Search Results

Search found 26176 results on 1048 pages for 'stream socket client'.

Page 174/1048 | < Previous Page | 170 171 172 173 174 175 176 177 178 179 180 181  | Next Page >

  • Sending the array of arbitrary length through a socket. Endianness.

    - by Negai
    Hi everyone, I'm fighting with socket programming now and I've encountered a problem, which I don't know how to solve in a portable way. The task is simple : I need to send the array of 16 bytes over the network, receive it in a client application and parse it. I know, there are functions like htonl, htons and so one to use with uint16 and uint32. But what should I do with the chunks of data greater than that? Thank you.

    Read the article

  • Cocoa-Touch framework for speaking to a TCP socket?

    - by Coocoo4Cocoa
    I have a daemon running on a server that's latched onto a TCP/IP port. I'm looking to see if there's currently any support iPhone/Cocoa-touch frameworks that gives a nice OO wrapper for speaking to the daemon over an IP socket. I need to be able to interactively query the daemon with commands and retrieve back information. If there isn't any OO wrappers for such a task, what's the next best bet?

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Lighttpd - byte range request doesn't work. can't stream mp4

    - by w-01
    Am attempting to use the lastest flowplayer. (if it could work it would be pretty awesome btw) http://flowplayer.org One of the cool things about it is it uses the new HTML5 video element and supports random seeking/playback. In order to do this, you need a byte range request capable server on the backend. Luckily I'm using Lighttpd 1.5.0 on the backend. Unfortunately the current behavior is that when I do a random seek, the video simply restarts itself from the beginning. the docs say: "For HTML5 video you don't have to do any client side configuration. If your server supports byte range requests then seeking should work on the fly. Most servers including Apache, Nginx and Lighttpd support this." On my page, using chrome web developer tools, i can see when the video is requested, the server response headers indicate it is able to acce[t byte ranges. Accept-Ranges:bytes when I do random seek in the player, I can see that that byte ranges are request appropriately in the request header: Range: bytes=5668-10785 I can also verify the moov atom is at the front of the video file. My question here is if there is something else on the lighttpd side i'm missing in order to enable byte-range requests? The reason i ask is because the current behavior suggests that the lighttpd simply doesn't understand the byte range request and is just reserving the video from the beginning. Update it's clearer to put this here. As per RJS' suggestion I ran a curl command. in the response it looks like lighttpd is working as expected. Content-Range: bytes 1602355-18844965/18844966 Content-Length: 17242611

    Read the article

  • Is there a Windows 7 compatible IPSec VPN client that allows protocol and port specific rules?

    - by Sani Huttunen
    As the title says, I need to find a IPSec VPN client for Windows 7. On XP and Vista we've used SafeNet SoftRemote in which you can set up rules for specific protocols and ports. But SoftRemote isn't compatible with Windows 7. 172.xxx.xxx.1 TCP 1433 172.xxx.xxx.2 TCP 1433 172.xxx.xxx.10 ALL ... Since the VPN gateway is configured this way the client must mirror these settings. I've tried TheGreenBow, NCP Secure Entry, Cisco VPN Client and Shrew Soft VPN but none of these allows you to configure by protocol and port. Does anyone have any other suggestions? EDIT: Forgot to mention that agressive mode is also a requirement. --UPDATE-- I've got some news... I've managed to get SoftRemote to work on Windows 7 x64 through Windows XP Mode. After scouring all corners of the Internet for idéas I had enough information to construct a working solution. This solution will probably benefit other clients as well! You'll find a post here with detailed instructions of how I went about.

    Read the article

  • How to prevent samba from holding a file lock after a client disconnects?

    - by Jean-Francois Chevrette
    Here I have a Samba server (Debian 5.0) thats is configured to host Windows XP profiles. Clients connects to this server and work on their profiles directly on the samba share (the profile is not copied locally). Every now and then, a client may not shutdown properly and thus Windows does not free the file locks. When looking at the samba locking table, we can see that many files are still locked even though the client is not connected anymore. In our case, this seems to occur with lockfiles created by Mozilla Thunderbird and Firefox. Here's an example of the samba locking table: # smbstatus -L | grep DENY_ALL | head -n5 Pid Uid DenyMode Access R/W Oplock SharePath Name Time -------------------------------------------------------------------------------------------------- 15494 10345 DENY_ALL 0x3019f RDWR EXCLUSIVE+BATCH /home/CORP/user1 app.profile/user1.thunderbird/parent.lock Mon Nov 22 07:12:45 2010 18040 10454 DENY_ALL 0x3019f RDWR EXCLUSIVE+BATCH /home/CORP/user2 app.profile/user2.thunderbird/parent.lock Mon Nov 22 11:20:45 2010 26466 10056 DENY_ALL 0x3019f RDWR EXCLUSIVE+BATCH /home/CORP/user3 app.profile/user3.firefox/parent.lock Mon Nov 22 08:48:23 2010 We can see that the files were opened by Windows and imposed a DENY_ALL lock. Now when a client reconnects to this share and tries to open those files, samba says that they are locked and denies access. Is there any way to work around this situation or am I missing something? Edit: We would like to avoid disabling file locks on the samba server because there are good reasons to have those enabled.

    Read the article

  • Will a SQL Server client alias survive a sysprep?

    - by shufler
    I want to sysprep a Windows Server 2008 R2 SP1 machine that has SQL Server 2008 R2 SP1 installed (for reference, SQL Server 2008 R2 has a new sysprep feature that allows the instance to be sysprepped). On the server is a SQL Server client alias that points to the default SQL Server database engine instance. For reference, the alias is called Alias-SQLServer and has been configured in both 32-bit and 64-bit cliconfig versions (that is, both registry keys exist) The alias points to the local instance as the image will be used to create development VMs and the installation script for the application that is being developed will use the SQL Server client alias in order to generalize the installation scripts. I can't seem to find information about whether the sysprep tool will update the SQL Server client alias's registry keys with the server's new name once it's unsealed. My guess is that it is not; how is sysprep to know that the server name the alias points to will be different for each image? Right? Perhaps if the alias points to localhost instead of the server name this will work?

    Read the article

  • C# Serialization lock out

    - by Greycrow
    When I try to Serialize a class to an xml file I get the exception: The process cannot access the file 'C:\settings.xml' because it is being used by another process. Settings currentSettings = new Settings(); public void LoadSettings() { //Load Settings from XML file try { Stream stream = File.Open("settings.xml", FileMode.Open); XmlSerializer s = new XmlSerializer(typeof(Settings)); currentSettings = (Settings)s.Deserialize(stream); stream.Close(); } catch //Can't read XML - use default settings { currentSettings.Name = GameSelect.Items[0].ToString(); currentSettings.City = MapSelect.Items[0].ToString(); currentSettings.Country = RaceSelect.Items[0].ToString(); } } public void SaveSettings() { //Save Settings to XML file try { Stream stream = File.Open("settings.xml", FileMode.Create); XmlSerializer x = new XmlSerializer(typeof(Settings)); x.Serialize(stream, currentSettings); stream.Close(); } catch { MessageBox.Show("Unable to open XML File - File in use by other process"); } It appears that when I Deserialize it locks the file for writing back, even if I closed the stream. Thanks in advance.

    Read the article

  • C# Asynchronous Network IO and OutOfMemoryException

    - by The.Anti.9
    I'm working on a client/server application in C#, and I need to get Asynchronous sockets working so I can handle multiple connections at once. Technically it works the way it is now, but I get an OutOfMemoryException after about 3 minutes of running. MSDN says to use a WaitHandler to do WaitOne() after the socket.BeginAccept(), but it doesn't actually let me do that. When I try to do that in the code it says WaitHandler is an abstract class or interface, and I can't instantiate it. I thought maybe Id try a static reference, but it doesnt have teh WaitOne() method, just WaitAll() and WaitAny(). The main problem is that in the docs it doesn't give a full code snippet, so you can't actually see what their "wait handler" is coming from. its just a variable called allDone, which also has a Reset() method in the snippet, which a waithandler doesn't have. After digging around in their docs, I found some related thing about an AutoResetEvent in the Threading namespace. It has a WaitOne() and a Reset() method. So I tried that around the while(true) { ... socket.BeginAccept( ... ); ... }. Unfortunately this makes it only take one connection at a time. So I'm not really sure where to go. Here's my code: class ServerRunner { private Byte[] data = new Byte[2048]; private int size = 2048; private Socket server; static AutoResetEvent allDone = new AutoResetEvent(false); public ServerRunner() { server = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); IPEndPoint iep = new IPEndPoint(IPAddress.Any, 33333); server.Bind(iep); Console.WriteLine("Server initialized.."); } public void Run() { server.Listen(100); Console.WriteLine("Listening..."); while (true) { //allDone.Reset(); server.BeginAccept(new AsyncCallback(AcceptCon), server); //allDone.WaitOne(); } } void AcceptCon(IAsyncResult iar) { Socket oldserver = (Socket)iar.AsyncState; Socket client = oldserver.EndAccept(iar); Console.WriteLine(client.RemoteEndPoint.ToString() + " connected"); byte[] message = Encoding.ASCII.GetBytes("Welcome"); client.BeginSend(message, 0, message.Length, SocketFlags.None, new AsyncCallback(SendData), client); } void SendData(IAsyncResult iar) { Socket client = (Socket)iar.AsyncState; int sent = client.EndSend(iar); client.BeginReceive(data, 0, size, SocketFlags.None, new AsyncCallback(ReceiveData), client); } void ReceiveData(IAsyncResult iar) { Socket client = (Socket)iar.AsyncState; int recv = client.EndReceive(iar); if (recv == 0) { client.Close(); server.BeginAccept(new AsyncCallback(AcceptCon), server); return; } string receivedData = Encoding.ASCII.GetString(data, 0, recv); //process received data here byte[] message2 = Encoding.ASCII.GetBytes("reply"); client.BeginSend(message2, 0, message2.Length, SocketFlags.None, new AsyncCallback(SendData), client); } }

    Read the article

  • JAVA - Download PDF file from Webserver

    - by Augusto Picciani
    I need to download a pdf file from a webserver to my pc and save it locally. I used Httpclient to connect to webserver and get the content body: HttpEntity entity=response.getEntity(); InputStream in=entity.getContent(); String stream = CharStreams.toString(new InputStreamReader(in)); int size=stream.length(); System.out.println("stringa html page LENGTH:"+stream.length()); System.out.println(stream); SaveToFile(stream); Then i save content in a file: //check CRLF (i don't know if i need to to this) String[] fix=stream.split("\r\n"); File file=new File("C:\\Users\\augusto\\Desktop\\progetti web\\test\\test2.pdf"); PrintWriter out = new PrintWriter(new FileWriter(file)); for (int i = 0; i < fix.length; i++) { out.print(fix[i]); out.print("\n"); } out.close(); I also tried to save a String content to file directly: OutputStream out=new FileOutputStream("pathPdfFile"); out.write(stream.getBytes()); out.close(); But the result is always the same: I can open pdf file but i can see white pages only. Does the mistake is around pdf stream and endstream charset encoding? Does pdf content between stream and endStream need to be manipulate in some others way?

    Read the article

  • Listening for TCP and UDP requests on the same port

    - by user339328
    I am writing a Client/Server set of programs Depending on the operation requested by the client, I use make TCP or UDP request. Implementing the client side is straight-forward, since I can easily open connection with any protocol and send the request to the server-side. On the servers-side, on the other hand, I would like to listen both for UDP and TCP connections on the same port. Moreover, I like the the server to open new thread for each connection request. I have adopted the approach explained in: link text I have extended this code sample by creating new threads for each TCP/UDP request. This works correctly if I use TCP only, but it fails when I attempt to make UDP bindings. Please give me any suggestion how can I correct this. tnx Here is the Server Code: public class Server { public static void main(String args[]) { try { int port = 4444; if (args.length > 0) port = Integer.parseInt(args[0]); SocketAddress localport = new InetSocketAddress(port); // Create and bind a tcp channel to listen for connections on. ServerSocketChannel tcpserver = ServerSocketChannel.open(); tcpserver.socket().bind(localport); // Also create and bind a DatagramChannel to listen on. DatagramChannel udpserver = DatagramChannel.open(); udpserver.socket().bind(localport); // Specify non-blocking mode for both channels, since our // Selector object will be doing the blocking for us. tcpserver.configureBlocking(false); udpserver.configureBlocking(false); // The Selector object is what allows us to block while waiting // for activity on either of the two channels. Selector selector = Selector.open(); tcpserver.register(selector, SelectionKey.OP_ACCEPT); udpserver.register(selector, SelectionKey.OP_READ); System.out.println("Server Sterted on port: " + port + "!"); //Load Map Utils.LoadMap("mapa"); System.out.println("Server map ... LOADED!"); // Now loop forever, processing client connections while(true) { try { selector.select(); Set<SelectionKey> keys = selector.selectedKeys(); // Iterate through the Set of keys. for (Iterator<SelectionKey> i = keys.iterator(); i.hasNext();) { SelectionKey key = i.next(); i.remove(); Channel c = key.channel(); if (key.isAcceptable() && c == tcpserver) { new TCPThread(tcpserver.accept().socket()).start(); } else if (key.isReadable() && c == udpserver) { new UDPThread(udpserver.socket()).start(); } } } catch (Exception e) { e.printStackTrace(); } } } catch (Exception e) { e.printStackTrace(); System.err.println(e); System.exit(1); } } } The UDPThread code: public class UDPThread extends Thread { private DatagramSocket socket = null; public UDPThread(DatagramSocket socket) { super("UDPThread"); this.socket = socket; } @Override public void run() { byte[] buffer = new byte[2048]; try { DatagramPacket packet = new DatagramPacket(buffer, buffer.length); socket.receive(packet); String inputLine = new String(buffer); String outputLine = Utils.processCommand(inputLine.trim()); DatagramPacket reply = new DatagramPacket(outputLine.getBytes(), outputLine.getBytes().length, packet.getAddress(), packet.getPort()); socket.send(reply); } catch (IOException e) { e.printStackTrace(); } socket.close(); } } I receive: Exception in thread "UDPThread" java.nio.channels.IllegalBlockingModeException at sun.nio.ch.DatagramSocketAdaptor.receive(Unknown Source) at server.UDPThread.run(UDPThread.java:25) 10x

    Read the article

  • Problem with circular definition in Scheme

    - by user8472
    I am currently working through SICP using Guile as my primary language for the exercises. I have found a strange behavior while implementing the exercises in chapter 3.5. I have reproduced this behavior using Guile 1.4, Guile 1.8.6 and Guile 1.8.7 on a variety of platforms and am certain it is not specific to my setup. This code works fine (and computes e): (define y (integral (delay dy) 1 0.001)) (define dy (stream-map (lambda (x) x) y)) (stream-ref y 1000) The following code should give an identical result: (define (solve f y0 dt) (define y (integral (delay dy) y0 dt)) (define dy (stream-map f y)) y) (solve (lambda (x) x) 1 0.001) But it yields the error message: standard input:7:14: While evaluating arguments to stream-map in expression (stream-map f y): standard input:7:14: Unbound variable: y ABORT: (unbound-variable) So when embedded in a procedure definition, the (define y ...) does not work, whereas outside the procedure in the global environment at the REPL it works fine. What am I doing wrong here? I can post the auxiliary code (i.e., the definitions of integral, stream-map etc.) if necessary, too. With the exception of the system-dependent code for cons-stream, they are all in the book. My own implementation of cons-stream for Guile is as follows: (define-macro (cons-stream a b) `(cons ,a (delay ,b)))

    Read the article

  • Iphone xcode simulator crashes when I move up and down on a table row

    - by Frames84
    I can't get my head round this. When the page loads, everything works fine - I can drill up and down, however 'stream' (in the position I have highlighted below) becomes not equal to anything when I pull up and down on the tableview. But the error is only sometimes. Normally it returns key/pairs. If know one can understand above how to you test for // (int)[$VAR count]} key/value pairs in a NSMutableDictionary object - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *FirstLevelCell = @"FirstLevelCell"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:FirstLevelCell]; if(cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:FirstLevelCell] autorelease]; } NSInteger row = [indexPath row]; //NSDictionary *stream = (NSDictionary *) [dataList objectAtIndex:row]; NSString *level = self.atLevel; if([level isEqualToString:@"level2"]) { NSMutableDictionary *stream = [[NSMutableArray alloc] init]; stream = (NSMutableDictionary *) [dataList objectAtIndex:row]; // stream value is (int)[$VAR count]} key/value pairs if ([stream valueForKey:@"title"] ) { cell.textLabel.text = [stream valueForKey:@"title"]; cell.textLabel.numberOfLines = 2; cell.textLabel.font =[UIFont systemFontOfSize:10]; NSString *detailText = [stream valueForKey:@"created"]; cell.detailTextLabel.numberOfLines = 2; cell.detailTextLabel.font= [UIFont systemFontOfSize:9]; cell.detailTextLabel.text = detailText; NSString *str = @"http://www.mywebsite.co.uk/images/stories/Cimex.jpg"; NSData *imageURL = [[NSData alloc] initWithContentsOfURL:[NSURL URLWithString:str]]; UIImage *newsImage = [[UIImage alloc] initWithData:imageURL]; cell.imageView.image = newsImage; [stream release]; } } else { cell.textLabel.text = [dataList objectAtIndex:row]; } return cell; } Thanks for your time

    Read the article

  • Cannot Install/Start MySQL Server

    - by Peezy Bro
    Okay, I decided to migrate from MySQL Server 5.5.37 to Percona Server 5.6. I ended up removing MySQL Server by the following: sudo apt-get --purge remove mysql-server mysql-server-5.5 mysql-server-core-5.5 mysql-client mysql-client-core-5.5 mysql-common sudo apt-get autoremove sudo apt-get autoclean rm -rf /var/lib/mysql rm -rf /etc/mysql Now here is my problem, when I try to install MySQL Server 5.6 it goes through its process and when it asks me for a password, it comes up with Cannot set MySQL "root" password. After it "installs" MySQL wont start up and I get permission denied?. Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 35 not upgraded. brandon@brandon-DB:~$ sudo apt-get install mysql-server Reading package lists... Done Building dependency tree Reading state information... Done The following extra packages will be installed: libdbd-mysql-perl libdbi-perl libmysqlclient18 libterm-readkey-perl mysql-client-5.5 mysql-client-core-5.5 mysql-common mysql-server-5.5 mysql-server-core-5.5 Suggested packages: libmldbm-perl libnet-daemon-perl libplrpc-perl libsql-statement-perl tinyca mailx The following NEW packages will be installed: libdbd-mysql-perl libdbi-perl libmysqlclient18 libterm-readkey-perl mysql-client-5.5 mysql-client-core-5.5 mysql-common mysql-server mysql-server-5.5 mysql-server-core-5.5 0 upgraded, 10 newly installed, 0 to remove and 35 not upgraded. Need to get 0 B/8,955 kB of archives. After this operation, 96.3 MB of additional disk space will be used. Do you want to continue? [Y/n] y Preconfiguring packages ... Selecting previously unselected package mysql-common. (Reading database ... 167760 files and directories currently installed.) Preparing to unpack .../mysql-common_5.5.37-0ubuntu0.14.04.1_all.deb ... Unpacking mysql-common (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package libmysqlclient18:amd64. Preparing to unpack .../libmysqlclient18_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking libmysqlclient18:amd64 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package libdbi-perl. Preparing to unpack .../libdbi-perl_1.630-1_amd64.deb ... Unpacking libdbi-perl (1.630-1) ... Selecting previously unselected package libdbd-mysql-perl. Preparing to unpack .../libdbd-mysql-perl_4.025-1_amd64.deb ... Unpacking libdbd-mysql-perl (4.025-1) ... Selecting previously unselected package libterm-readkey-perl. Preparing to unpack .../libterm-readkey-perl_2.31-1_amd64.deb ... Unpacking libterm-readkey-perl (2.31-1) ... Selecting previously unselected package mysql-client-core-5.5. Preparing to unpack .../mysql-client-core-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-client-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-client-5.5. Preparing to unpack .../mysql-client-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-client-5.5 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-server-core-5.5. Preparing to unpack .../mysql-server-core-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-server-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Processing triggers for man-db (2.6.7.1-1) ... Setting up mysql-common (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-server-5.5. (Reading database ... 168116 files and directories currently installed.) Preparing to unpack .../mysql-server-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-server-5.5 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-server. Preparing to unpack .../mysql-server_5.5.37-0ubuntu0.14.04.1_all.deb ... Unpacking mysql-server (5.5.37-0ubuntu0.14.04.1) ... Processing triggers for ureadahead (0.100.0-16) ... Processing triggers for man-db (2.6.7.1-1) ... Setting up libmysqlclient18:amd64 (5.5.37-0ubuntu0.14.04.1) ... Setting up libdbi-perl (1.630-1) ... Setting up libdbd-mysql-perl (4.025-1) ... Setting up libterm-readkey-perl (2.31-1) ... Setting up mysql-client-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Setting up mysql-client-5.5 (5.5.37-0ubuntu0.14.04.1) ... Setting up mysql-server-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Setting up mysql-server-5.5 (5.5.37-0ubuntu0.14.04.1) ... start: Job failed to start invoke-rc.d: initscript mysql, action "start" failed. dpkg: error processing package mysql-server-5.5 (--configure): subprocess installed post-installation script returned error exit status 1 dpkg: dependency problems prevent configuration of mysql-server: mysql-server depends on mysql-server-5.5; however: Package mysql-server-5.5 is not configured yet. dpkg: error processing package mysql-server (--configure): dependency problems - leaving unconfigured Processing triggers for libc-bin (2.19-0ubuntu6) ... No apport report written because the error message indicates its a followup error from a previous failure. Processing triggers for ureadahead (0.100.0-16) ... Errors were encountered while processing: mysql-server-5.5 mysql-server E: Sub-process /usr/bin/dpkg returned an error code (1) I have all my database/tables dumped and on a seperate HDD. This is also a Dev Machine and not my main Production Machine. I also backed up the MySQL_Config and MySQL_Data.

    Read the article

  • How to Use Steam In-Home Streaming

    - by Chris Hoffman
    Steam’s In-Home Streaming is now available to everyone, allowing you to stream PC games from one PC to another PC on the same local network. Use your gaming PC to power your laptops and home theater system. This feature doesn’t allow you to stream games over the Internet, only the same local network. Even if you tricked Steam, you probably wouldn’t get good streaming performance over the Internet. Why Stream? When you use Steam In-Home streaming, one PC sends its video and audio to another PC. The other PC views the video and audio like it’s watching a movie, sending back mouse, keyboard, and controller input to the other PC. This allows you to have a fast gaming PC power your gaming experience on slower PCs. For example, you could play graphically demanding games on a laptop in another room of your house, even if that laptop has slower integrated graphics. You could connect a slower PC to your television and use your gaming PC without hauling it into a different room in your house. Streaming also enables cross-platform compatibility. You could have a Windows gaming PC and stream games to a Mac or Linux system. This will be Valve’s official solution for compatibility with old Windows-only games on the Linux (Steam OS) Steam Machines arriving later this year. NVIDIA offers their own game streaming solution, but it requires certain NVIDIA graphics hardware and can only stream to an NVIDIA Shield device. How to Get Started In-Home Streaming is simple to use and doesn’t require any complex configuration — or any configuration, really. First, log into the Steam program on a Windows PC. This should ideally be a powerful gaming PC with a powerful CPU and fast graphics hardware. Install the games you want to stream if you haven’t already — you’ll be streaming from your PC, not from Valve’s servers. (Valve will eventually allow you to stream games from Mac OS X, Linux, and Steam OS systems, but that feature isn’t yet available. You can still stream games to these other operating systems.) Next, log into Steam on another computer on the same network with the same Steam username. Both computers have to be on the same subnet of the same local network. You’ll see the games installed on your other PC in the Steam client’s library. Click the Stream button to start streaming a game from your other PC. The game will launch on your host PC, and it will send its audio and video to the PC in front of you. Your input on the client will be sent back to the server. Be sure to update Steam on both computers if you don’t see this feature. Use the Steam > Check for Updates option within Steam and install the latest update. Updating to the latest graphics drivers for your computer’s hardware is always a good idea, too. Improving Performance Here’s what Valve recommends for good streaming performance: Host PC: A quad-core CPU for the computer running the game, minimum. The computer needs enough processor power to run the game, compress the video and audio, and send it over the network with low latency. Streaming Client: A GPU that supports hardware-accelerated H.264 decoding on the client PC. This hardware is included on all recent laptops and PCs. Ifyou have an older PC or netbook, it may not be able to decode the video stream quickly enough. Network Hardware: A wired network connection is ideal. You may have success with wireless N or AC networks with good signals, but this isn’t guaranteed. Game Settings: While streaming a game, visit the game’s setting screen and lower the resolution or turn off VSync to speed things up. In-Home Steaming Settings: On the host PC, click Steam > Settings and select In-Home Streaming to view the In-Home Streaming settings. You can modify your streaming settings to improve performance and reduce latency. Feel free to experiment with the options here and see how they affect performance — they should be self-explanatory. Check Valve’s In-Home Streaming documentation for troubleshooting information. You can also try streaming non-Steam games. Click Games > Add a Non-Steam Game to My Library on your host PC and add a PC game you have installed elsewhere on your system. You can then try streaming it from your client PC. Valve says this “may work but is not officially supported.” Image Credit: Robert Couse-Baker on Flickr, Milestoned on Flickr

    Read the article

  • Streaming desktop with avconv - severe sound issues

    - by Tommy Brunn
    I'm trying to do some live streaming in Ubuntu 12.10, but I'm having some problems with audio. More specifically, the quality is complete garbage and it's at least 10 seconds out of sync with the video. I'm using an excellent guide found here to set up my loopback devices so that I can combine the desktop audio with the microphone input. It seems to work, as I'm able to stream both audio and video to Twitch.tv. But, as I said, the audio quality is terrible. The microphone audio is very, very low, but if I increase it, I get a horrible garbled sound that is absolutely unbearable. Nothing like that is present during VoIP calls or when recording sound alone with the sound recorder, so it's not an issue with the microphone itself. The entire audio stream is also delayed about 10-15 seconds compared to the video stream. I put together an imgur album of my settings. Here is some example output from when I'm streaming: avconv version 0.8.4-6:0.8.4-0ubuntu0.12.10.1, Copyright (c) 2000-2012 the Libav developers built on Nov 6 2012 16:51:11 with gcc 4.7.2 [x11grab @ 0x162fd80] device: :0.0+570,262 -> display: :0.0 x: 570 y: 262 width: 1280 height: 720 [x11grab @ 0x162fd80] shared memory extension found [x11grab @ 0x162fd80] Estimating duration from bitrate, this may be inaccurate Input #0, x11grab, from ':0.0+570,262': Duration: N/A, start: 1353181686.735113, bitrate: 884736 kb/s Stream #0.0: Video: rawvideo, bgra, 1280x720, 884736 kb/s, 30 tbr, 1000k tbn, 30 tbc [alsa @ 0x163fce0] capture with some ALSA plugins, especially dsnoop, may hang. [alsa @ 0x163fce0] Estimating duration from bitrate, this may be inaccurate Input #1, alsa, from 'pulse': Duration: N/A, start: 1353181686.773841, bitrate: N/A Stream #1.0: Audio: pcm_s16le, 48000 Hz, 2 channels, s16, 1536 kb/s Incompatible pixel format 'bgra' for codec 'libx264', auto-selecting format 'yuv420p' [buffer @ 0x1641ec0] w:1280 h:720 pixfmt:bgra [scale @ 0x1642480] w:1280 h:720 fmt:bgra -> w:852 h:480 fmt:yuv420p flags:0x4 [libx264 @ 0x165ae80] VBV maxrate unspecified, assuming CBR [libx264 @ 0x165ae80] using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.2 [libx264 @ 0x165ae80] profile Main, level 3.1 [libx264 @ 0x165ae80] 264 - core 123 r2189 35cf912 - H.264/MPEG-4 AVC codec - Copyleft 2003-2012 - http://www.videolan.org/x264.html - options: cabac=1 ref=2 deblock=1:0:0 analyse=0x1:0x111 me=hex subme=6 psy=1 psy_rd=1.00:0.00 mixed_ref=0 me_range=16 chroma_me=1 trellis=1 8x8dct=0 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=4 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=0 b_adapt=1 b_bias=0 direct=1 weightb=0 open_gop=1 weightp=1 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=30 rc=cbr mbtree=1 bitrate=712 ratetol=1.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 vbv_maxrate=712 vbv_bufsize=512 nal_hrd=none ip_ratio=1.25 aq=1:1.00 Output #0, flv, to 'rtmp://live.justin.tv/app/live_23011330_Pt1plSRM0z5WVNJ0QmCHvTPmpUnfC4': Metadata: encoder : Lavf53.21.0 Stream #0.0: Video: libx264, yuv420p, 852x480, q=-1--1, 712 kb/s, 1k tbn, 30 tbc Stream #0.1: Audio: libmp3lame, 44100 Hz, 2 channels, s16, 712 kb/s Stream mapping: Stream #0:0 -> #0:0 (rawvideo -> libx264) Stream #1:0 -> #0:1 (pcm_s16le -> libmp3lame) Press ctrl-c to stop encoding frame= 17 fps= 0 q=0.0 size= 0kB time=10000000000.00 bitrate= 0.0kbitframe= 32 fps= 31 q=0.0 size= 0kB time=10000000000.00 bitrate= 0.0kbitframe= 40 fps= 23 q=29.0 size= 44kB time=0.03 bitrate=13786.2kbits/s dup=frame= 47 fps= 21 q=31.0 size= 93kB time=2.73 bitrate= 277.7kbits/s dup=0frame= 62 fps= 23 q=29.0 size= 160kB time=3.23 bitrate= 406.2kbits/s dup=0frame= 77 fps= 24 q=23.0 size= 209kB time=3.71 bitrate= 462.5kbits/s dup=0frame= 92 fps= 25 q=20.0 size= 267kB time=4.91 bitrate= 445.2kbits/s dup=0frame= 107 fps= 25 q=20.0 size= 318kB time=5.41 bitrate= 482.1kbits/s dup=0frame= 123 fps= 26 q=18.0 size= 368kB time=5.96 bitrate= 505.7kbits/s dup=0frame= 139 fps= 26 q=16.0 size= 419kB time=6.48 bitrate= 529.7kbits/s dup=0frame= 155 fps= 27 q=15.0 size= 473kB time=7.00 bitrate= 553.6kbits/s dup=0frame= 170 fps= 27 q=14.0 size= 525kB time=7.52 bitrate= 571.7kbits/s dup=0 frame= 180 fps= 25 q=-1.0 Lsize= 652kB time=7.97 bitrate= 670.0kbits/s dup=0 drop=32 //Here I stop the streaming video:531kB audio:112kB global headers:0kB muxing overhead 1.345945% [libx264 @ 0x165ae80] frame I:1 Avg QP:30.43 size: 39748 [libx264 @ 0x165ae80] frame P:45 Avg QP:11.37 size: 11110 [libx264 @ 0x165ae80] frame B:134 Avg QP:15.93 size: 27 [libx264 @ 0x165ae80] consecutive B-frames: 0.6% 0.0% 1.7% 97.8% [libx264 @ 0x165ae80] mb I I16..4: 7.3% 0.0% 92.7% [libx264 @ 0x165ae80] mb P I16..4: 0.1% 0.0% 0.1% P16..4: 49.1% 1.2% 2.1% 0.0% 0.0% skip:47.4% [libx264 @ 0x165ae80] mb B I16..4: 0.0% 0.0% 0.0% B16..8: 0.1% 0.0% 0.0% direct: 0.0% skip:99.9% L0:42.5% L1:56.9% BI: 0.6% [libx264 @ 0x165ae80] coded y,uvDC,uvAC intra: 82.3% 87.4% 71.9% inter: 7.1% 8.4% 7.0% [libx264 @ 0x165ae80] i16 v,h,dc,p: 27% 29% 16% 28% [libx264 @ 0x165ae80] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 22% 21% 14% 8% 8% 8% 7% 5% 7% [libx264 @ 0x165ae80] i8c dc,h,v,p: 47% 22% 20% 11% [libx264 @ 0x165ae80] Weighted P-Frames: Y:0.0% UV:0.0% [libx264 @ 0x165ae80] ref P L0: 96.4% 3.6% [libx264 @ 0x165ae80] kb/s:474.19 Received signal 2: terminating. Any ideas on how I can resolve this? The video delay is perfectly acceptable, so I wouldn't think that it's a network issue that's causing the delay in the audio. Any help would be appreciated.

    Read the article

  • How to grep 2 or 3 lines, one containing the text I want, and the others just below it?

    - by Kaustubh P
    This is a snapshot of error log: 06:16:29,933 ERROR EmailRMManager$:45 - Exception In get Message com.rabbitmq.client.AlreadyClosedException: clean connection shutdown; reason: Attempt to use closed channel at com.rabbitmq.client.impl.AMQChannel.ensureIsOpen(AMQChannel.java:195) at com.rabbitmq.client.impl.AMQChannel.rpc(AMQChannel.java:222) at com.rabbitmq.client.impl.AMQChannel.rpc(AMQChannel.java:208) at com.rabbitmq.client.impl.AMQChannel.exnWrappingRpc(AMQChannel.java:139) at com.rabbitmq.client.impl.ChannelN.basicGet(ChannelN.java:645) I do the following command: cat foo.log | grep ERROR to get an OP as: 06:16:29,933 ERROR EmailRMManager$:45 - Exception In get Message What command should I execute to get the output as 06:16:29,933 ERROR EmailRMManager$:45 - Exception In get Message com.rabbitmq.client.AlreadyClosedException: clean connection shutdown; reason: Attempt to use closed channel ie, also grep the line(s) after the pattern?

    Read the article

  • Is it a good idea to appoint one of the scrum team member or scrum master as Product Owner?

    - by Sandy
    Lately we had a project, in which client was busy touring. As usual scrum team was formed, management decided to appoint our analyst as Product owner since Client won’t be able to participate actively. Analyst was the one who worked closely with client for requirement analysis and specification drafting. Client doesn’t have the time to review first two releases. Everything went smoothly until, client saw third release; he wasn’t satisfied with some functionalities, and those was introduced by make shift Product Owner (our analyst). We were told to wait till design team finished mock-up of all pages and client checked each one and approved to continue working. Scrum team is there, but no sprints – we finished work almost like classic waterfall method. Is it a good idea to appoint scrum team member or master as product owner? Do we need to follow scrum in the absence of client/product owner participation?

    Read the article

  • C# Image Download

    - by Nouman Zakir
    A C# class that makes it easier to download images from the web. Use the following code in your program to download image files such as JPG, GIF, PNG, etc from the internet using WebClient class. using System;using System.Drawing;using System.Drawing.Imaging;using System.IO;using System.Net;public class DownloadImage { private string imageUrl; private Bitmap bitmap; public DownloadImage(string imageUrl) { this.imageUrl = imageUrl; } public void Download() { try { WebClient client = new WebClient(); Stream stream = client.OpenRead(imageUrl); bitmap = new Bitmap(stream); stream.Flush(); stream.Close(); } catch (Exception e) { Console.WriteLine(e.Message); } } public Bitmap GetImage() { return bitmap; } public void SaveImage(string filename, ImageFormat format) { if (bitmap != null) { bitmap.Save(filename, format); } }}

    Read the article

< Previous Page | 170 171 172 173 174 175 176 177 178 179 180 181  | Next Page >