Search Results

Search found 9311 results on 373 pages for 'loop counter'.

Page 166/373 | < Previous Page | 162 163 164 165 166 167 168 169 170 171 172 173  | Next Page >

  • Use Extension method to write cleaner code

    - by Fredrik N
    This blog post will show you step by step to refactoring some code to be more readable (at least what I think). Patrik Löwnedahl gave me some of the ideas when we where talking about making code much cleaner. The following is an simple application that will have a list of movies (Normal and Transfer). The task of the application is to calculate the total sum of each movie and also display the price of each movie. class Program { enum MovieType { Normal, Transfer } static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } else if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } } private static IEnumerable<MovieType> GetMovies() { return new List<MovieType>() { MovieType.Normal, MovieType.Transfer, MovieType.Normal }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the code above I’m using an enum, a good way to add types (isn’t it ;)). I also use one foreach loop to calculate the price, the loop has a condition statement to check what kind of movie is added to the list of movies. I want to reuse the foreach only to increase performance and let it do two things (isn’t that smart of me?! ;)). First of all I can admit, I’m not a big fan of enum. Enum often results in ugly condition statements and can be hard to maintain (if a new type is added we need to check all the code in our app to see if we use the enum somewhere else). I don’t often care about pre-optimizations when it comes to write code (of course I have performance in mind). I rather prefer to use two foreach to let them do one things instead of two. So based on what I don’t like and Martin Fowler’s Refactoring catalog, I’m going to refactoring this code to what I will call a more elegant and cleaner code. First of all I’m going to use Split Loop to make sure the foreach will do one thing not two, it will results in two foreach (Don’t care about performance here, if the results will results in bad performance, you can refactoring later, but computers are so fast to day, so iterating through a list is not often so time consuming.) Note: The foreach actually do four things, will come to is later. var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } } foreach (var movie in movies) { if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To remove the condition statement we can use the Where extension method added to the IEnumerable<T> and is located in the System.Linq namespace: foreach (var movie in movies.Where( m => m == MovieType.Normal)) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } foreach (var movie in movies.Where( m => m == MovieType.Transfer)) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code will still do two things, calculate the total price, and display the price of the movie. I will not take care of it at the moment, instead I will focus on the enum and try to remove them. One way to remove enum is by using the Replace Conditional with Polymorphism. So I will create two classes, one base class called Movie, and one called MovieTransfer. The Movie class will have a property called Price, the Movie will now hold the price:   public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The following code has no enum and will use the new Movie classes instead: class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies.Where( m => m is Movie)) { totalPriceOfNormalMovie += movie.Price; Console.WriteLine(movie.Price); } foreach (var movie in movies.Where( m => m is MovieTransfer)) { totalPriceOfTransferMovie += movie.Price; Console.WriteLine(movie.Price); } } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If you take a look at the foreach now, you can see it still actually do two things, calculate the price and display the price. We can do some more refactoring here by using the Sum extension method to calculate the total price of the movies:   static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = movies.Where(m => m is Movie) .Sum(m => m.Price); int totalPriceOfTransferMovie = movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); foreach (var movie in movies.Where( m => m is Movie)) Console.WriteLine(movie.Price); foreach (var movie in movies.Where( m => m is MovieTransfer)) Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now when the Movie object will hold the price, there is no need to use two separate foreach to display the price of the movies in the list, so we can use only one instead: foreach (var movie in movies) Console.WriteLine(movie.Price); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we want to increase the Maintainability index we can use the Extract Method to move the Sum of the prices into two separate methods. The name of the method will explain what we are doing: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); foreach (var movie in movies) Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now to the last thing, I love the ForEach method of the List<T>, but the IEnumerable<T> doesn’t have it, so I created my own ForEach extension, here is the code of the ForEach extension method: public static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I will now replace the foreach by using this ForEach method: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(m => Console.WriteLine(m.Price)); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ForEach on the movies will now display the price of the movie, but maybe we want to display the name of the movie etc, so we can use Extract Method by moving the lamdba expression into a method instead, and let the method explains what we are displaying: movies.ForEach(DisplayMovieInfo); private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now the refactoring is done! Here is the complete code:   class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(DisplayMovieInfo); } private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } pulbic static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I think the new code is much cleaner than the first one, and I love the ForEach extension on the IEnumerable<T>, I can use it for different kind of things, for example: movies.Where(m => m is Movie) .ForEach(DoSomething); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } By using the Where and ForEach extension method, some if statements can be removed and will make the code much cleaner. But the beauty is in the eye of the beholder. What would you have done different, what do you think will make the first example in the blog post look much cleaner than my results, comments are welcome! If you want to know when I will publish a new blog post, you can follow me on twitter: http://www.twitter.com/fredrikn

    Read the article

  • Are there real world applications where the use of prefix versus postfix operators matters?

    - by Kenneth
    In college it is taught how you can do math problems which use the ++ or -- operators on some variable referenced in the equation such that the result of the equation would yield different results if you switched the operator from postfix to prefix or vice versa. Are there any real world applications of using postfix or prefix operator where it makes a difference as to which you use? It doesn't seem to me (maybe I just don't have enough experience yet in programming) that there really is much use to having the different operators if it only applies in math equations. EDIT: Suggestions so far include: function calls //f(++x) != f(x++) loop comparison //while (++i < MAX) != while (i++ < MAX)

    Read the article

  • What is the most efficient way to convert to binary and back in C#?

    - by Saad Imran.
    I'm trying to write a general purpose socket server for a game I'm working on. I know I could very well use already built servers like SmartFox and Photon, but I wan't to go through the pain of creating one myself for learning purposes. I've come up with a BSON inspired protocol to convert the the basic data types, their arrays, and a special GSObject to binary and arrange them in a way so that it can be put back together into object form on the client end. At the core, the conversion methods utilize the .Net BitConverter class to convert the basic data types to binary. Anyways, the problem is performance, if I loop 50,000 times and convert my GSObject to binary each time it takes about 5500ms (the resulting byte[] is just 192 bytes per conversion). I think think this would be way too slow for an MMO that sends 5-10 position updates per second with a 1000 concurrent users. Yes, I know it's unlikely that a game will have a 1000 users on at the same time, but like I said earlier this is supposed to be a learning process for me, I want to go out of my way and build something that scales well and can handle at least a few thousand users. So yea, if anyone's aware of other conversion techniques or sees where I'm loosing performance I would appreciate the help. GSBitConverter.cs This is the main conversion class, it adds extension methods to main datatypes to convert to the binary format. It uses the BitConverter class to convert the base types. I've shown only the code to convert integer and integer arrays, but the rest of the method are pretty much replicas of those two, they just overload the type. public static class GSBitConverter { public static byte[] ToGSBinary(this short value) { return BitConverter.GetBytes(value); } public static byte[] ToGSBinary(this IEnumerable<short> value) { List<byte> bytes = new List<byte>(); short length = (short)value.Count(); bytes.AddRange(length.ToGSBinary()); for (int i = 0; i < length; i++) bytes.AddRange(value.ElementAt(i).ToGSBinary()); return bytes.ToArray(); } public static byte[] ToGSBinary(this bool value); public static byte[] ToGSBinary(this IEnumerable<bool> value); public static byte[] ToGSBinary(this IEnumerable<byte> value); public static byte[] ToGSBinary(this int value); public static byte[] ToGSBinary(this IEnumerable<int> value); public static byte[] ToGSBinary(this long value); public static byte[] ToGSBinary(this IEnumerable<long> value); public static byte[] ToGSBinary(this float value); public static byte[] ToGSBinary(this IEnumerable<float> value); public static byte[] ToGSBinary(this double value); public static byte[] ToGSBinary(this IEnumerable<double> value); public static byte[] ToGSBinary(this string value); public static byte[] ToGSBinary(this IEnumerable<string> value); public static string GetHexDump(this IEnumerable<byte> value); } Program.cs Here's the the object that I'm converting to binary in a loop. class Program { static void Main(string[] args) { GSObject obj = new GSObject(); obj.AttachShort("smallInt", 15); obj.AttachInt("medInt", 120700); obj.AttachLong("bigInt", 10900800700); obj.AttachDouble("doubleVal", Math.PI); obj.AttachStringArray("muppetNames", new string[] { "Kermit", "Fozzy", "Piggy", "Animal", "Gonzo" }); GSObject apple = new GSObject(); apple.AttachString("name", "Apple"); apple.AttachString("color", "red"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.5); GSObject lemon = new GSObject(); apple.AttachString("name", "Lemon"); apple.AttachString("color", "yellow"); apple.AttachBool("inStock", false); apple.AttachFloat("price", (float)0.8); GSObject apricoat = new GSObject(); apple.AttachString("name", "Apricoat"); apple.AttachString("color", "orange"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.9); GSObject kiwi = new GSObject(); apple.AttachString("name", "Kiwi"); apple.AttachString("color", "green"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)2.3); GSArray fruits = new GSArray(); fruits.AddGSObject(apple); fruits.AddGSObject(lemon); fruits.AddGSObject(apricoat); fruits.AddGSObject(kiwi); obj.AttachGSArray("fruits", fruits); Stopwatch w1 = Stopwatch.StartNew(); for (int i = 0; i < 50000; i++) { byte[] b = obj.ToGSBinary(); } w1.Stop(); Console.WriteLine(BitConverter.IsLittleEndian ? "Little Endian" : "Big Endian"); Console.WriteLine(w1.ElapsedMilliseconds + "ms"); } Here's the code for some of my other classes that are used in the code above. Most of it is repetitive. GSObject GSArray GSWrappedObject

    Read the article

  • JavaScript Intellisense Improvements with VS 2010

    - by ScottGu
    This is the twentieth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release.  Today’s blog post covers some of the nice improvements coming with JavaScript intellisense with VS 2010 and the free Visual Web Developer 2010 Express.  You’ll find with VS 2010 that JavaScript Intellisense loads much faster for large script files and with large libraries, and that it now provides statement completion support for more advanced scenarios compared to previous versions of Visual Studio. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Improved JavaScript Intellisense Providing Intellisense for a dynamic language like JavaScript is more involved than doing so with a statically typed language like VB or C#.  Correctly inferring the shape and structure of variables, methods, etc is pretty much impossible without pseudo-executing the actual code itself – since JavaScript as a language is flexible enough to dynamically modify and morph these things at runtime.  VS 2010’s JavaScript code editor now has the smarts to perform this type of pseudo-code execution as you type – which is how its intellisense completion is kept accurate and complete.  Below is a simple walkthrough that shows off how rich and flexible it is with the final release. Scenario 1: Basic Type Inference When you declare a variable in JavaScript you do not have to declare its type.  Instead, the type of the variable is based on the value assigned to it.  Because VS 2010 pseudo-executes the code within the editor, it can dynamically infer the type of a variable, and provide the appropriate code intellisense based on the value assigned to a variable. For example, notice below how VS 2010 provides statement completion for a string (because we assigned a string to the “foo” variable): If we later assign a numeric value to “foo” the statement completion (after this assignment) automatically changes to provide intellisense for a number: Scenario 2: Intellisense When Manipulating Browser Objects It is pretty common with JavaScript to manipulate the DOM of a page, as well as work against browser objects available on the client.  Previous versions of Visual Studio would provide JavaScript statement completion against the standard browser objects – but didn’t provide much help with more advanced scenarios (like creating dynamic variables and methods).  VS 2010’s pseudo-execution of code within the editor now allows us to provide rich intellisense for a much broader set of scenarios. For example, below we are using the browser’s window object to create a global variable named “bar”.  Notice how we can now get intellisense (with correct type inference for a string) with VS 2010 when we later try and use it: When we assign the “bar” variable as a number (instead of as a string) the VS 2010 intellisense engine correctly infers its type and modifies statement completion appropriately to be that of a number instead: Scenario 3: Showing Off Because VS 2010 is psudo-executing code within the editor, it is able to handle a bunch of scenarios (both practical and wacky) that you throw at it – and is still able to provide accurate type inference and intellisense. For example, below we are using a for-loop and the browser’s window object to dynamically create and name multiple dynamic variables (bar1, bar2, bar3…bar9).  Notice how the editor’s intellisense engine identifies and provides statement completion for them: Because variables added via the browser’s window object are also global variables – they also now show up in the global variable intellisense drop-down as well: Better yet – type inference is still fully supported.  So if we assign a string to a dynamically named variable we will get type inference for a string.  If we assign a number we’ll get type inference for a number.  Just for fun (and to show off!) we could adjust our for-loop to assign a string for even numbered variables (bar2, bar4, bar6, etc) and assign a number for odd numbered variables (bar1, bar3, bar5, etc): Notice above how we get statement completion for a string for the “bar2” variable.  Notice below how for “bar1” we get statement completion for a number:   This isn’t just a cool pet trick While the above example is a bit contrived, the approach of dynamically creating variables, methods and event handlers on the fly is pretty common with many Javascript libraries.  Many of the more popular libraries use these techniques to keep the size of script library downloads as small as possible.  VS 2010’s support for parsing and pseudo-executing libraries that use these techniques ensures that you get better code Intellisense out of the box when programming against them. Summary Visual Studio 2010 (and the free Visual Web Developer 2010 Express) now provide much richer JavaScript intellisense support.  This support works with pretty much all popular JavaScript libraries.  It should help provide a much better development experience when coding client-side JavaScript and enabling AJAX scenarios within your ASP.NET applications. Hope this helps, Scott P.S. You can read my previous blog post on VS 2008’s JavaScript Intellisense to learn more about our previous JavaScript intellisense (and some of the scenarios it supported).  VS 2010 obviously supports all of the scenarios previously enabled with VS 2008.

    Read the article

  • Back home :-)

    - by Mike Dietrich
    Wrote this entry last night in the ICE from Stuttgart to Munich but the conncetion broke: 28.5 hour journey - and close by now. Actually I would have been even closer if our TGV wouldn't have had break problems as soon as we had entered German territory. And you don't want a train which goes up to a speed of 200 mph having issues with its breaks, right? So we missed the connection in Stuttgart but I've catched the last train this night towards Munich. Distance approx 1900 km all together. Usually it takes 2.5 hours with a direct flight with Air Lingus from Munich or a bit more when you'll go through Zurich or Frankfurt. But at least you meet more people and see a bit more from the landscapes passing by :-) Except for the break problem everything worked out well so far (I'm no there finally!). I had 4 hours to change in Paris from Gare de Nord to Gare de l'Est and one thing I really have to point out: the people working for SNCF, the French National Railways, were so organized and helpful, purely amazing. I asked the man at the counter where I had to pick up my prepaid tickets for directions to Gare de l'Est - and after we had a chat about Marlene Dietrich he just grabbed his iPhone, started Google Earth and showed me the way to walk. I pretty sure it's a stupid stereotype that people in Paris or France are so unfriendly to foreigners if they don't speak French. In my past 3 stays or travels to Paris in the past 2 years I had only great experiences. And another thing I really enjoy when being in France: the food!!! The sandwich I had at the train station was packed with yummy goat cheese. And there's always Paul. You might ask yourself: Who the heck is Paul? That's Paul - or actually their website. And at Paul's they serve usually excellent fruit tartes - and this time a nice Gateau Au Chocolate. And very good Cafe Cremé as well :-) That's actually the positive part traveling this way: the food you'll get is much better than the airline food - if your airline still serves something called food ...

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 1 of 2 &ndash; CLR Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible.  Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind…  In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve.  One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well.  In this review, I am going to cover some of the features of the ANTS profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program.  I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction The ANTS Profiler pack provided by Red Gate was something that I had not heard of before receiving an email regarding an offer to review it for a license.  Since I look to make my code efficient, it was a no brainer for me to try it out!  One thing that I have to say took me by surprise is that upon downloading the program and installing it you fill out a form for your usual contact information.  Sure enough within 2 hours, I received an email from a sales representative at Red Gate asking if she could help me to achieve the most out of my trial time so it wouldn’t go to waste.  After replying to her and explaining that I was looking to review its feature set, she put me in contact with someone that setup a demo session to give me a quick rundown of its features via an online meeting.  After having dealt with a massive ordeal with one of my utility companies and their complete lack of customer service, Red Gates friendly and helpful representatives were a breath of fresh air, and something I was thankful for. ANTS CLR Profiler The ANTS CLR profiler is the thing I want to focus on the most in this post, so I am going to dive right in now. Install was simple and took no time at all.  It installed both the profiler for the CLR and Memory, but also visual studio extensions to facilitate the usage of the profilers (click any images for full size images): The Visual Studio menu options (under ANTS menu) Starting the CLR Performance Profiler from the start menu yields this window If you follow the instructions after launching the program from the start menu (Click File > New Profiling Session to start a new project), you are given a dialog with plenty of options for profiling: The New Session dialog.  Lots of options.  One thing I noticed is that the buttons in the lower right were half-covered by the panel of the application.  If I had to guess, I would imagine that this is caused by my DPI settings being set to 125%.  This is a problem I have seen in other applications as well that don’t scale well to different dpi scales. The profiler options give you the ability to profile: .NET Executable ASP.NET web application (hosted in IIS) ASP.NET web application (hosted in IIS express) ASP.NET web application (hosted in Cassini Web Development Server) SharePoint web application (hosted in IIS) Silverlight 4+ application Windows Service COM+ server XBAP (local XAML browser application) Attach to an already running .NET 4 process Choosing each option provides a varying set of other variables/options that one can set including options such as application arguments, operating path, record I/O performance performance counters to record (43 counters in all!), etc…  All in all, they give you the ability to profile many different .Net project types, and make it simple to do so.  In most cases of my using this application, I would be using the built in Visual Studio extensions, as they automatically start a new profiling project in ANTS with the options setup, and start your program, however RedGate has made it easy enough to profile outside of Visual Studio as well. On the flip side of this, as someone who lives most of their work life in Visual Studio, one thing I do wish is that instead of opening an entirely separate application/gui to perform profiling after launching, that instead they would provide a Visual Studio panel with the information, and integrate more of the profiling project information into Visual Studio.  So, now that we have an idea of what options that the profiler gives us, its time to test its abilities and features. Horrendous Example Code – Prime Number Generator One of my interests besides development, is Physics and Math – what I went to college for.  I have especially always been interested in prime numbers, as they are something of a mystery…  So, I decided that I would go ahead and to test the abilities of the profiler, I would write a small program, website, and library to generate prime numbers in the quantity that you ask for.  I am going to start off with some terrible code, and show how I would see the profiler being used as a development tool. First off, the IPrimes interface (all code is downloadable at the end of the post): interface IPrimes { IEnumerable<int> GetPrimes(int retrieve); } Simple enough, right?  Anything that implements the interface will (hopefully) provide an IEnumerable of int, with the quantity specified in the parameter argument.  Next, I am going to implement this interface in the most basic way: public class DumbPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _analyzing = 4; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; //start dividing at 2 //divide until number is reached, or determined not prime for (int i = 2; i < _analyzing && isPrime; i++) { //if (i) goes into _analyzing without a remainder, //_analyzing is NOT prime if (_analyzing % i == 0) isPrime = false; } //if it is prime, add to found list if (isPrime) _foundPrimes.Add(_analyzing); //increment number to analyze next _analyzing++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } This is the simplest way to get primes in my opinion.  Checking each number by the straight definition of a prime – is it divisible by anything besides 1 and itself. I have included this code in a base class library for my solution, as I am going to use it to demonstrate a couple of features of ANTS.  This class library is consumed by a simple non-MVVM WPF application, and a simple MVC4 website.  I will not post the WPF code here inline, as it is simply an ObservableCollection<int>, a label, two textbox’s, and a button. Starting a new Profiling Session So, in Visual Studio, I have just completed my first stint developing the GUI and DumbPrimes IPrimes class, so now I want to check my codes efficiency by profiling it.  All I have to do is build the solution (surprised initiating a profiling session doesn’t do this, but I suppose I can understand it), and then click the ANTS menu, followed by Profile Performance.  I am then greeted by the profiler starting up and already monitoring my program live: You are provided with a realtime graph at the top, and a pane at the bottom giving you information on how to proceed.  I am going to start by asking my program to show me the first 15000 primes: After the program finally began responding again (I did all the work on the main UI thread – how bad!), I stopped the profiler, which did kill the process of my program too.  One important thing to note, is that the profiler by default wants to give you a lot of detail about the operation – line hit counts, time per line, percent time per line, etc…  The important thing to remember is that this itself takes a lot of time.  When running my program without the profiler attached, it can generate the 15000 primes in 5.18 seconds, compared to 74.5 seconds – almost a 1500 percent increase.  While this may seem like a lot, remember that there is a trade off.  It may be WAY more inefficient, however, I am able to drill down and make improvements to specific problem areas, and then decrease execution time all around. Analyzing the Profiling Session After clicking ‘Stop Profiling’, the process running my application stopped, and the entire execution time was automatically selected by ANTS, and the results shown below: Now there are a number of interesting things going on here, I am going to cover each in a section of its own: Real Time Performance Counter Bar (top of screen) At the top of the screen, is the real time performance bar.  As your application is running, this will constantly update with the currently selected performance counters status.  A couple of cool things to note are the fact that you can drag a selection around specific time periods to drill down the detail views in the lower 2 panels to information pertaining to only that period. After selecting a time period, you can bookmark a section and name it, so that it is easy to find later, or after reloaded at a later time.  You can also zoom in, out, or fit the graph to the space provided – useful for drilling down. It may be hard to see, but at the top of the processor time graph below the time ticks, but above the red usage graph, there is a green bar. This bar shows at what times a method that is selected in the ‘Call tree’ panel is called. Very cool to be able to click on a method and see at what times it made an impact. As I said before, ANTS provides 43 different performance counters you can hook into.  Click the arrow next to the Performance tab at the top will allow you to change between different counters if you have them selected: Method Call Tree, ADO.Net Database Calls, File IO – Detail Panel Red Gate really hit the mark here I think. When you select a section of the run with the graph, the call tree populates to fill a hierarchical tree of method calls, with information regarding each of the methods.   By default, methods are hidden where the source is not provided (framework type code), however, Red Gate has integrated Reflector into ANTS, so even if you don’t have source for something, you can select a method and get the source if you want.  Methods are also hidden where the impact is seen as insignificant – methods that are only executed for 1% of the time of the overall calling methods time; in other words, working on making them better is not where your efforts should be focused. – Smart! Source Panel – Detail Panel The source panel is where you can see line level information on your code, showing the code for the currently selected method from the Method Call Tree.  If the code is not available, Reflector takes care of it and shows the code anyways! As you can notice, there does seem to be a problem with how ANTS determines what line is the actual line that a call is completed on.  I have suspicions that this may be due to some of the inline code optimizations that the CLR applies upon compilation of the assembly.  In a method with comments, the problem is much more severe: As you can see here, apparently the most offending code in my base library was a comment – *gasp*!  Removing the comments does help quite a bit, however I hope that Red Gate works on their counter algorithm soon to improve the logic on positioning for statistics: I did a small test just to demonstrate the lines are correct without comments. For me, it isn’t a deal breaker, as I can usually determine the correct placements by looking at the application code in the region and determining what makes sense, but it is something that would probably build up some irritation with time. Feature – Suggest Method for Optimization A neat feature to really help those in need of a pointer, is the menu option under tools to automatically suggest methods to optimize/improve: Nice feature – clicking it filters the call tree and stars methods that it thinks are good candidates for optimization.  I do wish that they would have made it more visible for those of use who aren’t great on sight: Process Integration I do think that this could have a place in my process.  After experimenting with the profiler, I do think it would be a great benefit to do some development, testing, and then after all the bugs are worked out, use the profiler to check on things to make sure nothing seems like it is hogging more than its fair share.  For example, with this program, I would have developed it, ran it, tested it – it works, but slowly. After looking at the profiler, and seeing the massive amount of time spent in 1 method, I might go ahead and try to re-implement IPrimes (I actually would probably rewrite the offending code, but so that I can distribute both sets of code easily, I’m just going to make another implementation of IPrimes).  Using two pieces of knowledge about prime numbers can make this method MUCH more efficient – prime numbers fall into two buckets 6k+/-1 , and a number is prime if it is not divisible by any other primes before it: public class SmartPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _k = 1; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; int potentialPrime; //analyze 6k-1 //assign the value to potential potentialPrime = 6 * _k - 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); if (_foundPrimes.Count() == retrieve) break; //analyze 6k+1 //assign the value to potential potentialPrime = 6 * _k + 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); //increment k to analyze next _k++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } Now there are definitely more things I can do to help make this more efficient, but for the scope of this example, I think this is fine (but still hideous)! Profiling this now yields a happy surprise 27 seconds to generate the 15000 primes with the profiler attached, and only 1.43 seconds without.  One important thing I wanted to call out though was the performance graph now: Notice anything odd?  The %Processor time is above 100%.  This is because there is now more than 1 core in the operation.  A better label for the chart in my mind would have been %Core time, but to each their own. Another odd thing I noticed was that the profiler seemed to be spot on this time in my DumbPrimes class with line details in source, even with comments..  Odd. Profiling Web Applications The last thing that I wanted to cover, that means a lot to me as a web developer, is the great amount of work that Red Gate put into the profiler when profiling web applications.  In my solution, I have a simple MVC4 application setup with 1 page, a single input form, that will output prime values as my WPF app did.  Launching the profiler from Visual Studio as before, nothing is really different in the profiler window, however I did receive a UAC prompt for a Red Gate helper app to integrate with the web server without notification. After requesting 500, 1000, 2000, and 5000 primes, and looking at the profiler session, things are slightly different from before: As you can see, there are 4 spikes of activity in the processor time graph, but there is also something new in the call tree: That’s right – ANTS will actually group method calls by get/post operations, so it is easier to find out what action/page is giving the largest problems…  Pretty cool in my mind! Overview Overall, I think that Red Gate ANTS CLR Profiler has a lot to offer, however I think it also has a long ways to go.  3 Biggest Pros: Ability to easily drill down from time graph, to method calls, to source code Wide variety of counters to choose from when profiling your application Excellent integration/grouping of methods being called from web applications by request – BRILLIANT! 3 Biggest Cons: Issue regarding line details in source view Nit pick – Processor time vs. Core time Nit pick – Lack of full integration with Visual Studio Ratings Ease of Use (7/10) – I marked down here because of the problems with the line level details and the extra work that that entails, and the lack of better integration with Visual Studio. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Especially with its large variety of performance counters, a definite plus! Features (9/10) – Besides the real time performance monitoring, and the drill downs that I’ve shown here, ANTS also has great integration with ADO.Net, with the ability to show database queries run by your application in the profiler.  This, with the line level details, the web request grouping, reflector integration, and various options to customize your profiling session I think create a great set of features! Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (8/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (8/10) – Overall, I am happy with the Performance Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  I WOULD recommend you trying the application and seeing if it would fit into your process, BUT, remember there are still some kinks in it to hopefully be worked out. My next post will definitely be shorter (hopefully), but thank you for reading up to here, or skipping ahead!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • Ubuntu 12.04.1 completely freezing very often [closed]

    - by tyler
    Possible Duplicate: What should I do when Ubuntu freezes? I am running ubuntu 12.04.1 on an asus zenbook prime (UX31A), and I am having a problem where the entire OS freezes at random times. It doesn't seem to happen in response to any certain event, it will even sometimes happen while just moving the mouse, not even clicking on anything. The entire system will freeze, mouse and keyboard do not work, and any music/video will freeze and audio will loop. I can do nothing but hold the power button to reboot the computer. I've had this problem for a while, and just yesterday gotten around to backing up everything and doing a fresh install. Lo and behold, I get a freeze within 20 minutes of a fresh install. I've googled this a lot, and cannot find anything that resembles it exactly (some people have everything but mouse/keyboard freeze, some people only have the mouse/keyboard freeze).

    Read the article

  • Bind Variable and SQL error during statement preparation

    - by Abhishek Dwivedi
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}  I was getting the following exception at run-time. JBO-27122: SQL error during statement preparation. Statement: SELECT AxEO.A_ID, AxEO.B_ID, AxEO.C_ID, ByEO.A_ID, ByEO.B_ID, ByEO.C_ID, Cz.A_ID, Cz.B_ID, Cz.C_ID FROM ABC_x AxEO, ABC_y ByEO, ABC_z CzEO WHERE AxEO.A_ID = ByEO.A_ID AND  CzEO.A_ID = :Bind_PId I copied and pasted the query on SQL worksheet, replaced :Bind_PId with a valid id, and executed the query. The query worked alright, implying the query was alright. I tried to connect to different DBs but the issue persisted, meaning it was not a DB issue either. Finally, the root cause was found to be in the concerned VO; one of the bind variables (say Bind_TId) was marked "Required". De-selecting the Required check-box resolved the issue. In retrospect, the issue looks to be rather straight-forward. However, the error message is not very helpful, if not misleading. Besides, it's counter-intuitive to think that a bind variable which is not being used in a query can cause error while statement preparation. The other bind variable - Bind_TId - was being used in other view criteria, not the view criteria involved in the given query. Still, it was required.

    Read the article

  • SQL SERVER – 2011 – Introduction to SEQUENCE – Simple Example of SEQUENCE

    - by pinaldave
    SQL Server 2011 will contain one of the very interesting feature called SEQUENCE. I have waited for this feature for really long time. I am glad it is here finally. SEQUENCE allows you to define a single point of repository where SQL Server will maintain in memory counter. USE AdventureWorks2008R2 GO CREATE SEQUENCE [Seq] AS [int] START WITH 1 INCREMENT BY 1 MAXVALUE 20000 GO SEQUENCE is very interesting concept and I will write few blog post on this subject in future. Today we will see only working example of the same. Let us create a sequence. We can specify various values like start value, increment value as well maxvalue. -- First Run SELECT NEXT VALUE FOR Seq, c.CustomerID FROM Sales.Customer c GO -- Second Run SELECT NEXT VALUE FOR Seq, c.AccountNumber FROM Sales.Customer c GO Once the sequence is defined, it can be fetched using following method. Every single time new incremental value is provided, irrespective of sessions. Sequence will generate values till the max value specified. Once the max value is reached, query will stop and will return error message. Msg 11728, Level 16, State 1, Line 2 The sequence object ‘Seq’ has reached its minimum or maximum value. Restart the sequence object to allow new values to be generated. We can restart the sequence from any particular value and it will work fine. -- Restart the Sequence ALTER SEQUENCE [Seq] RESTART WITH 1 GO -- Sequence Restarted SELECT NEXT VALUE FOR Seq, c.CustomerID FROM Sales.Customer c GO Let us do final clean up. -- Clean Up DROP SEQUENCE [Seq] GO There are lots of things one can find useful about this feature. We will see that in future posts. Here is the complete code for easy reference. USE AdventureWorks2008R2 GO CREATE SEQUENCE [Seq] AS [int] START WITH 1 INCREMENT BY 1 MAXVALUE 20000 GO -- First Run SELECT NEXT VALUE FOR Seq, c.CustomerID FROM Sales.Customer c GO -- Second Run SELECT NEXT VALUE FOR Seq, c.AccountNumber FROM Sales.Customer c GO -- Restart the Sequence ALTER SEQUENCE [Seq] RESTART WITH 1 GO -- Sequence Restarted SELECT NEXT VALUE FOR Seq, c.CustomerID FROM Sales.Customer c GO -- Clean Up DROP SEQUENCE [Seq] GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Triangle - Rectangle Intersection in 2D

    - by Kevin Boyd
    I had previously asked this for 3D but now I changed my strategy and would like to do the intersection in 2D. The Rectangle is axis aligned and will always be in a fixed position, and has a constant shape and size, basically I want to clip the red areas of the triangles that extend outside the bounds of the rectangle The triangles could be in any position, shape or size, I my code I have a loop where I check the triangles one by one however I am still clueless about the math. I have identified 5 cases of triangle rectangle intersection as shown here. How do I find the intersection points of the triangle and the rectangle?

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Spritebatch node animation appears to be broken in cocos2d-x 2.0.3

    - by George Host
    Hi I have spent aprox 2 days trying to get this to work doing a google searches left and right and I did get it working except for sprite batch nodes. So in my class I am able to load kuwalio_stand.png and I tested kuwalio_walk1.png and 2 and 3 from the FrameCache(). They work for sure 100%. I run this code and it does not animate does anyone else have the same issue with sprite batch nodes? cocos2d::CCSprite * player = Player::create(); player->setPosition(cocos2d::CCPointMake(0.0f,0.0f)); player->setDisplayFrame(cocos2d::CCSpriteFrameCache::sharedSpriteFrameCache()->spriteFrameByName("kuwalio_stand.png")); player->setTag(PlayerTag); cocos2d::CCAnimation * walk = cocos2d::CCAnimation::create(); cocos2d::CCSpriteFrame * walk1 = cocos2d::CCSpriteFrameCache::sharedSpriteFrameCache()->spriteFrameByName("kuwalio_walk1.png"); cocos2d::CCSpriteFrame * walk2 = cocos2d::CCSpriteFrameCache::sharedSpriteFrameCache()->spriteFrameByName("kuwalio_walk2.png"); cocos2d::CCSpriteFrame * walk3 = cocos2d::CCSpriteFrameCache::sharedSpriteFrameCache()->spriteFrameByName("kuwalio_walk3.png"); walk->addSpriteFrame(walk1); walk->addSpriteFrame(walk2); walk->addSpriteFrame(walk3); cocos2d::CCAnimate * actionWalk = cocos2d::CCAnimate::create(walk); cocos2d::CCRepeatForever * actionRepeat = cocos2d::CCRepeatForever::create(actionWalk); walk->setDelayPerUnit(0.1f); actionWalk->setDuration(10.1f); player->runAction(actionRepeat); // Change camera to a soft follow camera. this->runAction(cocos2d::CCFollow::create(player)); mSceneSpriteBatchNode->addChild(player); // Have the CCNode object run its virtual update function as fast as possible. // Every frame for this layer. this-scheduleUpdate(); Counter example without the sprite batch node... cocos2d::CCSprite * sprite = cocos2d::CCSprite::create("kuwalio_walk1.png"); this->addChild(sprite,0); sprite->setPosition(cocos2d::CCPointMake(60,60)); sprite->retain(); cocos2d::CCAnimation * actionAnimation = cocos2d::CCAnimation::create(); actionAnimation->setDelayPerUnit(0.01f); actionAnimation->retain(); actionAnimation->addSpriteFrameWithFileName("kuwalio_walk1.png"); actionAnimation->addSpriteFrameWithFileName("kuwalio_walk2.png"); actionAnimation->addSpriteFrameWithFileName("kuwalio_walk3.png"); cocos2d::CCAnimate * a = cocos2d::CCAnimate::create(actionAnimation); a->setDuration(0.10f); cocos2d::CCRepeatForever * actionRepeat = cocos2d::CCRepeatForever::create(a); sprite->runAction(actionRepeat);

    Read the article

  • Atmospheric Scattering

    - by Lawrence Kok
    I'm trying to implement atmospheric scattering based on Sean O`Neil algorithm that was published in GPU Gems 2. But I have some trouble getting the shader to work. My latest attempts resulted in: http://img253.imageshack.us/g/scattering01.png/ I've downloaded sample code of O`Neil from: http://http.download.nvidia.com/developer/GPU_Gems_2/CD/Index.html. Made minor adjustments to the shader 'SkyFromAtmosphere' that would allow it to run in AMD RenderMonkey. In the images it is see-able a form of banding occurs, getting an blueish tone. However it is only applied to one half of the sphere, the other half is completely black. Also the banding appears to occur at Zenith instead of Horizon, and for a reason I managed to get pac-man shape. I would appreciate it if somebody could show me what I'm doing wrong. Vertex Shader: uniform mat4 matView; uniform vec4 view_position; uniform vec3 v3LightPos; const int nSamples = 3; const float fSamples = 3.0; const vec3 Wavelength = vec3(0.650,0.570,0.475); const vec3 v3InvWavelength = 1.0f / vec3( Wavelength.x * Wavelength.x * Wavelength.x * Wavelength.x, Wavelength.y * Wavelength.y * Wavelength.y * Wavelength.y, Wavelength.z * Wavelength.z * Wavelength.z * Wavelength.z); const float fInnerRadius = 10; const float fOuterRadius = fInnerRadius * 1.025; const float fInnerRadius2 = fInnerRadius * fInnerRadius; const float fOuterRadius2 = fOuterRadius * fOuterRadius; const float fScale = 1.0 / (fOuterRadius - fInnerRadius); const float fScaleDepth = 0.25; const float fScaleOverScaleDepth = fScale / fScaleDepth; const vec3 v3CameraPos = vec3(0.0, fInnerRadius * 1.015, 0.0); const float fCameraHeight = length(v3CameraPos); const float fCameraHeight2 = fCameraHeight * fCameraHeight; const float fm_ESun = 150.0; const float fm_Kr = 0.0025; const float fm_Km = 0.0010; const float fKrESun = fm_Kr * fm_ESun; const float fKmESun = fm_Km * fm_ESun; const float fKr4PI = fm_Kr * 4 * 3.141592653; const float fKm4PI = fm_Km * 4 * 3.141592653; varying vec3 v3Direction; varying vec4 c0, c1; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main( void ) { // Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere) vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); vec3 v3Pos = normalize(gl_Vertex.xyz) * fOuterRadius; vec3 v3Ray = v3CameraPos - v3Pos; float fFar = length(v3Ray); v3Ray = normalize(v3Ray); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = v3CameraPos; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight)); float fLightAngle = dot(normalize(v3LightPos), v3SamplePoint) / fHeight; float fCameraAngle = dot(normalize(v3Ray), v3SamplePoint) / fHeight; float fScatter = (-fStartOffset + fDepth*( scale(fLightAngle) - scale(fCameraAngle)))/* 0.25f*/; vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } // Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader vec4 newPos = vec4( (gl_Vertex.xyz + view_position.xyz), 1.0); gl_Position = gl_ModelViewProjectionMatrix * vec4(newPos.xyz, 1.0); gl_Position.z = gl_Position.w * 0.99999; c1 = vec4(v3FrontColor * fKmESun, 1.0); c0 = vec4(v3FrontColor * (v3InvWavelength * fKrESun), 1.0); v3Direction = v3CameraPos - v3Pos; } Fragment Shader: uniform vec3 v3LightPos; varying vec3 v3Direction; varying vec4 c0; varying vec4 c1; const float g =-0.90f; const float g2 = g * g; const float Exposure =2; void main(void){ float fCos = dot(normalize(v3LightPos), v3Direction) / length(v3Direction); float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5); gl_FragColor = c0 + fMiePhase * c1; gl_FragColor.a = 1.0; }

    Read the article

  • GLSL Atmospheric Scattering Issue

    - by mtf1200
    I am attempting to use Sean O'Neil's shaders to accomplish atmospheric scattering. For now I am just using SkyFromSpace and GroundFromSpace. The atmosphere works fine but the planet itself is just a giant dark sphere with a white blotch that follows the camera. I think the problem might rest in the "v3Attenuation" variable as when this is removed the sphere is show (albeit without scattering). Here is the vertex shader. Thanks for the time! uniform mat4 g_WorldViewProjectionMatrix; uniform mat4 g_WorldMatrix; uniform vec3 m_v3CameraPos; // The camera's current position uniform vec3 m_v3LightPos; // The direction vector to the light source uniform vec3 m_v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels uniform float m_fCameraHeight; // The camera's current height uniform float m_fCameraHeight2; // fCameraHeight^2 uniform float m_fOuterRadius; // The outer (atmosphere) radius uniform float m_fOuterRadius2; // fOuterRadius^2 uniform float m_fInnerRadius; // The inner (planetary) radius uniform float m_fInnerRadius2; // fInnerRadius^2 uniform float m_fKrESun; // Kr * ESun uniform float m_fKmESun; // Km * ESun uniform float m_fKr4PI; // Kr * 4 * PI uniform float m_fKm4PI; // Km * 4 * PI uniform float m_fScale; // 1 / (fOuterRadius - fInnerRadius) uniform float m_fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found) uniform float m_fScaleOverScaleDepth; // fScale / fScaleDepth attribute vec4 inPosition; vec3 v3ELightPos = vec3(g_WorldMatrix * vec4(m_v3LightPos, 1.0)); vec3 v3ECameraPos= vec3(g_WorldMatrix * vec4(m_v3CameraPos, 1.0)); const int nSamples = 2; const float fSamples = 2.0; varying vec4 color; float scale(float fCos) { float x = 1.0 - fCos; return m_fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { gl_Position = g_WorldViewProjectionMatrix * inPosition; // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere) vec3 v3Pos = vec3(g_WorldMatrix * inPosition); vec3 v3Ray = v3Pos - v3ECameraPos; float fFar = length(v3Ray); v3Ray /= fFar; // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere) float B = 2.0 * dot(m_v3CameraPos, v3Ray); float C = m_fCameraHeight2 - m_fOuterRadius2; float fDet = max(0.0, B*B - 4.0 * C); float fNear = 0.5 * (-B - sqrt(fDet)); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = m_v3CameraPos + v3Ray * fNear; fFar -= fNear; float fDepth = exp((m_fInnerRadius - m_fOuterRadius) / m_fScaleDepth); float fCameraAngle = dot(-v3Ray, v3Pos) / fFar; float fLightAngle = dot(v3ELightPos, v3Pos) / fFar; float fCameraScale = scale(fCameraAngle); float fLightScale = scale(fLightAngle); float fCameraOffset = fDepth*fCameraScale; float fTemp = (fLightScale + fCameraScale); // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * m_fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); vec3 v3Attenuate; for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(m_fScaleOverScaleDepth * (m_fInnerRadius - fHeight)); float fScatter = fDepth*fTemp - fCameraOffset; v3Attenuate = exp(-fScatter * (m_v3InvWavelength * m_fKr4PI + m_fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } vec3 first = v3FrontColor * (m_v3InvWavelength * m_fKrESun + m_fKmESun); vec3 secondary = v3Attenuate; color = vec4((first + vec3(0.25,0.25,0.25) * secondary), 1.0); // ^^ that color is passed to the frag shader and is used as the gl_FragColor } Here is also an image of the problem image

    Read the article

  • Shadow-mapping xna

    - by Kurt Ricci
    I've been trying to implement shadows in my game and I've been following quite a few tutorials online, mainly Riemers, but I'm always getting the same 2 errors when I'm drawing my models and setting the parameters from the effect file. The errors are: This method does not accept null for this parameter. Parameter name: value and Object reference not set to an instance of an object. So I've then downloaded a sample and just replaced my model with the one found in the sample and the same errors occur. I this find very strange as it works with his model. I'm wondering if the problem is with my models (I made them myself). Here's the code where the errors occur (they start to occur after the second foreach loop). Any help would be greatly appreciated, thanks.

    Read the article

  • Slot Machine Pay Out

    - by Kris.Mitchell
    I have done a lot of research into random number generators for slot machines, reel stop calculations and how to physically give the user a good chance on winning. What I can't figure out is how to properly insure that the machine is going to have a payout rating of (lets say) 95%. So, I have a reel set up wit 22 spaces on it. Filled with 16 different symbols. When I get my random number, mod divide it by 64 and get the remainder, I hop over to a loop up table to see how the virtual stop relates to the reel position. Now that I have how the reels are going to stop, do I make sure the payout ratio is correct? For every dollar they put in, how to I make sure the machine will pay out .95 cents? Thanks for the ideas. I am working in actionscript, if that helps with the language issues, but in general I am just looking for theory.

    Read the article

  • How to build a turn-based multiplayer "real time" server

    - by jmosesman
    I want to build a TCG for mobile devices that is multiplayer over the web (not local wifi or bluetooth). As a player plays cards I want the second player to see what is being played in "real time" (within a few seconds). Only one player can play at a time. Server requirements: 1) Continuously listens for input from Player 1 2) As it receives input from Player 1, sends the message to Player 2 I know some PHP, but it seems like unless I had a loop that continued until I broke it (seems like a bad idea) the script would just receive one input and quit. On the mobile side I know I can open sockets using various frameworks, but what language allows a "stream-like" behavior that continuously listens/sends messages on the server? Or if I'm missing something, what would be the best practice here?

    Read the article

  • The Loneliest Road in America and the OTN Garage

    - by rickramsey
    Source I never told anyone how the image of the OTN Garage on Facebook came to be. I took the Facebook picture on Route 50 in Nevada, USA, in October of 2010. I was riding from Colorado to Oracle OpenWorld in San Francisco, so it was probably October. Route 50 is known as "The Loneliest Road in America." There are roads across Nevada that have even LESS traffic, but Route 50 still one. desolate. road. Although I have seen stranger things while riding along Nevada's Extraterrestrial Highway, I still run across notable oddities every time I ride Route 50. Like the old man with a bandolero of water bottles jogging along the side of the highway in the middle of the day, 50 miles from the closest town. First ultra-marathoner I'd seen in action. He waved at me. Or the dozen Corvettes with California license plates driving toward me, all doing the speed limit in the middle of nowhere because they were being tailed by half a dozen Nevada state troopers. #fail. I don't remember which town I was in, but I noticed the building when I stopped at the gas station. While standing there pouring fuel into the Harley, the store caught my eye. So I pulled the bike in front and walked inside. The owner is a little old lady, about 100 years old. Most of the goods she had on the shelves looked like they had been placed there during WWII. She was itty bitty and could barely see over the counter, but she was so happy when I bought a bar of Hershey's chocolate that she gave me a five cent discount. I took a few pictures and, when I got back, Kemer Thomson, who sometimes blogs here, photoshopped the OTN Garage and Oil Change signs onto it. The bike is a 2009 Road King Classic with a Bob Dron fairing and a Corbin heated seat. The seat came in handy when I rode home over Tioga Pass. The Road King is a very comfy touring bike with a great Harley rumble. I'm kinda sorry I sold it. When I stopped for fuel about 75 miles down the road at the next town, I peeled back the chocolate bar. I had turned into powder. Probably 50 years ago. - Rick Website Newsletter Facebook Twitter

    Read the article

  • Responding to Invites

    - by Daniel Moth
    Following up from my post about Sending Outlook Invites here is a shorter one on how to respond. Whatever your choice (ACCEPT, TENTATIVE, DECLINE), if the sender has not unchecked the "Request Response" option, then send your response. Always send your response. Even if you think the sender made a mistake in keeping it on, send your response. Seriously, not responding is plain rude. If you knew about the meeting, and you are happy investing your time in it, and the time and location work for you, and there is an implicit/explicit agenda, then ACCEPT and send it. If one or more of those things don't work for you then you have a few options. Send a DECLINE explaining why. Reply with email to ask for further details or for a change to be made. If you don’t receive a response to your email, send a DECLINE when you've waited enough. Send a TENTATIVE if you haven't made up your mind yet. Hint: if they really require you there, they'll respond asking "why tentative" and you have a discussion about it. When you deem appropriate, instead of the options above, you can also use the counter propose feature of Outlook but IMO that feature has questionable interaction model and UI (on both sender and recipient) so many people get confused by it. BTW, two of my outlook rules are relevant to invites. The first one auto-marks as read the ACCEPT responses if there is no comment in the body of the accept (I check later who has accepted and who hasn't via the "Tracking" button of the invite). I don’t have a rule for the DECLINE and TENTATIVE cause typically I follow up with folks that send those.   The second rule ensures that all Invites go to a specific folder. That is the first folder I see when I triage email. It is also the only folder which I have configured to show a count of all items inside it, rather than the unread count - when sending a response to an invite the item disappears from the folder and hence it is empty and not nagging me. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Joins in single-table queries

    - by Rob Farley
    Tables are only metadata. They don’t store data. I’ve written something about this before, but I want to take a viewpoint of this idea around the topic of joins, especially since it’s the topic for T-SQL Tuesday this month. Hosted this time by Sebastian Meine (@sqlity), who has a whole series on joins this month. Good for him – it’s a great topic. In that last post I discussed the fact that we write queries against tables, but that the engine turns it into a plan against indexes. My point wasn’t simply that a table is actually just a Clustered Index (or heap, which I consider just a special type of index), but that data access always happens against indexes – never tables – and we should be thinking about the indexes (specifically the non-clustered ones) when we write our queries. I described the scenario of looking up phone numbers, and how it never really occurs to us that there is a master list of phone numbers, because we think in terms of the useful non-clustered indexes that the phone companies provide us, but anyway – that’s not the point of this post. So a table is metadata. It stores information about the names of columns and their data types. Nullability, default values, constraints, triggers – these are all things that define the table, but the data isn’t stored in the table. The data that a table describes is stored in a heap or clustered index, but it goes further than this. All the useful data is going to live in non-clustered indexes. Remember this. It’s important. Stop thinking about tables, and start thinking about indexes. So let’s think about tables as indexes. This applies even in a world created by someone else, who doesn’t have the best indexes in mind for you. I’m sure you don’t need me to explain Covering Index bit – the fact that if you don’t have sufficient columns “included” in your index, your query plan will either have to do a Lookup, or else it’ll give up using your index and use one that does have everything it needs (even if that means scanning it). If you haven’t seen that before, drop me a line and I’ll run through it with you. Or go and read a post I did a long while ago about the maths involved in that decision. So – what I’m going to tell you is that a Lookup is a join. When I run SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 285; against the AdventureWorks2012 get the following plan: I’m sure you can see the join. Don’t look in the query, it’s not there. But you should be able to see the join in the plan. It’s an Inner Join, implemented by a Nested Loop. It’s pulling data in from the Index Seek, and joining that to the results of a Key Lookup. It clearly is – the QO wouldn’t call it that if it wasn’t really one. It behaves exactly like any other Nested Loop (Inner Join) operator, pulling rows from one side and putting a request in from the other. You wouldn’t have a problem accepting it as a join if the query were slightly different, such as SELECT sod.OrderQty FROM Sales.SalesOrderHeader AS soh JOIN Sales.SalesOrderDetail as sod on sod.SalesOrderID = soh.SalesOrderID WHERE soh.SalesPersonID = 285; Amazingly similar, of course. This one is an explicit join, the first example was just as much a join, even thought you didn’t actually ask for one. You need to consider this when you’re thinking about your queries. But it gets more interesting. Consider this query: SELECT SalesOrderID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276 AND CustomerID = 29522; It doesn’t look like there’s a join here either, but look at the plan. That’s not some Lookup in action – that’s a proper Merge Join. The Query Optimizer has worked out that it can get the data it needs by looking in two separate indexes and then doing a Merge Join on the data that it gets. Both indexes used are ordered by the column that’s indexed (one on SalesPersonID, one on CustomerID), and then by the CIX key SalesOrderID. Just like when you seek in the phone book to Farley, the Farleys you have are ordered by FirstName, these seek operations return the data ordered by the next field. This order is SalesOrderID, even though you didn’t explicitly put that column in the index definition. The result is two datasets that are ordered by SalesOrderID, making them very mergeable. Another example is the simple query SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276; This one prefers a Hash Match to a standard lookup even! This isn’t just ordinary index intersection, this is something else again! Just like before, we could imagine it better with two whole tables, but we shouldn’t try to distinguish between joining two tables and joining two indexes. The Query Optimizer can see (using basic maths) that it’s worth doing these particular operations using these two less-than-ideal indexes (because of course, the best indexese would be on both columns – a composite such as (SalesPersonID, CustomerID – and it would have the SalesOrderID column as part of it as the CIX key still). You need to think like this too. Not in terms of excusing single-column indexes like the ones in AdventureWorks2012, but in terms of having a picture about how you’d like your queries to run. If you start to think about what data you need, where it’s coming from, and how it’s going to be used, then you will almost certainly write better queries. …and yes, this would include when you’re dealing with regular joins across multiples, not just against joins within single table queries.

    Read the article

  • Just another web startup - platform comparison

    - by Holland
    I'm looking to do a web startup which involves something along the lines of an ecommerce site, yet a little more in depth than that. While it's something that I would rather not go into detail with in terms of the initial idea, I can specify (on a basic level) what would be required of the website. If you have any observations or opinions derived from personal experience, which relate to what you see here, I'd appreciate it if you could share these. Paypal's API interaction (definitely). From what I've read about their API, integration with it into their website is VERY expensive, so I'd probably hold off on that until I've (hopefully) generated money and write my own simple credit-card interaction system. SQL Backend (obviously) PostgreSQL seems like a pretty good choice, as from what I've read, it's structure is a bit more "object-oriented" than, say, MySQL. Then again, I've used MySQL before and haven't had much problem with it whatsoever. Would it be worth learning PostgreSQL for this purpose? Java or .Net implementation (Preferably Mono, so I can use .Net while hosting the website using Apache). The reason for this is because, frankly, while I know PHP is a great platform to develop websites with, I hate developing with it. Before someone chimes in and flames me for saying that, note that I have nothing against the language, I just don't like it for my purposes. While Mono may be good to go with, I'm aware that ASP.Net MVC 3 hasn't been released for Mono yet, which may be a pain to work with, without their Razor syntax. Ontop of that, it seems Java is completely FULL of class libraries which deal with web development, that can be downloaded from the web. If anyone has any experience with these, I'd appreciate if that were posted. From what I've read about Spring and Struts2, they seem to be the best out there - especially since they're (AFAIK) MVC. I've considered Python and Django, which do seem REALLY nice, but I don't know much Python, and I'd rather start with something that I already know (language-wise; not framework-wise) than dive into learning a language AND a new framework. I'd REALLY like to be able to host my website via Apache, rather than using Windows Server or anything like that, as, frankly, I hate their setup. I'm not dissing it in any way, shape, or form, I'm just saying I dislike it. <3 terminal config. If there is a good reason to with Windows Server, however, I'd be willing to learn it. C# has a lot of things that Java appears not to have, including Delegates, unsigned types, and LINQ. Is there anything that Java has which can counter these?

    Read the article

  • Thread-safety in Cocos2d-iPhone?

    - by Malax
    After tinkering a bit with cocos2d, I discovered that there is no classic game loop and everything is more-or-less event driven. I guess I can wrap my head around that, no problem. But I cannot find anything about thread safety. Say, I schedule something to occur every two seconds, which Thread will run the code? Given that I cannot find anything about that, I guess there is just one Cocos2d Thread and everything will be fine. Nevertheless, this implicit assumption does not give me a good feeling. Knowing is better than guessing. ;-) Can anyone shed some light onto that topic?

    Read the article

  • Pathfinding Java library

    - by Shivan Dragon
    I'm an amateur game developer and somewhat amateur Java developer as well. I'm trying to find a way to have path finding for my game(s). I've first googled for some existing Java libraries that have various path-finding implementations, but I've failed to find any. It seems to me that the only way to get pathfinding code is to use it via a game engine (like Unity). But I'd just like to have a library that I can use and make the game loop and other stuff on my own. Failing to find such a library I've tried implementing some algorithms myself. I've managed to make a running AStar in Java, but for fancier stuff like DStar I find it hard to do it by hand. So then, my question is, are there any Java libraries that contain at least some basic pathfinding algorithms implementations?

    Read the article

  • How to implement turn-based game engine?

    - by Dvole
    Let's imagine game like Heroes of Might and Magic, or Master of Orion, or your turn-based game of choice. What is the game logic behind making next turn? Are there any materials or books to read about the topic? To be specific, let's imagine game loop: void eventsHandler(); //something that responds to input void gameLogic(); //something that decides whats going to be output on the screen void render(); //this function outputs stuff on screen All those are getting called say 60 times a second. But how turn-based enters here? I might imagine that in gameLogic() there is a function like endTurn() that happens when a player clicks that button, but how do I handle it all? Need insights.

    Read the article

  • Mythbuntu initial setup cannt connect to server

    - by Hawke
    I'm really new to linux, and I just installed mythbuntu to a standalone pc, it's all installed ok and I've logged on, and started the setup but I'm having issues. I select language ok, the next screen is database setup, select next but it says can't connect to server and I just loop back. I've done some googling and checked the mysql database password and that is correct, I've also checked that my username belongs to myth tv and it does. Can anyone help? I've tried reinstalling but it doesn't change. Many thanks.

    Read the article

< Previous Page | 162 163 164 165 166 167 168 169 170 171 172 173  | Next Page >