Search Results

Search found 45098 results on 1804 pages for 'public static void'.

Page 159/1804 | < Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >

  • cocos2d-x and handling touch events

    - by Jason
    I have my sprites on screen and I have a vector that stores each sprite. Can a CCSprite* handle a touch event? Or just the CCLayer*? What is the best way to decide what sprite was touched? Should I store the coordinates of where the sprite is (in the sprite class) and when I get the event, see if where the user touched is where the sprite is by looking through the vector and getting each sprites current coordinates? UPDATE: I subclass CCSprite: class Field : public cocos2d::CCSprite, public cocos2d::CCTargetedTouchDelegate and I implement functions: cocos2d::CCRect rect(); virtual void onEnter(); virtual void onExit(); bool containsTouchLocation(cocos2d::CCTouch* touch); virtual bool ccTouchBegan(cocos2d::CCTouch* touch, cocos2d::CCEvent* event); virtual void ccTouchMoved(cocos2d::CCTouch* touch, cocos2d::CCEvent* event); virtual void ccTouchEnded(cocos2d::CCTouch* touch, cocos2d::CCEvent* event); virtual void touchDelegateRetain(); virtual void touchDelegateRelease(); I put CCLOG statements in each one and I dont hit them! When I touch the CCLayer this sprite is on though I do hit those in the class that implements the Layer and puts these sprites on the layer.

    Read the article

  • Understanding LINQ to SQL (11) Performance

    - by Dixin
    [LINQ via C# series] LINQ to SQL has a lot of great features like strong typing query compilation deferred execution declarative paradigm etc., which are very productive. Of course, these cannot be free, and one price is the performance. O/R mapping overhead Because LINQ to SQL is based on O/R mapping, one obvious overhead is, data changing usually requires data retrieving:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { Product product = database.Products.Single(item => item.ProductID == id); // SELECT... product.UnitPrice = unitPrice; // UPDATE... database.SubmitChanges(); } } Before updating an entity, that entity has to be retrieved by an extra SELECT query. This is slower than direct data update via ADO.NET:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (SqlConnection connection = new SqlConnection( "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=True")) using (SqlCommand command = new SqlCommand( @"UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID", connection)) { command.Parameters.Add("@ProductID", SqlDbType.Int).Value = id; command.Parameters.Add("@UnitPrice", SqlDbType.Money).Value = unitPrice; connection.Open(); command.Transaction = connection.BeginTransaction(); command.ExecuteNonQuery(); // UPDATE... command.Transaction.Commit(); } } The above imperative code specifies the “how to do” details with better performance. For the same reason, some articles from Internet insist that, when updating data via LINQ to SQL, the above declarative code should be replaced by:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.ExecuteCommand( "UPDATE [dbo].[Products] SET [UnitPrice] = {0} WHERE [ProductID] = {1}", id, unitPrice); } } Or just create a stored procedure:CREATE PROCEDURE [dbo].[UpdateProductUnitPrice] ( @ProductID INT, @UnitPrice MONEY ) AS BEGIN BEGIN TRANSACTION UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID COMMIT TRANSACTION END and map it as a method of NorthwindDataContext (explained in this post):private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.UpdateProductUnitPrice(id, unitPrice); } } As a normal trade off for O/R mapping, a decision has to be made between performance overhead and programming productivity according to the case. In a developer’s perspective, if O/R mapping is chosen, I consistently choose the declarative LINQ code, unless this kind of overhead is unacceptable. Data retrieving overhead After talking about the O/R mapping specific issue. Now look into the LINQ to SQL specific issues, for example, performance in the data retrieving process. The previous post has explained that the SQL translating and executing is complex. Actually, the LINQ to SQL pipeline is similar to the compiler pipeline. It consists of about 15 steps to translate an C# expression tree to SQL statement, which can be categorized as: Convert: Invoke SqlProvider.BuildQuery() to convert the tree of Expression nodes into a tree of SqlNode nodes; Bind: Used visitor pattern to figure out the meanings of names according to the mapping info, like a property for a column, etc.; Flatten: Figure out the hierarchy of the query; Rewrite: for SQL Server 2000, if needed Reduce: Remove the unnecessary information from the tree. Parameterize Format: Generate the SQL statement string; Parameterize: Figure out the parameters, for example, a reference to a local variable should be a parameter in SQL; Materialize: Executes the reader and convert the result back into typed objects. So for each data retrieving, even for data retrieving which looks simple: private static Product[] RetrieveProducts(int productId) { using (NorthwindDataContext database = new NorthwindDataContext()) { return database.Products.Where(product => product.ProductID == productId) .ToArray(); } } LINQ to SQL goes through above steps to translate and execute the query. Fortunately, there is a built-in way to cache the translated query. Compiled query When such a LINQ to SQL query is executed repeatedly, The CompiledQuery can be used to translate query for one time, and execute for multiple times:internal static class CompiledQueries { private static readonly Func<NorthwindDataContext, int, Product[]> _retrieveProducts = CompiledQuery.Compile((NorthwindDataContext database, int productId) => database.Products.Where(product => product.ProductID == productId).ToArray()); internal static Product[] RetrieveProducts( this NorthwindDataContext database, int productId) { return _retrieveProducts(database, productId); } } The new version of RetrieveProducts() gets better performance, because only when _retrieveProducts is first time invoked, it internally invokes SqlProvider.Compile() to translate the query expression. And it also uses lock to make sure translating once in multi-threading scenarios. Static SQL / stored procedures without translating Another way to avoid the translating overhead is to use static SQL or stored procedures, just as the above examples. Because this is a functional programming series, this article not dive into. For the details, Scott Guthrie already has some excellent articles: LINQ to SQL (Part 6: Retrieving Data Using Stored Procedures) LINQ to SQL (Part 7: Updating our Database using Stored Procedures) LINQ to SQL (Part 8: Executing Custom SQL Expressions) Data changing overhead By looking into the data updating process, it also needs a lot of work: Begins transaction Processes the changes (ChangeProcessor) Walks through the objects to identify the changes Determines the order of the changes Executes the changings LINQ queries may be needed to execute the changings, like the first example in this article, an object needs to be retrieved before changed, then the above whole process of data retrieving will be went through If there is user customization, it will be executed, for example, a table’s INSERT / UPDATE / DELETE can be customized in the O/R designer It is important to keep these overhead in mind. Bulk deleting / updating Another thing to be aware is the bulk deleting:private static void DeleteProducts(int categoryId) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.DeleteAllOnSubmit( database.Products.Where(product => product.CategoryID == categoryId)); database.SubmitChanges(); } } The expected SQL should be like:BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 COMMIT TRANSACTION Hoverer, as fore mentioned, the actual SQL is to retrieving the entities, and then delete them one by one:-- Retrieves the entities to be deleted: exec sp_executesql N'SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 -- Deletes the retrieved entities one by one: BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=78,@p1=N'Optimus Prime',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=79,@p1=N'Bumble Bee',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 -- ... COMMIT TRANSACTION And the same to the bulk updating. This is really not effective and need to be aware. Here is already some solutions from the Internet, like this one. The idea is wrap the above SELECT statement into a INNER JOIN:exec sp_executesql N'DELETE [dbo].[Products] FROM [dbo].[Products] AS [j0] INNER JOIN ( SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0) AS [j1] ON ([j0].[ProductID] = [j1].[[Products])', -- The Primary Key N'@p0 int',@p0=9 Query plan overhead The last thing is about the SQL Server query plan. Before .NET 4.0, LINQ to SQL has an issue (not sure if it is a bug). LINQ to SQL internally uses ADO.NET, but it does not set the SqlParameter.Size for a variable-length argument, like argument of NVARCHAR type, etc. So for two queries with the same SQL but different argument length:using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.Where(product => product.ProductName == "A") .Select(product => product.ProductID).ToArray(); // The same SQL and argument type, different argument length. database.Products.Where(product => product.ProductName == "AA") .Select(product => product.ProductID).ToArray(); } Pay attention to the argument length in the translated SQL:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(1)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(2)',@p0=N'AA' Here is the overhead: The first query’s query plan cache is not reused by the second one:SELECT sys.syscacheobjects.cacheobjtype, sys.dm_exec_cached_plans.usecounts, sys.syscacheobjects.[sql] FROM sys.syscacheobjects INNER JOIN sys.dm_exec_cached_plans ON sys.syscacheobjects.bucketid = sys.dm_exec_cached_plans.bucketid; They actually use different query plans. Again, pay attention to the argument length in the [sql] column (@p0 nvarchar(2) / @p0 nvarchar(1)). Fortunately, in .NET 4.0 this is fixed:internal static class SqlTypeSystem { private abstract class ProviderBase : TypeSystemProvider { protected int? GetLargestDeclarableSize(SqlType declaredType) { SqlDbType sqlDbType = declaredType.SqlDbType; if (sqlDbType <= SqlDbType.Image) { switch (sqlDbType) { case SqlDbType.Binary: case SqlDbType.Image: return 8000; } return null; } if (sqlDbType == SqlDbType.NVarChar) { return 4000; // Max length for NVARCHAR. } if (sqlDbType != SqlDbType.VarChar) { return null; } return 8000; } } } In this above example, the translated SQL becomes:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'AA' So that they reuses the same query plan cache: Now the [usecounts] column is 2.

    Read the article

  • Automapper: Handling NULL members

    - by PSteele
    A question about null members came up on the Automapper mailing list.  While the problem wasn’t with Automapper, investigating the issue led to an interesting feature in Automapper. Normally, Automapper ignores null members.  After all, what is there really to do?  Imagine these source classes: public class Source { public int Data { get; set; } public Address Address { get; set; } }   public class Destination { public string Data { get; set; } public Address Address { get; set; } }   public class Address { public string AddressType { get; set; } public string Location { get; set; } } And imagine a simple mapping example with these classes: Mapper.CreateMap<Source, Destination>();   var source = new Source { Data = 22, Address = new Address { AddressType = "Home", Location = "Michigan", }, };   var dest = Mapper.Map<Source, Destination>(source); The variable ‘dest’ would have a complete mapping of the Data member and the Address member. But what if the source had no address? Mapper.CreateMap<Source, Destination>();   var source = new Source { Data = 22, };   var dest = Mapper.Map<Source, Destination>(source); In that case, Automapper would just leave the Destination.Address member null as well.  But what if we always wanted an Address defined – even if it’s just got some default data?  Use the “NullSubstitute” option: Mapper.CreateMap<Source, Destination>() .ForMember(d => d.Address, o => o.NullSubstitute(new Address { AddressType = "Unknown", Location = "Unknown", }));   var source = new Source { Data = 22, };   var dest = Mapper.Map<Source, Destination>(source); Now, the ‘dest’ variable will have an Address defined with a type and location of “Unknown”.  Very handy! Technorati Tags: .NET,Automapper,NULL

    Read the article

  • Best methods for Lazy Initialization with properties

    - by Stuart Pegg
    I'm currently altering a widely used class to move as much of the expensive initialization from the class constructor into Lazy Initialized properties. Below is an example (in c#): Before: public class ClassA { public readonly ClassB B; public void ClassA() { B = new ClassB(); } } After: public class ClassA { private ClassB _b; public ClassB B { get { if (_b == null) { _b = new ClassB(); } return _b; } } } There are a fair few more of these properties in the class I'm altering, and some are not used in certain contexts (hence the Laziness), but if they are used they're likely to be called repeatedly. Unfortunately, the properties are often also used inside the class. This means there is a potential for the private variable (_b) to be used directly by a method without it being initialized. Is there a way to make only the public property (B) available inside the class, or even an alternative method with the same initialized-when-needed?

    Read the article

  • Metro: Namespaces and Modules

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can use the Windows JavaScript (WinJS) library to create namespaces. In particular, you learn how to use the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. You also learn how to hide private methods by using the module pattern. Why Do We Need Namespaces? Before we do anything else, we should start by answering the question: Why do we need namespaces? What function do they serve? Do they just add needless complexity to our Metro applications? After all, plenty of JavaScript libraries do just fine without introducing support for namespaces. For example, jQuery has no support for namespaces and jQuery is the most popular JavaScript library in the universe. If jQuery can do without namespaces, why do we need to worry about namespaces at all? Namespaces perform two functions in a programming language. First, namespaces prevent naming collisions. In other words, namespaces enable you to create more than one object with the same name without conflict. For example, imagine that two companies – company A and company B – both want to make a JavaScript shopping cart control and both companies want to name the control ShoppingCart. By creating a CompanyA namespace and CompanyB namespace, both companies can create a ShoppingCart control: a CompanyA.ShoppingCart and a CompanyB.ShoppingCart control. The second function of a namespace is organization. Namespaces are used to group related functionality even when the functionality is defined in different physical files. For example, I know that all of the methods in the WinJS library related to working with classes can be found in the WinJS.Class namespace. Namespaces make it easier to understand the functionality available in a library. If you are building a simple JavaScript application then you won’t have much reason to care about namespaces. If you need to use multiple libraries written by different people then namespaces become very important. Using WinJS.Namespace.define() In the WinJS library, the most basic method of creating a namespace is to use the WinJS.Namespace.define() method. This method enables you to declare a namespace (of arbitrary depth). The WinJS.Namespace.define() method has the following parameters: · name – A string representing the name of the new namespace. You can add nested namespace by using dot notation · members – An optional collection of objects to add to the new namespace For example, the following code sample declares two new namespaces named CompanyA and CompanyB.Controls. Both namespaces contain a ShoppingCart object which has a checkout() method: // Create CompanyA namespace with ShoppingCart WinJS.Namespace.define("CompanyA"); CompanyA.ShoppingCart = { checkout: function (){ return "Checking out from A"; } }; // Create CompanyB.Controls namespace with ShoppingCart WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); // Call CompanyA ShoppingCart checkout method console.log(CompanyA.ShoppingCart.checkout()); // Writes "Checking out from A" // Call CompanyB.Controls checkout method console.log(CompanyB.Controls.ShoppingCart.checkout()); // Writes "Checking out from B" In the code above, the CompanyA namespace is created by calling WinJS.Namespace.define(“CompanyA”). Next, the ShoppingCart is added to this namespace. The namespace is defined and an object is added to the namespace in separate lines of code. A different approach is taken in the case of the CompanyB.Controls namespace. The namespace is created and the ShoppingCart object is added to the namespace with the following single line of code: WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); Notice that CompanyB.Controls is a nested namespace. The top level namespace CompanyB contains the namespace Controls. You can declare a nested namespace using dot notation and the WinJS library handles the details of creating one namespace within the other. After the namespaces have been defined, you can use either of the two shopping cart controls. You call CompanyA.ShoppingCart.checkout() or you can call CompanyB.Controls.ShoppingCart.checkout(). Using WinJS.Namespace.defineWithParent() The WinJS.Namespace.defineWithParent() method is similar to the WinJS.Namespace.define() method. Both methods enable you to define a new namespace. The difference is that the defineWithParent() method enables you to add a new namespace to an existing namespace. The WinJS.Namespace.defineWithParent() method has the following parameters: · parentNamespace – An object which represents a parent namespace · name – A string representing the new namespace to add to the parent namespace · members – An optional collection of objects to add to the new namespace The following code sample demonstrates how you can create a root namespace named CompanyA and add a Controls child namespace to the CompanyA parent namespace: WinJS.Namespace.define("CompanyA"); WinJS.Namespace.defineWithParent(CompanyA, "Controls", { ShoppingCart: { checkout: function () { return "Checking out"; } } } ); console.log(CompanyA.Controls.ShoppingCart.checkout()); // Writes "Checking out" One significant advantage of using the defineWithParent() method over the define() method is the defineWithParent() method is strongly-typed. In other words, you use an object to represent the base namespace instead of a string. If you misspell the name of the object (CompnyA) then you get a runtime error. Using the Module Pattern When you are building a JavaScript library, you want to be able to create both public and private methods. Some methods, the public methods, are intended to be used by consumers of your JavaScript library. The public methods act as your library’s public API. Other methods, the private methods, are not intended for public consumption. Instead, these methods are internal methods required to get the library to function. You don’t want people calling these internal methods because you might need to change them in the future. JavaScript does not support access modifiers. You can’t mark an object or method as public or private. Anyone gets to call any method and anyone gets to interact with any object. The only mechanism for encapsulating (hiding) methods and objects in JavaScript is to take advantage of functions. In JavaScript, a function determines variable scope. A JavaScript variable either has global scope – it is available everywhere – or it has function scope – it is available only within a function. If you want to hide an object or method then you need to place it within a function. For example, the following code contains a function named doSomething() which contains a nested function named doSomethingElse(): function doSomething() { console.log("doSomething"); function doSomethingElse() { console.log("doSomethingElse"); } } doSomething(); // Writes "doSomething" doSomethingElse(); // Throws ReferenceError You can call doSomethingElse() only within the doSomething() function. The doSomethingElse() function is encapsulated in the doSomething() function. The WinJS library takes advantage of function encapsulation to hide all of its internal methods. All of the WinJS methods are defined within self-executing anonymous functions. Everything is hidden by default. Public methods are exposed by explicitly adding the public methods to namespaces defined in the global scope. Imagine, for example, that I want a small library of utility methods. I want to create a method for calculating sales tax and a method for calculating the expected ship date of a product. The following library encapsulates the implementation of my library in a self-executing anonymous function: (function (global) { // Public method which calculates tax function calculateTax(price) { return calculateFederalTax(price) + calculateStateTax(price); } // Private method for calculating state tax function calculateStateTax(price) { return price * 0.08; } // Private method for calculating federal tax function calculateFederalTax(price) { return price * 0.02; } // Public method which returns the expected ship date function calculateShipDate(currentDate) { currentDate.setDate(currentDate.getDate() + 4); return currentDate; } // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); })(this); // Show expected ship date var shipDate = CompanyA.Utilities.calculateShipDate(new Date()); console.log(shipDate); // Show price + tax var price = 12.33; var tax = CompanyA.Utilities.calculateTax(price); console.log(price + tax); In the code above, the self-executing anonymous function contains four functions: calculateTax(), calculateStateTax(), calculateFederalTax(), and calculateShipDate(). The following statement is used to expose only the calcuateTax() and the calculateShipDate() functions: // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); Because the calculateTax() and calcuateShipDate() functions are added to the CompanyA.Utilities namespace, you can call these two methods outside of the self-executing function. These are the public methods of your library which form the public API. The calculateStateTax() and calculateFederalTax() methods, on the other hand, are forever hidden within the black hole of the self-executing function. These methods are encapsulated and can never be called outside of scope of the self-executing function. These are the internal methods of your library. Summary The goal of this blog entry was to describe why and how you use namespaces with the WinJS library. You learned how to define namespaces using both the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. We also discussed how to hide private members and expose public members using the module pattern.

    Read the article

  • Cocos2d-x v3 invalid conversion from 'cocos2d::Layer* [on hold]

    - by Hammerh5
    Hello guys I'm learning cocos2d-x v3 right but most of the code that I can find is to the version 2. My specific error is this one, when I try to compile my cocos2s-x 3 project this error shows. invalid conversion from 'cocos2d::Layer to Game* [-fpermisive]* What I want to do is create a new game scene in the following code: //Game.cpp #include "Game.h" Scene* Game::scene() { scene *sc = CCScene::create(); sc->setTag(TAG_GAME_SCENE); const Game *g = Game::create(); //Here is where the conversions fails. sc->addChild(g, 0, TAG_GAME_LAYER); return sc; } Of course this is my header file //Game.h #include "cocos2d.h" #include "Mole.h" #include "AppDelegate.h" using namespace cocos2d; class Game: public cocos2d::Layer { cocos2d::CCArray *moles; float timeBetweenMoles, timeElapsed, increaseMolesAtTime, increaseElapsed, lastMoleHiTime; int molesAtOnce; cocos2d::CCSize s; bool isPaused; public: CCString *missSound, *hitSound; static cocos2d::Scene* scene(); virtual bool init(); void showMole(); void initializeGame(); void onEnterTransitionDidFinish(); void onExit(); void onTouchesBegan(const std::vector<cocos2d::Touch *> &touches, cocos2d::Event *event); void tick(float dt); cocos2d::CCArray* getMoles(bool isUp); //LAYER_CREATE_FUNC(Game); }; #endif /* GAME_H_ */ I don't know what's wrong I suppose this code works fine in Cocos2d-x v2. It's maybe some changes in the C++ version ?

    Read the article

  • How to create a very simple external FastCGI configuration in apache?

    - by Thiado de Arruda
    I have an externally started FastCGI application that listens on socket '/tmp/foo.sock' and a directory of static files in '/srv/static'. Apache has all needed permissions on the socket and the directories. What I need : All requests starting with '/static' should be handled by apache using the contents of '/srv/static'. All other requests should be handled by the FastCGI application. Here is my current virtual host configuration: <VirtualHost *:80> ServerAdmin [email protected] ServerName www.foo.com ServerAlias foo.com Alias /static /srv/static FastCgiExternalServer /* -socket /tmp/foo.sock ErrorLog /var/log/apache2/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog /var/log/apache2/access.log combined </VirtualHost> Even though this seems simple, its giving me quite the headache. According to http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html#FastCgiExternalServer the first parameter to 'FastCgiExternalServer' should be a 'filename' that when matched will cause apache to delegate the request to the external FastCGI app. What am I missing here?

    Read the article

  • How to make a file load in my program when a user double clicks an associated file.

    - by Edward Boyle
    I assume in this article that file extension association has been setup by the installer. I may address file extension association at a later date, but for the purpose of this article, I address what sometimes eludes new C# programmers. This is sometimes confusing because you just don’t think about it — you have to access a file that you rarely access when making Windows forms applications, “Program.cs” static class Program { /// /// The main entry point for the application. /// [STAThread] static void Main() { Application.EnableVisualStyles(); Application.SetCompatibleTextRenderingDefault(false); Application.Run(new Form1()); } } There are so many ways to skin this cat, so you get to see how I skinned my last cat. static class Program { /// /// The main entry point for the application. /// [STAThread] static void Main(string[] args) { Application.EnableVisualStyles(); Application.SetCompatibleTextRenderingDefault(false); Form1 mainf = new Form1(); if (args.Length > 0) { try { if (System.IO.File.Exists(args[0])) { mainf.LoadFile= args[0]; } } catch { MessageBox.Show("Could not open file.", "Could not open file.", MessageBoxButtons.OK, MessageBoxIcon.Information); } } Application.Run(mainf); } } It may be easy to miss, but don’t forget to add the string array for the command line arguments: static void Main(string[] args) this is not a part of the default program.cs You will notice the mainf.LoadFile property. In the main form of my program I have a property for public string LoadFile ... and the field private string loadFile = String.Empty; in the forms load event I check the value of this field. private void Form1_Load(object sender, EventArgs e) { if(loadFile != String.Empty){ // The only way this field is NOT String.empty is if we set it in // static void Main() of program.cs // LOAD it however it is needed OpenFile, SetDatabase, whatever you use. } }

    Read the article

  • Ogre 3d and bullet physics interaction

    - by Tim
    I have been playing around with Ogre3d and trying to integrate bullet physics. I have previously somewhat successfully got this functionality working with irrlicht and bullet and I am trying to base this on what I had done there, but modifying it to fit with Ogre. It is working but not correctly and I would like some help to understand what it is I am doing wrong. I have a state system and when I enter the "gamestate" I call some functions such as setting up a basic scene, creating the physics simulation. I am doing that as follows. void GameState::enter() { ... // Setup Physics btBroadphaseInterface *BroadPhase = new btAxisSweep3(btVector3(-1000,-1000,-1000), btVector3(1000,1000,1000)); btDefaultCollisionConfiguration *CollisionConfiguration = new btDefaultCollisionConfiguration(); btCollisionDispatcher *Dispatcher = new btCollisionDispatcher(CollisionConfiguration); btSequentialImpulseConstraintSolver *Solver = new btSequentialImpulseConstraintSolver(); World = new btDiscreteDynamicsWorld(Dispatcher, BroadPhase, Solver, CollisionConfiguration); ... createScene(); } In the createScene method I add a light and try to setup a "ground" plane to act as the ground for things to collide with.. as follows. I expect there is issues with this as I get objects colliding with the ground but half way through it and they glitch around like crazy on collision. void GameState::createScene() { m_pSceneMgr->createLight("Light")->setPosition(75,75,75); // Physics // As a test we want a floor plane for things to collide with Ogre::Entity *ent; Ogre::Plane p; p.normal = Ogre::Vector3(0,1,0); p.d = 0; Ogre::MeshManager::getSingleton().createPlane( "FloorPlane", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, p, 200000, 200000, 20, 20, true, 1, 9000,9000,Ogre::Vector3::UNIT_Z); ent = m_pSceneMgr->createEntity("floor", "FloorPlane"); ent->setMaterialName("Test/Floor"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(ent); btTransform Transform; Transform.setIdentity(); Transform.setOrigin(btVector3(0,1,0)); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); btCollisionShape *Shape = new btStaticPlaneShape(btVector3(0,1,0),0); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(0, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(0, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; // End Physics } I then have a method to create a cube and give it rigid body physics properties. I know there will be errors here as I get the items colliding with the ground but not with each other properly. So I would appreciate some input on what I am doing wrong. void GameState::CreateBox(const btVector3 &TPosition, const btVector3 &TScale, btScalar TMass) { Ogre::Vector3 size = Ogre::Vector3::ZERO; Ogre::Vector3 pos = Ogre::Vector3::ZERO; Ogre::Vector3 scale = Ogre::Vector3::ZERO; pos.x = TPosition.getX(); pos.y = TPosition.getY(); pos.z = TPosition.getZ(); scale.x = TScale.getX(); scale.y = TScale.getY(); scale.z = TScale.getZ(); Ogre::Entity *entity = m_pSceneMgr->createEntity( "Box" + Ogre::StringConverter::toString(m_pNumEntities), "cube.mesh"); entity->setCastShadows(true); Ogre::AxisAlignedBox boundingB = entity->getBoundingBox(); size = boundingB.getSize(); //size /= 2.0f; // Only the half needed? //size *= 0.96f; // Bullet margin is a bit bigger so we need a smaller size entity->setMaterialName("Test/Cube"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(entity); node->setPosition(pos); //node->scale(scale); // Physics btTransform Transform; Transform.setIdentity(); Transform.setOrigin(TPosition); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); btVector3 HalfExtents(TScale.getX()*0.5f,TScale.getY()*0.5f,TScale.getZ()*0.5f); btCollisionShape *Shape = new btBoxShape(HalfExtents); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(TMass, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(TMass, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; } Then in the GameState::update() method which which runs every frame to handle input and render etc I call an UpdatePhysics method to update the physics simulation. void GameState::UpdatePhysics(unsigned int TDeltaTime) { World->stepSimulation(TDeltaTime * 0.001f, 60); btRigidBody *TObject; for(std::vector<btRigidBody *>::iterator it = Objects.begin(); it != Objects.end(); ++it) { // Update renderer Ogre::SceneNode *node = static_cast<Ogre::SceneNode *>((*it)->getUserPointer()); TObject = *it; // Set position btVector3 Point = TObject->getCenterOfMassPosition(); node->setPosition(Ogre::Vector3((float)Point[0], (float)Point[1], (float)Point[2])); // set rotation btVector3 EulerRotation; QuaternionToEuler(TObject->getOrientation(), EulerRotation); node->setOrientation(1,(Ogre::Real)EulerRotation[0], (Ogre::Real)EulerRotation[1], (Ogre::Real)EulerRotation[2]); //node->rotate(Ogre::Vector3(EulerRotation[0], EulerRotation[1], EulerRotation[2])); } } void GameState::QuaternionToEuler(const btQuaternion &TQuat, btVector3 &TEuler) { btScalar W = TQuat.getW(); btScalar X = TQuat.getX(); btScalar Y = TQuat.getY(); btScalar Z = TQuat.getZ(); float WSquared = W * W; float XSquared = X * X; float YSquared = Y * Y; float ZSquared = Z * Z; TEuler.setX(atan2f(2.0f * (Y * Z + X * W), -XSquared - YSquared + ZSquared + WSquared)); TEuler.setY(asinf(-2.0f * (X * Z - Y * W))); TEuler.setZ(atan2f(2.0f * (X * Y + Z * W), XSquared - YSquared - ZSquared + WSquared)); TEuler *= RADTODEG; } I seem to have issues with the cubes not colliding with each other and colliding strangely with the ground. I have tried to capture the effect with the attached image. I would appreciate any help in understanding what I have done wrong. Thanks. EDIT : Solution The following code shows the changes I made to get accurate physics. void GameState::createScene() { m_pSceneMgr->createLight("Light")->setPosition(75,75,75); // Physics // As a test we want a floor plane for things to collide with Ogre::Entity *ent; Ogre::Plane p; p.normal = Ogre::Vector3(0,1,0); p.d = 0; Ogre::MeshManager::getSingleton().createPlane( "FloorPlane", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, p, 200000, 200000, 20, 20, true, 1, 9000,9000,Ogre::Vector3::UNIT_Z); ent = m_pSceneMgr->createEntity("floor", "FloorPlane"); ent->setMaterialName("Test/Floor"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(ent); btTransform Transform; Transform.setIdentity(); // Fixed the transform vector here for y back to 0 to stop the objects sinking into the ground. Transform.setOrigin(btVector3(0,0,0)); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); btCollisionShape *Shape = new btStaticPlaneShape(btVector3(0,1,0),0); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(0, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(0, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; // End Physics } void GameState::CreateBox(const btVector3 &TPosition, const btVector3 &TScale, btScalar TMass) { Ogre::Vector3 size = Ogre::Vector3::ZERO; Ogre::Vector3 pos = Ogre::Vector3::ZERO; Ogre::Vector3 scale = Ogre::Vector3::ZERO; pos.x = TPosition.getX(); pos.y = TPosition.getY(); pos.z = TPosition.getZ(); scale.x = TScale.getX(); scale.y = TScale.getY(); scale.z = TScale.getZ(); Ogre::Entity *entity = m_pSceneMgr->createEntity( "Box" + Ogre::StringConverter::toString(m_pNumEntities), "cube.mesh"); entity->setCastShadows(true); Ogre::AxisAlignedBox boundingB = entity->getBoundingBox(); // The ogre bounding box is slightly bigger so I am reducing it for // use with the rigid body. size = boundingB.getSize()*0.95f; entity->setMaterialName("Test/Cube"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(entity); node->setPosition(pos); node->showBoundingBox(true); //node->scale(scale); // Physics btTransform Transform; Transform.setIdentity(); Transform.setOrigin(TPosition); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); // I got the size of the bounding box above but wasn't using it to set // the size for the rigid body. This now does. btVector3 HalfExtents(size.x*0.5f,size.y*0.5f,size.z*0.5f); btCollisionShape *Shape = new btBoxShape(HalfExtents); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(TMass, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(TMass, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; } void GameState::UpdatePhysics(unsigned int TDeltaTime) { World->stepSimulation(TDeltaTime * 0.001f, 60); btRigidBody *TObject; for(std::vector<btRigidBody *>::iterator it = Objects.begin(); it != Objects.end(); ++it) { // Update renderer Ogre::SceneNode *node = static_cast<Ogre::SceneNode *>((*it)->getUserPointer()); TObject = *it; // Set position btVector3 Point = TObject->getCenterOfMassPosition(); node->setPosition(Ogre::Vector3((float)Point[0], (float)Point[1], (float)Point[2])); // Convert the bullet Quaternion to an Ogre quaternion btQuaternion btq = TObject->getOrientation(); Ogre::Quaternion quart = Ogre::Quaternion(btq.w(),btq.x(),btq.y(),btq.z()); // use the quaternion with setOrientation node->setOrientation(quart); } } The QuaternionToEuler function isn't needed so that was removed from code and header files. The objects now collide with the ground and each other appropriately.

    Read the article

  • Calculated Columns in Entity Framework Code First Migrations

    - by David Paquette
    I had a couple people ask me about calculated properties / columns in Entity Framework this week.  The question was, is there a way to specify a property in my C# class that is the result of some calculation involving 2 properties of the same class.  For example, in my database, I store a FirstName and a LastName column and I would like a FullName property that is computed from the FirstName and LastName columns.  My initial answer was: 1: public string FullName 2: { 3: get { return string.Format("{0} {1}", FirstName, LastName); } 4: } Of course, this works fine, but this does not give us the ability to write queries using the FullName property.  For example, this query: 1: var users = context.Users.Where(u => u.FullName.Contains("anan")); Would result in the following NotSupportedException: The specified type member 'FullName' is not supported in LINQ to Entities. Only initializers, entity members, and entity navigation properties are supported. It turns out there is a way to support this type of behavior with Entity Framework Code First Migrations by making use of Computed Columns in SQL Server.  While there is no native support for computed columns in Code First Migrations, we can manually configure our migration to use computed columns. Let’s start by defining our C# classes and DbContext: 1: public class UserProfile 2: { 3: public int Id { get; set; } 4: 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: 8: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 9: public string FullName { get; private set; } 10: } 11: 12: public class UserContext : DbContext 13: { 14: public DbSet<UserProfile> Users { get; set; } 15: } The DatabaseGenerated attribute is needed on our FullName property.  This is a hint to let Entity Framework Code First know that the database will be computing this property for us. Next, we need to run 2 commands in the Package Manager Console.  First, run Enable-Migrations to enable Code First Migrations for the UserContext.  Next, run Add-Migration Initial to create an initial migration.  This will create a migration that creates the UserProfile table with 3 columns: FirstName, LastName, and FullName.  This is where we need to make a small change.  Instead of allowing Code First Migrations to create the FullName property, we will manually add that column as a computed column. 1: public partial class Initial : DbMigration 2: { 3: public override void Up() 4: { 5: CreateTable( 6: "dbo.UserProfiles", 7: c => new 8: { 9: Id = c.Int(nullable: false, identity: true), 10: FirstName = c.String(), 11: LastName = c.String(), 12: //FullName = c.String(), 13: }) 14: .PrimaryKey(t => t.Id); 15: Sql("ALTER TABLE dbo.UserProfiles ADD FullName AS FirstName + ' ' + LastName"); 16: } 17: 18: 19: public override void Down() 20: { 21: DropTable("dbo.UserProfiles"); 22: } 23: } Finally, run the Update-Database command.  Now we can query for Users using the FullName property and that query will be executed on the database server.  However, we encounter another potential problem. Since the FullName property is calculated by the database, it will get out of sync on the object side as soon as we make a change to the FirstName or LastName property.  Luckily, we can have the best of both worlds here by also adding the calculation back to the getter on the FullName property: 1: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 2: public string FullName 3: { 4: get { return FirstName + " " + LastName; } 5: private set 6: { 7: //Just need this here to trick EF 8: } 9: } Now we can both query for Users using the FullName property and we also won’t need to worry about the FullName property being out of sync with the FirstName and LastName properties.  When we run this code: 1: using(UserContext context = new UserContext()) 2: { 3: UserProfile userProfile = new UserProfile {FirstName = "Chanandler", LastName = "Bong"}; 4: 5: Console.WriteLine("Before saving: " + userProfile.FullName); 6: 7: context.Users.Add(userProfile); 8: context.SaveChanges(); 9:  10: Console.WriteLine("After saving: " + userProfile.FullName); 11:  12: UserProfile chanandler = context.Users.First(u => u.FullName == "Chanandler Bong"); 13: Console.WriteLine("After reading: " + chanandler.FullName); 14:  15: chanandler.FirstName = "Chandler"; 16: chanandler.LastName = "Bing"; 17:  18: Console.WriteLine("After changing: " + chanandler.FullName); 19:  20: } We get this output: It took a bit of work, but finally Chandler’s TV Guide can be delivered to the right person. The obvious downside to this implementation is that the FullName calculation is duplicated in the database and in the UserProfile class. This sample was written using Visual Studio 2012 and Entity Framework 5. Download the source code here.

    Read the article

  • Problems with Level Architect, Citrus Engine, Flash

    - by Idan
    I am using the Citrus Engine to make a Flash game, and the Level Architect doesn't work well for me. Firstly, when I first launch it and open my project and my level, nothing is shown, no assets and not anything I have previously done with my level. To fix it, I open another project. The other project works fine, meaning I can see the assets and the level. Then I go back to the actual project I am working on, and the problem is fixed, only it does not fix the second problem: I can't add my own assests. I follow the manual and add tags like this: [Property(value="0")] But it doesn't change a thing in the level architect window (even after I close and reopen it). Any ideas? Thanks! Here's the code of the class I want to be shown in the Level Architect: package { import com.citrusengine.objects.PhysicsObject; import com.citrusengine.objects.platformer.Sensor; import flash.utils.clearTimeout; import flash.utils.setTimeout; /** * @author Aymeric */ public class Teleporter extends Sensor { [Property(value="0")] public var endX:Number=0; [Property(value="0")] public var endY:Number=0; public var object:PhysicsObject; [Property(value="0")] public var time:Number = 0; public var needToTeleport:Boolean = false; protected var _teleporting:Boolean = false; private var _teleportTimeoutID:uint; public function Teleporter(name:String, params:Object = null) { super(name, params); } override public function destroy():void { clearTimeout(_teleportTimeoutID); super.destroy(); } override public function update(timeDelta:Number):void { super.update(timeDelta); if (needToTeleport) { _teleporting = true; _teleportTimeoutID = setTimeout(_teleport, time); needToTeleport = false; } _updateAnimation(); } protected function _teleport():void { _teleporting = false; object.x = endX; object.y = endY; clearTimeout(_teleportTimeoutID); } protected function _updateAnimation():void { if (_teleporting) { _animation = "teleport"; } else { _animation = "normal"; } } } }

    Read the article

  • VBO and shaders confusion, what's their connection?

    - by Jeffrey
    Considering OpenGL 2.1 VBOs and 1.20 GLSL shaders: When creating an entity like "Zombie", is it good to initialize just the VBO buffer with the data once and do N glDrawArrays() calls per each N zombies? Is there a more efficient way? (With a single call we cannot pass different uniforms to the shader to calculate an offset, see point 3) When dealing with logical object (player, tree, cube etc), should I always use the same shader or should I customize (or be able to customize) the shaders per each object? Considering an entity class, should I create and define the shader at object initialization? When having a movable object such as a human, is there any more powerful way to deal with its coordinates than to initialize its VBO object at 0,0 and define an uniform offset to pass to the shader to calculate its real position? Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombielist class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie }

    Read the article

  • How to implement a stack of game states in C++

    - by Lisandro Vaccaro
    I'm new to C++ and as a college proyect I'm building a 2D platformer with some classmates, I recently read that it's a good idea to have a stack of gamestates instead of a single global variable with the game state (which is what I have now) but I'm not sure how to do it. Currently this is my implementation: class GameState { public: virtual ~GameState(){}; virtual void handle_events() = 0; virtual void logic() = 0; virtual void render() = 0; }; class Menu : public GameState { public: Menu(); ~Menu(); void handle_events(); void logic(); void render(); }; Then I have a global variable of type GameState: GameState *currentState = NULL; And in my Main I define the currentState and call it's methods: int main(){ currentState = new Menu(); currentState.handle_events(); } How can I implement a stack or something similar to go from that to something like this: int main(){ statesStack.push(new Menu()); statesStack.getTop().handle_events(); }

    Read the article

  • First Person Camera strafing at angle

    - by Linkandzelda
    I have a simple camera class working in directx 11 allowing moving forward and rotating left and right. I'm trying to implement strafing into it but having some problems. The strafing works when there's no camera rotation, so when the camera starts at 0, 0, 0. But after rotating the camera in either direction it seems to strafe at an angle or inverted or just some odd stuff. Here is a video uploaded to Dropbox showing this behavior. https://dl.dropboxusercontent.com/u/2873587/IncorrectStrafing.mp4 And here is my camera class. I have a hunch that it's related to the calculation for camera position. I tried various different calculations in strafe and they all seem to follow the same pattern and same behavior. Also the m_camera_rotation represents the Y rotation, as pitching isn't implemented yet. #include "camera.h" camera::camera(float x, float y, float z, float initial_rotation) { m_x = x; m_y = y; m_z = z; m_camera_rotation = initial_rotation; updateDXZ(); } camera::~camera(void) { } void camera::updateDXZ() { m_dx = sin(m_camera_rotation * (XM_PI/180.0)); m_dz = cos(m_camera_rotation * (XM_PI/180.0)); } void camera::Rotate(float amount) { m_camera_rotation += amount; updateDXZ(); } void camera::Forward(float step) { m_x += step * m_dx; m_z += step * m_dz; } void camera::strafe(float amount) { float yaw = (XM_PI/180.0) * m_camera_rotation; m_x += cosf( yaw ) * amount; m_z += sinf( yaw ) * amount; } XMMATRIX camera::getViewMatrix() { updatePosition(); return XMMatrixLookAtLH(m_position, m_lookat, m_up); } void camera::updatePosition() { m_position = XMVectorSet(m_x, m_y, m_z, 0.0); m_lookat = XMVectorSet(m_x + m_dx, m_y, m_z + m_dz, 0.0); m_up = XMVectorSet(0.0, 1.0, 0.0, 0.0); }

    Read the article

  • The Return Of __FILE__ And __LINE__ In .NET 4.5

    - by Alois Kraus
    Good things are hard to kill. One of the most useful predefined compiler macros in C/C++ were __FILE__ and __LINE__ which do expand to the compilation units file name and line number where this value is encountered by the compiler. After 4.5 versions of .NET we are on par with C/C++ again. It is of course not a simple compiler expandable macro it is an attribute but it does serve exactly the same purpose. Now we do get CallerLineNumberAttribute  == __LINE__ CallerFilePathAttribute        == __FILE__ CallerMemberNameAttribute  == __FUNCTION__ (MSVC Extension)   The most important one is CallerMemberNameAttribute which is very useful to implement the INotifyPropertyChanged interface without the need to hard code the name of the property anymore. Now you can simply decorate your change method with the new CallerMemberName attribute and you get the property name as string directly inserted by the C# compiler at compile time.   public string UserName { get { return _userName; } set { _userName=value; RaisePropertyChanged(); // no more RaisePropertyChanged(“UserName”)! } } protected void RaisePropertyChanged([CallerMemberName] string member = "") { var copy = PropertyChanged; if(copy != null) { copy(new PropertyChangedEventArgs(this, member)); } } Nice and handy. This was obviously the prime reason to implement this feature in the C# 5.0 compiler. You can repurpose this feature for tracing to get your hands on the method name of your caller along other stuff very fast now. All infos are added during compile time which is much faster than other approaches like walking the stack. The example on MSDN shows the usage of this attribute with an example public static void TraceMessage(string message, [CallerMemberName] string memberName = "", [CallerFilePath] string sourceFilePath = "", [CallerLineNumber] int sourceLineNumber = 0) { Console.WriteLine("Hi {0} {1} {2}({3})", message, memberName, sourceFilePath, sourceLineNumber); }   When I do think of tracing I do usually want to have a API which allows me to Trace method enter and leave Trace messages with a severity like Info, Warning, Error When I do print a trace message it is very useful to print out method and type name as well. So your API must either be able to pass the method and type name as strings or extract it automatically via walking back one Stackframe and fetch the infos from there. The first glaring deficiency is that there is no CallerTypeAttribute yet because the C# compiler team was not satisfied with its performance.   A usable Trace Api might therefore look like   enum TraceTypes { None = 0, EnterLeave = 1 << 0, Info = 1 << 1, Warn = 1 << 2, Error = 1 << 3 } class Tracer : IDisposable { string Type; string Method; public Tracer(string type, string method) { Type = type; Method = method; if (IsEnabled(TraceTypes.EnterLeave,Type, Method)) { } } private bool IsEnabled(TraceTypes traceTypes, string Type, string Method) { // Do checking here if tracing is enabled return false; } public void Info(string fmt, params object[] args) { } public void Warn(string fmt, params object[] args) { } public void Error(string fmt, params object[] args) { } public static void Info(string type, string method, string fmt, params object[] args) { } public static void Warn(string type, string method, string fmt, params object[] args) { } public static void Error(string type, string method, string fmt, params object[] args) { } public void Dispose() { // trace method leave } } This minimal trace API is very fast but hard to maintain since you need to pass in the type and method name as hard coded strings which can change from time to time. But now we have at least CallerMemberName to rid of the explicit method parameter right? Not really. Since any acceptable usable trace Api should have a method signature like Tracexxx(… string fmt, params [] object args) we not able to add additional optional parameters after the args array. If we would put it before the format string we would need to make it optional as well which would mean the compiler would need to figure out what our trace message and arguments are (not likely) or we would need to specify everything explicitly just like before . There are ways around this by providing a myriad of overloads which in the end are routed to the very same method but that is ugly. I am not sure if nobody inside MS agrees that the above API is reasonable to have or (more likely) that the whole talk about you can use this feature for diagnostic purposes was not a core feature at all but a simple byproduct of making the life of INotifyPropertyChanged implementers easier. A way around this would be to allow for variable argument arrays after the params keyword another set of optional arguments which are always filled by the compiler but I do not know if this is an easy one. The thing I am missing much more is the not provided CallerType attribute. But not in the way you would think of. In the API above I did add some filtering based on method and type to stay as fast as possible for types where tracing is not enabled at all. It should be no more expensive than an additional method call and a bool variable check if tracing for this type is enabled at all. The data is tightly bound to the calling type and method and should therefore become part of the static type instance. Since extending the CLR type system for tracing is not something I do expect to happen I have come up with an alternative approach which allows me basically to attach run time data to any existing type object in super fast way. The key to success is the usage of generics.   class Tracer<T> : IDisposable { string Method; public Tracer(string method) { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public void Dispose() { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public static void Info(string fmt, params object[] args) { } /// <summary> /// Every type gets its own instance with a fresh set of variables to describe the /// current filter status. /// </summary> /// <typeparam name="T"></typeparam> internal class TraceData<UsingType> { internal static TraceData<UsingType> Instance = new TraceData<UsingType>(); public bool IsInitialized = false; // flag if we need to reinit the trace data in case of reconfigured trace settings at runtime public TraceTypes Enabled = TraceTypes.None; // Enabled trace levels for this type } } We do not need to pass the type as string or Type object to the trace Api. Instead we define a generic Api that accepts the using type as generic parameter. Then we can create a TraceData static instance which is due to the nature of generics a fresh instance for every new type parameter. My tests on my home machine have shown that this approach is as fast as a simple bool flag check. If you have an application with many types using tracing you do not want to bring the app down by simply enabling tracing for one special rarely used type. The trace filter performance for the types which are not enabled must be therefore the fasted code path. This approach has the nice side effect that if you store the TraceData instances in one global list you can reconfigure tracing at runtime safely by simply setting the IsInitialized flag to false. A similar effect can be achieved with a global static Dictionary<Type,TraceData> object but big hash tables have random memory access semantics which is bad for cache locality and you always need to pay for the lookup which involves hash code generation, equality check and an indexed array access. The generic version is wicked fast and allows you to add more features to your tracing Api with minimal perf overhead. But it is cumbersome to write the generic type argument always explicitly and worse if you do refactor code and move parts of it to other classes it might be that you cannot configure tracing correctly. I would like therefore to decorate my type with an attribute [CallerType] class Tracer<T> : IDisposable to tell the compiler to fill in the generic type argument automatically. class Program { static void Main(string[] args) { using (var t = new Tracer()) // equivalent to new Tracer<Program>() { That would be really useful and super fast since you do not need to pass any type object around but you do have full type infos at hand. This change would be breaking if another non generic type exists in the same namespace where now the generic counterpart would be preferred. But this is an acceptable risk in my opinion since you can today already get conflicts if two generic types of the same name are defined in different namespaces. This would be only a variation of this issue. When you do think about this further you can add more features like to trace the exception in your Dispose method if the method is left with an exception with that little trick I did write some time ago. You can think of tracing as a super fast and configurable switch to write data to an output destination or to execute alternative actions. With such an infrastructure you can e.g. Reconfigure tracing at run time. Take a memory dump when a specific method is left with a specific exception. Throw an exception when a specific trace statement is hit (useful for testing error conditions). Execute a passed delegate which e.g. dumps additional state when enabled. Write data to an in memory ring buffer and dump it when specific events do occur (e.g. method is left with an exception, triggered from outside). Write data to an output device. …. This stuff is really useful to have when your code is in production on a mission critical server and you need to find the root cause of sporadic crashes of your application. It could be a buggy graphics card driver which throws access violations into your application (ok with .NET 4 not anymore except if you enable a compatibility flag) where you would like to have a minidump or you have reached after two weeks of operation a state where you need a full memory dump at a specific point in time in the middle of an transaction. At my older machine I do get with this super fast approach 50 million traces/s when tracing is disabled. When I do know that tracing is enabled for this type I can walk the stack by using StackFrameHelper.GetStackFramesInternal to check further if a specific action or output device is configured for this method which is about 2-3 times faster than the regular StackTrace class. Even with one String.Format I am down to 3 million traces/s so performance is not so important anymore since I do want to do something now. The CallerMemberName feature of the C# 5 compiler is nice but I would have preferred to get direct access to the MethodHandle and not to the stringified version of it. But I really would like to see a CallerType attribute implemented to fill in the generic type argument of the call site to augment the static CLR type data with run time data.

    Read the article

  • Libgdx actor bounds are wrong

    - by Undume
    The Actor's boundaries are not centered at the ButtonText but I used the setBounds() method. The higher the Y position is, the less centered is the boundary. The weird thing is that i only created and added to the Stage one button but the screen shows two. When i click the top button, the bottom one is the one highlighted. How can i fix that? import com.badlogic.gdx.Game; import com.badlogic.gdx.Gdx; import com.badlogic.gdx.files.FileHandle; import com.badlogic.gdx.scenes.scene2d.Stage; import com.badlogic.gdx.scenes.scene2d.ui.Skin; import com.badlogic.gdx.scenes.scene2d.ui.TextButton; public class MyGame extends Game { Stage stage; @Override public void create() { stage=new Stage(); FileHandle skinFile = new FileHandle("data/resources/uiskin/uiskin.json"); Skin skin = new Skin(skinFile); TextButton sas=new TextButton("dd",skin); sas.setBounds(0, 500, 100, 100); stage.addActor(sas); Gdx.input.setInputProcessor(stage); } @Override public void dispose() { super.dispose(); } @Override public void render() { super.render(); stage.act(Gdx.graphics.getDeltaTime()); stage.draw(); } @Override public void resize(int width, int height) { super.resize(width, height); } @Override public void pause() { super.pause(); } @Override public void resume() { super.resume(); } }

    Read the article

  • A Generic Boolean Value Converter

    - by codingbloke
    On fairly regular intervals a question on Stackoverflow like this one:  Silverlight Bind to inverse of boolean property value appears.  The same answers also regularly appear.  They all involve an implementation of IValueConverter and basically include the same boilerplate code. The required output type sometimes varies, other examples that have passed by are Boolean to Brush and Boolean to String conversions.  Yet the code remains pretty much the same.  There is therefore a good case to create a generic Boolean to value converter to contain this common code and then just specialise it for use in Xaml. Here is the basic converter:- BoolToValueConverter using System; using System.Windows.Data; namespace SilverlightApplication1 {     public class BoolToValueConverter<T> : IValueConverter     {         public T FalseValue { get; set; }         public T TrueValue { get; set; }         public object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             if (value == null)                 return FalseValue;             else                 return (bool)value ? TrueValue : FalseValue;         }         public object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             return value.Equals(TrueValue);         }     } } With this generic converter in place it easy to create a set of converters for various types.  For example here are all the converters mentioned so far:- Value Converters using System; using System.Windows; using System.Windows.Media; namespace SilverlightApplication1 {     public class BoolToStringConverter : BoolToValueConverter<String> { }     public class BoolToBrushConverter : BoolToValueConverter<Brush> { }     public class BoolToVisibilityConverter : BoolToValueConverter<Visibility> { }     public class BoolToObjectConverter : BoolToValueConverter<Object> { } } With the specialised converters created they can be specified in a Resources property on a user control like this:- <local:BoolToBrushConverter x:Key="Highlighter" FalseValue="Transparent" TrueValue="Yellow" /> <local:BoolToStringConverter x:Key="CYesNo" FalseValue="No" TrueValue="Yes" /> <local:BoolToVisibilityConverter x:Key="InverseVisibility" TrueValue="Collapsed" FalseValue="Visible" />

    Read the article

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • Maven Integrated View for NetBeans IDE

    - by Geertjan
    Started working on an oft-heard request from Kirk Pepperdine for an integrated view for multimodule builds for Maven projects in NetBeans IDE, as explained here. I suddenly had some kind of brainwave and solved all the remaining problems I had, by delegating to the LogicalViewProvider's node, instead of the project's node, which means I inherit all the icons, actions, package nodes, and anything else that was originally defined within the original project, in this case for the open source JAnnocessor project: Above, you can see that the Maven submodules can either be edited in-line, i.e., within the parent project, or separately, by opening them in the traditional NetBeans way. Get the module here: http://plugins.netbeans.org/plugin/45180/?show=true Some people out there might be interested in how this is achieved. First, hide the original ModulesNodeFactory in the layer. Then create the following class, which creates what you see in the screenshot above: import java.util.ArrayList; import java.util.List; import javax.swing.event.ChangeListener; import org.netbeans.api.project.Project; import org.netbeans.spi.project.SubprojectProvider; import org.netbeans.spi.project.ui.LogicalViewProvider; import org.netbeans.spi.project.ui.support.NodeFactory; import org.netbeans.spi.project.ui.support.NodeList; import org.openide.nodes.FilterNode; import org.openide.nodes.Node; @NodeFactory.Registration(projectType = "org-netbeans-modules-maven", position = 400) public class ModulesNodeFactory2 implements NodeFactory { @Override public NodeList<?> createNodes(Project prjct) { return new MavenModulesNodeList(prjct); } private class MavenModulesNodeList implements NodeList<Project> { private final Project project; public MavenModulesNodeList(Project prjct) { this.project = prjct; } @Override public List<Project> keys() { return new ArrayList<Project>( project.getLookup(). lookup(SubprojectProvider.class).getSubprojects()); } @Override public Node node(final Project project) { Node node = project.getLookup().lookup(LogicalViewProvider.class).createLogicalView(); return new FilterNode(node, new FilterNode.Children(node)); } @Override public void addChangeListener(ChangeListener cl) { } @Override public void removeChangeListener(ChangeListener cl) { } @Override public void addNotify() { } @Override public void removeNotify() { } } } Considering that there's only about 5 actual statements above, it's pretty amazing how much can be achieved with so little code. The NetBeans APIs really are very cool. Hope you like it, Kirk!

    Read the article

  • Customizing configuration with Dependency Injection

    - by mathieu
    I'm designing a small application infrastructure library, aiming to simplify development of ASP.NET MVC based applications. Main goal is to enforce convention over configuration. Hovewer, I still want to make some parts "configurable" by developpers. I'm leaning towards the following design: public interface IConfiguration { SomeType SomeValue; } // this one won't get registered in container protected class DefaultConfiguration : IConfiguration { public SomeType SomeValue { get { return SomeType.Default; } } } // declared inside 3rd party library, will get registered in container protected class CustomConfiguration : IConfiguration { public SomeType SomeValue { get { return SomeType.Custom; } } } And the "service" class : public class Service { private IConfiguration conf = new DefaultConfiguration(); // optional dependency, if found, will be set to CustomConfiguration by DI container public IConfiguration Conf { get { return conf; } set { conf = value; } } public void Configure() { DoSomethingWith( Conf ); } } There, the "configuration" part is clearly a dependency of the service class, but it this an "overuse" of DI ?

    Read the article

  • Displaying text letter by letter

    - by Evi
    I am planing to Write a Text adventure and I don't know how to make the text draw letter by letter in any other way than changing the variable from h to he to hel to hell to hello That would be a terrible amount of work since there are tons of dialogue. Here is the source code so far { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Texture2D sampleBG; Texture2D TextBG; SpriteFont defaultfont; KeyboardState keyboardstate; public bool spacepress = false; public bool mspress = false; public int textheight = 425; public int rowspace = 40; public string namebox = "(null)"; public string Row1 = "(null)"; public string Row2 = "(null)"; public string Row3 = "(null)"; public string Row4 = "(null)"; public int Dialogue = 0; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; graphics.PreferredBackBufferHeight = 600; graphics.PreferredBackBufferWidth = 800; IsMouseVisible = true; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here sampleBG = Content.Load <Texture2D>("SampleBG"); defaultfont = Content.Load<SpriteFont>("SpriteFont1"); TextBG = Content.Load<Texture2D>("textbg"); } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { KeyboardState keyboardstate = Keyboard.GetState(); MouseState mousestate = Mouse.GetState(); // Changes Dialgue by pressing Left Mouse Button or Space #region Dialogue changer if (mousestate.LeftButton == ButtonState.Pressed && mspress == false) { mspress = true; Dialogue = Dialogue + 1; } if (mousestate.LeftButton == ButtonState.Released && mspress == true) { mspress = false; } if (keyboardstate.IsKeyDown(Keys.Space) && spacepress == false) { spacepress = true; Dialogue = Dialogue + 1; } if (keyboardstate.IsKeyUp(Keys.Space) && spacepress == true) { spacepress = false; } #endregion // ------------------------------------------------------ // Dialgue Content #region Dialgue if (Dialogue == 1) { Row1 = "Input Text 1 Here."; Row2 = "Input Text 2 Here."; Row3 = "Input Text 3 Here."; Row4 = "Input Text 4 Here."; } if (Dialogue == 2) { Row1 = "Text 1"; Row2 = "Text 2"; Row3 = "Text 3"; Row4 = "Text 4"; } #endregion // ------------------------------------------------------ base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // TODO: Add your drawing code here spriteBatch.Begin(); spriteBatch.Draw(sampleBG, new Rectangle(0, 0, 800, 600), Color.White); spriteBatch.Draw(TextBG, new Rectangle(0, 400, 800, 200), Color.White); spriteBatch.DrawString(defaultfont, Row1, new Vector2(10, (textheight + (rowspace * 0))), Color.Black); spriteBatch.DrawString(defaultfont, Row2, new Vector2(10, (textheight + (rowspace * 1))), Color.Black); spriteBatch.DrawString(defaultfont, Row3, new Vector2(10, (textheight + (rowspace * 2))), Color.Black); spriteBatch.DrawString(defaultfont, Row4, new Vector2(10, (textheight + (rowspace * 3))), Color.Black); spriteBatch.End(); base.Draw(gameTime); } } }

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • CISCO 2911 Router configuration

    - by bala
    Device cisco 2911 router configuration support is required please. I have exchange server 2010 configured and working without any errors the problem is in cisco router configuration when exchange server sends emails out the receives WAN IP not the public ip. I have configured RDNS lookups with our MX record IP addesses that match the FQDN but all our emails are rejected because it does not match with the public ip. Receiving mails problem is not an problem all mails are coming through. i am sure i am missing something on the router configuration that does not sends the public ip, can any one help me to solve this issue. Note; I've got 1 WAN IP & 8 Public IP from ISP . Find below the running configuration. Building configuration... Current configuration : 2734 bytes ! ! Last configuration change at 06:32:13 UTC Tue Apr 3 2012 ! NVRAM config last updated at 06:32:14 UTC Tue Apr 3 2012 ! NVRAM config last updated at 06:32:14 UTC Tue Apr 3 2012 version 15.1 service timestamps debug datetime msec service timestamps log datetime msec service password-encryption ! hostname BSBG-LL ! boot-start-marker boot-end-marker ! ! enable secret 5 $x$xHrxxxxx5ox0 enable password 7 xx23xx5FxxE1xx044 ! no aaa new-model ! no ipv6 cef ip source-route ip cef ! ! ! ! ! ip flow-cache timeout active 1 ip domain name yourdomain.com ip name-server 213.42.20.20 ip name-server 195.229.241.222 multilink bundle-name authenticated ! ! crypto pki token default removal timeout 0 ! ! license udi pid CISCO2911/K9 ! ! username bsbg ! ! ! ! ! ! interface Embedded-Service-Engine0/0 no ip address shutdown ! interface GigabitEthernet0/0 ip address 192.168.0.9 255.255.255.0 ip flow ingress ip nat inside ip virtual-reassembly in duplex auto speed 100 no cdp enable ! interface GigabitEthernet0/1 ip address 213.42.xx.x2 255.255.255.252 ip nat outside ip virtual-reassembly in duplex auto speed auto no cdp enable ! interface GigabitEthernet0/2 no ip address shutdown duplex auto speed auto ! ip forward-protocol nd ! no ip http server no ip http secure-server ! ip nat inside source list 120 interface GigabitEthernet0/1 overload ip nat inside source static tcp 192.168.0.4 25 94.56.89.100 25 extendable ip nat inside source static tcp 192.168.0.4 53 94.56.89.100 53 extendable ip nat inside source static udp 192.168.0.4 53 94.56.89.100 53 extendable ip nat inside source static tcp 192.168.0.4 110 94.56.89.100 110 extendable ip nat inside source static tcp 192.168.0.4 443 94.56.89.100 443 extendable ip nat inside source static tcp 192.168.0.4 587 94.56.89.100 587 extendable ip nat inside source static tcp 192.168.0.4 995 94.56.89.100 995 extendable ip nat inside source static tcp 192.168.0.4 3389 94.56.89.100 3389 extendable ip nat inside source static tcp 192.168.0.4 443 94.56.89.101 443 extendable ip nat inside source static tcp 192.168.0.12 80 94.56.89.102 80 extendable ip nat inside source static tcp 192.168.0.12 443 94.56.89.102 443 extendable ip nat inside source static tcp 192.168.0.12 3389 94.56.89.102 3389 extendable ip route 0.0.0.0 0.0.0.0 213.42.69.41 ! access-list 120 permit ip 192.168.0.0 0.0.0.255 any ! ! ! control-plane ! ! ! line con 0 exec-timeout 5 0 line aux 0 line 2 no activation-character no exec transport preferred none transport input all transport output pad telnet rlogin lapb-ta mop udptn v120 ssh stopbits 1 line vty 0 4 password 7 xx64xxD530D26086Dxx login transport input all ! scheduler allocate 20000 1000 end

    Read the article

  • Retrieving Custom Attributes Using Reflection

    - by Scott Dorman
    The .NET Framework allows you to easily add metadata to your classes by using attributes. These attributes can be ones that the .NET Framework already provides, of which there are over 300, or you can create your own. Using reflection, the ways to retrieve the custom attributes of a type are: System.Reflection.MemberInfo public abstract object[] GetCustomAttributes(bool inherit); public abstract object[] GetCustomAttributes(Type attributeType, bool inherit); public abstract bool IsDefined(Type attributeType, bool inherit); System.Attribute public static Attribute[] GetCustomAttributes(MemberInfo member, bool inherit); public static bool IsDefined(MemberInfo element, Type attributeType, bool inherit); If you take the following simple class hierarchy: public abstract class BaseClass { private bool result;   [DefaultValue(false)] public virtual bool SimpleProperty { get { return this.result; } set { this.result = value; } } }   public class DerivedClass : BaseClass { public override bool SimpleProperty { get { return true; } set { base.SimpleProperty = value; } } } Given a PropertyInfo object (which is derived from MemberInfo, and represents a propery in reflection), you might expect that these methods would return the same result. Unfortunately, that isn’t the case. The MemberInfo methods strictly reflect the metadata definitions, ignoring the inherit parameter and not searching the inheritance chain when used with a PropertyInfo, EventInfo, or ParameterInfo object. It also returns all custom attribute instances, including those that don’t inherit from System.Attribute. The Attribute methods are closer to the implied behavior of the language (and probably closer to what you would naturally expect). They do respect the inherit parameter for PropertyInfo, EventInfo, and ParameterInfo objects and search the implied inheritance chain defined by the associated methods (in this case, the property accessors). These methods also only return custom attributes that inherit from System.Attribute. This is a fairly subtle difference that can produce very unexpected results if you aren’t careful. For example, to retrieve the custom  attributes defined on SimpleProperty, you could use code similar to this: PropertyInfo info = typeof(DerivedClass).GetProperty("SimpleProperty"); var attributeList1 = info.GetCustomAttributes(typeof(DefaultValueAttribute), true)); var attributeList2 = Attribute.GetCustomAttributes(info, typeof(DefaultValueAttribute), true));   The attributeList1 array will be empty while the attributeList2 array will contain the attribute instance, as expected. Technorati Tags: Reflection,Custom Attributes,PropertyInfo

    Read the article

  • How do I inject test objects when the real objects are created dynamically?

    - by JW01
    I want to make a class testable using dependency injection. But the class creates multiple objects at runtime, and passes different values to their constructor. Here's a simplified example: public abstract class Validator { private ErrorList errors; public abstract void validate(); public void addError(String text) { errors.add( new ValidationError(text)); } public int getNumErrors() { return errors.count() } } public class AgeValidator extends Validator { public void validate() { addError("first name invalid"); addError("last name invalid"); } } (There are many other subclasses of Validator.) What's the best way to change this, so I can inject a fake object instead of ValidationError? I can create an AbstractValidationErrorFactory, and inject the factory instead. This would work, but it seems like I'll end up creating tons of little factories and factory interfaces, for every dependency of this sort. Is there a better way?

    Read the article

< Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >