He is currently working in the domain of SQL Azure. SQL Azure is nothing but a SQL server in the cloud. SQL Azure provides benefits such as on demand rapid provisioning, cost-effective scalability, high availability and reduced management overhead. To see an introduction on SQL Azure, check out the post by Pinal here In this article, we are going to discuss how to extend SQL Azure with the Azure worker role. In other words, we will attempt to write a custom code and host it in the Azure worker role; the aim is to add some features that are not available with SQL Azure currently or features that need to be customized for flexibility. This way we extend the SQL Azure capability by building some solutions that run on Azure as worker roles. To understand Azure worker role, think of it as a windows service in cloud. Azure worker role can perform background processes, and to handle processes such as synchronization and backup, it becomes our ideal tool. First, we will focus on writing a worker role code that synchronizes SQL Azure databases. Before we do so, let’s see some scenarios in which synchronization between SQL Azure databases is beneficial: scaling out access over multiple databases enables us to handle workload efficiently As of now, SQL Azure database can be hosted in one of any six datacenters. By synchronizing databases located in different data centers, one can extend the data by enabling access to geographically distributed data Let us see some scenarios in which SQL server to SQL Azure database synchronization is beneficial To backup SQL Azure database on local infrastructure Rather than investing in local infrastructure for increased workloads, such workloads could be handled by cloud Ability to extend data to different datacenters located across the world to enable efficient data access from remote locations Now, let us develop cloud-based app that synchronizes SQL Azure databases. For an Introduction to developing cloud based apps, click here Now, in this article, I aim to provide a bird’s eye view of how a code that synchronizes SQL Azure databases look like and then list resources that can help you develop the solution from scratch. Now, if you newly add a worker role to the cloud-based project, this is how the code will look like. (Note: I have added comments to the skeleton code to point out the modifications that will be required in the code to carry out the SQL Azure synchronization. Note the placement of Setup() and Sync() function.) Click here (http://parasdoshi1989.files.wordpress.com/2011/06/code-snippet-1-for-extending-sql-azure-with-azure-worker-role1.pdf ) Enabling SQL Azure databases synchronization through sync framework is a two-step process. In the first step, the database is provisioned and sync framework creates tracking tables, stored procedures, triggers, and tables to store metadata to enable synchronization. This is one time step. The code for the same is put in the setup() function which is called once when the worker role starts. Now, the second step is continuous (or on demand) synchronization of SQL Azure databases by propagating changes between databases. This is done on a continuous basis by calling the sync() function in the while loop. The code logic to synchronize changes between SQL Azure databases should be put in the sync() function. Discussing the coding part step by step is out of the scope of this article. Therefore, let me suggest you a resource, which is given here. Also, note that before you start developing the code, you will need to install SYNC framework 2.1 SDK (download here). Further, you will reference some libraries before you start coding. Details regarding the same are available in the article that I just pointed to. You will be charged for data transfers if the databases are not in the same datacenter. For pricing information, go here Currently, a tool named DATA SYNC, which is built on top of sync framework, is available in CTP that allows SQL Azure <-> SQL server and SQL Azure <-> SQL Azure synchronization (without writing single line of code); however, in some cases, the custom code shown in this blogpost provides flexibility that is not available with Data SYNC. For instance, filtering is not supported in the SQL Azure DATA SYNC CTP2; if you wish to have such a functionality now, then you have the option of developing a custom code using SYNC Framework. Now, this code can be easily extended to synchronize at some schedule. Let us say we want the databases to get synchronized every day at 10:00 pm. This is what the code will look like now: (http://parasdoshi1989.files.wordpress.com/2011/06/code-snippet-2-for-extending-sql-azure-with-azure-worker-role.pdf) Don’t you think that by writing such a code, we are imitating the functionality provided by the SQL server agent for a SQL server? Think about it. We are scheduling our administrative task by writing custom code – in other words, we have developed a “Light weight SQL server agent for SQL Azure!” Since the SQL server agent is not currently available in cloud, we have developed a solution that enables us to schedule tasks, and thus we have extended SQL Azure with the Azure worker role! Now if you wish to track jobs, you can do so by storing this data in SQL Azure (or Azure tables). The reason is that Windows Azure is a stateless platform, and we will need to store the state of the job ourselves and the choice that you have is SQL Azure or Azure tables. Note that this solution requires custom code and also it is not UI driven; however, for now, it can act as a temporary solution until SQL server agent is made available in the cloud. Moreover, this solution does not encompass functionalities that a SQL server agent provides, but it does open up an interesting avenue to schedule some of the tasks such as backup and synchronization of SQL Azure databases by writing some custom code in the Azure worker role. Now, let us see one more possibility – i.e., running BCP through a worker role in Azure-hosted services and then uploading the backup files either locally or on blobs. If you upload it locally, then consider the data transfer cost. If you upload it to blobs residing in the same datacenter, then no transfer cost applies but the cost on blob size applies. So, before choosing the option, you need to evaluate your preferences keeping the cost associated with each option in mind. In this article, I have shown that Azure worker role solution could be developed to synchronize SQL Azure databases. Moreover, a light-weight SQL server agent for SQL Azure can be developed. Also we discussed the possibility of running BCP through a worker role in Azure-hosted services for backing up our precious SQL Azure data. Thus, we can extend SQL Azure with the Azure worker role. But remember: you will be charged for running Azure worker roles. So at the end of the day, you need to ask – am I willing to build a custom code and pay money to achieve this functionality? I hope you found this blog post interesting. If you have any questions/feedback, you can comment below or you can mail me at Paras[at]student-partners[dot]com Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Azure, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to create Adhoc workflow in UCM

    - by vijaykumar.yenne
    UCM has an inbuilt workflow engine that can handle document centric workflow approval/rejection process to ensure the right set of assets go into the repository. Anybody who has gone through the documentation is aware that there are two types of work flows that can be defined using the Workflow Admin applet in UCM namely Criteria and Basic While criteria is an Automatic workflow  process based on certain metadata attributes (Security Group and One of the Metadata Fields) , basic workflow is a manual workflow that need to be initiated by the admin. Any workflow  that can be put on the white board can be translated into the UCM wokflow process and there are concepts like sub workflows, tokens, events. idoc scripting that be introduced to handle any kind of complex workflows. There is a specific Workflow Implementation guide that explains the concepts in detail. One of the standard queries i come across is how to handle adhoc workflows where at the time of contributing the content, the contributors would like to decide on the workflow to be initiated and the users to be picked for approval in each step, hence this post.This is what i want to acheive, i would like to display on my Checkin Screen on the kind of workflows that a contributor could choose from:Based on the Workflow the contributor chooses, the other metadata fields (Step One, Step Two and Step Three)  need to be filled in and these fields decide who the approvers are going to be.1. Create a criteria workflow called One_Step_Review2.create two tokens StepOne <$wfAddUser(xWorkflowStepOne, "user")$>,  OrginalAuthor  <$wfAddUser(wfGet("OriginalAuthor"), "user")$>View image3.create two steps in the work flow created (One_Step_Review)View image4. Edit Step1 of the Workflow and add the Step One token and select the review permissionView image5. In the exit conditions tab have atleast One reveiwerView image6. In the events tab add an entry event <$wfSet("OriginalAuthor",dDocAuthor)$> to capture the contributor who shall be notified in the second step of the workflowView image7. Add the second step Notify_Author to the workflow8. Add the original author token to the above step9.  Enable the workflow10. Open the configration manager applet and create a Metadata field Workflow with option list enabled and add the list of values as show hereView image11. Create another metadata field WorkflowStepOne with option list configured to the Users View. This shall display all the users registered with UCM, which when selected shall be associated with the tokens associated with the workflow. Refer the above token.View imageAs indicated in the above steps you could create multiple work flows and associate the custom metadata field values to the tokens so that the contributors can decide who can approve their  content.

    Read the article

< Previous Page | 137 138 139 140 141 142 143 144 145 146 147 148  | Next Page >