Search Results

Search found 8490 results on 340 pages for 'push linq'.

Page 191/340 | < Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >

  • If you can only read one book this year: Professional C# 4 and .NET 4 from wrox is the one.

    I just read the Professional C# 4 and .NET 4 from wrox, wrote by Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson and Morgan Skinner. This is a complete book in whats in .NET 4 as well as a great book for anybody jumping in .NET. They did a great job including all the important parts of .NET as well as the new version 4. As I was reading, my first impression was how far .NET has gone since version 1.0, the different platforms including WPF, Silverlight, ASP.NET ADO.NET, LINQ and PLINQ now...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Problem installing ubuntu touch on galaxy nexus

    - by Francesco
    I've installed ubuntu touch on my galaxy nexus following the tutorial on the official site. However the latter is not so clear.. In particular, during the installation, user action on the phone is requested and not documented on the tutorial: 1) The phone asked me whether rebooting, wiping the cache or something else (i did nothing and the phone rebooted) 2) The phone asked me whether replacing or not cmw (or something similar). I asked no.. After the installation all seemed to work correctly. However after shutting down the phone can't power on anymore... When I push the power button the battery icon appears, showing that the battery is completely charged. What am I supposed to do?

    Read the article

  • Improve your Application Performance with .NET Framework 4.0

    Nice Article on CodeGuru. This processors we use today are quite different from those of just a few years ago, as most processors today provide multiple cores and/or multiple threads. With multiple cores and/or threads we need to change how we tackle problems in code. Yes we can still continue to write code to perform an action in a top down fashion to complete a task. This apprach will continue to work; however, you are not taking advantage of the extra processing power available. The best way to take advantage of the extra cores prior to .NET Framework 4.0 was to create threads and/or utilize the ThreadPool. For many developers utilizing Threads or the ThreadPool can be a little daunting. The .NET 4.0 Framework drastically simplified the process of utilizing the extra processing power through the Task Parallel Library (TPL). This article talks following topics “Data Parallelism”, “Parallel LINQ (PLINQ)” and “Task Parallelism”. span.fullpost {display:none;}

    Read the article

  • GP11.1

    - by user13334066
    It's the Assen round of the 2011 motogp season, and Ducati have launched their GP11.1. The Ducati's front end woes were quite efficiently highlighted throughout the 2010 season, with both Casey and Nicky regularly visiting the gravel traps. Now the question is: was it really a front end issue. What's most probable is: the GP10 never had a front end issue. It was the rear that was out. So what did Stoner's team do? They came with setup changes that sorted out the rear end, while transferring the problem to the front. And Casey has this brilliant ability to push beyond the limits of a vague and erratic front end...and naturally the real problem lay hidden. Like Kevin Cameron said: in human nature, our strengths are our weaknesses. Casey's pure speed came at a lack of fine machinery feel, which ultimately took the Ducati in a wrong development direction.

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Ajax does not send the data to my php file [migrated]

    - by Mert METIN
    I try to send my data to php file but does not work. This my ajax file var artistIds = new Array(); $(".p16 input:checked").each(function(){ artistIds.push($(this).attr('id')); }); $.post('/json/crewonly/deleteDataAjax2', { artistIds: artistIds },function(response){ if(response == 'ok') alert('dolu'); elseif (response == 'error') alert('bos'); }); and this is my php public function deleteDataAjax2() { extract($_POST); if (isset($artistIds)) $this->sendJSONResponse('ok'); else $this->sendJSONResponse('error'); } However, my artistIds in php side is null. Why ?

    Read the article

  • Continuous integration - build Debug and Release every time?

    - by Darian Miller
    Is it standard practice when setting up a Continuous Integration server to build a Debug and Release version of each project? Most of the time developers code with a Debug mode project configuration set enabled and there could be different library path configurations, compiler defines, or other items configured differently between Debug/Release that would cause them to act differently. I configured my CI server to build both Debug & Release of each project and I'm wondering if I'm just overthinking it. My assumption is that I'll do this as long as I can get quick feedback and once that happens, then push the Release off to a nightly build perhaps. Is there a 'standard' way of approaching this?

    Read the article

  • Great Discussion of ETL and ELT Tooling in TDWI Linkedin Group

    - by antonio romero
    All, There’s a great discussion of ETL and ELT tooling going on in the official TDWI Linkedin group, under the heading “How Sustainable is SQL for ETL?” It delves into a wide range of topics: The pros and cons of handcoding vs. using tools to design ETL ETL (with separate transformation engines) vs. ELT (transforms in the database) and push-down solutions The future of ETL and data warehousing products A number of community members (of varying affiliations) have kept this conversation going for many months, and are learning from each other as they go. So check it out… Also, while you’re on Linkedin, join the Oracle ETL/Data Integration Linkedin group (for both OWB and ODI users), which recently passed the 2000 member mark.

    Read the article

  • What are tangible advantages to proper Unit Tests over Functional Test called unit tests

    - by Jackie
    A project I am working on has a bunch of legacy tests that were not properly mocked out. Because of this the only dependency it has is EasyMock, which doesn't support statics, constructors with arguments, etc. The tests instead rely on database connections and such to "run" the tests. Adding powermock to handle these cases is being shot down as cost prohibitive due to the need to upgrade the existing project to support it (Another discussion). My questions are, what are the REAL world tangible benifits of proper unit testing I can use to push back? Are there any? Am I just being a stickler by saying that bad unit tests (even if they work) are bad? Is code coverage just as effective?

    Read the article

  • Bitbucket and a small development house

    - by Marlon
    I am in the process of finally rolling Mercurial as our version control system at work. This is a huge deal for everyone as, shockingly, they have never used a VCS. After months of putting the bug in management's ears, they finally saw the light and now realise how much better it is than working with a network of shared folders! In the process of rolling this out, I am thinking of different strategies to manage our stuff and I am leaning towards using Bitbucket as our "central" repository. The projects in Bitbucket will solely be private projects and everyone will push and pull from there. I am open to different suggestions, but has anyone got a similar setup? If so, what caveats have you encountered?

    Read the article

  • 3 Performance Presentations from SAE added to the portal

    - by uwes
    The following three presentation have been added to eSTEP portal: Oracle's Systems Performance Oct 2012 Update Oracle Leads the Way on Realistic Sizing Oracle's Performance: Oracle SPARC SuperCluster All presentations are created by Brad Carlile, Sr. Director Strategic Applications Engineering, SAE. How to get to the presentations: URL: http://launch.oracle.com/ Email Address: <provide your email address>Access URL/Page Token: eSTEP_2011To get access push Agree button on the left side of the page. Click on eSTEP Download (tab band on the top) ---> presentations at right hand side or Click on Miscellaneous (menu on left hand side) ---> presentations at right hand side

    Read the article

  • A bunch of SharePoint 2010 Videos

    - by Sahil Malik
    Ad:: SharePoint 2007 Training in .NET 3.5 technologies (more information). DNRTV – Developing for SharePoint 2010 Talks about LINQ to SharePoint, and a basic intro of the dev tools. watch Telerik Silverlight Chart showing live data from SharePoint 2010. This video demonstrates the usage of a custom WCF service and a custom silverlight frontend. watch. Telerik Silverlight Grid with BCS Lists in SharePoint 2010 This video demonstrates BCS + Client Object Model + A silverlight front end. watch Telerik R.A.D Calendar shown working with an OOTB Calendar list watch Large file upload in SP using Silverlight. watch Silverlight coverflow implemented on a picture library watch Integrating Yahoo Geocoding API, Bing maps, and Bing search engine in a Silverlight UI in SharePoint watch SharePoint 2010 scalability, RBS, and related stuff. watch SharePoint 2007 and Silverlight – talks about TDD etc. watch Comment on the article ....

    Read the article

  • How to make rigid bodies collide with Apex Clothing in PhysX for Maya

    - by b1nary.atr0phy
    According to the [Apex] Clothing Overview section of the documentation: Colliding with Rigid Bodies Rigid bodies present in your scene will push clothing around roughly as you might expect. Well, I beg to differ. The Apex Cloth collides with the floor just fine, but that's about the only thing it collides with (unless I add ragdoll to the same skeleton that the cloth is attached to.) So for example, if I try to bounce a ball (dynamic rigid body) into the cloth, it simply bounces through it. If I try to walk an actor with ragdoll through it, he simply clips through it as well. Anyone have any insight on this?

    Read the article

  • How/where to run the algorithm on large dataset?

    - by niko
    I would like to run the PageRank algorithm on graph with 4 000 000 nodes and around 45 000 000 edges. Currently I use neo4j graph databse and classic relational database (postgres) and for software projects I mostly use C# and Java. Does anyone know what would be the best way to perform a PageRank computation on such graph? Is there any way to modify the PageRank algorithm in order to run it at home computer or server (48GB RAM) or is there any useful cloud service to push the data along the algorithm and retrieve the results? At this stage the project is at the research stage so in case of using cloud service if possible, would like to use such provider that doesn't require much administration and service setup, but instead focus just on running the algorith once and get the results without much overhead administration work.

    Read the article

  • Abstract Data Type and Data Structure

    - by mark075
    It's quite difficult for me to understand these terms. I searched on google and read a little on Wikipedia but I'm still not sure. I've determined so far that: Abstract Data Type is a definition of new type, describes its properties and operations. Data Structure is an implementation of ADT. Many ADT can be implemented as the same Data Structure. If I think right, array as ADT means a collection of elements and as Data Structure, how it's stored in a memory. Stack is ADT with push, pop operations, but can we say about stack data structure if I mean I used stack implemented as an array in my algorithm? And why heap isn't ADT? It can be implemented as tree or an array.

    Read the article

  • The Grand Unified Framework Theory

    Tom Janssens left a comment: What still bugs me is that we do not have a unified pattern for all .net dev (using modelbinders and icommand for example...) But, Tom we are pretty close. At least as close as we should be, I think. With .NET there are plenty of low level patterns we can reuse regardless of the application platform or architecture. Stuff like: Asynchronous programming with events or the TPL. Object queries with LINQ. Resource management with IDispose. At a higher...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Architecture guidelines for a "single page web-app"

    - by Matt Roberts
    I'm going to start a side project to build a "single page" web application. The application needs to be real-time, sending updates to the clients as changes happen. Are there any good resources for best-practice approaches wrt the architecture for these kinds of applications. The best resource I've found so far is the trello architecture article here: http://blog.fogcreek.com/the-trello-tech-stack/ To me, this architecture, although very sexy, is probably over-engineered for my specific needs - although I do have similar requirements. I'm wondering if I need to bother with a sub/pub at the server side, could I not just push updates from the server when something happens (e.g. when the client sends an update to the server, write the update to the db, and then send an update to the clients). Tech-wise, I'm probably looking to build this out in Node.JS or maybe Ruby, although the architecture guidelines should to some extent apply to any underlying server technologies.

    Read the article

  • How can a student programmer improve his teamwork skill?

    - by xiao
    I am a student right now. Recently, I am working in a project as a leader with three other students. Due to the lack of experience, our project is progressing slowly and our members are frustrated. They do not feel sense of accomplishment in the project. I am pressured and frustrated, too. But as a team leader, I think I need to push them. But I do not know how to do. Do I help them solve coding problem or just encouragement? But if I pay too much attention on it, it would slow down my own progress. It is a not technical question, but it is very common in software development. I hope veteran programmers would give me some suggestions. Thanks!

    Read the article

  • When to use abstract classes instead of interfaces and extension methods in C#?

    - by Gulshan
    "Abstract class" and "interface" are similar type of ideas, while interface being more abstract. One need of abstract classes was to provide method implementations for the derived classes. But in C#, that need has also been reduced by lately introduced extension methods. So, in C#, when should we use abstract classes instead of using interfaces and extension methods associated with the interface? And now, we can use 'Properties' in interfaces also. A notable example of interface+ extension methods is the Heavily used IEnumerable and it's helper methods. You use Linq and it's all by this extension methods!

    Read the article

  • Ho do I install Ubuntu on my Mac PowerPC G5

    - by Matt
    How do I install Ubuntu on my powerpc G5? which version do I download? where do I download it from? and how do I get it to install? I tried burning ubuntu powerpc 12.04 and booting from the cd and all I get is a DOS like setup prompt "boot:" I've tried 'live' and everything else listed when I push tab; but, every time I get a bunch of white text on black screen, then black text on white and then my monitor just goes black and nothing happens??? what am I doing wrong? any suggestions?

    Read the article

  • Thoughts about MVC

    - by ayyash
    so i figured this one out, as a newcomer to the web development scene from the telecom biz, where we dealt with low level hardware API's, and a C++ fanboy, i tend to be bothered by automagical code, yes i appreciate the effort that went into it, and i certainly appreciate the luxury it provides to get more things done, but i just don't get it. so i decided to change that, and start investigating the new MVC based web apps, and at first it was like hitting a brick wall, i knew MVC from MFC days, so i'm familiar with the pattern, but i just couldn't get my head around the web version of it, till i came to realize the routing, is actually a separate feature to be inspected, much like understanding how LINQ works by better understanding anonymous objects. and so this article serve as an introduction to the following blogs where i share my views of how asp.net routing works, and then leverage that to the MVC level, and play around that field for a bit. as with most of my shared knowladge that may seem trivial to some, but i guess a newcomer's point of view can be useful for some folks out there.

    Read the article

  • Introdução ao NHibernate on TechDays 2010

    - by Ricardo Peres
    I’ve been working on the agenda for my presentation titled Introdução ao NHibernate that I’ll be giving on TechDays 2010, and I would like to request your assistance. If you have any subject that you’d like me to talk about, you can suggest it to me. For now, I’m thinking of the following issues: Domain Driven Design with NHibernate Inheritance Mapping Strategies (Table Per Class Hierarchy, Table Per Type, Table Per Concrete Type, Mixed) Mappings (hbm.xml, NHibernate Attributes, Fluent NHibernate, ConfORM) Supported querying types (ID, HQL, LINQ, Criteria API, QueryOver, SQL) Entity Relationships Custom Types Caching Interceptors and Listeners Advanced Usage (Duck Typing, EntityMode Map, …) Other projects (NHibernate Validator, NHibernate Search, NHibernate Shards, …) ASP.NET Integration ASP.NET Dynamic Data Integration WCF Data Services Integration Comments?

    Read the article

  • What are the most important concepts to understand for "fluency in developer English"?

    - by Edward Tanguay
    In April, I'm going to be giving a talk called **English 2.0 - Understanding the Language of Developers" to a group of English teachers. The purpose is in two hours to give them a quick background in key concepts so that they can better understand developer blogs and podcasts and are able to ask better questions when talking to developers. What do you think are the most important concepts to understand, concepts that developers take for granted but the general public is not familiar with? Here are a few ideas: version control abstractions pub/sub push vs. pull debugging modularity three-tier architecture class/object "spaghetti code" vs. OOP exception throwing crowd sourcing refactoring the cloud DRY - don't repeat yourself client/server unit testing designer/developer

    Read the article

  • Building the Internet of Things – with Microsoft StreamInsight and the Microsoft .Net Micro Framework

    - by Roman Schindlauer
    Fresh from the press – The March 2012 issue of MSDN Magazine features an article about the Internet of Things. It discusses in depth how you can use StreamInsight to process all the data that is continuously produced in typical Internet of Things scenarios. It also gives you an end-to-end perspective on developing Internet of Things solutions in the .NET world, ranging from the .NET Micro Framework application running on the device, the communication between the devices and the server-side all the way to powerful cross-device streaming analytics implemented in StreamInsight LINQ. You can find an online version of the article here. Happy reading! Regards, The StreamInsight Team

    Read the article

  • How to Tell If Your Computer is Overheating and What to Do About It

    - by Chris Hoffman
    Heat is a computer’s enemy. Computers are designed with heat dispersion and ventilation in mind so they don’t overheat. If too much heat builds up, your computer may become unstable or suddenly shut down. The CPU and graphics card produce much more heat when running demanding applications. If there’s a problem with your computer’s cooling system, an excess of heat could even physically damage its components. Is Your Computer Overheating? When using a typical computer in a typical way, you shouldn’t have to worry about overheating at all. However, if you’re encountering system instability issues like abrupt shut downs, blue screens, and freezes — especially while doing something demanding like playing PC games or encoding video — your computer may be overheating. This can happen for several reasons. Your computer’s case may be full of dust, a fan may have failed, something may be blocking your computer’s vents, or you may have a compact laptop that was never designed to run at maximum performance for hours on end. Monitoring Your Computer’s Temperature First, bear in mind that different CPUs and GPUs (graphics cards) have different optimal temperature ranges. Before getting too worried about a temperature, be sure to check your computer’s documentation — or its CPU or graphics card specifications — and ensure you know the temperature ranges your hardware can handle. You can monitor your computer’s temperatures in a variety of different ways. First, you may have a way to monitor temperature that is already built into your system. You can often view temperature values in your computer’s BIOS or UEFI settings screen. This allows you to quickly see your computer’s temperature if Windows freezes or blue screens on you — just boot the computer, enter the BIOS or UEFI screen, and check the temperatures displayed there. Note that not all BIOSes or UEFI screens will display this information, but it is very common. There are also programs that will display your computer’s temperature. Such programs just read the sensors inside your computer and show you the temperature value they report, so there are a wide variety of tools you can use for this, from the simple Speccy system information utility to an advanced tool like SpeedFan. HWMonitor also offer this feature, displaying a wide variety of sensor information. Be sure to look at your CPU and graphics card temperatures. You can also find other temperatures, such as the temperature of your hard drive, but these components will generally only overheat if it becomes extremely hot in the computer’s case. They shouldn’t generate too much heat on their own. If you think your computer may be overheating, don’t just glance as these sensors once and ignore them. Do something demanding with your computer, such as running a CPU burn-in test with Prime 95, playing a PC game, or running a graphical benchmark. Monitor the computer’s temperature while you do this, even checking a few hours later — does any component overheat after you push it hard for a while? Preventing Your Computer From Overheating If your computer is overheating, here are some things you can do about it: Dust Out Your Computer’s Case: Dust accumulates in desktop PC cases and even laptops over time, clogging fans and blocking air flow. This dust can cause ventilation problems, trapping heat and preventing your PC from cooling itself properly. Be sure to clean your computer’s case occasionally to prevent dust build-up. Unfortunately, it’s often more difficult to dust out overheating laptops. Ensure Proper Ventilation: Put the computer in a location where it can properly ventilate itself. If it’s a desktop, don’t push the case up against a wall so that the computer’s vents become blocked or leave it near a radiator or heating vent. If it’s a laptop, be careful to not block its air vents, particularly when doing something demanding. For example, putting a laptop down on a mattress, allowing it to sink in, and leaving it there can lead to overheating — especially if the laptop is doing something demanding and generating heat it can’t get rid of. Check if Fans Are Running: If you’re not sure why your computer started overheating, open its case and check that all the fans are running. It’s possible that a CPU, graphics card, or case fan failed or became unplugged, reducing air flow. Tune Up Heat Sinks: If your CPU is overheating, its heat sink may not be seated correctly or its thermal paste may be old. You may need to remove the heat sink and re-apply new thermal paste before reseating the heat sink properly. This tip applies more to tweakers, overclockers, and people who build their own PCs, especially if they may have made a mistake when originally applying the thermal paste. This is often much more difficult when it comes to laptops, which generally aren’t designed to be user-serviceable. That can lead to trouble if the laptop becomes filled with dust and needs to be cleaned out, especially if the laptop was never designed to be opened by users at all. Consult our guide to diagnosing and fixing an overheating laptop for help with cooling down a hot laptop. Overheating is a definite danger when overclocking your CPU or graphics card. Overclocking will cause your components to run hotter, and the additional heat will cause problems unless you can properly cool your components. If you’ve overclocked your hardware and it has started to overheat — well, throttle back the overclock! Image Credit: Vinni Malek on Flickr     

    Read the article

< Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >