Search Results

Search found 14486 results on 580 pages for 'python idle'.

Page 160/580 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • Python - pickling fails for numpy.void objects

    - by I82Much
    >>> idmapfile = open("idmap", mode="w") >>> pickle.dump(idMap, idmapfile) >>> idmapfile.close() >>> idmapfile = open("idmap") >>> unpickled = pickle.load(idmapfile) >>> unpickled == idMap False idMap[1] {1537: (552, 1, 1537, 17.793827056884766, 3), 1540: (4220, 1, 1540, 19.31205940246582, 3), 1544: (592, 1, 1544, 18.129131317138672, 3), 1675: (529, 1, 1675, 18.347782135009766, 3), 1550: (4048, 1, 1550, 19.31205940246582, 3), 1424: (1528, 1, 1424, 19.744396209716797, 3), 1681: (1265, 1, 1681, 19.596025466918945, 3), 1560: (3457, 1, 1560, 20.530569076538086, 3), 1690: (477, 1, 1690, 17.395542144775391, 3), 1691: (554, 1, 1691, 13.446117401123047, 3), 1436: (3010, 1, 1436, 19.596025466918945, 3), 1434: (3183, 1, 1434, 19.744396209716797, 3), 1441: (3570, 1, 1441, 20.589576721191406, 3), 1435: (476, 1, 1435, 19.640911102294922, 3), 1444: (527, 1, 1444, 17.98480224609375, 3), 1478: (1897, 1, 1478, 19.596025466918945, 3), 1575: (614, 1, 1575, 19.371648788452148, 3), 1586: (2189, 1, 1586, 19.31205940246582, 3), 1716: (3470, 1, 1716, 19.158674240112305, 3), 1590: (2278, 1, 1590, 19.596025466918945, 3), 1463: (991, 1, 1463, 19.31205940246582, 3), 1594: (1890, 1, 1594, 19.596025466918945, 3), 1467: (1087, 1, 1467, 19.31205940246582, 3), 1596: (3759, 1, 1596, 19.744396209716797, 3), 1602: (3011, 1, 1602, 20.530569076538086, 3), 1547: (490, 1, 1547, 17.994071960449219, 3), 1605: (658, 1, 1605, 19.31205940246582, 3), 1606: (1794, 1, 1606, 16.964881896972656, 3), 1719: (1826, 1, 1719, 19.596025466918945, 3), 1617: (583, 1, 1617, 11.894925117492676, 3), 1492: (3441, 1, 1492, 20.500667572021484, 3), 1622: (3215, 1, 1622, 19.31205940246582, 3), 1628: (2761, 1, 1628, 19.744396209716797, 3), 1502: (1563, 1, 1502, 19.596025466918945, 3), 1632: (1108, 1, 1632, 15.457141876220703, 3), 1468: (3779, 1, 1468, 19.596025466918945, 3), 1642: (3970, 1, 1642, 19.744396209716797, 3), 1518: (612, 1, 1518, 18.570245742797852, 3), 1647: (854, 1, 1647, 16.964881896972656, 3), 1650: (2099, 1, 1650, 20.439058303833008, 3), 1651: (540, 1, 1651, 18.552841186523438, 3), 1653: (613, 1, 1653, 19.237197875976563, 3), 1532: (537, 1, 1532, 18.885730743408203, 3)} >>> unpickled[1] {1537: (64880, 1638, 56700, -1.0808743559293829e+18, 152), 1540: (64904, 1638, 0, 0.0, 0), 1544: (54472, 1490, 0, 0.0, 0), 1675: (6464, 1509, 0, 0.0, 0), 1550: (43592, 1510, 0, 0.0, 0), 1424: (43616, 1510, 0, 0.0, 0), 1681: (0, 0, 0, 0.0, 0), 1560: (400, 152, 400, 2.1299736657737219e-43, 0), 1690: (408, 152, 408, 2.7201111331839077e+26, 34), 1435: (424, 152, 61512, 1.0122952080313192e-39, 0), 1436: (400, 152, 400, 20.250289916992188, 3), 1434: (424, 152, 62080, 1.0122952080313192e-39, 0), 1441: (400, 152, 400, 12.250144958496094, 3), 1691: (424, 152, 42608, 15.813941955566406, 3), 1444: (400, 152, 400, 19.625289916992187, 3), 1606: (424, 152, 42432, 5.2947192852601414e-22, 41), 1575: (400, 152, 400, 6.2537390010262572e-36, 0), 1586: (424, 152, 42488, 1.0122601755697111e-39, 0), 1716: (400, 152, 400, 6.2537390010262572e-36, 0), 1590: (424, 152, 64144, 1.0126357235581501e-39, 0), 1463: (400, 152, 400, 6.2537390010262572e-36, 0), 1594: (424, 152, 32672, 17.002994537353516, 3), 1467: (400, 152, 400, 19.750289916992187, 3), 1596: (424, 152, 7176, 1.0124003054161436e-39, 0), 1602: (400, 152, 400, 18.500289916992188, 3), 1547: (424, 152, 7000, 1.0124003054161436e-39, 0), 1605: (400, 152, 400, 20.500289916992188, 3), 1478: (424, 152, 42256, -6.0222748507426518e+30, 222), 1719: (400, 152, 400, 6.2537390010262572e-36, 0), 1617: (424, 152, 16472, 1.0124283313854301e-39, 0), 1492: (400, 152, 400, 6.2537390010262572e-36, 0), 1622: (424, 152, 35304, 1.0123190301052127e-39, 0), 1628: (400, 152, 400, 6.2537390010262572e-36, 0), 1502: (424, 152, 63152, 19.627988815307617, 3), 1632: (400, 152, 400, 19.375289916992188, 3), 1468: (424, 152, 38088, 1.0124213248931084e-39, 0), 1642: (400, 152, 400, 6.2537390010262572e-36, 0), 1518: (424, 152, 63896, 1.0127436235399031e-39, 0), 1647: (400, 152, 400, 6.2537390010262572e-36, 0), 1650: (424, 152, 53424, 16.752857208251953, 3), 1651: (400, 152, 400, 19.250289916992188, 3), 1653: (424, 152, 50624, 1.0126497365427934e-39, 0), 1532: (400, 152, 400, 6.2537390010262572e-36, 0)} The keys come out fine, the values are screwed up. I tried same thing loading file in binary mode; didn't fix the problem. Any idea what I'm doing wrong? Edit: Here's the code with binary. Note that the values are different in the unpickled object. >>> idmapfile = open("idmap", mode="wb") >>> pickle.dump(idMap, idmapfile) >>> idmapfile.close() >>> idmapfile = open("idmap", mode="rb") >>> unpickled = pickle.load(idmapfile) >>> unpickled==idMap False >>> unpickled[1] {1537: (12176, 2281, 56700, -1.0808743559293829e+18, 152), 1540: (0, 0, 15934, 2.7457842047810522e+26, 108), 1544: (400, 152, 400, 4.9518498821046956e+27, 53), 1675: (408, 152, 408, 2.7201111331839077e+26, 34), 1550: (456, 152, 456, -1.1349175514578289e+18, 152), 1424: (432, 152, 432, 4.5939047815653343e-40, 11), 1681: (408, 152, 408, 2.1299736657737219e-43, 0), 1560: (376, 152, 376, 2.1299736657737219e-43, 0), 1690: (376, 152, 376, 2.1299736657737219e-43, 0), 1435: (376, 152, 376, 2.1299736657737219e-43, 0), 1436: (376, 152, 376, 2.1299736657737219e-43, 0), 1434: (376, 152, 376, 2.1299736657737219e-43, 0), 1441: (376, 152, 376, 2.1299736657737219e-43, 0), 1691: (376, 152, 376, 2.1299736657737219e-43, 0), 1444: (376, 152, 376, 2.1299736657737219e-43, 0), 1606: (25784, 2281, 376, -3.2883343074537754e+26, 34), 1575: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1586: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1716: (24240, 2281, 376, -3.0093091599657311e-35, 26), 1590: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1463: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1594: (24240, 2281, 376, -4123208450048.0, 196), 1467: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1596: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1602: (25784, 2281, 376, -5.9963281433905448e+26, 76), 1547: (25784, 2281, 376, -218106240.0, 139), 1605: (25784, 2281, 376, -3.7138649803377281e+27, 56), 1478: (376, 152, 376, 2.1299736657737219e-43, 0), 1719: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1617: (25784, 2281, 376, -1.4411779941597184e+17, 237), 1492: (25784, 2281, 376, 2.8596493694487798e-30, 80), 1622: (25784, 2281, 376, 184686084096.0, 93), 1628: (1336, 152, 1336, 3.1691839245470052e+29, 179), 1502: (1272, 152, 1272, -5.2042207205116645e-17, 99), 1632: (1208, 152, 1208, 2.1299736657737219e-43, 0), 1468: (1144, 152, 1144, 2.1299736657737219e-43, 0), 1642: (1080, 152, 1080, 2.1299736657737219e-43, 0), 1518: (1016, 152, 1016, 4.0240902787680023e+35, 145), 1647: (952, 152, 952, -985172619034624.0, 237), 1650: (888, 152, 888, 12094787289088.0, 66), 1651: (824, 152, 824, 2.1299736657737219e-43, 0), 1653: (760, 152, 760, 0.00018310768064111471, 238), 1532: (696, 152, 696, 8.8978061885676389e+26, 125)} OK I've isolated the problem, but don't know why it's so. First, apparently what I'm pickling are not tuples (though they look like it), but instead numpy.void types. Here is a series to illustrate the problem. first = run0.detections[0] >>> first (1, 19, 1578, 82.637763977050781, 1) >>> type(first) <type 'numpy.void'> >>> firstTuple = tuple(first) >>> theFile = open("pickleTest", "w") >>> pickle.dump(first, theFile) >>> theTupleFile = open("pickleTupleTest", "w") >>> pickle.dump(firstTuple, theTupleFile) >>> theFile.close() >>> theTupleFile.close() >>> first (1, 19, 1578, 82.637763977050781, 1) >>> firstTuple (1, 19, 1578, 82.637764, 1) >>> theFile = open("pickleTest", "r") >>> theTupleFile = open("pickleTupleTest", "r") >>> unpickledTuple = pickle.load(theTupleFile) >>> unpickledVoid = pickle.load(theFile) >>> type(unpickledVoid) <type 'numpy.void'> >>> type(unpickledTuple) <type 'tuple'> >>> unpickledTuple (1, 19, 1578, 82.637764, 1) >>> unpickledTuple == firstTuple True >>> unpickledVoid == first False >>> unpickledVoid (7936, 1705, 56700, -1.0808743559293829e+18, 152) >>> first (1, 19, 1578, 82.637763977050781, 1)

    Read the article

  • [Tkinter/Python] Different line widths with canvas.create_line?

    - by Sam
    Does anyone have any idea why I get different line widths on the canvas in the following example? from Tkinter import * bigBoxSize = 150 class cFrame(Frame): def __init__(self, master, cwidth=450, cheight=450): Frame.__init__(self, master, relief=RAISED, height=550, width=600, bg = "grey") self.canvasWidth = cwidth self.canvasHeight = cheight self.canvas = Canvas(self, bg="white", width=cwidth, height=cheight, border =0) self.drawGridLines() self.canvas.pack(side=TOP, pady=20, padx=20) def drawGridLines(self, linewidth = 10): self.canvas.create_line(0, 0, self.canvasWidth, 0, width= linewidth ) self.canvas.create_line(0, 0, 0, self.canvasHeight, width= linewidth ) self.canvas.create_line(0, self.canvasHeight, self.canvasWidth + 2, self.canvasHeight, width= linewidth ) self.canvas.create_line(self.canvasWidth, self.canvasHeight, self.canvasWidth, 1, width= linewidth ) self.canvas.create_line(0, bigBoxSize, self.canvasWidth, bigBoxSize, width= linewidth ) self.canvas.create_line(0, bigBoxSize * 2, self.canvasWidth, bigBoxSize * 2, width= linewidth) root = Tk() C = cFrame(root) C.pack() root.mainloop() It's really frustrating me as I have no idea what's happening. If anyone can help me out then that'd be fantastic. Thanks!

    Read the article

  • Python combinations no repeat by constraint

    - by user2758113
    I have a tuple of tuples (Name, val 1, val 2, Class) tuple = (("Jackson",10,12,"A"), ("Ryan",10,20,"A"), ("Michael",10,12,"B"), ("Andrew",10,20,"B"), ("McKensie",10,12,"C"), ("Alex",10,20,"D")) I need to return all combinations using itertools combinations that do not repeat classes. How can I return combinations that dont repeat classes. For example, the first returned statement would be: tuple0, tuple2, tuple4, tuple5 and so on.

    Read the article

  • Python 3.1 - Memory Error during sampling of a large list

    - by jimy
    The input list can be more than 1 million numbers. When I run the following code with smaller 'repeats', its fine; def sample(x): length = 1000000 new_array = random.sample((list(x)),length) return (new_array) def repeat_sample(x): i = 0 repeats = 100 list_of_samples = [] for i in range(repeats): list_of_samples.append(sample(x)) return(list_of_samples) repeat_sample(large_array) However, using high repeats such as the 100 above, results in MemoryError. Traceback is as follows; Traceback (most recent call last): File "C:\Python31\rnd.py", line 221, in <module> STORED_REPEAT_SAMPLE = repeat_sample(STORED_ARRAY) File "C:\Python31\rnd.py", line 129, in repeat_sample list_of_samples.append(sample(x)) File "C:\Python31\rnd.py", line 121, in sample new_array = random.sample((list(x)),length) File "C:\Python31\lib\random.py", line 309, in sample result = [None] * k MemoryError I am assuming I'm running out of memory. I do not know how to get around this problem. Thank you for your time!

    Read the article

  • I have an Errno 13 Permission denied with subprocess in python

    - by wDroter
    The line with the issue is ret=subprocess.call(shlex.split(cmd)) cmd = /usr/share/java -cp pig-hadoop-conf-Simpsons:lib/pig-0.8.1-cdh3u1-core.jar:lib/hadoop-core-0.20.2-cdh3u1.jar org.apache.pig.Main -param func=cat -param from =foo.txt -x mapreduce fsFunc.pig The error is. File "./run_pig.py", line 157, in process ret=subprocess.call(shlex.split(cmd)) File "/usr/lib/python2.7/subprocess.py", line 493, in call return Popen(*popenargs, **kwargs).wait() File "/usr/lib/python2.7/subprocess.py", line 679, in __init__ errread, errwrite) File "/usr/lib/python2.7/subprocess.py", line 1249, in _execute_child raise child_exception OSError: [Errno 13] Permission denied Let me know if any more info is needed. Any help is appreciated. Thanks.

    Read the article

  • Get the last '/' or '\\' character in Python

    - by wowus
    If I have a string that looks like either ./A/B/c.d OR .\A\B\c.d How do I get just the "./A/B/" part? The direction of the slashes can be the same as they are passed. This problem kinda boils down to: How do I get the last of a specific character in a string? Basically, I want the path of a file without the file part of it.

    Read the article

  • Using __str__ representation for printing objects in containers in Python

    - by BobDobbs
    I've noticed that when an instance with an overloaded str method is passed to the print() function as an argument, it prints as intended. However, when passing a container that contains one of those instances to print(), it uses the repr method instead. That is to say, print(x) displays the correct string representation of x, and print(x, y) works correctly, but print([x]) or print((x, y)) prints the repr representation instead. First off, why does this happen? Secondly, is there a way to correct that behavior of print() in this circumstance?

    Read the article

  • strip spaces in python.

    - by Richard
    ok I know that this should be simple... anyways say: line = "$W5M5A,100527,142500,730301c44892fd1c,2,686.5 4,333.96,0,0,28.6,123,75,-0.4,1.4*49" I want to strip out the spaces. I thought you would just do this line = line.strip() but now line is still '$W5M5A,100527,142500,730301c44892fd1c,2,686.5 4,333.96,0,0,28.6,123,75,-0.4,1.4*49' instead of '$W5M5A,100527,142500,730301c44892fd1c,2,686.54,333.96,0,0,28.6,123,75,-0.4,1.4*49' any thoughts?

    Read the article

  • Python unicode search not giving correct answer

    - by user1318912
    I am trying to search hindi words contained one line per file in file-1 and find them in lines in file-2. I have to print the line numbers with the number of words found. This is the code: import codecs hypernyms = codecs.open("hindi_hypernym.txt", "r", "utf-8").readlines() words = codecs.open("hypernyms_en2hi.txt", "r", "utf-8").readlines() count_arr = [] for counter, line in enumerate(hypernyms): count_arr.append(0) for word in words: if line.find(word) >=0: count_arr[counter] +=1 for iterator, count in enumerate(count_arr): if count>0: print iterator, ' ', count This is finding some words, but ignoring some others The input files are: File-1: ???? ??????? File-2: ???????, ????-???? ?????-???, ?????-???, ?????_???, ?????_??? ????_????, ????-????, ???????_???? ????-???? This gives output: 0 1 3 1 Clearly, it is ignoring ??????? and searching for ???? only. I have tried with other inputs as well. It only searches for one word. Any idea how to correct this?

    Read the article

  • Python - calendar.timegm() vs. time.mktime()

    - by ibz
    I seem to have a hard time getting my head around this. What's the difference between calendar.timegm() and time.mktime()? Say I have a datetime.datetime with no tzinfo attached, shouldn't the two give the same output? Don't they both give the number of seconds between epoch and the date passed as a parameter? And since the date passed has no tzinfo, isn't that number of seconds the same? >>> import calendar >>> import time >>> import datetime >>> d = datetime.datetime(2010, 10, 10) >>> calendar.timegm(d.timetuple()) 1286668800 >>> time.mktime(d.timetuple()) 1286640000.0 >>>

    Read the article

  • Python RegExp exception

    - by Jasie
    How do I split on all nonalphanumeric characters, EXCEPT the apostrophe? re.split('\W+',text) works, but will also split on apostrophes. How do I add an exception to this rule? Thanks!

    Read the article

  • Python: Taking an array and break it into subarrays based on some criteria

    - by randombits
    I have an array of files. I'd like to be able to break that array down into one array with multiple subarrays, each subarray contains files that were created on the same day. So right now if the array contains files from March 1 - March 31, I'd like to have an array with 31 subarrays (assuming there is at least 1 file for each day). In the long run, I'm trying to find the file from each day with the latest creation/modification time. If there is a way to bundle that into the iterations that are required above to save some CPU cycles, that would be even more ideal. Then I'd have one flat array with 31 files, one for each day, for the latest file created on each individual day.

    Read the article

  • Dynamic variable name in python

    - by PhilGo20
    I'd like to call a query with a field name filter that I wont know before run time... Not sure how to construct the variable name ...Or maybe I am tired. field_name = funct() locations = Locations.objects.filter(field_name__lte=arg1) where if funct() returns name would equal to locations = Locations.objects.filter(name__lte=arg1) Not sure how to do that ...

    Read the article

  • filtering elements from list of lists in Python?

    - by user248237
    I want to filter elements from a list of lists, and iterate over the elements of each element using a lambda. For example, given the list: a = [[1,2,3],[4,5,6]] suppose that I want to keep only elements where the sum of the list is greater than N. I tried writing: filter(lambda x, y, z: x + y + z >= N, a) but I get the error: <lambda>() takes exactly 3 arguments (1 given) How can I iterate while assigning values of each element to x, y, and z? Something like zip, but for arbitrarily long lists. thanks, p.s. I know I can write this using: filter(lambda x: sum(x)..., a) but that's not the point, imagine that these were not numbers but arbitrary elements and I wanted to assign their values to variable names.

    Read the article

  • varargs in lambda functions in Python

    - by brain_damage
    Is it possible a lambda function to have variable number of arguments? For example, I want to write a metaclass, which creates a method for every method of some other class and this newly created method returns the opposite value of the original method and has the same number of arguments. And I want to do this with lambda function. How to pass the arguments? Is it possible? class Negate(type): def __new__(mcs, name, bases, _dict): extended_dict = _dict.copy() for (k, v) in _dict.items(): if hasattr(v, '__call__'): extended_dict["not_" + k] = lambda s, *args, **kw: not v(s, *args, **kw) return type.__new__(mcs, name, bases, extended_dict) class P(metaclass=Negate): def __init__(self, a): self.a = a def yes(self): return True def maybe(self, you_can_chose): return you_can_chose But the result is totally wrong: >>>p = P(0) >>>p.yes() True >>>p.not_yes() # should be False Traceback (most recent call last): File "<pyshell#150>", line 1, in <module> p.not_yes() File "C:\Users\Nona\Desktop\p10.py", line 51, in <lambda> extended_dict["not_" + k] = lambda s, *args, **kw: not v(s, *args, **kw) TypeError: __init__() takes exactly 2 positional arguments (1 given) >>>p.maybe(True) True >>>p.not_maybe(True) #should be False True

    Read the article

  • OpenMeetings + Python + Suds

    - by user366774
    Trying to integrate openmeetings with django website, but can't understand how properly configure ImportDoctor: (here :// replaced with __ 'cause spam protection) print url http://sovershenstvo.com.ua:5080/openmeetings/services/UserService?wsdl imp = Import('http__schemas.xmlsoap.org/soap/encoding/') imp.filter.add('http__services.axis.openmeetings.org') imp.filter.add('http__basic.beans.hibernate.app.openmeetings.org/xsd') imp.filter.add('http__basic.beans.data.app.openmeetings.org/xsd') imp.filter.add('http__services.axis.openmeetings.org') d = ImportDoctor(imp) client = Client(url, doctor = d) client.service.getSession() Traceback (most recent call last): File "", line 1, in File "/usr/lib/python2.6/site-packages/suds/client.py", line 539, in call return client.invoke(args, kwargs) File "/usr/lib/python2.6/site-packages/suds/client.py", line 598, in invoke result = self.send(msg) File "/usr/lib/python2.6/site-packages/suds/client.py", line 627, in send result = self.succeeded(binding, reply.message) File "/usr/lib/python2.6/site-packages/suds/client.py", line 659, in succeeded r, p = binding.get_reply(self.method, reply) File "/usr/lib/python2.6/site-packages/suds/bindings/binding.py", line 159, in get_reply resolved = rtypes[0].resolve(nobuiltin=True) File "/usr/lib/python2.6/site-packages/suds/xsd/sxbasic.py", line 63, in resolve raise TypeNotFound(qref) suds.TypeNotFound: Type not found: '(Sessiondata, http__basic.beans.hibernate.app.openmeetings.org/xsd, )' what i'm doing wrong? please help and sorry for my english, but you are my last chance to save position :( need webinars at morning (2.26 am now)

    Read the article

  • Efficient way in Python to remove an element from a comma-separated string

    - by ensnare
    I'm looking for the most efficient way to add an element to a comma-separated string while maintaining alphabetical order for the words: For example: string = 'Apples, Bananas, Grapes, Oranges' subtraction = 'Bananas' result = 'Apples, Grapes, Oranges' Also, a way to do this but while maintaining IDs: string = '1:Apples, 4:Bananas, 6:Grapes, 23:Oranges' subtraction = '4:Bananas' result = '1:Apples, 6:Grapes, 23:Oranges' Sample code is greatly appreciated. Thank you so much.

    Read the article

  • Efficient file buffering & scanning methods for large files in python

    - by eblume
    The description of the problem I am having is a bit complicated, and I will err on the side of providing more complete information. For the impatient, here is the briefest way I can summarize it: What is the fastest (least execution time) way to split a text file in to ALL (overlapping) substrings of size N (bound N, eg 36) while throwing out newline characters. I am writing a module which parses files in the FASTA ascii-based genome format. These files comprise what is known as the 'hg18' human reference genome, which you can download from the UCSC genome browser (go slugs!) if you like. As you will notice, the genome files are composed of chr[1..22].fa and chr[XY].fa, as well as a set of other small files which are not used in this module. Several modules already exist for parsing FASTA files, such as BioPython's SeqIO. (Sorry, I'd post a link, but I don't have the points to do so yet.) Unfortunately, every module I've been able to find doesn't do the specific operation I am trying to do. My module needs to split the genome data ('CAGTACGTCAGACTATACGGAGCTA' could be a line, for instance) in to every single overlapping N-length substring. Let me give an example using a very small file (the actual chromosome files are between 355 and 20 million characters long) and N=8 import cStringIO example_file = cStringIO.StringIO("""\ header CAGTcag TFgcACF """) for read in parse(example_file): ... print read ... CAGTCAGTF AGTCAGTFG GTCAGTFGC TCAGTFGCA CAGTFGCAC AGTFGCACF The function that I found had the absolute best performance from the methods I could think of is this: def parse(file): size = 8 # of course in my code this is a function argument file.readline() # skip past the header buffer = '' for line in file: buffer += line.rstrip().upper() while len(buffer) = size: yield buffer[:size] buffer = buffer[1:] This works, but unfortunately it still takes about 1.5 hours (see note below) to parse the human genome this way. Perhaps this is the very best I am going to see with this method (a complete code refactor might be in order, but I'd like to avoid it as this approach has some very specific advantages in other areas of the code), but I thought I would turn this over to the community. Thanks! Note, this time includes a lot of extra calculation, such as computing the opposing strand read and doing hashtable lookups on a hash of approximately 5G in size. Post-answer conclusion: It turns out that using fileobj.read() and then manipulating the resulting string (string.replace(), etc.) took relatively little time and memory compared to the remainder of the program, and so I used that approach. Thanks everyone!

    Read the article

  • Python loop | "do-while" over a tree

    - by johannix
    Is there a more Pythonic way to put this loop together?: while True: children = tree.getChildren() if not children: break tree = children[0] UPDATE: I think this syntax is probably what I'm going to go with: while tree.getChildren(): tree = tree.getChildren()[0]

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >