Search Results

Search found 1925 results on 77 pages for 'dense matrix'.

Page 17/77 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • How do I create a bounding frustrum from a view & projection matrix?

    - by Narf the Mouse
    Given a left-handed Projection matrix, a left-handed View matrix, a ViewProj matrix of View * Projection - How do I create a bounding Frustum comprised of near, far, left, right and top, bottom planes? The only example I could find on Google (Tutorial 16: Frustum Culling) seems to not work; for example, if the math is used as given, the near-plane's distance is a negative. This places the near-plane behind the camera...

    Read the article

  • Rotating a child shape relative to its parent's orientation

    - by user1423893
    When rotating a shape using a quaternion value I also wish rotate its child shape. The parent and child shapes both start with different orientations but their relative orientations should always be the same. How can I use the difference between the previous and current quaternions of the parent shape in order to transform the child segment and rotate it relative to its parent shape? public Quaternion Orientation { get { return entity.Orientation; } set { Quaternion previousValue = entity.Orientation; entity.Orientation = value; // Use the difference between the quaternion values to update child orientation } }

    Read the article

  • HLSL What you get when you subtract world position from InvertViewProjection.Transform?

    - by cubrman
    In one of NVIDIA's Vertex shaders (the metal one) I found the following code: // transform object normals, tangents, & binormals to world-space: float4x4 WorldITXf : WorldInverseTranspose < string UIWidget="None"; >; // provide tranform from "view" or "eye" coords back to world-space: float4x4 ViewIXf : ViewInverse < string UIWidget="None"; >; ... float4 Po = float4(IN.Position.xyz,1); // homogeneous location coordinates float4 Pw = mul(Po,WorldXf); // convert to "world" space OUT.WorldView = normalize(ViewIXf[3].xyz - Pw.xyz); The term OUT.WorldView is subsequently used in a Pixel Shader to compute lighting: float3 Ln = normalize(IN.LightVec.xyz); float3 Nn = normalize(IN.WorldNormal); float3 Vn = normalize(IN.WorldView); float3 Hn = normalize(Vn + Ln); float4 litV = lit(dot(Ln,Nn),dot(Hn,Nn),SpecExpon); DiffuseContrib = litV.y * Kd * LightColor + AmbiColor; SpecularContrib = litV.z * LightColor; Can anyone tell me what exactly is WorldView here? And why do they add it to the normal?

    Read the article

  • Premultiplying matrices with Perspective destroys them

    - by Shadows In Rain
    If I apply world_to_camera, perspective and camera_to_screen to my mesh, everything is okay. But if I premultiply given matrices (i.e. transform = world_to_camera * perpective * camera_to_screen) before applying, then it seems like only perspective has effect. If it is important... My 3d framework was written from scratch (test project for job interview). But it works flawlessly, or at least I think so. So, question. This is expected behaviour, or my implementation is wrong?

    Read the article

  • Why do we move the world instead of the camera

    - by sharethis
    I heard that in an OpenGL game what we do to let the player move is not to move the camera but to move the whole world around. For example here is an extract of this tutorial: http://open.gl/transformations In real life you're used to moving the camera to alter the view of a certain scene, in OpenGL it's the other way around. The camera in OpenGL cannot move and is defined to be located at (0,0,0) facing the negative Z direction. That means that instead of moving and rotating the camera, the world is moved and rotated around the camera to construct the appropriate view. Why do we do that?

    Read the article

  • Problems with 3D transformation - (SharpDX)

    - by Morphex
    First of all , I have been trying to get this right for a couple of day already, I have read so much info and still fail miserably to understand this. So I am going to tell you that even though I have done fairly amount of research myself, I failed to implement it. I must say miserably I am trying to create a generic camera class for a game engine of sorts - for research purposes only - the thing is I have no idea how to go about it. I have read about quaternions and matrices, but when it comes to the actual implementation I suck at it. Sharpdx has already Matrices and QUaternions implemented. SO no big deal on the map behind it. How in the world would I go about creating a camera? I have seen so many camera examples and still can't make one that works as expected. I would like to implement diferent types too (Orbital, 6DoF, FPS). So what is need for a camera? UP, Forward and Right vectors I read they are needed, also a quaternion for rotations, and View and Projection matrices. I understand that a FPS camera for instance only rotates around the World Y and the Right Axis of the camera. the 6DoF rotates always around their own axis, and the orbital is just translating for set distance and making it look always at a fixed target point. The concepts are there, now implementing this is not trivial for me. Can anyone point me on what am I missing, what I got wrong? I would really enjoy if you could give a tutorial, some piece of code, or just plain explanation of the concepts. Thank you for readin, a frustrated coder.

    Read the article

  • How can I implement smooth rotation from one direction to another?

    - by user1759052
    I'm having a problem with animating rotations with 1Matrix.CreateRotationY() with my basic 3D game. Based on where you click the mouse, I want the 3D object to rotate to that direction and then move. I am using this to determine the target direction: float rot = (float)(Math.Atan2(X, Z)); It gives me the correct value, but I am not sure how to handle the rotation animation from current direction to new direction. I've tried a few things, but to no avail. Do you guys know of any good ways of solving this issue?

    Read the article

  • Ray-Box Intersection during Scene traversal with matrix transforms

    - by Myx
    Hello: There are a few ways that I'm testing my ray-box intersections: Using the ComputeIntersectionBox(...) method, that takes a ray and a box as arguments and computes the closest intersection of the ray and the box. This method works by forming a plane with each of the faces of the box and finding an intersection with each of the planes. Once an intersection is found, a check is made whether or not the point is on the surface of the box by checking that the intersection point is between the corner points. When I look at rays after running this algorithm on two different boxes, I obtain the correct intersections. Using ComputeIntersectionScene(...) method without using the matrix transformations on a scene that has two spheres, a dodecahedron (a triangular mesh), and two boxes. ComputeIntersectionScene(...) recursively traverses all of the nodes of the scene graph and computes the closest intersection with the given ray. This test in particular does not apply any transformations that parent nodes may have that also need to be applied to their children. With this test, I also obtain the correct intersections. Using ComputeIntersectionScene(...) method WITH the matrix transformations. This test works like the one above except that before finding an intersection between the ray and a node in the scene, the ray is transformed into the node's coordinate frame using the inverse of the node's transformation matrix and after the intersection has been computed, this intersection is transformed back into the world coordinates by applying the transformation matrix to the intersection point. When testing with the third method on the same scene file as described in 2, testing with 4 rays (thus one ray intersects the one sphere, one ray the the other sphere, one ray one box, and one ray the other box), only the two spheres get intersected and the two boxes do not get intersections. When I debug looking into my ComputeIntersectionBox(...) method, it actually tells me that the ray intersects every plane on the box but each intersection point does not lie on the box. This seems to be strange behavior, since when using test 2 without transformations, I obtain the correct box intersections (thus, I believe my ray-box intersection to be correct) and when using test 3 WITH transformations, I obtain the correct sphere intersections (thus, I believe my transformed ray should be OK). Any suggestions where I could be going wrong? Thank you in advance.

    Read the article

  • submatrix from a matrix

    - by Grv
    A matrix is of size n*n and it consists only 0 and 1 find the largest submatrix that consists of 1's only eg 10010 11100 11001 11110 largest sub matrix will be of 3*2 from row 2 to row 4 please answer with best space and time complexity

    Read the article

  • I want to create adjacency matrix using python

    - by A A
    I have very large data set it is almost 450000 lines and two rows, i want to compute adjacency matrix using python, because previously i have tried to do it in matlab, and it shows memory error because of large data values. my data values also start from 100 and goes upto 450000, Anyone can help me in this issue, as i am new to python. I have to first import the file into python using excel sheet or notepad and then compute the adjacency matrix

    Read the article

  • OpenGL Projection matrix won't allow displaying anything

    - by user272973
    I'm trying to get some basic OpenGL-ES with Shaders to run on the iPhone, based on some examples. For some reason my projection matrix refuses to result in something on the screen. It feels like a clipping plane is set very near but that contradicts with the values I supply. If I render the same scene with an Orthogonal projection matrix I see my object just no perspective obviously. Here's the code that generates the projection matrix: esPerspective(&proj, 45.f, 768.0/1024.0, 1.f, 10000.f); void esPerspective(ESMatrix *result, float fovy, float aspect, float nearZ, float farZ) { float frustumW, frustumH; frustumH = tanf( fovy / 360.0f * PI ) * nearZ; frustumW = frustumH * aspect; esFrustum( result, -frustumW, frustumW, -frustumH, frustumH, nearZ, farZ ); } void esFrustum(ESMatrix *result, float left, float right, float bottom, float top, float nearZ, float farZ) { float deltaX = right - left; float deltaY = top - bottom; float deltaZ = farZ - nearZ; ESMatrix frust; if ( (nearZ <= 0.0f) || (farZ <= 0.0f) || (deltaX <= 0.0f) || (deltaY <= 0.0f) || (deltaZ <= 0.0f) ) return; frust.m[0][0] = 2.0f * nearZ / deltaX; frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f; frust.m[1][1] = 2.0f * nearZ / deltaY; frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f; frust.m[2][0] = (right + left) / deltaX; frust.m[2][1] = (top + bottom) / deltaY; frust.m[2][2] = -(nearZ + farZ) / deltaZ; frust.m[2][3] = -1.0f; frust.m[3][2] = -2.0f * nearZ * farZ / deltaZ; frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f; esMatrixMultiply(result, &frust, result); } My projection matrix comes out as: [3.21, 0, 0, 0] [0, 2.41, 0, 0] [0, 0, -1, -1] [0, 0, -2, 0] Even if I manually set the [3][3] cell to 1 I still don't see anything. Any ideas?

    Read the article

  • Gnuplot - splot matrix csv data

    - by Jakub Czaplicki
    How can I plot (a 3D plot) a matrix in Gnuplot having such data structure. I cannot find a way to use the first row and column as a x and y ticks (or to ignore them) ,5,6,7,8 1,-6.20,-6.35,-6.59,-6.02 2,-6.39,-6.52,-6.31,-6.00 3,-6.36,-6.48,-6.15,-5.90 4,-5.79,-5.91,-5.87,-5.46 Is the splot 'data.csv' matrix the correct parameter to use ?

    Read the article

  • Matrix multiplication in java

    - by Chapax
    Hi, I wanted to do matrix multiplication in Java, and the speed needs to be very good. I was thinking of calling R through java to achieve this. I had a couple of Qs though: Is calling R using Java a good idea? If yes, are there any code samples that can be shared? What are the other ways that can be considered to do matrix multiplication in Java? Many thanks. --Chapax

    Read the article

  • Adding Names to columns in a matrix

    - by Jeff
    I have my matrix I have created, a pic found here. http://s816.photobucket.com/albums/zz83/gavakie/?action=view&current=matrix.jpg The first three column what whats being grouped by but I can had the names of those columns, how can I do that in Reporting Services?

    Read the article

  • Traspose matrix-style table to 3 columns in Excel

    - by polarbear2k
    I have a matrix-style table in excel where B1:Z1 are column headings and A2:A99 are row headings. I would like to convert this table to a 3 column table (column heading, row heading, cell value). It does not matter in what order the new table is. A B C D A B C A B C 1 H1 H2 H3 1 H1 R1 V1 1 H1 R1 V1 2 R1 V1 V2 V3 => 2 H1 R2 V4 or 2 H2 R1 V2 3 R2 V4 V5 V6 3 H1 R3 V7 3 H3 R1 V3 4 R3 V7 V8 V9 4 H2 R1 V2 4 H1 R2 V4 5 H2 R2 V5 5 H2 R2 V5 6 H2 R3 V8 6 H3 R2 V6 7 H3 R1 V3 7 H1 R3 V7 8 H3 R2 V6 8 H2 R3 V8 9 H3 R3 V9 9 H3 R3 V8 I've been playing around with the OFFSET function to create the whole table but I feel like a combination of TRANSPOSE and V/HLOOKUP is required. Thanks

    Read the article

  • Create a term-document matrix from files

    - by Joe
    I have a set of files from example001.txt to example100.txt. Each file contains a list of keywords from a superset (the superset is available if we want it). So example001.txt might contain apple banana ... otherfruit I'd like to be able to process these files and produce something akin to a matrix so there is the list of examples* on the top row, the fruit down the side, and a '1' in a column if the fruit is in the file. An example might be... x example1 example2 example3 Apple 1 1 0 Babana 0 1 0 Coconut 0 1 1 Any idea how I might build some sort of command-line magic to put this together? I'm on OSX and happy with perl or python...

    Read the article

  • Coordinate spaces and transformation matrices

    - by Belgin
    I'm trying to get an object from object space, into projected space using these intermediate matrices: The first matrix (I) is the one that transforms from object space into inertial space, but since my object is not rotated or translated in any way inside the object space, this matrix is the 4x4 identity matrix. The second matrix (W) is the one that transforms from inertial space into world space, which is just a scale transform matrix of factor a = 14.1 on all coordinates, since the inertial space origin coincides with the world space origin. /a 0 0 0\ W = |0 a 0 0| |0 0 a 0| \0 0 0 1/ The third matrix (C) is the one that transforms from world space, into camera space. This matrix is a translation matrix with a translation of (0, 0, 10), because I want the camera to be located behind the object, so the object must be positioned 10 units into the z axis. /1 0 0 0\ C = |0 1 0 0| |0 0 1 10| \0 0 0 1/ And finally, the fourth matrix is the projection matrix (P). Bearing in mind that the eye is at the origin of the world space and the projection plane is defined by z = 1, the projection matrix is: /1 0 0 0\ P = |0 1 0 0| |0 0 1 0| \0 0 1/d 0/ where d is the distance from the eye to the projection plane, so d = 1. I'm multiplying them like this: (((P x C) x W) x I) x V, where V is the vertex' coordinates in column vector form: /x\ V = |y| |z| \1/ After I get the result, I divide x and y coordinates by w to get the actual screen coordinates. Apparenly, I'm doing something wrong or missing something completely here, because it's not rendering properly. Here's a picture of what is supposed to be the bottom side of the Stanford Dragon: Also, I should add that this is a software renderer so no DirectX or OpenGL stuff here.

    Read the article

  • Using pthread to perform matrix multiplication

    - by shadyabhi
    I have both matrices containing only ones and each array has 500 rows and columns. So, the resulting matrix should be a matrix of all elements having value 500. But, I am getting res_mat[0][0]=5000. Even other elements are also 5000. Why? #include<stdio.h> #include<pthread.h> #include<unistd.h> #include<stdlib.h> #define ROWS 500 #define COLUMNS 500 #define N_THREADS 10 int mat1[ROWS][COLUMNS],mat2[ROWS][COLUMNS],res_mat[ROWS][COLUMNS]; void *mult_thread(void *t) { /*This function calculates 50 ROWS of the matrix*/ int starting_row; starting_row = *((int *)t); starting_row = 50 * starting_row; int i,j,k; for (i = starting_row;i<starting_row+50;i++) for (j=0;j<COLUMNS;j++) for (k=0;k<ROWS;k++) res_mat[i][j] += (mat1[i][k] * mat2[k][j]); return; } void fill_matrix(int mat[ROWS][COLUMNS]) { int i,j; for(i=0;i<ROWS;i++) for(j=0;j<COLUMNS;j++) mat[i][j] = 1; } int main() { int n_threads = 10; //10 threads created bcos we have 500 rows and one thread calculates 50 rows int j=0; pthread_t p[n_threads]; fill_matrix(mat1); fill_matrix(mat2); for (j=0;j<10;j++) pthread_create(&p[j],NULL,mult_thread,&j); for (j=0;j<10;j++) pthread_join(p[j],NULL); printf("%d\n",res_mat[0][0]); return 0; }

    Read the article

  • finding ALL cycles in a huge sparse matrix

    - by Andy
    Hi there, First of all I'm quite a Java beginner, so I'm not sure if this is even possible! Basically I have a huge (3+million) data source of relational data (i.e. A is friends with B+C+D, B is friends with D+G+Z (but not A - i.e. unmutual) etc.) and I want to find every cycle within this (not necessarily connected) directed graph. I've found this thread (http://stackoverflow.com/questions/546655/finding-all-cycles-in-graph/549402#549402) which has pointed me to Donald Johnson's (elementary) cycle-finding algorithm which, superficially at least, looks like it'll do what I'm after (I'm going to try when I'm back at work on Tuesday - thought it wouldn't hurt to ask in the meanwhile!). I had a quick scan through the code of the Java implementation of Johnson's algorithm (in that thread) and it looks like a matrix of relations is the first step, so I guess my questions are: a) Is Java capable of handling a 3+million*3+million matrix? (was planning on representing A-friends-with-B by a binary sparse matrix) b) Do I need to find every connected subgraph as my first problem, or will cycle-finding algorithms handle disjoint data? c) Is this actually an appropriate solution for the problem? My understanding of "elementary" cycles is that in the graph below, rather than picking out A-B-C-D-E-F it'll pick out A-B-F, B-C-D etc. but that's not the end of the world given the task. E / \ D---F / \ / \ C---B---A d) If necessary, I can simplify the problem by enforcing mutuality in relations - i.e. A-friends-with-B <== B-friends-with-A, and if really necessary I can maybe cut down the data size, but realistically it is always going to be around the 1mil mark. z) Is this a P or NP task?! Am I biting off more than I can chew? Thanks all, any help appreciated! Andy

    Read the article

  • OpenCL Matrix Multiplication - Getting wrong answer

    - by Yash
    here's a simple OpenCL Matrix Multiplication kernel which is driving me crazy: __kernel void matrixMul( __global int* C, __global int* A, __global int* B, int wA, int wB){ int row = get_global_id(1); //2D Threas ID x int col = get_global_id(0); //2D Threas ID y //Perform dot-product accumulated into value int value; for ( int k = 0; k < wA; k++ ){ value += A[row*wA + k] * B[k*wB+col]; } C[row*wA+col] = value; //Write to the device memory } Where (inputs) A = [72 45 75 61] B = [26 53 46 76] Output I am getting: C = [3942 7236 3312 5472] But the output should be: C = [3943 7236 4756 8611] The problem I am facing here is that for any dimension array the elements of the first row of the resulting matrix is correct. The elements of all the other rows of the resulting matrix is wrong. By the way I am using pyopencl. I don't know what I mistake I am doing here. I have spent the entire day with no luck. Please help me with this

    Read the article

  • Optimizing a "set in a string list" to a "set as a matrix" operation

    - by Eric Fournier
    I have a set of strings which contain space-separated elements. I want to build a matrix which will tell me which elements were part of which strings. For example: "" "A B C" "D" "B D" Should give something like: A B C D 1 2 1 1 1 3 1 4 1 1 Now I've got a solution, but it runs slow as molasse, and I've run out of ideas on how to make it faster: reverseIn <- function(vector, value) { return(value %in% vector) } buildCategoryMatrix <- function(valueVector) { allClasses <- c() for(classVec in unique(valueVector)) { allClasses <- unique(c(allClasses, strsplit(classVec, " ", fixed=TRUE)[[1]])) } resMatrix <- matrix(ncol=0, nrow=length(valueVector)) splitValues <- strsplit(valueVector, " ", fixed=TRUE) for(cat in allClasses) { if(cat=="") { catIsPart <- (valueVector == "") } else { catIsPart <- sapply(splitValues, reverseIn, cat) } resMatrix <- cbind(resMatrix, catIsPart) } colnames(resMatrix) <- allClasses return(resMatrix) } Profiling the function gives me this: $by.self self.time self.pct total.time total.pct "match" 31.20 34.74 31.24 34.79 "FUN" 30.26 33.70 74.30 82.74 "lapply" 13.56 15.10 87.86 97.84 "%in%" 12.92 14.39 44.10 49.11 So my actual questions would be: - Where are the 33% spent in "FUN" coming from? - Would there be any way to speed up the %in% call? I tried turning the strings into factors prior to going into the loop so that I'd be matching numbers instead of strings, but that actually makes R crash. I've also tried going for partial matrix assignment (IE, resMatrix[i,x] <- 1) where i is the number of the string and x is the vector of factors. No dice there either, as it seems to keep on running infinitely.

    Read the article

  • Weird appearance for a 3D XNA ground

    - by Belos
    I wanted to add a ground so I can know the position of a helicopter in the world. But the ground appeared in a weird way: http://i.stack.imgur.com/yTSuW.jpg The ground had the following texture: http://i.stack.imgur.com/pdpxB.png EDIT: Sorry, I forgot to post the code: public class ImportModel { public Vector3 Position { get; set; } public Vector3 Rotation { get; set; } public Vector3 Scale { get; set; } Model Model; Matrix[] modeltransforms; GraphicsDevice GraphicDevice; ContentManager Content; BoundingSphere sphere; bool boundingimplemented = false; public ImportModel(string model, GraphicsDevice gd, ContentManager cm, Vector3 position, Vector3 rot, Vector3 sca) { GraphicDevice = gd; Content = cm; Position = position; Rotation = rot; Scale = sca; Model = Content.Load<Model>(model); modeltransforms = new Matrix[Model.Bones.Count]; Model.CopyAbsoluteBoneTransformsTo(modeltransforms); } public void Draw(Camera camera) { Matrix baseworld = Matrix.CreateScale(Scale) * Matrix.CreateFromYawPitchRoll(Rotation.Y, Rotation.X, Rotation.Z) * Matrix.CreateTranslation(Position); foreach (ModelMesh mesh in Model.Meshes) { Matrix localworld = modeltransforms[mesh.ParentBone.Index] * baseworld; foreach (ModelMeshPart meshpart in mesh.MeshParts) { BasicEffect effect = (BasicEffect)meshpart.Effect; effect.World = localworld; effect.View = camera.View; effect.Projection = camera.Projection; effect.EnableDefaultLighting(); } mesh.Draw(); } } public BoundingSphere BoundingSphere { get { if (!boundingimplemented) { foreach (ModelMesh mesh in Model.Meshes) { BoundingSphere transformed = mesh.BoundingSphere.Transform( modeltransforms[mesh.ParentBone.Index]); sphere = BoundingSphere.CreateMerged(sphere, transformed); } Matrix worldTransform = Matrix.CreateScale(Scale) * Matrix.CreateTranslation(Position); BoundingSphere transforme = sphere; transforme = transforme.Transform(worldTransform); return transforme; } else { Matrix worldTransform = Matrix.CreateScale(Scale) * Matrix.CreateTranslation(Position); BoundingSphere transformed = sphere; transformed = transformed.Transform(worldTransform); return transformed; } } } } Then I call the class from the Game1 class: ImportModel ground = new ImportModel("ground", GraphicsDevice, Content, Vector3.Zero, Vector3.Zero, new Vector3(20f)); EDIT2:This is how the scene looks from top: i.stack.imgur.com/Hs983.jpg

    Read the article

  • Transpose matrix-style table to 3 columns in Excel

    - by polarbear2k
    I have a matrix-style table in excel where B1:Z1 are column headings and A2:A99 are row headings. I would like to convert this table to a 3 column table (column heading, row heading, cell value). It does not matter in what order the new table is. A B C D A B C A B C 1 H1 H2 H3 1 H1 R1 V1 1 H1 R1 V1 2 R1 V1 V2 V3 => 2 H1 R2 V4 or 2 H2 R1 V2 3 R2 V4 V5 V6 3 H1 R3 V7 3 H3 R1 V3 4 R3 V7 V8 V9 4 H2 R1 V2 4 H1 R2 V4 5 H2 R2 V5 5 H2 R2 V5 6 H2 R3 V8 6 H3 R2 V6 7 H3 R1 V3 7 H1 R3 V7 8 H3 R2 V6 8 H2 R3 V8 9 H3 R3 V9 9 H3 R3 V8 I've been playing around with the OFFSET function to create the whole table but I feel like a combination of TRANSPOSE and V/HLOOKUP is required. Thanks EDIT I have managed to come up with the correct formulas. If the data is in Sheet1 like in my example above, the formulas go in Sheet2: [A1] =IF(ROW() <= COUNTA(Sheet1!$B$1:$Z$1)*COUNTA(Sheet1!$A$2:$A$99), OFFSET(Sheet1!$A$1,0,IF(MOD(ROW(),COUNTA(Sheet1!$B$1:$Z$1))=0,COUNTA(Sheet1!$B$1:$Z$1),MOD(ROW(),COUNTA(Sheet1!$B$1:$Z$1)))),"") [B1] =IF(ROW() <= COUNTA(Sheet1!$B$1:$Z$1)*COUNTA(Sheet1!$A$2:$A$99),OFFSET(Sheet1!$A$1,IF(MOD(ROW(),COUNTA(Sheet1!$A$2:$A$99))=0,COUNTA(Sheet1!$A$2:$A$99),MOD(ROW(),COUNTA(Sheet1!$A$2:$A$99))),0),"") [C1] =IF(ROW() <= COUNTA(Sheet1!$B$1:$Z$1)*COUNTA(Sheet1!$A$2:$A$99),OFFSET(Sheet1!$A$1,IF(MOD(ROW(),COUNTA(Sheet1!$A$2:$A$99))=0,COUNTA(Sheet1!$A$2:$A$99),MOD(ROW(),COUNTA(Sheet1!$A$2:$A$99))),IF(MOD(ROW(),COUNTA(Sheet1!$B$1:$Z$1))=0,COUNTA(Sheet1!$B$1:$Z$1),MOD(ROW(),COUNTA(Sheet1!$B$1:$Z$1)))),"") The formulas are limited to B1:Z1 for the headings and A2:A99 for the rows (these can be increased to their maximums if required). The COUNTA() formula returns the number of cells that actually have values, which limits the number of rows returned to headings*rows. Otherwise the formulas would could go on for infinity because of the MOD function.

    Read the article

  • How to use onSensorChanged sensor data in combination with OpenGL

    - by Sponge
    I have written a TestSuite to find out how to calculate the rotation angles from the data you get in SensorEventListener.onSensorChanged(). I really hope you can complete my solution to help people who will have the same problems like me. Here is the code, i think you will understand it after reading it. Feel free to change it, the main idea was to implement several methods to send the orientation angles to the opengl view or any other target which would need it. method 1 to 4 are working, they are directly sending the rotationMatrix to the OpenGl view. all other methods are not working or buggy and i hope someone knows to get them working. i think the best method would be method 5 if it would work, because it would be the easiest to understand but i'm not sure how efficient it is. the complete code isn't optimized so i recommend to not use it as it is in your project. here it is: import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGL10; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import static javax.microedition.khronos.opengles.GL10.*; import android.app.Activity; import android.content.Context; import android.content.pm.ActivityInfo; import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import android.hardware.SensorManager; import android.opengl.GLSurfaceView; import android.opengl.GLSurfaceView.Renderer; import android.os.Bundle; import android.util.Log; import android.view.WindowManager; /** * This class provides a basic demonstration of how to use the * {@link android.hardware.SensorManager SensorManager} API to draw a 3D * compass. */ public class SensorToOpenGlTests extends Activity implements Renderer, SensorEventListener { private static final boolean TRY_TRANSPOSED_VERSION = false; /* * MODUS overview: * * 1 - unbufferd data directly transfaired from the rotation matrix to the * modelview matrix * * 2 - buffered version of 1 where both acceleration and magnetometer are * buffered * * 3 - buffered version of 1 where only magnetometer is buffered * * 4 - buffered version of 1 where only acceleration is buffered * * 5 - uses the orientation sensor and sets the angles how to rotate the * camera with glrotate() * * 6 - uses the rotation matrix to calculate the angles * * 7 to 12 - every possibility how the rotationMatrix could be constructed * in SensorManager.getRotationMatrix (see * http://www.songho.ca/opengl/gl_anglestoaxes.html#anglestoaxes for all * possibilities) */ private static int MODUS = 2; private GLSurfaceView openglView; private FloatBuffer vertexBuffer; private ByteBuffer indexBuffer; private FloatBuffer colorBuffer; private SensorManager mSensorManager; private float[] rotationMatrix = new float[16]; private float[] accelGData = new float[3]; private float[] bufferedAccelGData = new float[3]; private float[] magnetData = new float[3]; private float[] bufferedMagnetData = new float[3]; private float[] orientationData = new float[3]; // private float[] mI = new float[16]; private float[] resultingAngles = new float[3]; private int mCount; final static float rad2deg = (float) (180.0f / Math.PI); private boolean mirrorOnBlueAxis = false; private boolean landscape; public SensorToOpenGlTests() { } /** Called with the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE); openglView = new GLSurfaceView(this); openglView.setRenderer(this); setContentView(openglView); } @Override protected void onResume() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onResume(); openglView.onResume(); if (((WindowManager) getSystemService(WINDOW_SERVICE)) .getDefaultDisplay().getOrientation() == 1) { landscape = true; } else { landscape = false; } mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ORIENTATION), SensorManager.SENSOR_DELAY_GAME); } @Override protected void onPause() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onPause(); openglView.onPause(); mSensorManager.unregisterListener(this); } public int[] getConfigSpec() { // We want a depth buffer, don't care about the // details of the color buffer. int[] configSpec = { EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE }; return configSpec; } public void onDrawFrame(GL10 gl) { // clear screen and color buffer: gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); // set target matrix to modelview matrix: gl.glMatrixMode(GL10.GL_MODELVIEW); // init modelview matrix: gl.glLoadIdentity(); // move camera away a little bit: if ((MODUS == 1) || (MODUS == 2) || (MODUS == 3) || (MODUS == 4)) { if (landscape) { // in landscape mode first remap the rotationMatrix before using // it with glMultMatrixf: float[] result = new float[16]; SensorManager.remapCoordinateSystem(rotationMatrix, SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, result); gl.glMultMatrixf(result, 0); } else { gl.glMultMatrixf(rotationMatrix, 0); } } else { //in all other modes do the rotation by hand: gl.glRotatef(resultingAngles[1], 1, 0, 0); gl.glRotatef(resultingAngles[2], 0, 1, 0); gl.glRotatef(resultingAngles[0], 0, 0, 1); if (mirrorOnBlueAxis) { //this is needed for mode 6 to work gl.glScalef(1, 1, -1); } } //move the axis to simulate augmented behaviour: gl.glTranslatef(0, 2, 0); // draw the 3 axis on the screen: gl.glVertexPointer(3, GL_FLOAT, 0, vertexBuffer); gl.glColorPointer(4, GL_FLOAT, 0, colorBuffer); gl.glDrawElements(GL_LINES, 6, GL_UNSIGNED_BYTE, indexBuffer); } public void onSurfaceChanged(GL10 gl, int width, int height) { gl.glViewport(0, 0, width, height); float r = (float) width / height; gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glFrustumf(-r, r, -1, 1, 1, 10); } public void onSurfaceCreated(GL10 gl, EGLConfig config) { gl.glDisable(GL10.GL_DITHER); gl.glClearColor(1, 1, 1, 1); gl.glEnable(GL10.GL_CULL_FACE); gl.glShadeModel(GL10.GL_SMOOTH); gl.glEnable(GL10.GL_DEPTH_TEST); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); // load the 3 axis and there colors: float vertices[] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; float colors[] = { 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1 }; byte indices[] = { 0, 1, 0, 2, 0, 3 }; ByteBuffer vbb; vbb = ByteBuffer.allocateDirect(vertices.length * 4); vbb.order(ByteOrder.nativeOrder()); vertexBuffer = vbb.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); vbb = ByteBuffer.allocateDirect(colors.length * 4); vbb.order(ByteOrder.nativeOrder()); colorBuffer = vbb.asFloatBuffer(); colorBuffer.put(colors); colorBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { // load the new values: loadNewSensorData(event); if (MODUS == 1) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); } if (MODUS == 2) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, bufferedMagnetData); } if (MODUS == 3) { rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, bufferedMagnetData); } if (MODUS == 4) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, magnetData); } if (MODUS == 5) { // this mode uses the sensor data recieved from the orientation // sensor resultingAngles = orientationData.clone(); if ((-90 > resultingAngles[1]) || (resultingAngles[1] > 90)) { resultingAngles[1] = orientationData[0]; resultingAngles[2] = orientationData[1]; resultingAngles[0] = orientationData[2]; } } if (MODUS == 6) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); final float[] anglesInRadians = new float[3]; SensorManager.getOrientation(rotationMatrix, anglesInRadians); if ((-90 < anglesInRadians[2] * rad2deg) && (anglesInRadians[2] * rad2deg < 90)) { // device camera is looking on the floor // this hemisphere is working fine mirrorOnBlueAxis = false; resultingAngles[0] = anglesInRadians[0] * rad2deg; resultingAngles[1] = anglesInRadians[1] * rad2deg; resultingAngles[2] = anglesInRadians[2] * -rad2deg; } else { mirrorOnBlueAxis = true; // device camera is looking in the sky // this hemisphere is mirrored at the blue axis resultingAngles[0] = (anglesInRadians[0] * rad2deg); resultingAngles[1] = (anglesInRadians[1] * rad2deg); resultingAngles[2] = (anglesInRadians[2] * rad2deg); } } if (MODUS == 7) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x y z * order Rx*Ry*Rz */ resultingAngles[2] = (float) (Math.asin(rotationMatrix[2])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[0] = -(float) (Math.acos(rotationMatrix[0] / cosB)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[10] / cosB)) * rad2deg; } if (MODUS == 8) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z y x */ resultingAngles[2] = (float) (Math.asin(-rotationMatrix[8])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[9] / cosB)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[4] / cosB)) * rad2deg; } if (MODUS == 9) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z x y * * note z axis looks good at this one */ resultingAngles[1] = (float) (Math.asin(rotationMatrix[9])); final float minusCosA = -(float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[8] / minusCosA)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[1] / minusCosA)) * rad2deg; } if (MODUS == 10) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y x z */ resultingAngles[1] = (float) (Math.asin(-rotationMatrix[6])); final float cosA = (float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[2] / cosA)) * rad2deg; resultingAngles[0] = (float) (Math.acos(rotationMatrix[5] / cosA)) * rad2deg; } if (MODUS == 11) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y z x */ resultingAngles[0] = (float) (Math.asin(rotationMatrix[4])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } if (MODUS == 12) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x z y */ resultingAngles[0] = (float) (Math.asin(-rotationMatrix[1])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } logOutput(); } /** * transposes the matrix because it was transposted (inverted, but here its * the same, because its a rotation matrix) to be used for opengl * * @param source * @return */ private float[] transpose(float[] source) { final float[] result = source.clone(); if (TRY_TRANSPOSED_VERSION) { result[1] = source[4]; result[2] = source[8]; result[4] = source[1]; result[6] = source[9]; result[8] = source[2]; result[9] = source[6]; } // the other values in the matrix are not relevant for rotations return result; } private void rootMeanSquareBuffer(float[] target, float[] values) { final float amplification = 200.0f; float buffer = 20.0f; target[0] += amplification; target[1] += amplification; target[2] += amplification; values[0] += amplification; values[1] += amplification; values[2] += amplification; target[0] = (float) (Math .sqrt((target[0] * target[0] * buffer + values[0] * values[0]) / (1 + buffer))); target[1] = (float) (Math .sqrt((target[1] * target[1] * buffer + values[1] * values[1]) / (1 + buffer))); target[2] = (float) (Math .sqrt((target[2] * target[2] * buffer + values[2] * values[2]) / (1 + buffer))); target[0] -= amplification; target[1] -= amplification; target[2] -= amplification; values[0] -= amplification; values[1] -= amplification; values[2] -= amplification; } private void loadNewSensorData(SensorEvent event) { final int type = event.sensor.getType(); if (type == Sensor.TYPE_ACCELEROMETER) { accelGData = event.values.clone(); } if (type == Sensor.TYPE_MAGNETIC_FIELD) { magnetData = event.values.clone(); } if (type == Sensor.TYPE_ORIENTATION) { orientationData = event.values.clone(); } } private void logOutput() { if (mCount++ > 30) { mCount = 0; Log.d("Compass", "yaw0: " + (int) (resultingAngles[0]) + " pitch1: " + (int) (resultingAngles[1]) + " roll2: " + (int) (resultingAngles[2])); } } }

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >