Search Results

Search found 2515 results on 101 pages for 'opengl es2'.

Page 15/101 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • c++ most used libraries [on hold]

    - by Basaa
    I'm trying to find out whether or not I want to switch from Java to c++ for my OpenGL game programming. I now have setup a test project in VS 11 professional, with GLUT. I created my windows with GLUT, and I can render OpenGL primitives without any problems. Now my question: What library(s) is/are used mostly in the indie/semi professional industry for using OpenGL in c++? With 'using OpenGL' I mean: Creating and managing an OpenGL window Actually using the OpenGL API Handling user-input (keyboard/mouse)

    Read the article

  • Problem enabling OpenGL ES depth test on iPhone. What steps are necessary?

    - by Chris Cooper
    I remember running into this problem when I started using OpenGL in OS X. Eventually I solved it, but I think that was just by using glut and c++ instead of Objective-C... The lines of code I have in init for the ES1Renderer are as follows: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); Then in the render method, I have this: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); I assume I'm missing something specific to either the iPhone or ES. What other steps are required to enable the depth test? Thanks

    Read the article

  • Why does my Opengl es android testbed app not render anything besides a red screen?

    - by nathan
    For some reason my code here (this is the entire thing) doesnt actually render anything besides a red screen.. can anyone tell me why? package com.ntu.way2fungames.earth.testbed; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import android.app.Activity; import android.content.Context; import android.opengl.GLSurfaceView; import android.opengl.GLSurfaceView.Renderer; import android.os.Bundle; public class projectiles extends Activity { GLSurfaceView lGLView; Renderer lGLRenderer; float projectilesX[]= new float[5001]; float projectilesY[]= new float[5001]; float projectilesXa[]= new float[5001]; float projectilesYa[]= new float[5001]; float projectilesTheta[]= new float[5001]; float projectilesSpeed[]= new float[5001]; private static FloatBuffer drawBuffer; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); SetupProjectiles(); Context mContext = this.getWindow().getContext(); lGLView= new MyView(mContext); lGLRenderer= new MyRenderer(); lGLView.setRenderer(lGLRenderer); setContentView(lGLView); } private void SetupProjectiles() { int i=0; for (i=5000;i>0;i=i-1){ projectilesX[i] = 240; projectilesY[i] = 427; float theta = (float) ((i/5000)*Math.PI*2); projectilesXa[i] = (float) Math.cos(theta); projectilesYa[i] = (float) Math.sin(theta); projectilesTheta[i]= theta; projectilesSpeed[i]= (float) (Math.random()+1); } } public class MyView extends GLSurfaceView{ public MyView(Context context) { super(context); // TODO Auto-generated constructor stub } } public class MyRenderer implements Renderer{ private float[] projectilecords = new float[] { .0f, .5f, 0, -.5f, 0f, 0, .5f, 0f, 0, 0, -5f, 0, }; @Override public void onDrawFrame(GL10 gl) { gl.glClear(GL10.GL_COLOR_BUFFER_BIT); gl.glMatrixMode(GL10.GL_MODELVIEW); //gl.glLoadIdentity(); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); for (int i=5000;i>4500;i=i-1){ //drawing section gl.glLoadIdentity(); gl.glColor4f(.9f, .9f,.9f,.9f); gl.glTranslatef(projectilesY[i], projectilesX[i],1); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, drawBuffer); gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 12); //physics section projectilesX[i]=projectilesX[i]+projectilesXa[i]; projectilesY[i]=projectilesY[i]+projectilesYa[i]; } gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); } @Override public void onSurfaceChanged(GL10 gl, int width, int height) { if (height == 0) height = 1; // draw on the entire screen gl.glViewport(0, 0, width, height); // setup projection matrix gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glOrthof(0,width,height,0, -100, 100); } @Override public void onSurfaceCreated(GL10 gl, EGLConfig arg1) { gl.glShadeModel(GL10.GL_SMOOTH); gl.glClearColor(1f, .01f, .01f, 1f); gl.glClearDepthf(1.0f); gl.glEnable(GL10.GL_DEPTH_TEST); gl.glDepthFunc(GL10.GL_LEQUAL); gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); drawBuffer = FloatBuffer.wrap(projectilecords); } } }

    Read the article

  • What is a better abstraction layer for D3D9 and OpenGL vertex data management?

    - by Sam Hocevar
    My rendering code has always been OpenGL. I now need to support a platform that does not have OpenGL, so I have to add an abstraction layer that wraps OpenGL and Direct3D 9. I will support Direct3D 11 later. TL;DR: the differences between OpenGL and Direct3D cause redundancy for the programmer, and the data layout feels flaky. For now, my API works a bit like this. This is how a shader is created: Shader *shader = Shader::Create( " ... GLSL vertex shader ... ", " ... GLSL pixel shader ... ", " ... HLSL vertex shader ... ", " ... HLSL pixel shader ... "); ShaderAttrib a1 = shader->GetAttribLocation("Point", VertexUsage::Position, 0); ShaderAttrib a2 = shader->GetAttribLocation("TexCoord", VertexUsage::TexCoord, 0); ShaderAttrib a3 = shader->GetAttribLocation("Data", VertexUsage::TexCoord, 1); ShaderUniform u1 = shader->GetUniformLocation("WorldMatrix"); ShaderUniform u2 = shader->GetUniformLocation("Zoom"); There is already a problem here: once a Direct3D shader is compiled, there is no way to query an input attribute by its name; apparently only the semantics stay meaningful. This is why GetAttribLocation has these extra arguments, which get hidden in ShaderAttrib. Now this is how I create a vertex declaration and two vertex buffers: VertexDeclaration *decl = VertexDeclaration::Create( VertexStream<vec3,vec2>(VertexUsage::Position, 0, VertexUsage::TexCoord, 0), VertexStream<vec4>(VertexUsage::TexCoord, 1)); VertexBuffer *vb1 = new VertexBuffer(NUM * (sizeof(vec3) + sizeof(vec2)); VertexBuffer *vb2 = new VertexBuffer(NUM * sizeof(vec4)); Another problem: the information VertexUsage::Position, 0 is totally useless to the OpenGL/GLSL backend because it does not care about semantics. Once the vertex buffers have been filled with or pointed at data, this is the rendering code: shader->Bind(); shader->SetUniform(u1, GetWorldMatrix()); shader->SetUniform(u2, blah); decl->Bind(); decl->SetStream(vb1, a1, a2); decl->SetStream(vb2, a3); decl->DrawPrimitives(VertexPrimitive::Triangle, NUM / 3); decl->Unbind(); shader->Unbind(); You see that decl is a bit more than just a D3D-like vertex declaration, it kinda takes care of rendering as well. Does this make sense at all? What would be a cleaner design? Or a good source of inspiration?

    Read the article

  • What is the recommended way to output values to FBO targets? (OpenGL 3.3 + GLSL 330)

    - by datSilencer
    I'll begin by apologizing for any dumb assumptions you might find in the code below since I'm still pretty much green when it comes to OpenGL programming. I'm currently trying to implement deferred shading by using FBO's and their associated targets (textures in my case). I have a simple (I think :P) geometry+fragment shader program and I'd like to write its Fragment Shader stage output to three different render targets (previously bound by a call to glDrawBuffers()), like so: #version 330 in vec3 WorldPos0; in vec2 TexCoord0; in vec3 Normal0; in vec3 Tangent0; layout(location = 0) out vec3 WorldPos; layout(location = 1) out vec3 Diffuse; layout(location = 2) out vec3 Normal; uniform sampler2D gColorMap; uniform sampler2D gNormalMap; vec3 CalcBumpedNormal() { vec3 Normal = normalize(Normal0); vec3 Tangent = normalize(Tangent0); Tangent = normalize(Tangent - dot(Tangent, Normal) * Normal); vec3 Bitangent = cross(Tangent, Normal); vec3 BumpMapNormal = texture(gNormalMap, TexCoord0).xyz; BumpMapNormal = 2 * BumpMapNormal - vec3(1.0, 1.0, -1.0); vec3 NewNormal; mat3 TBN = mat3(Tangent, Bitangent, Normal); NewNormal = TBN * BumpMapNormal; NewNormal = normalize(NewNormal); return NewNormal; } void main() { WorldPos = WorldPos0; Diffuse = texture(gColorMap, TexCoord0).xyz; Normal = CalcBumpedNormal(); } If my render target textures are configured as: RT1:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE0, GL_COLOR_ATTACHMENT0) RT2:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE1, GL_COLOR_ATTACHMENT1) RT3:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE2, GL_COLOR_ATTACHMENT2) And assuming that each texture has an internal format capable of contaning the incoming data, will the fragment shader write the corresponding values to the expected texture targets? On a related note, do the textures need to be bound to the OpenGL context when they are Multiple Render Targets? From some Googling, I think there are two other ways to output to MRTs: 1: Output each component to gl_FragData[n]. Some forum posts say this method is deprecated. However, looking at the latest OpenGL 3.3 and 4.0 specifications at opengl.org, the core profiles still mention this approach. 2: Use a typed output array variable for the expected type. In this case, I think it would be something like this: out vec3 [3] output; void main() { output[0] = WorldPos0; output[1] = texture(gColorMap, TexCoord0).xyz; output[2] = CalcBumpedNormal(); } So which is then the recommended approach? Is there a recommended approach at all if I plan to code on top of OpenGL 3.3? Thanks for your time and help!

    Read the article

  • OpenGL ES 2. How do I Create a Basic Fading Streak Effect?

    - by dugla
    For the iPad app I am writing using OpenGL ES 2 I have a single quad - shaded using GLSL - that is dragged around the screen. Very basic. This works fine. But is rather boring. I want to increase the coolness a bit in the following way: when the user drags the quad it leaves a streak behind that fades over time. Continuous dragging would be a bit like a streaking comet across the night sky. What is the simplest way to implement this? Thanks.

    Read the article

  • What data type should I use for my texture coordinates in OpenGL ES?

    - by Matthew Chen
    I notice that the default data type for texture coordinates in the OpenGL docs is GLfloat, but much of the sample code I see written by experienced iphone developers uses GLshort or GLbyte. Is this an optimization? GLfloat vertices[] = { // Upper left x1, y2, // Lower left x1, y1, // Lower right x2, y1, // Upper right x2, y2, }; glTexCoordPointer(2, GL_FLOAT, 0, iconSTs); vs. GLbyte vertices[] = { // Upper left x1, y2, // Lower left x1, y1, // Lower right x2, y1, // Upper right x2, y2, }; glTexCoordPointer(2, GL_BYTE, 0, iconSTs);

    Read the article

  • In OpenGl ES 2, should I allocate multiple transformation matrices?

    - by thm4ter
    In OpenGl ES 2, should I declare just one transformation matrix, and share it across all objects or should I declare a transformation matrix in each object that needs it? for clarification... something like this: public class someclass{ public static float[16] transMatrix = new float[16]; ... public static void translate(int x, int y){ //do translation here } } public class someotherclass{ ... void draw(GL10 unused){ someclass.translate(10,10); //draw } } verses something like this: public class obj1{ public static float[16] transMatrix = new float[16]; ... void draw(GL10 unused){ //translate //draw } } public class obj2{ public static float[16] transMatrix = new float[16]; ... void draw(GL10 unused){ //translate //draw } }

    Read the article

  • How can I read from multiple textures in an OpenGL ES 2 shader?

    - by Peyman Tahghighi
    How can I enable more than one texture in OpenGL ES 2 so that I can sample from all of them in my shader? For example, I'm trying to read from two different textures in my shader for the player's car. This is how I'm currently dealing with the texture for my car: glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, this->texture2DObj); glUniform1i(1, 0); glBindBuffer(GL_ARRAY_BUFFER, this->vertexBuffer); glEnableVertexAttribArray(0); int offset = 0; glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, this->vertexBufferSize,(const void *)offset); offset += 3 * sizeof(GLfloat); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, this->vertexBufferSize, (const void*)offset); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->indexBuffer); glDrawElements(GL_TRIANGLES, this->indexBufferSize, GL_UNSIGNED_SHORT, 0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1);

    Read the article

  • Differences in cg shader code for OpenGL vs. for DirectX?

    - by Cray
    I have been trying to use an existing library that automatically generates shaders (Hydrax plugin for Ogre3D). These shaders are used to render water and somewhat involved, but are not extremely complicated. However there seems to be some differences in how the cg shaders are handled by OpenGL and DirectX, more specifically, I am pretty sure that the author of the library only has debugged all the shaders for DirectX, and they work flawlessly there, but not so in OpenGL. There are no compiler errors, but the result just doesn't look the same. (And I have to run the library in OpenGL.) Isn't cg supposed to be a language that can freely use the exact same code for both platforms? Are there any specific known caveats one should know about when using the same code for them? Are there any fast ways to find what parts of the code work differently? (I am pretty sure that the shaders are the problem. Otherwise Ogre3D has great support for both problems, and everything is abstracted away nicely. Other shaders work in OpenGL, etc...)

    Read the article

  • OpenGL - Stack overflow if I do, Stack underflow if I don't!

    - by Wayne Werner
    Hi, I'm in a multimedia class in college, and we're "learning" OpenGL as part of the class. I'm trying to figure out how the OpenGL camera vs. modelview works, and so I found this example. I'm trying to port the example to Python using the OpenGL bindings - it starts up OpenGL much faster, so for testing purposes it's a lot nicer - but I keep running into a stack overflow error with the glPushMatrix in this code: def cube(): for x in xrange(10): glPushMatrix() glTranslated(-positionx[x + 1] * 10, 0, -positionz[x + 1] * 10); #translate the cube glutSolidCube(2); #draw the cube glPopMatrix(); According to this reference, that happens when the matrix stack is full. So I thought, "well, if it's full, let me just pop the matrix off the top of the stack, and there will be room". I modified the code to: def cube(): glPopMatrix() for x in xrange(10): glPushMatrix() glTranslated(-positionx[x + 1] * 10, 0, -positionz[x + 1] * 10); #translate the cube glutSolidCube(2); #draw the cube glPopMatrix(); And now I get a buffer underflow error - which apparently happens when the stack has only one matrix. So am I just waaay off base in my understanding? Or is there some way to increase the matrix stack size? Also, if anyone has some good (online) references (examples, etc.) for understanding how the camera/model matrices work together, I would sincerely appreciate them! Thanks!

    Read the article

  • How to tell if OpenGL is really working in Ubuntu 10.04

    - by Jonathan
    I have a lenovo S9e running Intel integrated graphics. Here is my lspci output related to the graphics: 00:02.1 Display controller: Intel Corporation Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller (rev 03) Subsystem: Lenovo Device 3870 Flags: bus master, fast devsel, latency 0 Memory at f0580000 (32-bit, non-prefetchable) [size=512K] Capabilities: [d0] Power Management version 2 I want to know how I can make sure OpenGL support is running in full on an Ubuntu 10.04 installation. I have a few hints to think that it is not: The "Desktop Effects" will not load Apps such as stardock, when attempting to use OpenGL rendering, will display black boxes instead of transparency In the games Pioneers, the number-tile icons are suspiciously just black circles Windows games running with Wine will only support software rendering, not hardware rendering When I boot into a Knoppix LiveCD, the desktop effects do work, splendidly, meaning compiz detects my computer as capable. My problem with troubleshooting is that Canonical has basically eliminated the conf-file-based mechanism of X11 as far as I can tell, thus making it even harder to ensure graphics modules are loading properly. How do I debug and test OpenGL on m Ubuntu 10.04 installation?

    Read the article

  • Background problem of opengl 3d object over iphone camera view

    - by user292127
    Hi, I'm loading opengl 3d objects over the iphone camera view. When opengl view is loaded it's loading with a opengl 3d object with black background. The black background color will block the camera view.I just want to clear background color of opengl view so that I could load only the 3d object to the camera view. I had tried glclearcolor(1.0,1.0,1.0,0.0); but no change to background color. I had also tried to clear background color opengl view using [glview setbackgroundColor:[UIColor clearColor]];. No change in back ground color. Can any one help me with this stuff ? I'm new to opengl. Thanks in advance

    Read the article

  • Books on OpenGL ES targeted towards the iPhone

    - by Frank V
    There are a few posts on this site about OpenGL and the iPhone. Some even on books but I think you'll find this question is a bit different. I've searched and searched and have come to the conclusion that there are currently no books that specifically cover OpenGL ES on the iPhone platform. There are books that cover OpenGL ES [2.0] (note: the linked book covers OpenGL ES 2.0 but the iPhone uses OpenGL ES 1.1 which, I understand, is not backward compatible)... but they only have a small section for the iPhone (if any). What I want to know, is if anybody knows of any books that are forthcoming that specifically cover OpenGL ES 1.1 on the iPhone?

    Read the article

  • OpenGL programming vs Blender Software, which is better for custom video creation?

    - by iammilind
    I am learning OpenGL API bit by bit and also develop my own C++ framework library for effectively using them. Recently came across Blender software which is used for graphics creation and is in turn written in OpenGL itself. For my part time hobby of graphics learning, I want to just create small-small movie or video segments; e.g. related to construction engineering, epic stories and so on. There may be very minimal to nil mouse-keyboard interaction for those videos, unlike video games which are highly interactive. I was wondering if learning OpenGL from scratch is worth for it or should I invest my time in learning Blender software? There are quite a few good movie examples are created using Blender and are shown in its website. Other such opensource cross platform alternatives are also welcome, which can serve my aforementioned purpose.

    Read the article

  • How to fix openGL error for Vmware Workstation 9?

    - by Xxx Xxx
    I have recently installed Vmware workstation 9 on Ubuntu 12.04 & i have migrated my VM's from windows to Ubuntu 12.04 . Now i am getting openGL error & it says no 3D acceleration as shown in pic below How Do I Fix It ? UPDATED Before i have windows 7 ( host os ) & it was working fine with 3D Acceleration & no OpenGL error . Now my i have Ubuntu 12.04 ( host os ) & openGL error The Laptop is DELL INSPIRON N5110

    Read the article

  • What should I worry about when changing OpenGL origin to upper left of screen?

    - by derivative
    For self education, I'm writing a 2D platformer engine in C++ using SDL / OpenGL. I initially began with pure SDL using the tutorials on sdltutorials.com and lazyfoo.net, but I'm now rendering in an OpenGL context (specifically immediate mode but I'm learning about VAOs/VBOs) and using SDL for interface, audio, etc. SDL uses a coordinate system with the origin in the upper left of the screen and the positive y-axis pointing down. It's easy to set up my orthographic projection in OpenGL to mirror this. I know that texture coordinates are a right-hand system with values from 0 to 1 -- flipping the texture vertically before rendering (well, flip the file before loading) yields textures that render correctly... which is fine if I'm drawing the entire texture, but ultimately I'll be using tilesets and can imagine problems. What should I be concerned about in terms of rendering when I do this? If anybody has any advice or they've done this themselves and can point out future pitfalls, that would be great, but really any thoughts would be appreciated.

    Read the article

  • Retrieve the coordinates of the *occluding* (closest/drawn) pixels during 3D overlap, using OpenGL?

    - by Big Rich
    Hi, Sorry if the question is not worded well, I'm a new to both 3D and OpenGL. How could I go about obtaining the 3D coordinates of the occluding object, at the point where occlusion is happening (i.e. the 'intersection' of the object in front/closest to the screen)? Just to offer a [very] rudimentary, visual, example, if you were to form an index-finger cross, with your right hand closest to your face, I'd like to know the coordinates of the part of your right finger which obscures the other finger (obviously back within the OpenGL context - no jokers ;-) ). If there is a way to find out both about the occluder (hider) and the occluded (hidden) objects in OpenGL, then that would be of great use, also. Cheers Rich

    Read the article

  • opengl problem works on droid but not droid eris and others.

    - by nathan
    This GlRenderer works fine on the moto droid, but does not work well at all on droid eris or other android phones does anyone know why? package com.ntu.way2fungames.spacehockeybase; import java.io.DataInputStream; import java.io.IOException; import java.nio.Buffer; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import com.ntu.way2fungames.LoadFloatArray; import com.ntu.way2fungames.OGLTriReader; import android.content.res.AssetManager; import android.content.res.Resources; import android.opengl.GLU; import android.opengl.GLSurfaceView.Renderer; import android.os.Handler; import android.os.Message; public class GlRenderer extends Thread implements Renderer { private float drawArray[]; private float yoff; private float yoff2; private long lastRenderTime; private float[] yoffs= new float[10]; int Width; int Height; private float[] pixelVerts = new float[] { +.0f,+.0f,2, +.5f,+.5f,0, +.5f,-.5f,0, +.0f,+.0f,2, +.5f,-.5f,0, -.5f,-.5f,0, +.0f,+.0f,2, -.5f,-.5f,0, -.5f,+.5f,0, +.0f,+.0f,2, -.5f,+.5f,0, +.5f,+.5f,0, }; @Override public void run() { } private float[] arenaWalls = new float[] { 8.00f,2.00f,1f,2f,2f,1f,2.00f,8.00f,1f,8.00f,2.00f,1f,2.00f,8.00f,1f,8.00f,8.00f,1f, 2.00f,8.00f,1f,2f,2f,1f,0.00f,0.00f,0f,2.00f,8.00f,1f,0.00f,0.00f,0f,0.00f,10.00f,0f, 8.00f,8.00f,1f,2.00f,8.00f,1f,0.00f,10.00f,0f,8.00f,8.00f,1f,0.00f,10.00f,0f,10.00f,10.00f,0f, 2f,2f,1f,8.00f,2.00f,1f,10.00f,0.00f,0f,2f,2f,1f,10.00f,0.00f,0f,0.00f,0.00f,0f, 8.00f,2.00f,1f,8.00f,8.00f,1f,10.00f,10.00f,0f,8.00f,2.00f,1f,10.00f,10.00f,0f,10.00f,0.00f,0f, 10.00f,10.00f,0f,0.00f,10.00f,0f,0.00f,0.00f,0f,10.00f,10.00f,0f,0.00f,0.00f,0f,10.00f,0.00f,0f, 8.00f,6.00f,1f,8.00f,4.00f,1f,122f,4.00f,1f,8.00f,6.00f,1f,122f,4.00f,1f,122f,6.00f,1f, 8.00f,6.00f,1f,122f,6.00f,1f,120f,7.00f,0f,8.00f,6.00f,1f,120f,7.00f,0f,10.00f,7.00f,0f, 122f,4.00f,1f,8.00f,4.00f,1f,10.00f,3.00f,0f,122f,4.00f,1f,10.00f,3.00f,0f,120f,3.00f,0f, 480f,10.00f,0f,470f,10.00f,0f,470f,0.00f,0f,480f,10.00f,0f,470f,0.00f,0f,480f,0.00f,0f, 478f,2.00f,1f,478f,8.00f,1f,480f,10.00f,0f,478f,2.00f,1f,480f,10.00f,0f,480f,0.00f,0f, 472f,2f,1f,478f,2.00f,1f,480f,0.00f,0f,472f,2f,1f,480f,0.00f,0f,470f,0.00f,0f, 478f,8.00f,1f,472f,8.00f,1f,470f,10.00f,0f,478f,8.00f,1f,470f,10.00f,0f,480f,10.00f,0f, 472f,8.00f,1f,472f,2f,1f,470f,0.00f,0f,472f,8.00f,1f,470f,0.00f,0f,470f,10.00f,0f, 478f,2.00f,1f,472f,2f,1f,472f,8.00f,1f,478f,2.00f,1f,472f,8.00f,1f,478f,8.00f,1f, 478f,846f,1f,472f,846f,1f,472f,852f,1f,478f,846f,1f,472f,852f,1f,478f,852f,1f, 472f,852f,1f,472f,846f,1f,470f,844f,0f,472f,852f,1f,470f,844f,0f,470f,854f,0f, 478f,852f,1f,472f,852f,1f,470f,854f,0f,478f,852f,1f,470f,854f,0f,480f,854f,0f, 472f,846f,1f,478f,846f,1f,480f,844f,0f,472f,846f,1f,480f,844f,0f,470f,844f,0f, 478f,846f,1f,478f,852f,1f,480f,854f,0f,478f,846f,1f,480f,854f,0f,480f,844f,0f, 480f,854f,0f,470f,854f,0f,470f,844f,0f,480f,854f,0f,470f,844f,0f,480f,844f,0f, 10.00f,854f,0f,0.00f,854f,0f,0.00f,844f,0f,10.00f,854f,0f,0.00f,844f,0f,10.00f,844f,0f, 8.00f,846f,1f,8.00f,852f,1f,10.00f,854f,0f,8.00f,846f,1f,10.00f,854f,0f,10.00f,844f,0f, 2f,846f,1f,8.00f,846f,1f,10.00f,844f,0f,2f,846f,1f,10.00f,844f,0f,0.00f,844f,0f, 8.00f,852f,1f,2.00f,852f,1f,0.00f,854f,0f,8.00f,852f,1f,0.00f,854f,0f,10.00f,854f,0f, 2.00f,852f,1f,2f,846f,1f,0.00f,844f,0f,2.00f,852f,1f,0.00f,844f,0f,0.00f,854f,0f, 8.00f,846f,1f,2f,846f,1f,2.00f,852f,1f,8.00f,846f,1f,2.00f,852f,1f,8.00f,852f,1f, 6f,846f,1f,4f,846f,1f,4f,8f,1f,6f,846f,1f,4f,8f,1f,6f,8f,1f, 6f,846f,1f,6f,8f,1f,7f,10f,0f,6f,846f,1f,7f,10f,0f,7f,844f,0f, 4f,8f,1f,4f,846f,1f,3f,844f,0f,4f,8f,1f,3f,844f,0f,3f,10f,0f, 474f,8f,1f,474f,846f,1f,473f,844f,0f,474f,8f,1f,473f,844f,0f,473f,10f,0f, 476f,846f,1f,476f,8f,1f,477f,10f,0f,476f,846f,1f,477f,10f,0f,477f,844f,0f, 476f,846f,1f,474f,846f,1f,474f,8f,1f,476f,846f,1f,474f,8f,1f,476f,8f,1f, 130f,10.00f,0f,120f,10.00f,0f,120f,0.00f,0f,130f,10.00f,0f,120f,0.00f,0f,130f,0.00f,0f, 128f,2.00f,1f,128f,8.00f,1f,130f,10.00f,0f,128f,2.00f,1f,130f,10.00f,0f,130f,0.00f,0f, 122f,2f,1f,128f,2.00f,1f,130f,0.00f,0f,122f,2f,1f,130f,0.00f,0f,120f,0.00f,0f, 128f,8.00f,1f,122f,8.00f,1f,120f,10.00f,0f,128f,8.00f,1f,120f,10.00f,0f,130f,10.00f,0f, 122f,8.00f,1f,122f,2f,1f,120f,0.00f,0f,122f,8.00f,1f,120f,0.00f,0f,120f,10.00f,0f, 128f,2.00f,1f,122f,2f,1f,122f,8.00f,1f,128f,2.00f,1f,122f,8.00f,1f,128f,8.00f,1f, 352f,8.00f,1f,358f,8.00f,1f,358f,2.00f,1f,352f,8.00f,1f,358f,2.00f,1f,352f,2.00f,1f, 358f,2.00f,1f,358f,8.00f,1f,360f,10.00f,0f,358f,2.00f,1f,360f,10.00f,0f,360f,0.00f,0f, 352f,2.00f,1f,358f,2.00f,1f,360f,0.00f,0f,352f,2.00f,1f,360f,0.00f,0f,350f,0.00f,0f, 358f,8.00f,1f,352f,8.00f,1f,350f,10.00f,0f,358f,8.00f,1f,350f,10.00f,0f,360f,10.00f,0f, 352f,8.00f,1f,352f,2.00f,1f,350f,0.00f,0f,352f,8.00f,1f,350f,0.00f,0f,350f,10.00f,0f, 350f,0.00f,0f,360f,0.00f,0f,360f,10.00f,0f,350f,0.00f,0f,360f,10.00f,0f,350f,10.00f,0f, 358f,6.00f,1f,472f,6.00f,1f,470f,7.00f,0f,358f,6.00f,1f,470f,7.00f,0f,360f,7.00f,0f, 472f,4.00f,1f,358f,4.00f,1f,360f,3.00f,0f,472f,4.00f,1f,360f,3.00f,0f,470f,3.00f,0f, 472f,4.00f,1f,472f,6.00f,1f,358f,6.00f,1f,472f,4.00f,1f,358f,6.00f,1f,358f,4.00f,1f, 472f,848f,1f,472f,850f,1f,358f,850f,1f,472f,848f,1f,358f,850f,1f,358f,848f,1f, 472f,848f,1f,358f,848f,1f,360f,847f,0f,472f,848f,1f,360f,847f,0f,470f,847f,0f, 358f,850f,1f,472f,850f,1f,470f,851f,0f,358f,850f,1f,470f,851f,0f,360f,851f,0f, 350f,844f,0f,360f,844f,0f,360f,854f,0f,350f,844f,0f,360f,854f,0f,350f,854f,0f, 352f,852f,1f,352f,846f,1f,350f,844f,0f,352f,852f,1f,350f,844f,0f,350f,854f,0f, 358f,852f,1f,352f,852f,1f,350f,854f,0f,358f,852f,1f,350f,854f,0f,360f,854f,0f, 352f,846f,1f,358f,846f,1f,360f,844f,0f,352f,846f,1f,360f,844f,0f,350f,844f,0f, 358f,846f,1f,358f,852f,1f,360f,854f,0f,358f,846f,1f,360f,854f,0f,360f,844f,0f, 352f,852f,1f,358f,852f,1f,358f,846f,1f,352f,852f,1f,358f,846f,1f,352f,846f,1f, 128f,846f,1f,122f,846f,1f,122f,852f,1f,128f,846f,1f,122f,852f,1f,128f,852f,1f, 122f,852f,1f,122f,846f,1f,120f,844f,0f,122f,852f,1f,120f,844f,0f,120f,854f,0f, 128f,852f,1f,122f,852f,1f,120f,854f,0f,128f,852f,1f,120f,854f,0f,130f,854f,0f, 122f,846f,1f,128f,846f,1f,130f,844f,0f,122f,846f,1f,130f,844f,0f,120f,844f,0f, 128f,846f,1f,128f,852f,1f,130f,854f,0f,128f,846f,1f,130f,854f,0f,130f,844f,0f, 130f,854f,0f,120f,854f,0f,120f,844f,0f,130f,854f,0f,120f,844f,0f,130f,844f,0f, 122f,848f,1f,8f,848f,1f,10f,847f,0f,122f,848f,1f,10f,847f,0f,120f,847f,0f, 8f,850f,1f,122f,850f,1f,120f,851f,0f,8f,850f,1f,120f,851f,0f,10f,851f,0f, 8f,850f,1f,8f,848f,1f,122f,848f,1f,8f,850f,1f,122f,848f,1f,122f,850f,1f, 10f,847f,0f,120f,847f,0f,124.96f,829.63f,-0.50f,10f,847f,0f,124.96f,829.63f,-0.50f,19.51f,829.63f,-0.50f, 130f,844f,0f,130f,854f,0f,134.55f,836.34f,-0.50f,130f,844f,0f,134.55f,836.34f,-0.50f,134.55f,826.76f,-0.50f, 350f,844f,0f,350f,854f,0f,345.45f,836.34f,-0.50f,350f,844f,0f,345.45f,836.34f,-0.50f,345.45f,826.76f,-0.50f, 360f,847f,0f,470f,847f,0f,460.49f,829.63f,-0.50f,360f,847f,0f,460.49f,829.63f,-0.50f,355.04f,829.63f,-0.50f, 470f,7.00f,0f,360f,7.00f,0f,355.04f,24.37f,-0.50f,470f,7.00f,0f,355.04f,24.37f,-0.50f,460.49f,24.37f,-0.50f, 350f,10.00f,0f,350f,0.00f,0f,345.45f,17.66f,-0.50f,350f,10.00f,0f,345.45f,17.66f,-0.50f,345.45f,27.24f,-0.50f, 130f,10.00f,0f,130f,0.00f,0f,134.55f,17.66f,-0.50f,130f,10.00f,0f,134.55f,17.66f,-0.50f,134.55f,27.24f,-0.50f, 473f,844f,0f,473f,10f,0f,463.36f,27.24f,-0.50f,473f,844f,0f,463.36f,27.24f,-0.50f,463.36f,826.76f,-0.50f, 7f,10f,0f,7f,844f,0f,16.64f,826.76f,-0.50f,7f,10f,0f,16.64f,826.76f,-0.50f,16.64f,27.24f,-0.50f, 120f,7.00f,0f,10.00f,7.00f,0f,19.51f,24.37f,-0.50f,120f,7.00f,0f,19.51f,24.37f,-0.50f,124.96f,24.37f,-0.50f, 120f,7.00f,0f,130f,10.00f,0f,134.55f,27.24f,-0.50f,120f,7.00f,0f,134.55f,27.24f,-0.50f,124.96f,24.37f,-0.50f, 10.00f,7.00f,0f,7f,10f,0f,16.64f,27.24f,-0.50f,10.00f,7.00f,0f,16.64f,27.24f,-0.50f,19.51f,24.37f,-0.50f, 350f,10.00f,0f,360f,7.00f,0f,355.04f,24.37f,-0.50f,350f,10.00f,0f,355.04f,24.37f,-0.50f,345.45f,27.24f,-0.50f, 473f,10f,0f,470f,7.00f,0f,460.49f,24.37f,-0.50f,473f,10f,0f,460.49f,24.37f,-0.50f,463.36f,27.24f,-0.50f, 473f,844f,0f,470f,847f,0f,460.49f,829.63f,-0.50f,473f,844f,0f,460.49f,829.63f,-0.50f,463.36f,826.76f,-0.50f, 360f,847f,0f,350f,844f,0f,345.45f,826.76f,-0.50f,360f,847f,0f,345.45f,826.76f,-0.50f,355.04f,829.63f,-0.50f, 130f,844f,0f,120f,847f,0f,124.96f,829.63f,-0.50f,130f,844f,0f,124.96f,829.63f,-0.50f,134.55f,826.76f,-0.50f, 7f,844f,0f,10f,847f,0f,19.51f,829.63f,-0.50f,7f,844f,0f,19.51f,829.63f,-0.50f,16.64f,826.76f,-0.50f, 19.51f,829.63f,-0.50f,124.96f,829.63f,-0.50f,136.47f,789.37f,-2f,19.51f,829.63f,-0.50f,136.47f,789.37f,-2f,41.56f,789.37f,-2f, 134.55f,826.76f,-0.50f,134.55f,836.34f,-0.50f,145.09f,795.41f,-2f,134.55f,826.76f,-0.50f,145.09f,795.41f,-2f,145.09f,786.78f,-2f, 345.45f,826.76f,-0.50f,345.45f,836.34f,-0.50f,334.91f,795.41f,-2f,345.45f,826.76f,-0.50f,334.91f,795.41f,-2f,334.91f,786.78f,-2f, 355.04f,829.63f,-0.50f,460.49f,829.63f,-0.50f,438.44f,789.37f,-2f,355.04f,829.63f,-0.50f,438.44f,789.37f,-2f,343.53f,789.37f,-2f, 460.49f,24.37f,-0.50f,355.04f,24.37f,-0.50f,343.53f,64.63f,-2f,460.49f,24.37f,-0.50f,343.53f,64.63f,-2f,438.44f,64.63f,-2f, 345.45f,27.24f,-0.50f,345.45f,17.66f,-0.50f,334.91f,58.59f,-2f,345.45f,27.24f,-0.50f,334.91f,58.59f,-2f,334.91f,67.22f,-2f, 134.55f,27.24f,-0.50f,134.55f,17.66f,-0.50f,145.09f,58.59f,-2f,134.55f,27.24f,-0.50f,145.09f,58.59f,-2f,145.09f,67.22f,-2f, 463.36f,826.76f,-0.50f,463.36f,27.24f,-0.50f,441.03f,67.22f,-2f,463.36f,826.76f,-0.50f,441.03f,67.22f,-2f,441.03f,786.78f,-2f, 16.64f,27.24f,-0.50f,16.64f,826.76f,-0.50f,38.97f,786.78f,-2f,16.64f,27.24f,-0.50f,38.97f,786.78f,-2f,38.97f,67.22f,-2f, 124.96f,24.37f,-0.50f,19.51f,24.37f,-0.50f,41.56f,64.63f,-2f,124.96f,24.37f,-0.50f,41.56f,64.63f,-2f,136.47f,64.63f,-2f, 124.96f,24.37f,-0.50f,134.55f,27.24f,-0.50f,145.09f,67.22f,-2f,124.96f,24.37f,-0.50f,145.09f,67.22f,-2f,136.47f,64.63f,-2f, 19.51f,24.37f,-0.50f,16.64f,27.24f,-0.50f,38.97f,67.22f,-2f,19.51f,24.37f,-0.50f,38.97f,67.22f,-2f,41.56f,64.63f,-2f, 345.45f,27.24f,-0.50f,355.04f,24.37f,-0.50f,343.53f,64.63f,-2f,345.45f,27.24f,-0.50f,343.53f,64.63f,-2f,334.91f,67.22f,-2f, 463.36f,27.24f,-0.50f,460.49f,24.37f,-0.50f,438.44f,64.63f,-2f,463.36f,27.24f,-0.50f,438.44f,64.63f,-2f,441.03f,67.22f,-2f, 463.36f,826.76f,-0.50f,460.49f,829.63f,-0.50f,438.44f,789.37f,-2f,463.36f,826.76f,-0.50f,438.44f,789.37f,-2f,441.03f,786.78f,-2f, 355.04f,829.63f,-0.50f,345.45f,826.76f,-0.50f,334.91f,786.78f,-2f,355.04f,829.63f,-0.50f,334.91f,786.78f,-2f,343.53f,789.37f,-2f, 134.55f,826.76f,-0.50f,124.96f,829.63f,-0.50f,136.47f,789.37f,-2f,134.55f,826.76f,-0.50f,136.47f,789.37f,-2f,145.09f,786.78f,-2f, 16.64f,826.76f,-0.50f,19.51f,829.63f,-0.50f,41.56f,789.37f,-2f,16.64f,826.76f,-0.50f,41.56f,789.37f,-2f,38.97f,786.78f,-2f, }; private float[] backgroundData = new float[] { // # ,Scale, Speed, 300 , 1.05f, .001f, 150 , 1.07f, .002f, 075 , 1.10f, .003f, 040 , 1.12f, .006f, 20 , 1.15f, .012f, 10 , 1.25f, .025f, 05 , 1.50f, .050f, 3 , 2.00f, .100f, 2 , 3.00f, .200f, }; private float[] triangleCoords = new float[] { 0, -25, 0, -.75f, -1, 0, +.75f, -1, 0, 0, +2, 0, -.99f, -1, 0, .99f, -1, 0, }; private float[] triangleColors = new float[] { 1.0f, 1.0f, 1.0f, 0.05f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 0.5f, }; private float[] drawArray2; private FloatBuffer drawBuffer2; private float[] colorArray2; private static FloatBuffer colorBuffer; private static FloatBuffer triangleBuffer; private static FloatBuffer quadBuffer; private static FloatBuffer drawBuffer; private float[] backgroundVerts; private FloatBuffer backgroundVertsWrapped; private float[] backgroundColors; private Buffer backgroundColorsWraped; private FloatBuffer backgroundColorsWrapped; private FloatBuffer arenaWallsWrapped; private FloatBuffer arenaColorsWrapped; private FloatBuffer arena2VertsWrapped; private FloatBuffer arena2ColorsWrapped; private long wallHitStartTime; private int wallHitDrawTime; private FloatBuffer pixelVertsWrapped; private float[] wallHit; private FloatBuffer pixelColorsWrapped; //private float[] pitVerts; private Resources lResources; private FloatBuffer pitVertsWrapped; private FloatBuffer pitColorsWrapped; private boolean arena2; private long lastStartTime; private long startTime; private int state=1; private long introEndTime; protected long introTotalTime =8000; protected long introStartTime; private boolean initDone= false; private static int stateIntro = 0; private static int stateGame = 1; public GlRenderer(spacehockey nspacehockey) { lResources = nspacehockey.getResources(); nspacehockey.SetHandlerToGLRenderer(new Handler() { @Override public void handleMessage(Message m) { if (m.what ==0){ wallHit = m.getData().getFloatArray("wall hit"); wallHitStartTime =System.currentTimeMillis(); wallHitDrawTime = 1000; }else if (m.what ==1){ //state = stateIntro; introEndTime= System.currentTimeMillis()+introTotalTime ; introStartTime = System.currentTimeMillis(); } }}); } public void onSurfaceCreated(GL10 gl, EGLConfig config) { gl.glShadeModel(GL10.GL_SMOOTH); gl.glClearColor(.01f, .01f, .01f, .1f); gl.glClearDepthf(1.0f); gl.glEnable(GL10.GL_DEPTH_TEST); gl.glDepthFunc(GL10.GL_LEQUAL); gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); } private float SumOfStrideI(float[] data, int offset, int stride) { int sum= 0; for (int i=offset;i<data.length-1;i=i+stride){ sum = (int) (data[i]+sum); } return sum; } public void onDrawFrame(GL10 gl) { if (state== stateIntro){DrawIntro(gl);} if (state== stateGame){DrawGame(gl);} } private void DrawIntro(GL10 gl) { startTime = System.currentTimeMillis(); if (startTime< introEndTime){ float ptd = (float)(startTime- introStartTime)/(float)introTotalTime; float ptl = 1-ptd; gl.glClear(GL10.GL_COLOR_BUFFER_BIT);//dont move gl.glMatrixMode(GL10.GL_MODELVIEW); int setVertOff = 0; gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); gl.glColorPointer(4, GL10.GL_FLOAT, 0, backgroundColorsWrapped); for (int i = 0; i < backgroundData.length / 3; i = i + 1) { int setoff = i * 3; int setVertLen = (int) backgroundData[setoff]; yoffs[i] = (backgroundData[setoff + 2]*(90+(ptl*250))) + yoffs[i]; if (yoffs[i] > Height) {yoffs[i] = 0;} gl.glPushMatrix(); //gl.glTranslatef(0, -(Height/2), 0); //gl.glScalef(1f, 1f+(ptl*2), 1f); //gl.glTranslatef(0, +(Height/2), 0); gl.glTranslatef(0, yoffs[i], i+60); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, backgroundVertsWrapped); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 2 * 3) - 0, (setVertLen * 2 * 3) - 1); gl.glTranslatef(0, -Height, 0); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 2 * 3) - 0, (setVertLen * 2 * 3) - 1); setVertOff = (int) (setVertOff + setVertLen); gl.glPopMatrix(); } gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_COLOR_ARRAY); }else{state = stateGame;} } private void DrawGame(GL10 gl) { lastStartTime = startTime; startTime = System.currentTimeMillis(); long moveTime = startTime-lastStartTime; gl.glClear(GL10.GL_COLOR_BUFFER_BIT);//dont move gl.glMatrixMode(GL10.GL_MODELVIEW); int setVertOff = 0; gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); gl.glColorPointer(4, GL10.GL_FLOAT, 0, backgroundColorsWrapped); for (int i = 0; i < backgroundData.length / 3; i = i + 1) { int setoff = i * 3; int setVertLen = (int) backgroundData[setoff]; yoffs[i] = (backgroundData[setoff + 2]*moveTime) + yoffs[i]; if (yoffs[i] > Height) {yoffs[i] = 0;} gl.glPushMatrix(); gl.glTranslatef(0, yoffs[i], i+60); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, backgroundVertsWrapped); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 6) - 0, (setVertLen *6) - 1); gl.glTranslatef(0, -Height, 0); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 6) - 0, (setVertLen *6) - 1); setVertOff = (int) (setVertOff + setVertLen); gl.glPopMatrix(); } //arena frame gl.glPushMatrix(); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, arenaWallsWrapped); gl.glColorPointer(4, GL10.GL_FLOAT, 0, arenaColorsWrapped); gl.glColor4f(.1f, .5f, 1f, 1f); gl.glTranslatef(0, 0, 50); gl.glDrawArrays(GL10.GL_TRIANGLES, 0, (int)(arenaWalls.length / 3)); gl.glPopMatrix(); //arena2 frame if (arena2 == true){ gl.glLoadIdentity(); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, pitVertsWrapped); gl.glColorPointer(4, GL10.GL_FLOAT, 0, pitColorsWrapped); gl.glTranslatef(0, -Height, 40); gl.glDrawArrays(GL10.GL_TRIANGLES, 0, (int)(pitVertsWrapped.capacity() / 3)); } if (wallHitStartTime != 0) { float timeRemaining = (wallHitStartTime + wallHitDrawTime)-System.currentTimeMillis(); if (timeRemaining>0) { gl.glPushMatrix(); float percentDone = 1-(timeRemaining/wallHitDrawTime); gl.glLoadIdentity(); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, pixelVertsWrapped); gl.glColorPointer(4, GL10.GL_FLOAT, 0, pixelColorsWrapped); gl.glTranslatef(wallHit[0], wallHit[1], 0); gl.glScalef(8, Height*percentDone, 0); gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 12); gl.glPopMatrix(); } else { wallHitStartTime = 0; } } gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_COLOR_ARRAY); } public void init(GL10 gl) { if (arena2 == true) { AssetManager assetManager = lResources.getAssets(); try { // byte[] ba = {111,111}; DataInputStream Dis = new DataInputStream(assetManager .open("arena2.ogl")); pitVertsWrapped = LoadFloatArray.FromDataInputStream(Dis); pitColorsWrapped = MakeFakeLighting(pitVertsWrapped.array(), .25f, .50f, 1f, 200, .5f); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } if ((Height != 854) || (Width != 480)) { arenaWalls = ScaleFloats(arenaWalls, Width / 480f, Height / 854f); } arenaWallsWrapped = FloatBuffer.wrap(arenaWalls); arenaColorsWrapped = MakeFakeLighting(arenaWalls, .03f, .16f, .33f, .33f, 3); pixelVertsWrapped = FloatBuffer.wrap(pixelVerts); pixelColorsWrapped = MakeFakeLighting(pixelVerts, .03f, .16f, .33f, .10f, 20); initDone=true; } public void onSurfaceChanged(GL10 gl, int nwidth, int nheight) { Width= nwidth; Height = nheight; // avoid division by zero if (Height == 0) Height = 1; // draw on the entire screen gl.glViewport(0, 0, Width, Height); // setup projection matrix gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glOrthof(0, Width, Height, 0, 100, -100); // gl.glOrthof(-nwidth*2, nwidth*2, nheight*2,-nheight*2, 100, -100); // GLU.gluPerspective(gl, 180.0f, (float)nwidth / (float)nheight, // 1000.0f, -1000.0f); gl.glEnable(GL10.GL_BLEND); gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); System.gc(); if (initDone == false){ SetupStars(); init(gl); } } public void SetupStars(){ backgroundVerts = new float[(int) SumOfStrideI(backgroundData,0,3)*triangleCoords.length]; backgroundColors = new float[(int) SumOfStrideI(backgroundData,0,3)*triangleColors.length]; int iii=0; int vc=0; float ascale=1; for (int i=0;i<backgroundColors.length-1;i=i+1){ if (iii==0){ascale = (float) Math.random();} if (vc==3){ backgroundColors[i]= (float) (triangleColors[iii]*(ascale)); }else if(vc==2){ backgroundColors[i]= (float) (triangleColors[iii]-(Math.random()*.2)); }else{ backgroundColors[i]= (float) (triangleColors[iii]-(Math.random()*.3)); } iii=iii+1;if (iii> triangleColors.length-1){iii=0;} vc=vc+1; if (vc>3){vc=0;} } int ii=0; int i =0; int set =0; while(ii<backgroundVerts.length-1){ float scale = (float) backgroundData[(set*3)+1]; int length= (int) backgroundData[(set*3)]; for (i=0;i<length;i=i+1){ if (set ==0){ AddVertsToArray(ScaleFloats(triangleCoords, scale,scale*.25f), backgroundVerts, (float)(Math.random()*Width),(float) (Math.random()*Height), ii); }else{ AddVertsToArray(ScaleFloats(triangleCoords, scale), backgroundVerts, (float)(Math.random()*Width),(float) (Math.random()*Height), ii);} ii=ii+triangleCoords.length; } set=set+1; } backgroundVertsWrapped = FloatBuffer.wrap(backgroundVerts); backgroundColorsWrapped = FloatBuffer.wrap(backgroundColors); } public void AddVertsToArray(float[] sva,float[]dva,float ox,float oy,int start){ //x for (int i=0;i<sva.length;i=i+3){ if((start+i)<dva.length){dva[start+i]= sva[i]+ox;} } //y for (int i=1;i<sva.length;i=i+3){ if((start+i)<dva.length){dva[start+i]= sva[i]+oy;} } //z for (int i=2;i<sva.length;i=i+3){ if((start+i)<dva.length){dva[start+i]= sva[i];} } } public FloatBuffer MakeFakeLighting(float[] sa,float r, float g,float b,float a,float multby){ float[] da = new float[((sa.length/3)*4)]; int vertex=0; for (int i=0;i<sa.length;i=i+3){ if (sa[i+2]>=1){ da[(vertex*4)+0]= r*multby*sa[i+2]; da[(vertex*4)+1]= g*multby*sa[i+2]; da[(vertex*4)+2]= b*multby*sa[i+2]; da[(vertex*4)+3]= a*multby*sa[i+2]; }else if (sa[i+2]<=-1){ float divisor = (multby*(-sa[i+2])); da[(vertex*4)+0]= r / divisor; da[(vertex*4)+1]= g / divisor; da[(vertex*4)+2]= b / divisor; da[(vertex*4)+3]= a / divisor; }else{ da[(vertex*4)+0]= r; da[(vertex*4)+1]= g; da[(vertex*4)+2]= b; da[(vertex*4)+3]= a; } vertex = vertex+1; } return FloatBuffer.wrap(da); } public float[] ScaleFloats(float[] va,float s){ float[] reta= new float[va.length]; for (int i=0;i<va.length;i=i+1){ reta[i]=va[i]*s; } return reta; } public float[] ScaleFloats(float[] va,float sx,float sy){ float[] reta= new float[va.length]; int cnt = 0; for (int i=0;i<va.length;i=i+1){ if (cnt==0){reta[i]=va[i]*sx;} else if (cnt==1){reta[i]=va[i]*sy;} else if (cnt==2){reta[i]=va[i];} cnt = cnt +1;if (cnt>2){cnt=0;} } return reta; } }

    Read the article

  • How to install 64 bit openGL in linux

    - by kar
    I bought a new system with nvidia Geforce 9000 graphics card. I downloaded 64-bit NVIDIA-Linux-x86_64-190.53-pkg2 from nvidia web site which i have installed in my linux kernel 2.6.26 . while it was installing it created 32-bit OpenGL but i want to create 64-bit OpenGL how to create it?.

    Read the article

  • Intel GMA 4500MHD flickering in opengl

    - by Aaron
    I have an application that uses OpenGL for its display. When this application is run on a laptop with an Intel GMA 4500MHD on Windows XP the OpenGL content appears to flicker/shudder between 2 frames. I have experienced the exact same problem when running this application on nVidia Quadro FX hardware, however with nVidia the problem can be corrected by disabling the "Unified Back Buffer" (UBB) feature in the driver. Does anybody know how I can disable the corresponding feature in the Intel driver?

    Read the article

  • Intel GMA 4500MHD flickering in opengl

    - by Aaron
    I have an application that uses OpenGL for its display. When this application is run on a laptop with an Intel GMA 4500MHD on Windows XP the OpenGL content appears to flicker/shudder between 2 frames. I have experienced the exact same problem when running this application on nVidia Quadro FX hardware, however with nVidia the problem can be corrected by disabling the "Unified Back Buffer" (UBB) feature in the driver. Does anybody know how I can disable the corresponding feature in the Intel driver?

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >