Search Results

Search found 1139 results on 46 pages for 'hierarchical trees'.

Page 18/46 | < Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >

  • Algorithm to infer tag hierarchy

    - by Tom
    I'm looking for an algorithm to infer a hierarchy from a set of tagged items. E.g. if the following items have the tags: 1 a 2 a,b 3 a,c 4 a,c,e 5 a,b 6 a,c 7 d 8 d,f Then I can construct an undirected graph (or graphs) by tallying the node weights and edge weights: node weights edge weights a 6 a-b 2 b 2 a-c 3 c 3 c-e 1 d 2 a-e 1 <-- this edge is parallel to a-c and c-e and not wanted e 1 d-f 1 f 1 The first problem is how to drop any redundant edges to get to the simplified graph? Note that it's only appropriate to remove that redundant a-e edge in this case because something is tagged as a-c-e, if that wasn't the case and the tag was a-e, that edge would have to remain. I suspect that means the removal of edges can only happen during the construction of the graph, not after everything has been tallied up. What I'd then like to do is identify the direction of the edges to create a directed graph (or graphs) and pick out root nodes to hopefully create a tree (or trees): trees a d // \\ | b c f \ e It seems like it could be a string algorithm - longest common subsequences/prefixes - or a tree/graph algorithm, but I am a little stuck since I don't know the correct terminology to search for it.

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • Generated 3d tree meshes

    - by Jari Komppa
    I did not find a question on these lines yet, correct me if I'm wrong. Trees (and fauna in general) are common in games. Due to their nature, they are a good candidate for procedural generation. There's SpeedTree, of course, if you can afford it; as far as I can tell, it doesn't provide the possibility of generating your tree meshes at runtime. Then there's SnappyTree, an online webgl based tree generator based on the proctree.js which is some ~500 lines of javascript. One could use either of above (or some other tree generator I haven't stumbled upon) to create a few dozen tree meshes beforehand - or model them from scratch in a 3d modeller - and then randomly mirror/scale them for a few more variants.. But I'd rather have a free, linkable tree mesh generator. Possible solutions: Port proctree.js to c++ and deal with the open source license (doesn't seem to be gpl, so could be doable; the author may also be willing to co-operate to make the license even more free). Roll my own based on L-systems. Don't bother, just use offline generated trees. Use some other method I haven't found yet.

    Read the article

  • Why create a Huffman tree per character instead of a Node?

    - by Omega
    For a school assignment we're supposed to make a Java implementation of a compressor/decompresser using Huffman's algorithm. I've been reading a bit about it, specially this C++ tutorial: http://www.cprogramming.com/tutorial/computersciencetheory/huffman.html In my program, I've been thinking about having Nodes that have the following properties: Total Frequency Character (if a leaf) Right child (if any) Left child (if any) Parent (if any) So when building the Huffman tree, it is just a matter of linking a node to others, etc. However, I'm a bit confused with the following quote (emphasis mine): First, every letter starts off as part of its own tree and the trees are ordered by the frequency of the letters in the original string. Then the two least-frequently used letters are combined into a single tree, and the frequency of that tree is set to be the combined frequency of the two trees that it links together. My question: why should I create a tree per letter, instead of just a node per letter and then do the linking later? I have not begun coding, I'm just studying the algorithm first, so I guess I'm missing an important detail. What is it?

    Read the article

  • Boolean checks with a single quadtree, or multiple quadtrees?

    - by Djentleman
    I'm currently developing a 2D sidescrolling shooter game for PC (think metroidvania but with a lot more happening at once). Using XNA. I'm utilising quadtrees for my spatial partitioning system. All objects will be encompassed by standard bounding geometry (box or sphere) with possible pixel-perfect collision detection implemented after geometry collision (depends on how optimised I can get it). These are my collision scenarios, with < representing object overlap (multiplayer co-op is the reason for the player<player scenario): Collision scenarios (true = collision occurs): Player <> Player = false Enemy <> Enemy = false Player <> Enemy = true PlayerBullet <> Enemy = true PlayerBullet <> Player = false PlayerBullet <> EnemyBullet = true PlayerBullet <> PlayerBullet = false EnemyBullet <> Player = true EnemyBullet <> Enemy = false EnemyBullet <> EnemyBullet = false Player <> Environment = true Enemy <> Environment = true PlayerBullet <> Environment = true EnemyBullet <> Environment = true Going off this information and the fact that were will likely be several hundred objects rendering on-screen at any given time, my question is as follows: Which method is likely to be the most efficient/optimised and why: Using a single quadtree with boolean checks for collision between the different types of objects. Using three quadtrees at once (player, enemy, environment), only testing the player and enemy trees against each other while testing both the player and enemy trees against the environment tree.

    Read the article

  • Central renderer for a given scene

    - by Loggie
    When creating a central rendering system for all game objects in a given scene I am trying to work out the best way to go about passing the scene to the render system to be rendered. If I have a scene managed by an arbitrary structure, i.e., an octree, bsp trees, quad-tree, kd tree, etc. What is the best way to pass this to the render system? The obvious problem is that if simply given the root node of the structure, the render system would require an intrinsic knowledge of the structure in order to traverse the structure. My solution to this is to clip all objects outside the frustum in the scene manager and then create a list of the objects which are left and pass this simple list to the render system, be it an array, a vector, a linked list, etc. (This would be a structure required by the render system as a means to know which objects should be rendered). The list would of course attempt to minimise OpenGL state changes by grouping objects that require the same rendering operations to be performed on them. I have been thinking a lot about this and started searching various terms on here and followed any additional information/links but I have not really found a definitive answer. The case may be that there is no definitive answer but I would appreciate some advice and tips. My question is, is this a reasonable solution to the problem? Are there any improvements that I could make? Are there any caveats I should know about? Side question: Am I right in assuming that octrees, bsp trees, etc are all forms of BVH?

    Read the article

  • How does the new google maps make buildings and cityscapes 3D?

    - by Aerovistae
    Anyone who's seen the new Google maps has no doubt taken note of the incredible amount of three-dimensional detail in select American cities such as Boston, New York, Chicago, and San Francisco. They've even modeled the trees, bridges and some of the boats in the harbor! Minor architectural details are present. It's crazy. Looking at it up close, I've found there's a rectangular area around each of those cities, and anything within them is 3Dified, but it cuts off hard and fast at the edge, even if it's in the middle of a building. The edge of the rectangle is where the 3D stops. This leads me to think it's being done algorithmically (which would make sense, given the scale of the project, how many trees and buildings and details there are), and yet I can't imagine how that's possible. How could an algorithm model all these things without extensive data on their shapes and contours? How could it model the individual wires of a bridge, or the statues in a park? It must be done by hand, and yet how could it be for so much detail! Does anyone have any insight on this?

    Read the article

  • Why does Gnumake from parent directory behave differently?

    - by WilliamKF
    I am stumped as to why when I do a gnumake from the parent directory it behaves incorrectly, whereas, if I cd to the subdirectory and do gnumake it works correctly. In the parent makefile, I have a rule like this: .PHONY: zlib-1.2.5 zlib-1.2.5: @ echo Issuing $(MAKE) in $@ ... pushd zlib-1.2.5; make; popd Which gives different result than doing the same from the toplevel pushd zlib-1.2.5; make; popd There is a something from the parent makefile that is making its way into the subdirectory makefile and causing it to behave incorrectly, but I don't know how to find it. The symptom I see is that the subdirectory config generated makefile rule for zlib misses the dependencies and I get this result going straight to the ar without generating the .o(s) first: cd ~/src; make zlib-1.2.5 CPPFLAGS_AUTO = < > Issuing make in zlib-1.2.5 ... pushd zlib-1.2.5; make; popd ~/src/zlib-1.2.5 ~/src make[1]: Entering directory `/disk2/user/src/zlib-1.2.5' ar rc libz.a adler32.o compress.o crc32.o deflate.o gzclose.o gzlib.o gzread.o gzwrite.o infback.o inffast.o inflate.o inftrees.o trees.o uncompr.o zutil.o ar: adler32.o: No such file or directory make[1]: *** [libz.a] Error 1 gcc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -o libz.so.1.2.5 adler32.lo compress.lo crc32.lo deflate.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo uncompr.lo zutil.lo -lc -L. libz.a gcc: adler32.lo: No such file or directory gcc: compress.lo: No such file or directory gcc: crc32.lo: No such file or directory gcc: deflate.lo: No such file or directory [...] make[1]: *** [libz.so.1.2.5] Error 1 make[1]: Target `all' not remade because of errors. make[1]: Leaving directory `/disk2/user/src/zlib-1.2.5' ~/src Versus from the zlib directory where it works correctly: cd ~/src/zlib-1.2.5; make gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o example.o example.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o adler32.o adler32.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o compress.o compress.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o crc32.o crc32.c [...] gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o zutil.o zutil.c ar rc libz.a adler32.o compress.o crc32.o deflate.o gzclose.o gzlib.o gzread.o gzwrite.o infback.o inffast.o inflate.o inftrees.o trees.o uncompr.o zutil.o (ranlib libz.a || true) >/dev/null 2>&1 gcc -O3 -D_LARGEFILE64_SOURCE=1 -o example example.o -L. libz.a gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o minigzip.o minigzip.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -o minigzip minigzip.o -L. libz.a mkdir objs 2>/dev/null || test -d objs gcc -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -DPIC -c -o objs/adler32.o adler32.c mv objs/adler32.o adler32.lo mkdir objs 2>/dev/null || test -d objs gcc -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -DPIC -c -o objs/compress.o compress.c mv objs/compress.o compress.lo [...] mkdir objs 2>/dev/null || test -d objs gcc -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -DPIC -c -o objs/zutil.o zutil.c mv objs/zutil.o zutil.lo gcc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -o libz.so.1.2.5 adler32.lo compress.lo crc32.lo deflate.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo uncompr.lo zutil.lo -lc -L. libz.a rm -f libz.so libz.so.1 ln -s libz.so.1.2.5 libz.so ln -s libz.so.1.2.5 libz.so.1 rmdir objs gcc -O3 -D_LARGEFILE64_SOURCE=1 -o examplesh example.o -L. libz.so.1.2.5 gcc -O3 -D_LARGEFILE64_SOURCE=1 -o minigzipsh minigzip.o -L. libz.so.1.2.5 gcc -O3 -D_LARGEFILE64_SOURCE=1 -o example64 example64.o -L. libz.a gcc -O3 -D_LARGEFILE64_SOURCE=1 -o minigzip64 minigzip64.o -L. libz.a

    Read the article

  • Why does my performance slow to a crawl I move methods into a base class?

    - by Juliet
    I'm writing different implementations of immutable binary trees in C#, and I wanted my trees to inherit some common methods from a base class. However, I find. I have lots of binary tree data structures to implement, and I wanted move some common methods into in a base binary tree class. Unfortunately, classes which derive from the base class are abysmally slow. Non-derived classes perform adequately. Here are two nearly identical implementations of an AVL tree to demonstrate: AvlTree: http://pastebin.com/V4WWUAyT DerivedAvlTree: http://pastebin.com/PussQDmN The two trees have the exact same code, but I've moved the DerivedAvlTree.Insert method in base class. Here's a test app: using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using Juliet.Collections.Immutable; namespace ConsoleApplication1 { class Program { const int VALUE_COUNT = 5000; static void Main(string[] args) { var avlTreeTimes = TimeIt(TestAvlTree); var derivedAvlTreeTimes = TimeIt(TestDerivedAvlTree); Console.WriteLine("avlTreeTimes: {0}, derivedAvlTreeTimes: {1}", avlTreeTimes, derivedAvlTreeTimes); } static double TimeIt(Func<int, int> f) { var seeds = new int[] { 314159265, 271828183, 231406926, 141421356, 161803399, 266514414, 15485867, 122949829, 198491329, 42 }; var times = new List<double>(); foreach (int seed in seeds) { var sw = Stopwatch.StartNew(); f(seed); sw.Stop(); times.Add(sw.Elapsed.TotalMilliseconds); } // throwing away top and bottom results times.Sort(); times.RemoveAt(0); times.RemoveAt(times.Count - 1); return times.Average(); } static int TestAvlTree(int seed) { var rnd = new System.Random(seed); var avlTree = AvlTree<double>.Create((x, y) => x.CompareTo(y)); for (int i = 0; i < VALUE_COUNT; i++) { avlTree = avlTree.Insert(rnd.NextDouble()); } return avlTree.Count; } static int TestDerivedAvlTree(int seed) { var rnd = new System.Random(seed); var avlTree2 = DerivedAvlTree<double>.Create((x, y) => x.CompareTo(y)); for (int i = 0; i < VALUE_COUNT; i++) { avlTree2 = avlTree2.Insert(rnd.NextDouble()); } return avlTree2.Count; } } } AvlTree: inserts 5000 items in 121 ms DerivedAvlTree: inserts 5000 items in 2182 ms My profiler indicates that the program spends an inordinate amount of time in BaseBinaryTree.Insert. Anyone whose interested can see the EQATEC log file I've created with the code above (you'll need EQATEC profiler to make sense of file). I really want to use a common base class for all of my binary trees, but I can't do that if performance will suffer. What causes my DerivedAvlTree to perform so badly, and what can I do to fix it?

    Read the article

  • Implement a HierarchicalDataBoundControl for ASP.NET

    - by Breadtruck
    I want to implement a Hierarchical data bound control for ASP.NET. I used Implementing IHierarchy Support Into Your Custom Collection as a basis to create my hierarchical collection. I also created a HierarchicalDataSourceControl for the collection. Everything works: I can bind it to an ASP.NET TreeView and it renders the data correctly. However, I'm stuck on the HierarchicalDataBoundControl. I found examples, but I am still too new at c# / .Net to understand them. I don't quite understand how to implement the examples: Rendering a databound UL menu nor HierarchicalDataBoundControl Class Does anyone have any tips, or better examples of implementing a control like this?

    Read the article

  • [Cocoa] CoreData bindings for NSPopupButton

    - by ndg
    I'm looking to use a dropdown menu (possibly an NSPopupButton object) to represent the hierarchical results of two Core Data entities (Genre and Movie) and their relationships. In my current data model, my Genre entity has a one-to-many relationship with my Movie entity. What I'm now looking to do is generate the contents of an NSPopupButton to show a hierarchical list of Genres and the Movies associated with them, like so: Genre 1 Film 1 Film 2 Genre 2 Film 3 Film 4 Note that, in the above example, only Movie objects are to be selectable by the user (Genre objects will appear, but be unselectable). Also, to complicate matters slightly, I have an additional NSPopupButton which lists Movie Rental locations. The location selected by the user ultimately impacts on the genres and films available in the second dropdown. I imagine that bindings will only take me so far with this problem and that, ultimately, I'll have to populate the contents of the dropdown menu myself. I'm posting here for thoughts and opinions on the best way to go about this.

    Read the article

  • Why is this class re-initialized every time?

    - by pinnacler
    I have 4 files and the code 'works' as expected. I try to clean everything up, place code into functions, etc... and everything looks fine... and it doesn't work. Can somebody please explain why MatLab is so quirky... or am I just stupid? Normally, I type terminator = simulation(100,20,0,0,0,1); terminator.animate(); and it should produce a map of trees with the terminator walking around in a forest. Everything rotates to his perspective. When I break it into functions... everything ceases to work. I really only changed a few lines of code, shown in comments. Code that works: classdef simulation properties landmarks robot end methods function obj = simulation(mapSize, trees, x,y,heading,velocity) obj.landmarks = landmarks(mapSize, trees); obj.robot = robot(x,y,heading,velocity); end function animate(obj) %Setup Plots fig=figure; xlabel('meters'), ylabel('meters') set(fig, 'name', 'Phil''s AWESOME 80''s Robot Simulator') xymax = obj.landmarks.mapSize*3; xymin = -(obj.landmarks.mapSize*3); l=scatter([0],[0],'bo'); axis([xymin xymax xymin xymax]); obj.landmarks.apparentPositions %Simulation Loop THIS WAS ORGANIZED for n = 1:720, %Calculate and Set Heading/Location obj.robot.headingChange = navigate(n); %Update Position obj.robot.heading = obj.robot.heading + obj.robot.headingChange; obj.landmarks.heading = obj.robot.heading; y = cosd(obj.robot.heading); x = sind(obj.robot.heading); obj.robot.x = obj.robot.x + (x*obj.robot.velocity); obj.robot.y = obj.robot.y + (y*obj.robot.velocity); obj.landmarks.x = obj.robot.x; obj.landmarks.y = obj.robot.y; %Animate set(l,'XData',obj.landmarks.apparentPositions(:,1),'YData',obj.landmarks.apparentPositions(:,2)); rectangle('Position',[-2,-2,4,4]); drawnow end end end end ----------- classdef landmarks properties fixedPositions %# positions in a fixed coordinate system. [ x, y ] mapSize = 10; %Map Size. Value is side of square x=0; y=0; heading=0; headingChange=0; end properties (Dependent) apparentPositions end methods function obj = landmarks(mapSize, numberOfTrees) obj.mapSize = mapSize; obj.fixedPositions = obj.mapSize * rand([numberOfTrees, 2]) .* sign(rand([numberOfTrees, 2]) - 0.5); end function apparent = get.apparentPositions(obj) %-STILL ROTATES AROUND ORIGINAL ORIGIN currentPosition = [obj.x ; obj.y]; apparent = bsxfun(@minus,(obj.fixedPositions)',currentPosition)'; apparent = ([cosd(obj.heading) -sind(obj.heading) ; sind(obj.heading) cosd(obj.heading)] * (apparent)')'; end end end ---------- classdef robot properties x y heading velocity headingChange end methods function obj = robot(x,y,heading,velocity) obj.x = x; obj.y = y; obj.heading = heading; obj.velocity = velocity; end end end ---------- function headingChange = navigate(n) %steeringChange = 5 * rand(1) * sign(rand(1) - 0.5); Most chaotic shit %Draw an S if n <270 headingChange=1; elseif n<540 headingChange=-1; elseif n<720 headingChange=1; else headingChange=1; end end Code that does not work... classdef simulation properties landmarks robot end methods function obj = simulation(mapSize, trees, x,y,heading,velocity) obj.landmarks = landmarks(mapSize, trees); obj.robot = robot(x,y,heading,velocity); end function animate(obj) %Setup Plots fig=figure; xlabel('meters'), ylabel('meters') set(fig, 'name', 'Phil''s AWESOME 80''s Robot Simulator') xymax = obj.landmarks.mapSize*3; xymin = -(obj.landmarks.mapSize*3); l=scatter([0],[0],'bo'); axis([xymin xymax xymin xymax]); obj.landmarks.apparentPositions %Simulation Loop for n = 1:720, %Calculate and Set Heading/Location %Update Position headingChange = navigate(n); obj.robot.updatePosition(headingChange); obj.landmarks.updatePerspective(obj.robot.heading, obj.robot.x, obj.robot.y); %Animate set(l,'XData',obj.landmarks.apparentPositions(:,1),'YData',obj.landmarks.apparentPositions(:,2)); rectangle('Position',[-2,-2,4,4]); drawnow end end end end ----------------- classdef landmarks properties fixedPositions; %# positions in a fixed coordinate system. [ x, y ] mapSize; %Map Size. Value is side of square x; y; heading; headingChange; end properties (Dependent) apparentPositions end methods function obj = createLandmarks(mapSize, numberOfTrees) obj.mapSize = mapSize; obj.fixedPositions = obj.mapSize * rand([numberOfTrees, 2]) .* sign(rand([numberOfTrees, 2]) - 0.5); end function apparent = get.apparentPositions(obj) %-STILL ROTATES AROUND ORIGINAL ORIGIN currentPosition = [obj.x ; obj.y]; apparent = bsxfun(@minus,(obj.fixedPositions)',currentPosition)'; apparent = ([cosd(obj.heading) -sind(obj.heading) ; sind(obj.heading) cosd(obj.heading)] * (apparent)')'; end function updatePerspective(obj,tempHeading,tempX,tempY) obj.heading = tempHeading; obj.x = tempX; obj.y = tempY; end end end ----------------- classdef robot properties x y heading velocity end methods function obj = robot(x,y,heading,velocity) obj.x = x; obj.y = y; obj.heading = heading; obj.velocity = velocity; end function updatePosition(obj,headingChange) obj.heading = obj.heading + headingChange; tempy = cosd(obj.heading); tempx = sind(obj.heading); obj.x = obj.x + (tempx*obj.velocity); obj.y = obj.y + (tempy*obj.velocity); end end end The navigate function is the same... I would appreciate any help as to why things aren't working. All I did was take the code from the first section from under comment: %Simulation Loop THIS WAS ORGANIZED and break it into 2 functions. One in robot and one in landmarks. Is a new instance created every time because it's constantly printing the same heading for this line int he robot class obj.heading = obj.heading + headingChange;

    Read the article

  • Transform data in FMPXMLRESULT grammar into a "Content Standard for Digital Geospatial Metadata (CS

    - by Andrew Igbo
    I have a problem in FileMaker; I wish to link the METADATA element/FIELD element “NAME” attribute to its corresponding data in the RESULTSET element/COL element. However, I also wish to map the METADATA element/FIELD element “NAME” to "Content Standard for Digital Geospatial Metadata (CSDGM)" metadata elements Sample XML Metadata Record with CSDGM Essential Elements Louisiana State University Coastal Studies Institute 20010907 Geomorphology and Processes of Land Loss in Coastal Louisiana, 1932 – 1990 A raster GIS file that identifies the land loss process and geomorphology associated with each 12.5 meter pixel of land loss between 1932 and 1990. Land loss processes are organized into a hierarchical classification system that includes subclasses for erosion, submergence, direct removal, and undetermined. Land loss geomorphology is organized into a hierarchical classification system that includes subclasses for both shoreline and interior loss. The objective of the study was to determine the land loss geomorphologies associated with specific processes of land loss in coastal Louisiana.

    Read the article

  • Do Eclipse's Refactoring Tools Violate The Java Language Specification?

    - by Tom Tresansky
    In Eclipse 3.5, say I have a package structure like this: tom.package1 tom.package1.packageA tom.package1.packageB if I right click on an the tom.package1 package and go to Refactor-Rename, an option "Rename subpackages" appears as a checkbox. If I select it, and then rename tom.package1 to tom.red my package structure ends up like this: tom.red tom.red.packageA tom.red.packageB Yet I hear that Java's packages are not hierarchical. The Java Tutorials back that up (see the section on Apparent Hierarchies of Packages). It certainly seems like Eclipse is treating packages as hierarchical in this case. I was curious why access specifiers couldn't allow/restrict access to "sub-packages" in a previous question because I KNEW I had seen "sub-packages" referenced somewhere before. So are Eclipse's refactoring tools intentionally misleading impressionable young minds by furthering the "sub-package" myth? Or am I misinterpreting something here?

    Read the article

  • JXTreeTable and BorderHighlighter Drawing Border on All Rows

    - by Kevin Rubin
    I'm using a BorderHighlighter on my JXTreeTable to put a border above each of the table cells on non-leaf rows to give a more clear visual separator for users. The problem is that when I expand the hierarchical column, all cells in the hierarchical column, for all rows, include the Border from the Highlighter. The other columns are displaying just fine. My BorderHighlighter is defined like this: Highlighter topHighlighter = new BorderHighlighter(new HighlightPredicate() { @Override public boolean isHighlighted(Component component, ComponentAdapter adapter) { TreePath path = treeTable.getPathForRow(adapter.row); TreeTableModel model = treeTable.getTreeTableModel(); Boolean isParent = !model.isLeaf(path.getLastPathComponent()); return isParent; } }, BorderFactory.createMatteBorder(2, 0, 0, 0, Color.RED)); I'm using SwingX 1.6.5.

    Read the article

  • Daily tech links for .net and related technologies - June 1-3, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - June 1-3, 2010 Web Development Anti-Forgery Request Recipes For ASP.NET MVC And AJAX - Dixin ASP.NET MVC 2 Localization Complete Guide - Alex Adamyan Dynamically Structured ViewModels in ASP.NET MVC - Keith Brown ASP.NET MVC Time Planner is available at CodePlex - Gunnar Peipman Part 2 – A Cascading Hierarchical Field Template & Filter for Dynamic Data - Steve SharePoint Server 2010 Enterprise Content Management Resources - Andrew Connell Web...(read more)

    Read the article

  • How do I draw a scene with 2 nested frames

    - by Guido Granobles
    I have been trying for long time to figure out this: I have loaded a model from a directx file (I am using opengl and Java) the model have a hierarchical system of nested reference frames (there are not bones). There are just 2 frames, one of them is called x3ds_Torso and it has a child frame called x3ds_Arm_01. Each one of them has a mesh. The thing is that I can't draw the arm connected to the body. Sometimes the body is in the center of the screen and the arm is at the top. Sometimes they are both in the center. I know that I have to multiply the matrix transformation of every frame by its parent frame starting from the top to the bottom and after that I have to multiply every vertex of every mesh by its final transformation matrix. So I have this: public void calculeFinalMatrixPosition(Bone boneParent, Bone bone) { System.out.println("-->" + bone.name); if (boneParent != null) { bone.matrixCombined = bone.matrixTransform.multiply(boneParent.matrixCombined); } else { bone.matrixCombined = bone.matrixTransform; } bone.matrixFinal = bone.matrixCombined; for (Bone childBone : bone.boneChilds) { calculeFinalMatrixPosition(bone, childBone); } } Then I have to multiply every vertex of the mesh: public void transformVertex(Bone bone) { for (Iterator<Mesh> iterator = meshes.iterator(); iterator.hasNext();) { Mesh mesh = iterator.next(); if (mesh.boneName.equals(bone.name)) { float[] vertex = new float[4]; double[] newVertex = new double[3]; if (mesh.skinnedVertexBuffer == null) { mesh.skinnedVertexBuffer = new FloatDataBuffer( mesh.numVertices, 3); } mesh.vertexBuffer.buffer.rewind(); while (mesh.vertexBuffer.buffer.hasRemaining()) { vertex[0] = mesh.vertexBuffer.buffer.get(); vertex[1] = mesh.vertexBuffer.buffer.get(); vertex[2] = mesh.vertexBuffer.buffer.get(); vertex[3] = 1; newVertex = bone.matrixFinal.transpose().multiply(vertex); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[0])); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[1])); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[2])); } mesh.vertexBuffer = new FloatDataBuffer( mesh.numVertices, 3); mesh.skinnedVertexBuffer.buffer.rewind(); mesh.vertexBuffer.buffer.put(mesh.skinnedVertexBuffer.buffer); } } for (Bone childBone : bone.boneChilds) { transformVertex(childBone); } } I know this is not the more efficient code but by now I just want to understand exactly how a hierarchical model is organized and how I can draw it on the screen. Thanks in advance for your help.

    Read the article

  • Master Data

    - by david.butler(at)oracle.com
    Let's take a deeper look at what we mean when we talk about 'Master' data. In its most general sense, master data is data that exists in more than one operational application. These are the applications that automate business processes. These applications require significant amounts of data to function correctly.  This includes data about the objects that are involved in transactions, as well as the transaction data itself.  For example, when a customer buys a product, the transaction is managed by a sales application.  The objects of the transaction are the Customer and the Product.  The transactional data is the time, place, price, discount, payment methods, etc. used at the point of sale. Many thousands of transactional data attributes are needed within the application. These important data elements are local to the applications and have no bearing on other applications. Harmonization and synchronization across applications is not necessary. The Customer and Product objects of the transaction also have a large number of attributes. Customer for example, includes hierarchies, hierarchical and matrixed relationships, contacts, classifications, preferences, accounts, identifiers, profiles, and addresses galore for 'ship to', 'mail to'; 'service at'; etc. Dozens of attributes exist for individuals, hundreds for organizations, and thousands for products. This data has meaning beyond any particular application. It exists in many applications and drives the vital cross application enterprise business processes. These are the processes that define and differentiate the organization. At every decision point, information about the objects of the process determines the direction of the process flow. This is the nature of the data that exists in more than one application, and this is why we call it 'master data'. Let me elaborate. Parties Oracle has developed a party schema to model all participants in your daily business operations. It models people, organizations, groups, customers, contacts, employees, and suppliers. It models their accounts, locations, classifications, and preferences.  And most importantly, it models the vast array of hierarchical and matrixed relationships that exist between all the participants in your real world operations.  The model logically separates people and organizations from their relationships and accounts.  This separation creates flexibility unmatched in the industry and accounts for the fact that the Oracle schema for Customers, Suppliers, and Accounts is a true superset of the wide variety of commercial and homegrown customer models in existence. Sites Sites are places where business is conducted. They can be addresses, clusters such as retail malls, locations within a cluster, floors within a building, places where meters are located, rooms on floors, etc.  Fully understanding all attributes of a site is key to many business processes. Attributes such as 'noise abatement policy' at a point of delivery, or the size of an oven in a business kitchen drive day-to-day activities such as delivery schedules or food promotions. Typically this kind of data is siloed in departments and scattered across applications and spreadsheets.  This leads to conflicting information and poor operational efficiencies. Oracle's Global Single Schema can hold all site attributes in one place and enables a single version of authoritative site information across the enterprise. Products and Services The Oracle Global Single Schema also includes a number of entities that define the products and services a company creates and offers for sale. Key entities include Items organized into Catalogs and Price Lists. The Catalog structures provide for the ability to capture different views of a product such as engineering, manufacturing, and service which are based on a unified product model. As a result, designers, manufacturing engineers, purchasers and partners can work simultaneously on a common product definition. The Catalog schema allows for unlimited attributes, combines them into meaningful groups, and maps them to catalog categories to track these different types of information. The model also maps an unlimited number of functional structures for each item. For example, multiple Bills of Material (BOMs) can be constructed representing requirements BOM, features BOM, and packaging BOM for an item. The Catalog model also supports hierarchical information about each item and all standard Global Data Synchronization attributes. Business Processes Utilizing Linked Data Entities Each business entity codified into a centralized master data environment significantly improves the efficiency of the automated business processes that use the consolidated data.  When all the key business entities used by an organization's process are so consolidated, the advantages are multiplied.  The primary reason for business process breakdowns (i.e. data errors across application boundaries) is eliminated. All processes are positively impacted and business process automation is itself automated.  I like to use the "Call to Resolution" business process as an example to help illustrate this important point. It involves call center applications, service applications, RMA applications, transportation applications, inventory applications, etc. Customer, Site, Product and Supplier master data must all be correct and consistent across these applications.  What's more, the data relationships between customer and product, and product and suppliers must be right. This is the minimum quality needed to insure the business process flows without error. But that is not the end of the story. Critical master data attributes such as customer loyalty, profitability, credit worthiness, and propensity to buy can optimize the call center point of contact component of the process. Critical product information such as alternative parts or equivalent products can optimize the resolution selected by the process. A comprehensive understanding of the 'service at' location can help insure multiple trips are avoided in the process. Full supplier information on reliability, delivery delays, and potential alternates can prevent supplier exceptions and play a significant role in optimizing the process.  In other words, these master data attributes enable the optimization of the "Call to Resolution" enterprise business process. Master data supports and guides business process flows. Thus the phrase 'Master Data' is indeed appropriate. MDM is the software that houses, manages, and governs the master data that resides in all applications and controls the enterprise business processes. A complete master data solution takes a data model that holds fully attributed master data entities and their inter-relationships. Oracle has this model. Oracle, with its deep understanding of application data is the logical choice for managing all your master data within the enterprise whether or not your organization actually runs any Oracle Applications.

    Read the article

  • Creating a chained dropdownlist using AJAX and XML

    This article is about to create a chained drop down list when we need to represent data from hierarchical data sets. Here I’ll be discussing the method to populate ASPX dropdown lists using partial page rendering with AJAX. My database is simple XML data file.

    Read the article

  • Creating a chained dropdownlist using AJAX and XML

    This article is about to create a chained drop down list when we need to represent data from hierarchical data sets. Here Ill be discussing the method to populate ASPX dropdown lists using partial page rendering with AJAX. My database is simple XML data file....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Convex Hull for Concave Objects

    - by Lighthink
    I want to implement GJK and I want it to handle concave shapes too (almost all my shapes are concave). I've thought of decomposing the concave shape into convex shapes and then building a hierarchical tree out of convex shapes, but I do not know how to do it. Nothing I could find on the Internet about it wasn't satisfying my needs, so maybe someone can point me in the right direction or give a full explanation.

    Read the article

  • Path tables or real time searching for AI?

    - by SirYakalot
    What is the more common practice in commercial games; path lookup tables or real time searches? I've read that in many games path lookup tables are pre-calculated and baked into each map, so to speak, then steering behaviour is used to handle dynamic obstacles. or is it better practice to use optimised hierarchical A* searches? I understand the pro's and cons of each, I'm just curious as to what is most often used in the industry.

    Read the article

  • Three new ADF Insider Essentials on YouTube Channel

    - by Grant Ronald
    I've uploaded three ADF Insider Essentials onto our YouTube channel. How to delete a node in a hierarchical tree component. Handing the OK and Cancel buttons in an af:dialog popup Strategy for implementing global buttons These are ADF Insider Essentials that we originally loaded on OTN but we can now upload larger files (each of these is about 20 minutes long).  More ADF Insider Essentials in the pipeline so watch this space!    

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >