Search Results

Search found 15432 results on 618 pages for 'private inheritance'.

Page 196/618 | < Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >

  • Relative cam movement and momentum on arbitrary surface

    - by user29244
    I have been working on a game for quite long, think sonic classic physics in 3D or tony hawk psx, with unity3D. However I'm stuck at the most fundamental aspect of movement. The requirement is that I need to move the character in mario 64 fashion (or sonic adventure) aka relative cam input: the camera's forward direction always point input forward the screen, left or right input point toward left or right of the screen. when input are resting, the camera direction is independent from the character direction and the camera can orbit the character when input are pressed the character rotate itself until his direction align with the direction the input is pointing at. It's super easy to do as long your movement are parallel to the global horizontal (or any world axis). However when you try to do this on arbitrary surface (think moving along complex curved surface) with the character sticking to the surface normal (basically moving on wall and ceiling freely), it seems harder. What I want is to achieve the same finesse of movement than in mario but on arbitrary angled surfaces. There is more problem (jumping and transitioning back to the real world alignment and then back on a surface while keeping momentum) but so far I didn't even take off the basics. So far I have accomplish moving along the curved surface and the relative cam input, but for some reason direction fail all the time (point number 3, the character align slowly to the input direction). Do you have an idea how to achieve that? Here is the code and some demo so far: The demo: https://dl.dropbox.com/u/24530447/flash%20build/litesonicengine/LiteSonicEngine5.html Camera code: using UnityEngine; using System.Collections; public class CameraDrive : MonoBehaviour { public GameObject targetObject; public Transform camPivot, camTarget, camRoot, relcamdirDebug; float rot = 0; //---------------------------------------------------------------------------------------------------------- void Start() { this.transform.position = targetObject.transform.position; this.transform.rotation = targetObject.transform.rotation; } void FixedUpdate() { //the pivot system camRoot.position = targetObject.transform.position; //input on pivot orientation rot = 0; float mouse_x = Input.GetAxisRaw( "camera_analog_X" ); // rot = rot + ( 0.1f * Time.deltaTime * mouse_x ); // wrapAngle( rot ); // //when the target object rotate, it rotate too, this should not happen UpdateOrientation(this.transform.forward,targetObject.transform.up); camRoot.transform.RotateAround(camRoot.transform.up,rot); //debug the relcam dir RelativeCamDirection() ; //this camera this.transform.position = camPivot.position; //set the camera to the pivot this.transform.LookAt( camTarget.position ); // } //---------------------------------------------------------------------------------------------------------- public float wrapAngle ( float Degree ) { while (Degree < 0.0f) { Degree = Degree + 360.0f; } while (Degree >= 360.0f) { Degree = Degree - 360.0f; } return Degree; } private void UpdateOrientation( Vector3 forward_vector, Vector3 ground_normal ) { Vector3 projected_forward_to_normal_surface = forward_vector - ( Vector3.Dot( forward_vector, ground_normal ) ) * ground_normal; camRoot.transform.rotation = Quaternion.LookRotation( projected_forward_to_normal_surface, ground_normal ); } float GetOffsetAngle( float targetAngle, float DestAngle ) { return ((targetAngle - DestAngle + 180)% 360) - 180; } //---------------------------------------------------------------------------------------------------------- void OnDrawGizmos() { Gizmos.DrawCube( camPivot.transform.position, new Vector3(1,1,1) ); Gizmos.DrawCube( camTarget.transform.position, new Vector3(1,5,1) ); Gizmos.DrawCube( camRoot.transform.position, new Vector3(1,1,1) ); } void OnGUI() { GUI.Label(new Rect(0,80,1000,20*10), "targetObject.transform.up : " + targetObject.transform.up.ToString()); GUI.Label(new Rect(0,100,1000,20*10), "target euler : " + targetObject.transform.eulerAngles.y.ToString()); GUI.Label(new Rect(0,100,1000,20*10), "rot : " + rot.ToString()); } //---------------------------------------------------------------------------------------------------------- void RelativeCamDirection() { float input_vertical_movement = Input.GetAxisRaw( "Vertical" ), input_horizontal_movement = Input.GetAxisRaw( "Horizontal" ); Vector3 relative_forward = Vector3.forward, relative_right = Vector3.right, relative_direction = ( relative_forward * input_vertical_movement ) + ( relative_right * input_horizontal_movement ) ; MovementController MC = targetObject.GetComponent<MovementController>(); MC.motion = relative_direction.normalized * MC.acceleration * Time.fixedDeltaTime; MC.motion = this.transform.TransformDirection( MC.motion ); //MC.transform.Rotate(Vector3.up, input_horizontal_movement * 10f * Time.fixedDeltaTime); } } Mouvement code: using UnityEngine; using System.Collections; public class MovementController : MonoBehaviour { public float deadZoneValue = 0.1f, angle, acceleration = 50.0f; public Vector3 motion ; //-------------------------------------------------------------------------------------------- void OnGUI() { GUILayout.Label( "transform.rotation : " + transform.rotation ); GUILayout.Label( "transform.position : " + transform.position ); GUILayout.Label( "angle : " + angle ); } void FixedUpdate () { Ray ground_check_ray = new Ray( gameObject.transform.position, -gameObject.transform.up ); RaycastHit raycast_result; Rigidbody rigid_body = gameObject.rigidbody; if ( Physics.Raycast( ground_check_ray, out raycast_result ) ) { Vector3 next_position; //UpdateOrientation( gameObject.transform.forward, raycast_result.normal ); UpdateOrientation( gameObject.transform.forward, raycast_result.normal ); next_position = GetNextPosition( raycast_result.point ); rigid_body.MovePosition( next_position ); } } //-------------------------------------------------------------------------------------------- private void UpdateOrientation( Vector3 forward_vector, Vector3 ground_normal ) { Vector3 projected_forward_to_normal_surface = forward_vector - ( Vector3.Dot( forward_vector, ground_normal ) ) * ground_normal; transform.rotation = Quaternion.LookRotation( projected_forward_to_normal_surface, ground_normal ); } private Vector3 GetNextPosition( Vector3 current_ground_position ) { Vector3 next_position; // //-------------------------------------------------------------------- // angle = 0; // Vector3 dir = this.transform.InverseTransformDirection(motion); // angle = Vector3.Angle(Vector3.forward, dir);// * 1f * Time.fixedDeltaTime; // // if(angle > 0) this.transform.Rotate(0,angle,0); // //-------------------------------------------------------------------- next_position = current_ground_position + gameObject.transform.up * 0.5f + motion ; return next_position; } } Some observation: I have the correct input, I have the correct translation in the camera direction ... but whenever I attempt to slowly lerp the direction of the character in direction of the input, all I get is wild spin! Sad Also discovered that strafing to the right (immediately at the beginning without moving forward) has major singularity trapping on the equator!! I'm totally lost and crush (I have already done a much more featured version which fail at the same aspect)

    Read the article

  • How do you test an ICF based connector using Connector Facade Standalone?

    - by Shashidhar Malyala
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The following code helps in writing a standalone java program to test an ICF based connector. The sample code in this example takes into account an ICF based flatfile connector. It is possible to test various operations like create, update, delete, search etc... It is also possible to set values to the connector configuration parameters, add/remove attributes and their values. public class FlatFile { private static final java.lang.String BUNDLE_NAME = "<PACKAGE_NAME>"; //Ex: org.info.icf.flatfile private static final java.lang.String BUNDLE_VERSION = "1.0.0"; private static final java.lang.String CONNECTOR_NAME = "org.info.icf.flatfile.FlatFileConnector"; // Name of connector class i.e. the class implemting the connector SPI operations public ConnectorFacade getFacade() throws IOException { ConnectorInfoManagerFactory fact = ConnectorInfoManagerFactory .getInstance(); File bundleDirectory = new File("<BUNDLE_LOCATION>"); //Ex: /usr/oracle/connector_bundles/ URL url = IOUtil.makeURL(bundleDirectory, "org.info.icf.flatfile-1.0.0.jar"); ConnectorInfoManager manager = fact.getLocalManager(url); ConnectorKey key = new ConnectorKey(BUNDLE_NAME, BUNDLE_VERSION, CONNECTOR_NAME); ConnectorInfo info = manager.findConnectorInfo(key); // From the ConnectorInfo object, create the default APIConfiguration. APIConfiguration apiConfig = info.createDefaultAPIConfiguration(); // From the default APIConfiguration, retrieve the // ConfigurationProperties. ConfigurationProperties properties = apiConfig .getConfigurationProperties(); // Print out what the properties are (not necessary) List propertyNames = properties.getPropertyNames(); for (String propName : propertyNames) { ConfigurationProperty prop = properties.getProperty(propName); System.out.println("Property Name: " + prop.getName() + "\tProperty Type: " + prop.getType()); } properties .setPropertyValue("fileLocation", "/usr/oracle/accounts.csv"); // Set all of the ConfigurationProperties needed by the connector. // properties.setPropertyValue("host", FOOBAR_HOST); // properties.setPropertyValue("adminName", FOOBAR_ADMIN); // properties.setPropertyValue("adminPassword", FOOBAR_PASSWORD); // properties.setPropertyValue("useSSL", false); // Use the ConnectorFacadeFactory's newInstance() method to get a new // connector. ConnectorFacade connFacade = ConnectorFacadeFactory.getInstance() .newInstance(apiConfig); // Make sure we have set up the Configuration properly connFacade.validate(); return connFacade; } public static void main(String[] args) throws IOException { FlatFile file = new FlatFile(); ConnectorFacade cfac = file.getFacade(); Set attrSet = new HashSet(); attrSet.add(AttributeBuilder.build(Name.NAME, "Test01")); attrSet.add(AttributeBuilder.build("FIRST_NAME", "Test_First")); attrSet.add(AttributeBuilder.build("LAST_NAME", "Test_Last")); //Create Uid uid = cfac.create(ObjectClass.ACCOUNT, attrSet, null); //Delete Uid uidP = new Uid("Test01"); cfac.delete(ObjectClass.ACCOUNT, uidP, null); } }

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

  • Storing non-content data in Orchard

    - by Bertrand Le Roy
    A CMS like Orchard is, by definition, designed to store content. What differentiates content from other kinds of data is rather subtle. The way I would describe it is by saying that if you would put each instance of a kind of data on its own web page, if it would make sense to add comments to it, or tags, or ratings, then it is content and you can store it in Orchard using all the convenient composition options that it offers. Otherwise, it probably isn't and you can store it using somewhat simpler means that I will now describe. In one of the modules I wrote, Vandelay.ThemePicker, there is some configuration data for the module. That data is not content by the definition I gave above. Let's look at how this data is stored and queried. The configuration data in question is a set of records, each of which has a number of properties: public class SettingsRecord { public virtual int Id { get; set;} public virtual string RuleType { get; set; } public virtual string Name { get; set; } public virtual string Criterion { get; set; } public virtual string Theme { get; set; } public virtual int Priority { get; set; } public virtual string Zone { get; set; } public virtual string Position { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Each property has to be virtual for nHibernate to handle it (it creates derived classed that are instrumented in all kinds of ways). We also have an Id property. The way these records will be stored in the database is described from a migration: public int Create() { SchemaBuilder.CreateTable("SettingsRecord", table => table .Column<int>("Id", column => column.PrimaryKey().Identity()) .Column<string>("RuleType", column => column.NotNull().WithDefault("")) .Column<string>("Name", column => column.NotNull().WithDefault("")) .Column<string>("Criterion", column => column.NotNull().WithDefault("")) .Column<string>("Theme", column => column.NotNull().WithDefault("")) .Column<int>("Priority", column => column.NotNull().WithDefault(10)) .Column<string>("Zone", column => column.NotNull().WithDefault("")) .Column<string>("Position", column => column.NotNull().WithDefault("")) ); return 1; } When we enable the feature, the migration will run, which will create the table in the database. Once we've done that, all we have to do in order to use the data is inject an IRepository<SettingsRecord>, which is what I'm doing from the set of helpers I put under the SettingsService class: private readonly IRepository<SettingsRecord> _repository; private readonly ISignals _signals; private readonly ICacheManager _cacheManager; public SettingsService( IRepository<SettingsRecord> repository, ISignals signals, ICacheManager cacheManager) { _repository = repository; _signals = signals; _cacheManager = cacheManager; } The repository has a Table property, which implements IQueryable<SettingsRecord> (enabling all kind of Linq queries) as well as methods such as Delete and Create. Here's for example how I'm getting all the records in the table: _repository.Table.ToList() And here's how I'm deleting a record: _repository.Delete(_repository.Get(r => r.Id == id)); And here's how I'm creating one: _repository.Create(new SettingsRecord { Name = name, RuleType = ruleType, Criterion = criterion, Theme = theme, Priority = priority, Zone = zone, Position = position }); In summary, you create a record class, a migration, and you're in business and can just manipulate the data through the repository that the framework is exposing. You even get ambient transactions from the work context.

    Read the article

  • Is it feasible and useful to auto-generate some code of unit tests?

    - by skiwi
    Earlier today I have come up with an idea, based upon a particular real use case, which I would want to have checked for feasability and usefulness. This question will feature a fair chunk of Java code, but can be applied to all languages running inside a VM, and maybe even outside. While there is real code, it uses nothing language-specific, so please read it mostly as pseudo code. The idea Make unit testing less cumbersome by adding in some ways to autogenerate code based on human interaction with the codebase. I understand this goes against the principle of TDD, but I don't think anyone ever proved that doing TDD is better over first creating code and then immediatly therafter the tests. This may even be adapted to be fit into TDD, but that is not my current goal. To show how it is intended to be used, I'll copy one of my classes here, for which I need to make unit tests. public class PutMonsterOnFieldAction implements PlayerAction { private final int handCardIndex; private final int fieldMonsterIndex; public PutMonsterOnFieldAction(final int handCardIndex, final int fieldMonsterIndex) { this.handCardIndex = Arguments.requirePositiveOrZero(handCardIndex, "handCardIndex"); this.fieldMonsterIndex = Arguments.requirePositiveOrZero(fieldMonsterIndex, "fieldCardIndex"); } @Override public boolean isActionAllowed(final Player player) { Objects.requireNonNull(player, "player"); Hand hand = player.getHand(); Field field = player.getField(); if (handCardIndex >= hand.getCapacity()) { return false; } if (fieldMonsterIndex >= field.getMonsterCapacity()) { return false; } if (field.hasMonster(fieldMonsterIndex)) { return false; } if (!(hand.get(handCardIndex) instanceof MonsterCard)) { return false; } return true; } @Override public void performAction(final Player player) { Objects.requireNonNull(player); if (!isActionAllowed(player)) { throw new PlayerActionNotAllowedException(); } Hand hand = player.getHand(); Field field = player.getField(); field.setMonster(fieldMonsterIndex, (MonsterCard)hand.play(handCardIndex)); } } We can observe the need for the following tests: Constructor test with valid input Constructor test with invalid inputs isActionAllowed test with valid input isActionAllowed test with invalid inputs performAction test with valid input performAction test with invalid inputs My idea mainly focuses on the isActionAllowed test with invalid inputs. Writing these tests is not fun, you need to ensure a number of conditions and you check whether it really returns false, this can be extended to performAction, where an exception needs to be thrown in that case. The goal of my idea is to generate those tests, by indicating (through GUI of IDE hopefully) that you want to generate tests based on a specific branch. The implementation by example User clicks on "Generate code for branch if (handCardIndex >= hand.getCapacity())". Now the tool needs to find a case where that holds. (I haven't added the relevant code as that may clutter the post ultimately) To invalidate the branch, the tool needs to find a handCardIndex and hand.getCapacity() such that the condition >= holds. It needs to construct a Player with a Hand that has a capacity of at least 1. It notices that the capacity private int of Hand needs to be at least 1. It searches for ways to set it to 1. Fortunately it finds a constructor that takes the capacity as an argument. It uses 1 for this. Some more work needs to be done to succesfully construct a Player instance, involving the creation of objects that have constraints that can be seen by inspecting the source code. It has found the hand with the least capacity possible and is able to construct it. Now to invalidate the test it will need to set handCardIndex = 1. It constructs the test and asserts it to be false (the returned value of the branch) What does the tool need to work? In order to function properly, it will need the ability to scan through all source code (including JDK code) to figure out all constraints. Optionally this could be done through the javadoc, but that is not always used to indicate all constraints. It could also do some trial and error, but it pretty much stops if you cannot attach source code to compiled classes. Then it needs some basic knowledge of what the primitive types are, including arrays. And it needs to be able to construct some form of "modification trees". The tool knows that it needs to change a certain variable to a different value in order to get the correct testcase. Hence it will need to list all possible ways to change it, without using reflection obviously. What this tool will not replace is the need to create tailored unit tests that tests all kinds of conditions when a certain method actually works. It is purely to be used to test methods when they invalidate constraints. My questions: Is creating such a tool feasible? Would it ever work, or are there some obvious problems? Would such a tool be useful? Is it even useful to automatically generate these testcases at all? Could it be extended to do even more useful things? Does, by chance, such a project already exist and would I be reinventing the wheel? If not proven useful, but still possible to make such thing, I will still consider it for fun. If it's considered useful, then I might make an open source project for it depending on the time. For people searching more background information about the used Player and Hand classes in my example, please refer to this repository. At the time of writing the PutMonsterOnFieldAction has not been uploaded to the repo yet, but this will be done once I'm done with the unit tests.

    Read the article

  • Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and cach

    - by SeanMcAlinden
    I’ve recently started a project with a few mates to learn the ins and outs of Dependency Injection, AOP and a number of other pretty crucial patterns of development as we’ve all been using these patterns for a while but have relied totally on third part solutions to do the magic. We thought it would be interesting to really get into the details by rolling our own IoC container and hopefully learn a lot on the way, and you never know, we might even create an excellent framework. The open source project is called Rapid IoC and is hosted at http://rapidioc.codeplex.com/ One of the most interesting tasks for me is creating the dynamic proxy generator for enabling Aspect Orientated Programming (AOP). In this series of articles, I’m going to track each step I take for creating the dynamic proxy generator and I’ll try my best to explain what everything means - mainly as I’ll be using Reflection.Emit to emit a fair amount of intermediate language code (IL) to create the proxy types at runtime which can be a little taxing to read. It’s worth noting that building the proxy is without a doubt going to be slightly painful so I imagine there will be plenty of areas I’ll need to change along the way. Anyway lets get started…   Part 1 - Creating the Assembly builder, Module builder and caching mechanism Part 1 is going to be a really nice simple start, I’m just going to start by creating the assembly, module and type caches. The reason we need to create caches for the assembly, module and types is simply to save the overhead of recreating proxy types that have already been generated, this will be one of the important steps to ensure that the framework is fast… kind of important as we’re calling the IoC container ‘Rapid’ – will be a little bit embarrassing if we manage to create the slowest framework. The Assembly builder The assembly builder is what is used to create an assembly at runtime, we’re going to have two overloads, one will be for the actual use of the proxy generator, the other will be mainly for testing purposes as it will also save the assembly so we can use Reflector to examine the code that has been created. Here’s the code: DynamicAssemblyBuilder using System; using System.Reflection; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Class for creating an assembly builder.     /// </summary>     internal static class DynamicAssemblyBuilder     {         #region Create           /// <summary>         /// Creates an assembly builder.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         public static AssemblyBuilder Create(string assemblyName)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.Run);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           /// <summary>         /// Creates an assembly builder and saves the assembly to the passed in location.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         /// <param name="filePath">The file path.</param>         public static AssemblyBuilder Create(string assemblyName, string filePath)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.RunAndSave, filePath);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           #endregion     } }   So hopefully the above class is fairly explanatory, an AssemblyName is created using the passed in string for the actual name of the assembly. An AssemblyBuilder is then constructed with the current AppDomain and depending on the overload used, it is either just run in the current context or it is set up ready for saving. It is then added to the cache.   DynamicAssemblyCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions;   namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Cache for storing the dynamic assembly builder.     /// </summary>     internal static class DynamicAssemblyCache     {         #region Declarations           private static object syncRoot = new object();         internal static AssemblyBuilder Cache = null;           #endregion           #region Adds a dynamic assembly to the cache.           /// <summary>         /// Adds a dynamic assembly builder to the cache.         /// </summary>         /// <param name="assemblyBuilder">The assembly builder.</param>         public static void Add(AssemblyBuilder assemblyBuilder)         {             lock (syncRoot)             {                 Cache = assemblyBuilder;             }         }           #endregion           #region Gets the cached assembly                  /// <summary>         /// Gets the cached assembly builder.         /// </summary>         /// <returns></returns>         public static AssemblyBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoAssemblyInCache);             }         }           #endregion     } } The cache is simply a static property that will store the AssemblyBuilder (I know it’s a little weird that I’ve made it public, this is for testing purposes, I know that’s a bad excuse but hey…) There are two methods for using the cache – Add and Get, these just provide thread safe access to the cache.   The Module Builder The module builder is required as the create proxy classes will need to live inside a module within the assembly. Here’s the code: DynamicModuleBuilder using System.Reflection.Emit; using Rapid.DynamicProxy.Assembly; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for creating a module builder.     /// </summary>     internal static class DynamicModuleBuilder     {         /// <summary>         /// Creates a module builder using the cached assembly.         /// </summary>         public static ModuleBuilder Create()         {             string assemblyName = DynamicAssemblyCache.Get.GetName().Name;               ModuleBuilder moduleBuilder = DynamicAssemblyCache.Get.DefineDynamicModule                 (assemblyName, string.Format("{0}.dll", assemblyName));               DynamicModuleCache.Add(moduleBuilder);               return moduleBuilder;         }     } } As you can see, the module builder is created on the assembly that lives in the DynamicAssemblyCache, the module is given the assembly name and also a string representing the filename if the assembly is to be saved. It is then added to the DynamicModuleCache. DynamicModuleCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for storing the module builder.     /// </summary>     internal static class DynamicModuleCache     {         #region Declarations           private static object syncRoot = new object();         internal static ModuleBuilder Cache = null;           #endregion           #region Add           /// <summary>         /// Adds a dynamic module builder to the cache.         /// </summary>         /// <param name="moduleBuilder">The module builder.</param>         public static void Add(ModuleBuilder moduleBuilder)         {             lock (syncRoot)             {                 Cache = moduleBuilder;             }         }           #endregion           #region Get           /// <summary>         /// Gets the cached module builder.         /// </summary>         /// <returns></returns>         public static ModuleBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoModuleInCache);             }         }           #endregion     } }   The DynamicModuleCache is very similar to the assembly cache, it is simply a statically stored module with thread safe Add and Get methods.   The DynamicTypeCache To end off this post, I’m going to create the cache for storing the generated proxy classes. I’ve spent a fair amount of time thinking about the type of collection I should use to store the types and have finally decided that for the time being I’m going to use a generic dictionary. This may change when I can actually performance test the proxy generator but the time being I think it makes good sense in theory, mainly as it pretty much maintains it’s performance with varying numbers of items – almost constant (0)1. Plus I won’t ever need to loop through the items which is not the dictionaries strong point. Here’s the code as it currently stands: DynamicTypeCache using System; using System.Collections.Generic; using System.Security.Cryptography; using System.Text; namespace Rapid.DynamicProxy.Types {     /// <summary>     /// Cache for storing proxy types.     /// </summary>     internal static class DynamicTypeCache     {         #region Declarations           static object syncRoot = new object();         public static Dictionary<string, Type> Cache = new Dictionary<string, Type>();           #endregion           /// <summary>         /// Adds a proxy to the type cache.         /// </summary>         /// <param name="type">The type.</param>         /// <param name="proxy">The proxy.</param>         public static void AddProxyForType(Type type, Type proxy)         {             lock (syncRoot)             {                 Cache.Add(GetHashCode(type.AssemblyQualifiedName), proxy);             }         }           /// <summary>         /// Tries the type of the get proxy for.         /// </summary>         /// <param name="type">The type.</param>         /// <returns></returns>         public static Type TryGetProxyForType(Type type)         {             lock (syncRoot)             {                 Type proxyType;                 Cache.TryGetValue(GetHashCode(type.AssemblyQualifiedName), out proxyType);                 return proxyType;             }         }           #region Private Methods           private static string GetHashCode(string fullName)         {             SHA1CryptoServiceProvider provider = new SHA1CryptoServiceProvider();             Byte[] buffer = Encoding.UTF8.GetBytes(fullName);             Byte[] hash = provider.ComputeHash(buffer, 0, buffer.Length);             return Convert.ToBase64String(hash);         }           #endregion     } } As you can see, there are two public methods, one for adding to the cache and one for getting from the cache. Hopefully they should be clear enough, the Get is a TryGet as I do not want the dictionary to throw an exception if a proxy doesn’t exist within the cache. Other than that I’ve decided to create a key using the SHA1CryptoServiceProvider, this may change but my initial though is the SHA1 algorithm is pretty fast to put together using the provider and it is also very unlikely to have any hashing collisions. (there are some maths behind how unlikely this is – here’s the wiki if you’re interested http://en.wikipedia.org/wiki/SHA_hash_functions)   Anyway, that’s the end of part 1 – although I haven’t started any of the fun stuff (by fun I mean hairpulling, teeth grating Relfection.Emit style fun), I’ve got the basis of the DynamicProxy in place so all we have to worry about now is creating the types, interceptor classes, method invocation information classes and finally a really nice fluent interface that will abstract all of the hard-core craziness away and leave us with a lightning fast, easy to use AOP framework. Hope you find the series interesting. All of the source code can be viewed and/or downloaded at our codeplex site - http://rapidioc.codeplex.com/ Kind Regards, Sean.

    Read the article

  • Passing parameters between Silverlight and ASP.NET – Part 1

    - by mohanbrij
    While working with Silverlight applications, we may face some scenarios where we may need to embed Silverlight as a component, like for e.g in Sharepoint Webpars or simple we can have the same with ASP.NET. The biggest challenge comes when we have to pass the parameters from ASP.NET to Silverlight components or back from Silverlight to ASP.NET. We have lots of ways we can do this, like using InitParams, QueryStrings, using HTML objects in Silverlight, etc. All these different techniques have some advantages or disadvantages or limitations. Lets see one by one why we should choose one and what are the ways to achieve the same. 1. InitParams: Lets start with InitParams, Start your Visual Studio 2010 IDE, and Create a Silverlight Application, give any name. Now go to the ASP.NET WebProject which is used to Host the Silverlight XAP component. You will find lots of different tags are used by Silverlight object as <params> tags. To use InitParams, Silverlight provides us with a tag called InitParams which we can use to pass parameters to Silverlight object from ASP.NET. 1: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> 2: <param name="source" value="ClientBin/SilverlightApp.xap"/> 3: <param name="onError" value="onSilverlightError" /> 4: <param name="background" value="white" /> 5: <param name="minRuntimeVersion" value="4.0.50826.0" /> 6: <param name="initparams" id="initParams" runat="server" value=""/> 7: <param name="autoUpgrade" value="true" /> 8: <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> 9: <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> 10: </a> 11: </object> Here in the code above I have included a initParam as a param tag (line 6), now in the page load I will add a line 1: initParams.Attributes.Add("value", "key1=Brij, key2=Mohan"); This basically add a value parameter inside the initParam. So thats all we need in our ASP.NET side, now coming to the Silverlight Code open the code behind of App.xaml and add the following lines of code. 1: private string firstKey, secondKey; 2: private void Application_Startup(object sender, StartupEventArgs e) 3: { 4: if (e.InitParams.ContainsKey("key1")) 5: this.firstKey = e.InitParams["key1"]; 6: if (e.InitParams.ContainsKey("key2")) 7: this.secondKey = e.InitParams["key2"]; 8: this.RootVisual = new MainPage(firstKey, secondKey); 9: } This code fetch the init params and pass it to our MainPage.xaml constructor, in the MainPage.xaml we can use these variables according to our requirement, here in this example I am simply displaying the variables in a Message Box. 1: public MainPage(string param1, string param2) 2: { 3: InitializeComponent(); 4: MessageBox.Show("Welcome, " + param1 + " " + param2); 5: } This will give you a sample output as Limitations: Depending on the browsers you have some limitation on the overall string length of the parameters you can pass. To get more details on this limitation, you can refer to this link :http://www.boutell.com/newfaq/misc/urllength.html 2. QueryStrings To show this example I am taking the scenario where we have a default.aspx page and we are going to the SIlverlightTestPage.aspx, and we have to work with the parameters which was passed by default.aspx in the SilverlightTestPage.aspx Silverlight Component. So first I will add a new page in my application which contains a button with ID =btnNext, and on click of the button I will redirect my page to my SilverlightTestAppPage.aspx with the required query strings. Code of Default.aspx 1: protected void btnNext_Click(object sender, EventArgs e) 2: { 3: Response.Redirect("~/SilverlightAppTestPage.aspx?FName=Brij" + "&LName=Mohan"); 4: } Code of MainPage.xaml.cs 1: public partial class MainPage : UserControl 2: { 3: public MainPage() 4: { 5: InitializeComponent(); 6: this.Loaded += new RoutedEventHandler(MainPage_Loaded); 7: } 8: 9: void MainPage_Loaded(object sender, RoutedEventArgs e) 10: { 11: IDictionary<string, string> qString = HtmlPage.Document.QueryString; 12: string firstName = string.Empty; 13: string lastName = string.Empty; 14: foreach (KeyValuePair<string, string> keyValuePair in qString) 15: { 16: string key = keyValuePair.Key; 17: string value = keyValuePair.Value; 18: if (key == "FName") 19: firstName = value; 20: else if (key == "LName") 21: lastName = value; 22: } 23: MessageBox.Show("Welcome, " + firstName + " " + lastName); 24: } 25: } Set the Startup page as Default.aspx, now run the application. This will give you the following output: Since here also you are using the Query Strings to pass your parameters, so you are depending on the browser capabilities of the length of the query strings it can pass. Here also you can refer the limitation which I have mentioned in my previous example for the length of parameters you can use.   3. Using HtmlPage.Document Silverlight to ASP.NET <—> ASP.NET to Silverlight: To show this I setup a sample Silverlight Application with Buttons Get Data and Set Data with the Data Text Box. In ASP.NET page I kep a TextBox to Show how the values passed to and From Silverlight to ASP.NET reflects back. My page with Silverlight control looks like this. When I Say Get Data it pulls the data from ASP.NET to Silverlight Control Text Box, and When I say Set data it basically Set the Value from Silverlight Control TextBox to ASP.NET TextBox. Now let see the code how it is doing. This is my ASP.NET Source Code. Here I have just created a TextBox named : txtData 1: <body> 2: <form id="form1" runat="server" style="height:100%"> 3: <div id="silverlightControlHost"> 4: ASP.NET TextBox: <input type="text" runat="server" id="txtData" value="Some Data" /> 5: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> 6: <param name="source" value="ClientBin/SilverlightApplication1.xap"/> 7: <param name="onError" value="onSilverlightError" /> 8: <param name="background" value="white" /> 9: <param name="minRuntimeVersion" value="4.0.50826.0" /> 10: <param name="autoUpgrade" value="true" /> 11: <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> 12: <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> 13: </a> 14: </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe> 15: </div> 16: </form> 17: </body> My actual logic for getting and setting the data lies in my Silverlight Control, this is my XAML code with TextBox and Buttons. 1: <Grid x:Name="LayoutRoot" Background="White" Height="100" Width="450" VerticalAlignment="Top"> 2: <Grid.ColumnDefinitions> 3: <ColumnDefinition Width="110" /> 4: <ColumnDefinition Width="110" /> 5: <ColumnDefinition Width="110" /> 6: <ColumnDefinition Width="110" /> 7: </Grid.ColumnDefinitions> 8: <TextBlock Text="Silverlight Text Box: " Grid.Column="0" VerticalAlignment="Center"></TextBlock> 9: <TextBox x:Name="DataText" Width="100" Grid.Column="1" Height="20"></TextBox> 10: <Button x:Name="GetData" Width="100" Click="GetData_Click" Grid.Column="2" Height="30" Content="Get Data"></Button> 11: <Button x:Name="SetData" Width="100" Click="SetData_Click" Grid.Column="3" Height="30" Content="Set Data"></Button> 12: </Grid> Now we have to write few lines of Button Events for Get Data and Set Data which basically make use of Windows.System.Browser namespace. 1: private void GetData_Click(object sender, RoutedEventArgs e) 2: { 3: DataText.Text = HtmlPage.Document.GetElementById("txtData").GetProperty("value").ToString(); 4: } 5:  6: private void SetData_Click(object sender, RoutedEventArgs e) 7: { 8: HtmlPage.Document.GetElementById("txtData").SetProperty("value", DataText.Text); 9: } That’s it so when we run this application my Form will look like this. 4. Using Object Serialization. This is a useful when we want to pass Objects of Data from our ASP.NET application to Silverlight Controls and back. This technique basically uses the above technique I mentioned in Pint 3 above. Since this itself is a length topic so details of this I am going to cover in Part 2 of this Post with Sample Code Example very soon.

    Read the article

  • Using the Data Form Web Part (SharePoint 2010) Site Agnostically!

    - by David Jacobus
    Originally posted on: http://geekswithblogs.net/djacobus/archive/2013/10/24/154465.aspxAs a Developer whom has worked closely with web designers (Power users) in a SharePoint environment, I have come across the issue of making the Data Form Web Part reusable across the site collection! In SharePoint 2007 it was very easy and this blog pointed the way to make it happen: Josh Gaffey's Blog. In SharePoint 2010 something changed! This method failed except for using a Data Form Web Part that pointed to a list in the Site Collection Root! I am making this discussion relative to a developer whom creates a solution (WSP) with all the artifacts embedded and the user shouldn’t have any involvement in the process except to activate features. The Scenario: 1. A Power User creates a Data Form Web Part using SharePoint Designer 2010! It is a great web part the uses all the power of SharePoint Designer and XSLT (Conditional formatting, etc.). 2. Other Users in the site collection want to use that specific web part in sub sites in the site collection. Pointing to a list with the same name, not at the site collection root! The Issues: 1. The Data Form Web Part Data Source uses a List ID (GUID) to point to the specific list. Which means a list in a sub site will have a list with a new GUID different than the one which was created with SharePoint Designer! Obviously, the List needs to be the same List (Fields, Content Types, etc.) with different data. 2. How can we make this web part site agnostic, and dependent only on the lists Name? I had this problem come up over and over and decided to put my solution forward! The Solution: 1. Use the XSL of the Data Form Web Part Created By the Power User in SharePoint Designer! 2. Extend the OOTB Data Form Web Part to use this XSL and Point to a List by name. The solution points to a hybrid solution that requires some coding (Developer) and the XSL (Power User) artifacts put together in a Visual Studio SharePoint Solution. Here are the solution steps in summary: 1. Create an empty SharePoint project in Visual Studio 2. Create a Module and Feature and put the XSL file created by the Power User into it a. Scope the feature to web 3. Create a Feature Receiver to Create the List. The same list from which the Data Form Web Part was created with by the Power User. a. Scope the feature to web 4. Create a Web Part extending the Data Form Web a. Point the Data Form Web Part to point to the List by Name b. Point the Data Form Web Part XSL link to the XSL added using the Module feature c. Scope The feature to Site i. This is because all web parts are in the site collection web part gallery. So in a Narrative Summary: We are creating a list in code which has the same name and (site Columns) as the list from which the Power User created the Data Form Web Part Using SharePoint Designer. We are creating a Web Part in code which extends the OOTB Data Form Web Part to point to a list by name and use the XSL created by the Power User. Okay! Here are the steps with images and code! At the end of this post I will provide a link to the code for a solution which works in any site! I want to TOOT the HORN for the power of this solution! It is the mantra a use with all my clients! What is a basic skill a SharePoint Developer: Create an application that uses the data from a SharePoint list and make that data visible to the user in a manner which meets requirements! Create an Empty SharePoint 2010 Project Here I am naming my Project DJ.DataFormWebPart Create a Code Folder Copy and paste the Extension and Utilities classes (Found in the solution provided at the end of this post) Change the Namespace to match this project The List to which the Data Form Web Part which was used to make the XSL by the Power User in SharePoint Designer is now going to be created in code! If already in code, then all the better! Here I am going to create a list in the site collection root and add some data to it! For the purpose of this discussion I will actually create this list in code before using SharePoint Designer for simplicity! So here I create the List and deploy it within this solution before I do anything else. I will use a List I created before for demo purposes. Footer List is used within the footer of my master page. Add a new Feature: Here I name the Feature FooterList and add a Feature Event Receiver: Here is the code for the Event Receiver: I have a previous blog post about adding lists in code so I will not take time to narrate this code: using System; using System.Runtime.InteropServices; using System.Security.Permissions; using Microsoft.SharePoint; using DJ.DataFormWebPart.Code; namespace DJ.DataFormWebPart.Features.FooterList { /// <summary> /// This class handles events raised during feature activation, deactivation, installation, uninstallation, and upgrade. /// </summary> /// <remarks> /// The GUID attached to this class may be used during packaging and should not be modified. /// </remarks> [Guid("a58644fd-9209-41f4-aa16-67a53af7a9bf")] public class FooterListEventReceiver : SPFeatureReceiver { SPWeb currentWeb = null; SPSite currentSite = null; const string columnGroup = "DJ"; const string ctName = "FooterContentType"; // Uncomment the method below to handle the event raised after a feature has been activated. public override void FeatureActivated(SPFeatureReceiverProperties properties) { using (SPWeb spWeb = properties.GetWeb() as SPWeb) { using (SPSite site = new SPSite(spWeb.Site.ID)) { using (SPWeb rootWeb = site.OpenWeb(site.RootWeb.ID)) { //add the fields addFields(rootWeb); //add content type SPContentType testCT = rootWeb.ContentTypes[ctName]; // we will not create the content type if it exists if (testCT == null) { //the content type does not exist add it addContentType(rootWeb, ctName); } if ((spWeb.Lists.TryGetList("FooterList") == null)) { //create the list if it dosen't to exist CreateFooterList(spWeb, site); } } } } } #region ContentType public void addFields(SPWeb spWeb) { Utilities.addField(spWeb, "Link", SPFieldType.URL, false, columnGroup); Utilities.addField(spWeb, "Information", SPFieldType.Text, false, columnGroup); } private static void addContentType(SPWeb spWeb, string name) { SPContentType myContentType = new SPContentType(spWeb.ContentTypes["Item"], spWeb.ContentTypes, name) { Group = columnGroup }; spWeb.ContentTypes.Add(myContentType); addContentTypeLinkages(spWeb, myContentType); myContentType.Update(); } public static void addContentTypeLinkages(SPWeb spWeb, SPContentType ct) { Utilities.addContentTypeLink(spWeb, "Link", ct); Utilities.addContentTypeLink(spWeb, "Information", ct); } private void CreateFooterList(SPWeb web, SPSite site) { Guid newListGuid = web.Lists.Add("FooterList", "Footer List", SPListTemplateType.GenericList); SPList newList = web.Lists[newListGuid]; newList.ContentTypesEnabled = true; var footer = site.RootWeb.ContentTypes[ctName]; newList.ContentTypes.Add(footer); newList.ContentTypes.Delete(newList.ContentTypes["Item"].Id); newList.Update(); var view = newList.DefaultView; //add all view fields here //view.ViewFields.Add("NewsTitle"); view.ViewFields.Add("Link"); view.ViewFields.Add("Information"); view.Update(); } } } Basically created a content type with two site columns Link and Information. I had to change some code as we are working at the SPWeb level and need Content Types at the SPSite level! I’ll use a new Site Collection for this demo (Best Practice) keep old artifacts from impinging on development: Next we will add this list to the root of the site collection by deploying this solution, add some data and then use SharePoint Designer to create a Data Form Web Part. The list has been added, now let’s add some data: Okay let’s add a Data Form Web Part in SharePoint Designer. Create a new web part page in the site pages library: I will name it TestWP.aspx and edit it in advanced mode: Let’s add an empty Data Form Web Part to the web part zone: Click on the web part to add a data source: Choose FooterList in the Data Source menu: Choose appropriate fields and select insert as multiple item view: Here is what it look like after insertion: Let’s add some conditional formatting if the information filed is not blank: Choose Create (right side) apply formatting: Choose the Information Field and set the condition not null: Click Set Style: Here is the result: Okay! Not flashy but simple enough for this demo. Remember this is the job of the Power user! All we want from this web part is the XLS-Style Sheet out of SharePoint Designer. We are going to use it as the XSL for our web part which we will be creating next. Let’s add a web part to our project extending the OOTB Data Form Web Part. Add new item from the Visual Studio add menu: Choose Web Part: Change WebPart to DataFormWebPart (Oh well my namespace needs some improvement, but it will sure make it readily identifiable as an extended web part!) Below is the code for this web part: using System; using System.ComponentModel; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using Microsoft.SharePoint; using Microsoft.SharePoint.WebControls; using System.Text; namespace DJ.DataFormWebPart.DataFormWebPart { [ToolboxItemAttribute(false)] public class DataFormWebPart : Microsoft.SharePoint.WebPartPages.DataFormWebPart { protected override void OnInit(EventArgs e) { base.OnInit(e); this.ChromeType = PartChromeType.None; this.Title = "FooterListDF"; try { //SPSite site = SPContext.Current.Site; SPWeb web = SPContext.Current.Web; SPList list = web.Lists.TryGetList("FooterList"); if (list != null) { string queryList1 = "<Query><Where><IsNotNull><FieldRef Name='Title' /></IsNotNull></Where><OrderBy><FieldRef Name='Title' Ascending='True' /></OrderBy></Query>"; uint maximumRowList1 = 10; SPDataSource dataSourceList1 = GetDataSource(list.Title, web.Url, list, queryList1, maximumRowList1); this.DataSources.Add(dataSourceList1); this.XslLink = web.Url + "/Assests/Footer.xsl"; this.ParameterBindings = BuildDataFormParameters(); this.DataBind(); } } catch (Exception ex) { this.Controls.Add(new LiteralControl("ERROR: " + ex.Message)); } } private SPDataSource GetDataSource(string dataSourceId, string webUrl, SPList list, string query, uint maximumRow) { SPDataSource dataSource = new SPDataSource(); dataSource.UseInternalName = true; dataSource.ID = dataSourceId; dataSource.DataSourceMode = SPDataSourceMode.List; dataSource.List = list; dataSource.SelectCommand = "" + query + ""; Parameter listIdParam = new Parameter("ListID"); listIdParam.DefaultValue = list.ID.ToString( "B").ToUpper(); Parameter maximumRowsParam = new Parameter("MaximumRows"); maximumRowsParam.DefaultValue = maximumRow.ToString(); QueryStringParameter rootFolderParam = new QueryStringParameter("RootFolder", "RootFolder"); dataSource.SelectParameters.Add(listIdParam); dataSource.SelectParameters.Add(maximumRowsParam); dataSource.SelectParameters.Add(rootFolderParam); dataSource.UpdateParameters.Add(listIdParam); dataSource.DeleteParameters.Add(listIdParam); dataSource.InsertParameters.Add(listIdParam); return dataSource; } private string BuildDataFormParameters() { StringBuilder parameters = new StringBuilder("<ParameterBindings><ParameterBinding Name=\"dvt_apos\" Location=\"Postback;Connection\"/><ParameterBinding Name=\"UserID\" Location=\"CAMLVariable\" DefaultValue=\"CurrentUserName\"/><ParameterBinding Name=\"Today\" Location=\"CAMLVariable\" DefaultValue=\"CurrentDate\"/>"); parameters.Append("<ParameterBinding Name=\"dvt_firstrow\" Location=\"Postback;Connection\"/>"); parameters.Append("<ParameterBinding Name=\"dvt_nextpagedata\" Location=\"Postback;Connection\"/>"); parameters.Append("<ParameterBinding Name=\"dvt_adhocmode\" Location=\"Postback;Connection\"/>"); parameters.Append("<ParameterBinding Name=\"dvt_adhocfiltermode\" Location=\"Postback;Connection\"/>"); parameters.Append("</ParameterBindings>"); return parameters.ToString(); } } } The OnInit method we use to set the list name and the XSL Link property of the Data Form Web Part. We do not have the link to XSL in our Solution so we will add the XSL now: Add a Module in the Visual Studio add menu: Rename Sample.txt in the module to footer.xsl and then copy the XSL from SharePoint Designer Look at elements.xml to where the footer.xsl is being provisioned to which is Assets/footer.xsl, make sure the Web parts xsl link is pointing to this url: Okay we are good to go! Let’s check our features and package: DataFormWebPart should be scoped to site and have the web part: The Footer List feature should be scoped to web and have the Assets module (Okay, I see, a spelling issue but it won’t affect this demo) If everything is correct we should be able to click a couple of sub site feature activations and have our list and web part in a sub site. (In fact this solution can be activated anywhere) Here is the list created at SubSite1 with new data It. Next let’s add the web part on a test page and see if it works as expected: It does! So we now have a repeatable way to use a WSP to move a Data Form Web Part around our sites! Here is a link to the code: DataFormWebPart Solution

    Read the article

  • AIX Checklist for stable obiee deployment

    - by user554629
    Common AIX configuration issues     ( last updated 27 Aug 2012 ) OBIEE is a complicated system with many moving parts and connection points.The purpose of this article is to provide a checklist to discuss OBIEE deployment with your systems administrators. The information in this article is time sensitive, and updated as I discover new  issues or details. What makes OBIEE different? When Tech Support suggests AIX component upgrades to a stable, locked-down production AIX environment, it is common to get "push back".  "Why is this necessary?  We aren't we seeing issues with other software?"It's a fair question that I have often struggled to answer; here are the talking points: OBIEE is memory intensive.  It is the entire purpose of the software to trade memory for repetitive, more expensive database requests across a network. OBIEE is implemented in C++ and is very dependent on the C++ runtime to behave correctly. OBIEE is aggressively thread efficient;  if atomic operations on a particular architecture do not work correctly, the software crashes. OBIEE dynamically loads third-party database client libraries directly into the nqsserver process.  If the library is not thread-safe, or corrupts process memory the OBIEE crash happens in an unrelated part of the code.  These are extremely difficult bugs to find. OBIEE software uses 99% common source across multiple platforms:  Windows, Linux, AIX, Solaris and HPUX.  If a crash happens on only one platform, we begin to suspect other factors.  load intensity, system differences, configuration choices, hardware failures.  It is rare to have a single product require so many diverse technical skills.   My role in support is to understand system configurations, performance issues, and crashes.   An analyst trained in Business Analytics can't be expected to know AIX internals in the depth required to make configuration choices.  Here are some guidelines. AIX C++ Runtime must be at  version 11.1.0.4$ lslpp -L | grep xlC.aixobiee software will crash if xlC.aix.rte is downlevel;  this is not a "try it" suggestion.Nov 2011 11.1.0.4 version  is appropriate for all AIX versions ( 5, 6, 7 )Download from here:https://www-304.ibm.com/support/docview.wss?uid=swg24031426 No reboot is necessary to install, it can even be installed while applications are using the current version.Restart the apps, and they will pick up the latest version. AIX 5.3 Technology Level 12 is required when running on Power5,6,7 processorsAIX 6.1 was introduced with the newer Power chips, and we have seen no issues with 6.1 or 7.1 versions.Customers with an unstable deployment, dozens of unexplained crashes, became stable after the upgrade.If your AIX system is 5.3, the minimum TL level should be at or higher than this:$ oslevel -s  5300-12-03-1107IBM typically supports only the two latest versions of AIX ( 6.1 and 7.1, for example).  AIX 5.3 is still supported and popular running in an LPAR. obiee userid limits$ ulimit -Ha  ( hard limits )$ ulimit -a   ( default limits )core file size (blocks)     unlimiteddata seg size (kbytes)      unlimitedfile size (blocks)          unlimitedmax memory size (kbytes)    unlimitedopen files                  10240 cpu time (seconds)          unlimitedvirtual memory (kbytes)     unlimitedIt is best to establish the values in /etc/security/limitsroot user is needed to observe and modify this file.If you modify a limit, you will need to relog in to change it again.  For example,$ ulimit -c 0$ ulimit -c 2097151cannot modify limit: Operation not permitted$ ulimit -c unlimited$ ulimit -c0There are only two meaningful values for ulimit -c ; zero or unlimited.Anything else is likely to produce a truncated core file that cannot be analyzed. Deploy 32-bit or 64-bit ?Early versions of OBIEE offered 32-bit or 64-bit choice to AIX customers.The 32-bit choice was needed if a database vendor did not supply a 64-bit client library.That's no longer an issue and beginning with OBIEE 11, 32-bit code is no longer shipped.A common error that leads to "out of memory" conditions to to accept the 32-bit memory configuration choices on 64-bit deployments.  The significant configuration choices are: Maximum process data (heap) size is in an AIX environment variableLDR_CNTRL=IGNOREUNLOAD@LOADPUBLIC@PREREAD_SHLIB@MAXDATA=0x... Two thread stack sizes are made in obiee NQSConfig.INI[ SERVER ]SERVER_THREAD_STACK_SIZE = 0;DB_GATEWAY_THREAD_STACK_SIZE = 0; Sort memory in NQSConfig.INI[ GENERAL ]SORT_MEMORY_SIZE = 4 MB ;SORT_BUFFER_INCREMENT_SIZE = 256 KB ; Choosing a value for MAXDATA:0x080000000  2GB Default maximum 32-bit heap size ( 8 with 7 zeros )0x100000000  4GB 64-bit breaking even with 32-bit ( 1 with 8 zeros )0x200000000  8GB 64-bit double 32-bit max0x400000000 16GB 64-bit safetyUsing 2GB heap size for a 64-bit process will almost certainly lead to an out-of-memory situation.Registers are twice as big ... consume twice as much memory in the heap.Upgrading to a 4GB heap for a 64-bit process is just "breaking even" with 32-bit.A 32-bit process is constrained by the 32-bit virtual addressing limits.  Heap memory is used for dynamic requirements of obiee software, thread stacks for each of the configured threads, and sometimes for shared libraries. 64-bit processes are not constrained in this way;  extra heap space can be configured for safety against a query that might create a sudden requirement for excessive storage.  If the storage is not available, this query might crash the whole server and disrupt existing users.There is no performance penalty on AIX for configuring more memory than required;  extra memory can be configured for safety.  If there are no other considerations, start with 8GB.Choosing a value for Thread Stack size:zero is the value documented to select an appropriate default for thread stack size.  My preference is to change this to an absolute value, even if you intend to use the documented default;  it provides better documentation and removes the "surprise" factor.There are two thread types that can be configured. GATEWAY is used by a thread pool to call a database client library to establish a DB connection.The default size is 256KB;  many customers raise this to 512KB ( no performance penalty for over-configuring ). This value must be set to 1 MB if Teradata connections are used. SERVER threads are used to run queries.  OBIEE uses recursive algorithms during the analysis of query structures which can consume significant thread stack storage.  It's difficult to provide guidance on a value that depends on data and complexity.  The general notion is to provide more space than you think you need,  "double down" and increase the value if you run out, otherwise inspect the query to understand why it is too complex for the thread stack.  There are protections built into the software to abort a single user query that is too complex, but the algorithms don't cover all situations.256 KB  The default 32-bit stack size.  Many customers increased this to 512KB on 32-bit.  A 64-bit server is very likely to crash with this value;  the stack contains mostly register values, which are twice as big.512 KB  The documented 64-bit default.  Some early releases of obiee didn't set this correctly, resulting in 256KB stacks.1 MB  The recommended 64-bit setting.  If your system only ever uses 512KB of stack space, there is no performance penalty for using 1MB stack size.2 MB  Many large customers use this value for safety.  No performance penalty.nqscheduler does not use the NQSConfig.INI file to set thread stack size.If this process crashes because the thread stack is too small, use this to set 2MB:export OBI_BACKGROUND_STACK_SIZE=2048 Shared libraries are not (shared) When application libraries are loaded at run-time, AIX makes a decision on whether to load the libraries in a "public" memory segment.  If the filesystem library permissions do not have the "Read-Other" permission bit, AIX loads the library into private process memory with two significant side-effects:* The libraries reduce the heap storage available.      Might be significant in 32-bit processes;  irrelevant in 64-bit processes.* Library code is loaded into multiple real pages for execution;  one copy for each process.Multiple execution images is a significant issue for both 32- and 64-bit processes.The "real memory pages" saved by using public memory segments is a minor concern.  Today's machines typically have plenty of real memory.The real problem with private copies of libraries is that they consume processor cache blocks, which are limited.   The same library instructions executing in different real pages will cause memory delays as the i-cache ( instruction cache 128KB blocks) are refreshed from real memory.   Performance loss because instructions are delayed is something that is difficult to measure without access to low-level cache fault data.   The machine just appears to be running slowly for no observable reason.This is an easy problem to detect, and an easy problem to correct.Detection:  "genld -l" AIX command produces a list of the libraries used by each process and the AIX memory address where they are loaded.32-bit public segment is 13 ( "dxxxxxxx" ).   private segments are 2-a.64-bit public segment is 9 ( "9xxxxxxxxxxxxxxx") ; private segment is 8.genld -l | grep -v ' d| 9' | sort +2provides a list of privately loaded libraries. Repair: chmod o+r <libname>AIX shared libraries will have a suffix of ".so" or ".a".Another technique is to change all libraries in a selected directory to repair those that might not be currently loaded.   The usual directories that need repair are obiee code, httpd code and plugins, database client libraries and java.chmod o+r /shr/dir/*.a /shr/dir/*.so Configure your system for diagnosticsProduction systems shouldn't crash, and yet bad things happen to good software.If obiee software crashes and produces a core, you should configure your system for reliable transfer of the failing conditions to Oracle Tech Support.  Here's what we need to be able to diagnose a core file from your system.* fullcore enabled. chdev -lsys0 -a fullcore=true* core naming enabled. chcore -n on -d* ulimit must not truncate core. see item 3.* pstack.sh is used to capture core documentation.* obidoc is used to capture current AIX configuration.* snapcore  AIX utility captures core and libraries. Use the proper syntax. $ snapcore -r corename executable-fullpath   /tmp/snapcore will contain the .pax.Z output file.  It is compressed.* If cores are directed to a common directory, ensure obiee userid can write to the directory.  ( chcore -p /cores -d ; chmod 777 /cores )The filesystem must have sufficient space to hold a crashing obiee application.Use:  df -k  Check the "Free" column ( not "% Used" )  8388608 is 8GB. Disable Oracle Client Library signal handlingThe Oracle DB Client Library is frequently distributed with the sqlplus development kit.By default, the library enables a signal handler, which will document a call stack if the application crashes.   The signal handler is not needed, and definitely disruptive to obiee diagnostics.   It needs to be disabled.   sqlnet.ora is typically located at:   $ORACLE_HOME/network/admin/sqlnet.oraAdd this line at the top of the file:   DIAG_SIGHANDLER_ENABLED=FALSE Disable async query in the RPD connection pool.This might be an obiee 10.1.3.4 issue only ( still checking  )."async query" must be disabled in the connection pools.It was designed to enable query cancellation to a database, and turned out to have too many edge conditions in normal communication that produced random corruption of data and crashes.  Please ensure it is turned off in the RPD. Check AIX error report (errpt).Errors external to obiee applications can trigger crashes.  $ /bin/errpt -aHardware errors ( firmware, adapters, disks ) should be reported to IBM support.All application core files are recorded by AIX;  the most recent ones are listed first. Reserved for something important to say.

    Read the article

  • Connecting SceneBuilder edited FXML to Java code

    - by daniel
    Recently I had to answer several questions regarding how to connect an UI built with the JavaFX SceneBuilder 1.0 Developer Preview to Java Code. So I figured out that a short overview might be helpful. But first, let me state the obvious. What is FXML? To make it short, FXML is an XML based declaration format for JavaFX. JavaFX provides an FXML loader which will parse FXML files and from that construct a graph of Java object. It may sound complex when stated like that but it is actually quite simple. Here is an example of FXML file, which instantiate a StackPane and puts a Button inside it: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml"> <children> <Button mnemonicParsing="false" text="Button" /> </children> </StackPane> ... and here is the code I would have had to write if I had chosen to do the same thing programatically: import javafx.scene.control.*; import javafx.scene.layout.*; ... final Button button = new Button("Button"); button.setMnemonicParsing(false); final StackPane stackPane = new StackPane(); stackPane.setPrefWidth(200.0); stackPane.setPrefHeight(150.0); stacPane.getChildren().add(button); As you can see - FXML is rather simple to understand - as it is quite close to the JavaFX API. So OK FXML is simple, but why would I use it?Well, there are several answers to that - but my own favorite is: because you can make it with SceneBuilder. What is SceneBuilder? In short SceneBuilder is a layout tool that will let you graphically build JavaFX user interfaces by dragging and dropping JavaFX components from a library, and save it as an FXML file. SceneBuilder can also be used to load and modify JavaFX scenegraphs declared in FXML. Here is how I made the small FXML file above: Start the JavaFX SceneBuilder 1.0 Developer Preview In the Library on the left hand side, click on 'StackPane' and drag it on the content view (the white rectangle) In the Library, select a Button and drag it onto the StackPane on the content view. In the Hierarchy Panel on the left hand side - select the StackPane component, then invoke 'Edit > Trim To Selected' from the menubar That's it - you can now save, and you will obtain the small FXML file shown above. Of course this is only a trivial sample, made for the sake of the example - and SceneBuilder will let you create much more complex UIs. So, I have now an FXML file. But what do I do with it? How do I include it in my program? How do I write my main class? Loading an FXML file with JavaFX Well, that's the easy part - because the piece of code you need to write never changes. You can download and look at the SceneBuilder samples if you need to get convinced, but here is the short version: Create a Java class (let's call it 'Main.java') which extends javafx.application.Application In the same directory copy/save the FXML file you just created using SceneBuilder. Let's name it "simple.fxml" Now here is the Java code for the Main class, which simply loads the FXML file and puts it as root in a stage's scene. /* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. */ package simple; import java.util.logging.Level; import java.util.logging.Logger; import javafx.application.Application; import javafx.fxml.FXMLLoader; import javafx.scene.Scene; import javafx.scene.layout.StackPane; import javafx.stage.Stage; public class Main extends Application { /** * @param args the command line arguments */ public static void main(String[] args) { Application.launch(Main.class, (java.lang.String[])null); } @Override public void start(Stage primaryStage) { try { StackPane page = (StackPane) FXMLLoader.load(Main.class.getResource("simple.fxml")); Scene scene = new Scene(page); primaryStage.setScene(scene); primaryStage.setTitle("FXML is Simple"); primaryStage.show(); } catch (Exception ex) { Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex); } } } Great! Now I only have to use my favorite IDE to compile the class and run it. But... wait... what does it do? Well nothing. It just displays a button in the middle of a window. There's no logic attached to it. So how do we do that? How can I connect this button to my application logic? Here is how: Connection to code First let's define our application logic. Since this post is only intended to give a very brief overview - let's keep things simple. Let's say that the only thing I want to do is print a message on System.out when the user clicks on my button. To do that, I'll need to register an action handler with my button. And to do that, I'll need to somehow get a handle on my button. I'll need some kind of controller logic that will get my button and add my action handler to it. So how do I get a handle to my button and pass it to my controller? Once again - this is easy: I just need to write a controller class for my FXML. With each FXML file, it is possible to associate a controller class defined for that FXML. That controller class will make the link between the UI (the objects defined in the FXML) and the application logic. To each object defined in FXML we can associate an fx:id. The value of the id must be unique within the scope of the FXML, and is the name of an instance variable inside the controller class, in which the object will be injected. Since I want to have access to my button, I will need to add an fx:id to my button in FXML, and declare an @FXML variable in my controller class with the same name. In other words - I will need to add fx:id="myButton" to my button in FXML: -- <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> and declare @FXML private Button myButton in my controller class @FXML private Button myButton; // value will be injected by the FXMLLoader Let's see how to do this. Add an fx:id to the Button object Load "simple.fxml" in SceneBuilder - if not already done In the hierarchy panel (bottom left), or directly on the content view, select the Button object. Open the Properties sections of the inspector (right panel) for the button object At the top of the section, you will see a text field labelled fx:id. Enter myButton in that field and validate. Associate a controller class with the FXML file Still in SceneBuilder, select the top root object (in our case, that's the StackPane), and open the Code section of the inspector (right hand side) At the top of the section you should see a text field labelled Controller Class. In the field, type simple.SimpleController. This is the name of the class we're going to create manually. If you save at this point, the FXML will look like this: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml" fx:controller="simple.SimpleController"> <children> <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> </children> </StackPane> As you can see, the name of the controller class has been added to the root object: fx:controller="simple.SimpleController" Coding the controller class In your favorite IDE, create an empty SimpleController.java class. Now what does a controller class looks like? What should we put inside? Well - SceneBuilder will help you there: it will show you an example of controller skeleton tailored for your FXML. In the menu bar, invoke View > Show Sample Controller Skeleton. A popup appears, displaying a suggestion for the controller skeleton: copy the code displayed there, and paste it into your SimpleController.java: /** * Sample Skeleton for "simple.fxml" Controller Class * Use copy/paste to copy paste this code into your favorite IDE **/ package simple; import java.net.URL; import java.util.ResourceBundle; import javafx.fxml.FXML; import javafx.fxml.Initializable; import javafx.scene.control.Button; public class SimpleController implements Initializable { @FXML // fx:id="myButton" private Button myButton; // Value injected by FXMLLoader @Override // This method is called by the FXMLLoader when initialization is complete public void initialize(URL fxmlFileLocation, ResourceBundle resources) { assert myButton != null : "fx:id=\"myButton\" was not injected: check your FXML file 'simple.fxml'."; // initialize your logic here: all @FXML variables will have been injected } } Note that the code displayed by SceneBuilder is there only for educational purpose: SceneBuilder does not create and does not modify Java files. This is simply a hint of what you can use, given the fx:id present in your FXML file. You are free to copy all or part of the displayed code and paste it into your own Java class. Now at this point, there only remains to add our logic to the controller class. Quite easy: in the initialize method, I will register an action handler with my button: () { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... -- ... // initialize your logic here: all @FXML variables will have been injected myButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... That's it - if you now compile everything in your IDE, and run your application, clicking on the button should print a message on the console! Summary What happens is that in Main.java, the FXMLLoader will load simple.fxml from the jar/classpath, as specified by 'FXMLLoader.load(Main.class.getResource("simple.fxml"))'. When loading simple.fxml, the loader will find the name of the controller class, as specified by 'fx:controller="simple.SimpleController"' in the FXML. Upon finding the name of the controller class, the loader will create an instance of that class, in which it will try to inject all the objects that have an fx:id in the FXML. Thus, after having created '<Button fx:id="myButton" ... />', the FXMLLoader will inject the button instance into the '@FXML private Button myButton;' instance variable found on the controller instance. This is because The instance variable has an @FXML annotation, The name of the variable exactly matches the value of the fx:id Finally, when the whole FXML has been loaded, the FXMLLoader will call the controller's initialize method, and our code that registers an action handler with the button will be executed. For a complete example, take a look at the HelloWorld SceneBuilder sample. Also make sure to follow the SceneBuilder Get Started guide, which will guide you through a much more complete example. Of course, there are more elegant ways to set up an Event Handler using FXML and SceneBuilder. There are also many different ways to work with the FXMLLoader. But since it's starting to be very late here, I think it will have to wait for another post. I hope you have enjoyed the tour! --daniel

    Read the article

  • From HttpRuntime.Cache to Windows Azure Caching (Preview)

    - by Jeff
    I don’t know about you, but the announcement of Windows Azure Caching (Preview) (yes, the parentheses are apparently part of the interim name) made me a lot more excited about using Azure. Why? Because one of the great performance tricks of any Web app is to cache frequently used data in memory, so it doesn’t have to hit the database, a service, or whatever. When you run your Web app on one box, HttpRuntime.Cache is a sweet and stupid-simple solution. Somewhere in the data fetching pieces of your app, you can see if an object is available in cache, and return that instead of hitting the data store. I did this quite a bit in POP Forums, and it dramatically cuts down on the database chatter. The problem is that it falls apart if you run the app on many servers, in a Web farm, where one server may initiate a change to that data, and the others will have no knowledge of the change, making it stale. Of course, if you have the infrastructure to do so, you can use something like memcached or AppFabric to do a distributed cache, and achieve the caching flavor you desire. You could do the same thing in Azure before, but it would cost more because you’d need to pay for another role or VM or something to host the cache. Now, you can use a portion of the memory from each instance of a Web role to act as that cache, with no additional cost. That’s huge. So if you’re using a percentage of memory that comes out to 100 MB, and you have three instances running, that’s 300 MB available for caching. For the uninitiated, a Web role in Azure is essentially a VM that runs a Web app (worker roles are the same idea, only without the IIS part). You can spin up many instances of the role, and traffic is load balanced to the various instances. It’s like adding or removing servers to a Web farm all willy-nilly and at your discretion, and it’s what the cloud is all about. I’d say it’s my favorite thing about Windows Azure. The slightly annoying thing about developing for a Web role in Azure is that the local emulator that’s launched by Visual Studio is a little on the slow side. If you’re used to using the built-in Web server, you’re used to building and then alt-tabbing to your browser and refreshing a page. If you’re just changing an MVC view, you’re not even doing the building part. Spinning up the simulated Azure environment is too slow for this, but ideally you want to code your app to use this fantastic distributed cache mechanism. So first off, here’s the link to the page showing how to code using the caching feature. If you’re used to using HttpRuntime.Cache, this should be pretty familiar to you. Let’s say that you want to use the Azure cache preview when you’re running in Azure, but HttpRuntime.Cache if you’re running local, or in a regular IIS server environment. Through the magic of dependency injection, we can get there pretty quickly. First, design an interface to handle the cache insertion, fetching and removal. Mine looks like this: public interface ICacheProvider {     void Add(string key, object item, int duration);     T Get<T>(string key) where T : class;     void Remove(string key); } Now we’ll create two implementations of this interface… one for Azure cache, one for HttpRuntime: public class AzureCacheProvider : ICacheProvider {     public AzureCacheProvider()     {         _cache = new DataCache("default"); // in Microsoft.ApplicationServer.Caching, see how-to      }         private readonly DataCache _cache;     public void Add(string key, object item, int duration)     {         _cache.Add(key, item, new TimeSpan(0, 0, 0, 0, duration));     }     public T Get<T>(string key) where T : class     {         return _cache.Get(key) as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } public class LocalCacheProvider : ICacheProvider {     public LocalCacheProvider()     {         _cache = HttpRuntime.Cache;     }     private readonly System.Web.Caching.Cache _cache;     public void Add(string key, object item, int duration)     {         _cache.Insert(key, item, null, DateTime.UtcNow.AddMilliseconds(duration), System.Web.Caching.Cache.NoSlidingExpiration);     }     public T Get<T>(string key) where T : class     {         return _cache[key] as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } Feel free to expand these to use whatever cache features you want. I’m not going to go over dependency injection here, but I assume that if you’re using ASP.NET MVC, you’re using it. Somewhere in your app, you set up the DI container that resolves interfaces to concrete implementations (Ninject call is a “kernel” instead of a container). For this example, I’ll show you how StructureMap does it. It uses a convention based scheme, where if you need to get an instance of IFoo, it looks for a class named Foo. You can also do this mapping explicitly. The initialization of the container looks something like this: ObjectFactory.Initialize(x =>             {                 x.Scan(scan =>                         {                             scan.AssembliesFromApplicationBaseDirectory();                             scan.WithDefaultConventions();                         });                 if (Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.IsAvailable)                     x.For<ICacheProvider>().Use<AzureCacheProvider>();                 else                     x.For<ICacheProvider>().Use<LocalCacheProvider>();             }); If you use Ninject or Windsor or something else, that’s OK. Conceptually they’re all about the same. The important part is the conditional statement that checks to see if the app is running in Azure. If it is, it maps ICacheProvider to AzureCacheProvider, otherwise it maps to LocalCacheProvider. Now when a request comes into your MVC app, and the chain of dependency resolution occurs, you can see to it that the right caching code is called. A typical design may have a call stack that goes: Controller –> BusinessLogicClass –> Repository. Let’s say your repository class looks like this: public class MyRepo : IMyRepo {     public MyRepo(ICacheProvider cacheProvider)     {         _context = new MyDataContext();         _cache = cacheProvider;     }     private readonly MyDataContext _context;     private readonly ICacheProvider _cache;     public SomeType Get(int someTypeID)     {         var key = "somename-" + someTypeID;         var cachedObject = _cache.Get<SomeType>(key);         if (cachedObject != null)         {             _context.SomeTypes.Attach(cachedObject);             return cachedObject;         }         var someType = _context.SomeTypes.SingleOrDefault(p => p.SomeTypeID == someTypeID);         _cache.Add(key, someType, 60000);         return someType;     } ... // more stuff to update, delete or whatever, being sure to remove // from cache when you do so  When the DI container gets an instance of the repo, it passes an instance of ICacheProvider to the constructor, which in this case will be whatever implementation was specified when the container was initialized. The Get method first tries to hit the cache, and of course doesn’t care what the underlying implementation is, Azure, HttpRuntime, or otherwise. If it finds the object, it returns it right then. If not, it hits the database (this example is using Entity Framework), and inserts the object into the cache before returning it. The important thing not pictured here is that other methods in the repo class will construct the key for the cached object, in this case “somename-“ plus the ID of the object, and then remove it from cache, in any method that alters or deletes the object. That way, no matter what instance of the role is processing the request, it won’t find the object if it has been made stale, that is, updated or outright deleted, forcing it to attempt to hit the database. So is this good technique? Well, sort of. It depends on how you use it, and what your testing looks like around it. Because of differences in behavior and execution of the two caching providers, for example, you could see some strange errors. For example, I immediately got an error indicating there was no parameterless constructor for an MVC controller, because the DI resolver failed to create instances for the dependencies it had. In reality, the NuGet packaged DI resolver for StructureMap was eating an exception thrown by the Azure components that said my configuration, outlined in that how-to article, was wrong. That error wouldn’t occur when using the HttpRuntime. That’s something a lot of people debate about using different components like that, and how you configure them. I kinda hate XML config files, and like the idea of the code-based approach above, but you should be darn sure that your unit and integration testing can account for the differences.

    Read the article

  • IIS 6.0 FTP Folder Permissions

    - by Beuy
    I have a IIS Ftp website setup like so \ftp\users\domain\public\public Software that runs on clients computers logs into the FTP by specifying domain\public and moving to public, it then uploads or downloads files / folders into that area. I wan't to restrict the permissions on \ftp\users\domain\public so that nothing / noone can write files or folders here, only to \ftp\users\domain\public\public. I setup the NTFS permissions of the folder to remove domain\users, public and server\users to not have modify right, yet I can still upload / modify files. I have disabled inheritance from the parent folder of \ftp\users\domain\public as well. Any ideas on what I'm missing here? P.S I know this is a stupid setup and makes no sense, it's some bizarre legacy application that I need to migrate to a safer environment until it can be replaced, then I'm going to light it on fire -.- and dance around it.

    Read the article

  • Why does a group policy not applied to the domain administrator account?

    - by Saariko
    I have a working policy on my entire domain. I just found out, when logging with the domain administrator, that this policy is not applied (EDIT: Running : gpresult shows that the GPO's are applied - but, this GPO is for Drive Mappings, and the actual drive mappings are NOT shown) The administrator account - does not have any login script on his profile tab. My GPO's are mainly small/atomic settings: single GPO to handle each settings: UAC, Firewall, printers. GPO status for the object is enabled That's an overview of the Drive Maps: Reading on MS support site, I checked the delegation tab, and it is marked as applied to domain and enterprise admins. Every user gets these policies correctly. The OU that is set is the root of the domain. (for testing purpose - I did that to eliminate hierarchy issues - did not help) Block Inheritance is disabled. (never used it anyway) GPO link GPO Security Filterings

    Read the article

  • IIS 6.0 FTP Folder Permissions

    - by Beuy
    I have a IIS FTP website setup like this \ftp\users\domain\public\public Software that runs on clients computers logs into the FTP server by specifying domain\public and moving to public, it then uploads or downloads files / folders into that area. I want to restrict permissions on \ftp\users\domain\public so that nothing/nobody can write files or folders here, only to \ftp\users\domain\public\public. I setup the NTFS permissions of the folder to remove domain\users, public and server\users to not have modify right, yet I can still upload/modify files. I have disabled inheritance from the parent folder of \ftp\users\domain\public as well. Any ideas on what I'm missing here? P.S I know this is a stupid setup and makes no sense, it's some bizarre legacy application that I need to migrate to a safer environment until it can be replaced.

    Read the article

  • Full Access user removed from NTFS Share

    - by TJ
    I don't know how it happened but for some reason one of the sub folders in the Network shares (call the share Market and the sub folder Support) no longer has any groups or users with full permissions on the share. The Market top level has users and groups with these permissions and everything is set up for folder inheritance but it's not inheriting permissions from the top level and only has modify permissions for the single group that is in the Access List for the sub folder Support. I can see items in the sub folder but I can not add, edit, or delete permissions to the Support folder. What are my options so I can once again manage permissions?

    Read the article

  • ADO.NET (WCF) Data Services Query Interceptor Hangs IIS

    - by PreMagination
    I have an ADO.NET Data Service that's supposed to provide read-only access to a somewhat complex database. Logically I have table-per-type (TPT) inheritance in my data model but the EDM doesn't implement inheritance. (Limitation of EF and navigation properties on derived types. STILL not fixed in EF4!) I can query my EDM directly (using a separate project) using a copy of the query I'm trying to run against the web service, results are returned within 10 seconds. Disabling the query interceptors I'm able to make the same query against the web service, results are returned similarly quickly. I can enable some of the query interceptors and the results are returned slowly, up to a minute or so later. Alternatively, I can enable all the query interceptors, expand less of the properties on the main object I'm querying, and results are returned in a similar period of time. (I've increased some of the timeout periods) Up til this point Sql Profiler indicates the slow-down is the database. (That's a post for a different day) But when I enable all my query interceptors and expand all the properties I'd like to have the IIS worker process pegs the CPU for 20 minutes and a query is never even made against the database. This implies to me that yes, my implementation probably sucks but regardless the Data Services "tier" is having an issue it shouldn't. WCF tracing didn't reveal anything interesting to my untrained eye. Details: Data model: Agent-Person-Student Student has a collection of referrals Students and referrals are private, queries against the web service should only return "your" students and referrals. This means Person and Agent need to be filtered too. Other entities (Agent-Organization-School) can be accessed by anyone who has authenticated. The existing security model is poorly suited to perform this type of filtering for this type of data access, the query interceptors are complicated and cause EF to generate some entertaining sql queries. Sample Interceptor [QueryInterceptor("Agents")] public Expression<Func<Agent, Boolean>> OnQueryAgents() { //Agent is a Person(1), Educator(2), Student(3), or Other Person(13); allow if scope permissions exist return ag => (ag.AgentType.AgentTypeId == 1 || ag.AgentType.AgentTypeId == 2 || ag.AgentType.AgentTypeId == 3 || ag.AgentType.AgentTypeId == 13) && ag.Person.OrganizationPersons.Count<OrganizationPerson>(op => op.Organization.ScopePermissions.Any<ScopePermission> (p => p.ApplicationRoleAccount.Account.UserName == HttpContext.Current.User.Identity.Name && p.ApplicationRoleAccount.Application.ApplicationId == 124) || op.Organization.HierarchyDescendents.Any<OrganizationsHierarchy>(oh => oh.AncestorOrganization.ScopePermissions.Any<ScopePermission> (p => p.ApplicationRoleAccount.Account.UserName == HttpContext.Current.User.Identity.Name && p.ApplicationRoleAccount.Application.ApplicationId == 124))) > 0; } The query interceptors for Person, Student, Referral are all very similar, ie they traverse multiple same/similar tables to look for ScopePermissions as above. Sample Query var referrals = (from r in service.Referrals .Expand("Organization/ParentOrganization") .Expand("Educator/Person/Agent") .Expand("Student/Person/Agent") .Expand("Student") .Expand("Grade") .Expand("ProblemBehavior") .Expand("Location") .Expand("Motivation") .Expand("AdminDecision") .Expand("OthersInvolved") where r.DateCreated >= coupledays && r.DateDeleted == null select r); Any suggestions or tips would be greatly associated, for fixing my current implementation or in developing a new one, with the caveat that the database can't be changed and that ultimately I need to expose a large portion of the database via a web service that limits data access to the data authorized for, for the purpose of data integration with multiple outside parties. THANK YOU!!!

    Read the article

  • JPA exception: Object: ... is not a known entity type.

    - by Toto
    I'm new to JPA and I'm having problems with the autogeneration of primary key values. I have the following entity: package jpatest.entities; import java.io.Serializable; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.GenerationType; import javax.persistence.Id; @Entity public class MyEntity implements Serializable { private static final long serialVersionUID = 1L; @Id @GeneratedValue(strategy = GenerationType.AUTO) private Long id; public Long getId() { return id; } public void setId(Long id) { this.id = id; } private String someProperty; public String getSomeProperty() { return someProperty; } public void setSomeProperty(String someProperty) { this.someProperty = someProperty; } public MyEntity() { } public MyEntity(String someProperty) { this.someProperty = someProperty; } @Override public String toString() { return "jpatest.entities.MyEntity[id=" + id + "]"; } } and the following main method in other class: public static void main(String[] args) { EntityManagerFactory emf = Persistence.createEntityManagerFactory("JPATestPU"); EntityManager em = emf.createEntityManager(); em.getTransaction().begin(); MyEntity e = new MyEntity("some value"); em.persist(e); /* (exception thrown here) */ em.getTransaction().commit(); em.close(); emf.close(); } This is my persistence unit: <?xml version="1.0" encoding="UTF-8"?> <persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"> <persistence-unit name="JPATestPU" transaction-type="RESOURCE_LOCAL"> <provider>oracle.toplink.essentials.PersistenceProvider</provider> <class>jpatest.entities.MyEntity</class> <properties> <property name="toplink.jdbc.user" value="..."/> <property name="toplink.jdbc.password" value="..."/> <property name="toplink.jdbc.url" value="jdbc:mysql://localhost:3306/jpatest"/> <property name="toplink.jdbc.driver" value="com.mysql.jdbc.Driver"/> <property name="toplink.ddl-generation" value="create-tables"/> </properties> </persistence-unit> </persistence> When I execute the program I get the following exception in the line marked with the proper comment: Exception in thread "main" java.lang.IllegalArgumentException: Object: jpatest.entities.MyEntity[id=null] is not a known entity type. at oracle.toplink.essentials.internal.sessions.UnitOfWorkImpl.registerNewObjectForPersist(UnitOfWorkImpl.java:3212) at oracle.toplink.essentials.internal.ejb.cmp3.base.EntityManagerImpl.persist(EntityManagerImpl.java:205) at jpatest.Main.main(Main.java:...) What am I missing?

    Read the article

  • checkbox unchecked when i scroll listview in android

    - by Mathew
    I am new to android development. I created a listview with textbox and checkbox. When I check the checkbox and scroll it down to check some other items in the list view, the older ones are unchecked. How to avoid this problem in listview? Please guide me with my code. Here is the code: main.xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical" android:layout_width="fill_parent" android:layout_height="fill_parent"> <TextView android:id="@+id/TextView01" android:layout_height="wrap_content" android:text="List of items" android:textStyle="normal|bold" android:gravity="center_vertical|center_horizontal" android:layout_width="fill_parent"></TextView> <ListView android:id="@+id/ListView01" android:layout_height="250px" android:layout_width="fill_parent"> </ListView> <Button android:text="Save" android:id="@+id/btnSave" android:layout_width="wrap_content" android:layout_height="wrap_content"> </Button> </LinearLayout> This is the xml page I used to create dynamic list row: listview.xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_height="wrap_content" android:gravity="left|center" android:layout_width="wrap_content" android:paddingBottom="5px" android:paddingTop="5px" android:paddingLeft="5px"> <TextView android:id="@+id/TextView01" android:layout_width="wrap_content" android:layout_height="wrap_content" android:gravity="center" android:textColor="#FFFF00" android:text="hi"></TextView> <TextView android:text="hello" android:id="@+id/TextView02" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginLeft="10px" android:textColor="#0099CC"></TextView> <EditText android:id="@+id/txtbox" android:layout_width="120px" android:layout_height="wrap_content" android:textSize="12sp" android:layout_x="211px" android:layout_y="13px"> </EditText> <CheckBox android:id="@+id/chkbox1" android:layout_width="wrap_content" android:layout_height="wrap_content" /> </LinearLayout> This is my activity class. CustomListViewActivity.java: package com.listivew; import android.app.Activity; import android.os.Bundle; import android.content.Context; import android.view.LayoutInflater; import android.view.View; import android.view.ViewGroup; import android.widget.BaseAdapter; import android.widget.Button; import android.widget.CheckBox; import android.widget.EditText; import android.widget.ListView; import android.widget.TextView; import android.widget.Toast; public class CustomListViewActivity extends Activity { ListView lstView; static Context mContext; Button btnSave; private static class EfficientAdapter extends BaseAdapter { private LayoutInflater mInflater; public EfficientAdapter(Context context) { mInflater = LayoutInflater.from(context); } public int getCount() { return country.length; } public Object getItem(int position) { return position; } public long getItemId(int position) { return position; } public View getView(int position, View convertView, ViewGroup parent) { final ViewHolder holder; if (convertView == null) { convertView = mInflater.inflate(R.layout.listview, parent, false); holder = new ViewHolder(); holder.text = (TextView) convertView .findViewById(R.id.TextView01); holder.text2 = (TextView) convertView .findViewById(R.id.TextView02); holder.txt = (EditText) convertView.findViewById(R.id.txtbox); holder.cbox = (CheckBox) convertView.findViewById(R.id.chkbox1); convertView.setTag(holder); } else { holder = (ViewHolder) convertView.getTag(); } holder.text.setText(curr[position]); holder.text2.setText(country[position]); holder.txt.setText(""); holder.cbox.setChecked(false); return convertView; } public class ViewHolder { TextView text; TextView text2; EditText txt; CheckBox cbox; } } @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); lstView = (ListView) findViewById(R.id.ListView01); lstView.setAdapter(new EfficientAdapter(this)); btnSave = (Button)findViewById(R.id.btnSave); mContext = this; btnSave.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { // I want to print the text which is in the listview one by one. //Later i will insert it in the database // Toast.makeText(getBaseContext(), "EditText Value, checkbox value and other values", Toast.LENGTH_SHORT).show(); for (int i = 0; i < lstView.getCount(); i++) { View listOrderView; listOrderView = lstView.getChildAt(i); try{ EditText txtAmt = (EditText)listOrderView.findViewById(R.id.txtbox); CheckBox cbValue = (CheckBox)listOrderView.findViewById(R.id.chkbox1); if(cbValue.isChecked()== true){ String amt = txtAmt.getText().toString(); Toast.makeText(getBaseContext(), "Amount is :"+amt, Toast.LENGTH_SHORT).show(); } }catch (Exception e) { // TODO: handle exception } } } }); } private static final String[] country = { "item1", "item2", "item3", "item4", "item5", "item6","item7", "item8", "item9", "item10", "item11", "item12" }; private static final String[] curr = { "1", "2", "3", "4", "5", "6","7", "8", "9", "10", "11", "12" }; } Please help me to slove this problem. I have referred in many places. But I could not get proper answer to solve this problem. Please provide me the code to avoid unchecking the checkbox while scrolling up and down. Thank you.

    Read the article

  • LLBLGen Pro v3.0 with Entity Framework v4.0 (12m video)

    - by FransBouma
    Today I recorded a video in which I illustrate some of the database-first functionality available in LLBLGen Pro v3.0. LLBLGen Pro v3.0 also supports model-first functionality, which I hope to illustrate in an upcoming video. LLBLGen Pro v3.0 is currently in beta and is scheduled to RTM some time in May 2010. It supports the following frameworks out of the box, with more scheduled to follow in the coming year: LLBLGen Pro RTL (our own o/r mapper framework), Linq to Sql, NHibernate and Entity Framework (v1 and v4). The video I linked to below illustrates the creation of an entity model for Entity Framework v4, by reverse engineering the SQL Server 2008 example database 'AdventureWorks'. The following topics (among others) are included in the video: Abbreviation support (example: convert 'Qty' into 'Quantity' during name construction) Flexible, framework specific settings Attribute definitions for various elements (so no requirement for buddy-classes or messing with generated code or templates) Retrieval of relational model data from a database Reverse engineering of tables into entities, automatically placed in groups Auto-creation of inheritance hierarchies Refactoring of entity fields into Value Type Definitions (DDD) Mapping a Typed view onto a stored procedure resultset Creation of a Typed list (definition of a query with a projection) on a set of related entities Validation and correction of found inconsistencies and errors Generating code using one of the pre-defined presets Illustration of the code in vs.net 2010 It also gives a good overview of what it takes with LLBLGen Pro v3.0 to start from a new project, point it to a database, get an entity model, perform tweaks and validation and generate code which is ready to run. I am no video recording expert so there's no audio and some mouse movements might be a little too quickly. If that's the case, please pause the video. It's rather big (52MB). Click here to open the HTML page with the video (Flash). Opens in a new window. LLBLGen Pro v3.0 is currently in beta (available for v2.x customers) and scheduled to be released somewhere in May 2010.

    Read the article

  • Routing audio to Bluetooth Headset (non-A2DP) on Android

    - by Jayesh
    I have a non-A2DP single ear BT headset (Plantronics 510) and would like to use it with my Android HTC Magic to listen to low quality audio like podcasts/audio books. After much googling I found that only phone call audio can be routed to the non-A2DP BT headsets. (I would like to know if you have found a ready solution to route all kinds of audio to non-A2DP BT headsets) So I figured, somehow programmatically I can channel the audio to the stream that carries phone call audio. This way I will fool the phone to carry my mp3 audio to my BT headset. I wrote following simple code. import android.content.*; import android.app.Activity; import android.os.Bundle; import android.media.*; import java.io.*; import android.util.Log; public class BTAudioActivity extends Activity { private static final String TAG = "BTAudioActivity"; private MediaPlayer mPlayer = null; private AudioManager amanager = null; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); amanager = (AudioManager) getSystemService(Context.AUDIO_SERVICE); amanager.setBluetoothScoOn(true); amanager.setMode(AudioManager.MODE_IN_CALL); mPlayer = new MediaPlayer(); try { mPlayer.setDataSource(new FileInputStream( "/sdcard/sample.mp3").getFD()); mPlayer.setAudioStreamType(AudioManager.STREAM_VOICE_CALL); mPlayer.prepare(); mPlayer.start(); } catch(Exception e) { Log.e(TAG, e.toString()); } } @Override public void onDestroy() { mPlayer.stop(); amanager.setMode(AudioManager.MODE_NORMAL); amanager.setBluetoothScoOn(false); super.onDestroy(); } } As you can see I tried combinations of various methods that I thought will fool the phone to believe my audio is a phone call: Using MediaPlayer's setAudioStreamType(STREAM_VOICE_CALL) using AudioManager's setBluetoothScoOn(true) using AudioManager's setMode(MODE_IN_CALL) But none of the above worked. If I remove the AudioManager calls in the above code, the audio plays from speaker and if I replace them as shown above then the audio stops coming from speakers, but it doesn't come through the BT headset. So this might be a partial success. I have checked that the BT headset works alright with phone calls. There must be a reason for Android not supporting this. But I can't let go of the feeling that it is not possible to programmatically reroute the audio. Any ideas? P.S. above code needs following permission <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS"/>

    Read the article

  • (C#) Label.Text = Struct.Value (Microsoft.VisualStudio.Debugger.Runtime.CrossThreadMessagingException)

    - by Kyle
    I have an app that I'm working on that polls usage from an ISP (Download quota). I've tried threading this via 'new Thread(ThreaProc)' but that didn't work, now trying an IAsyncResult based approach which does the same thing... I've got no idea on how to rectify, please help? The need-to-know: // Global public delegate void AsyncPollData(ref POLLDATA pData); // Class scope: private POLLDATA pData; private void UpdateUsage() { AsyncPollData PollDataProc = new AsyncPollData(frmMain.PollUsage); IAsyncResult result = PollDataProc.BeginInvoke(ref pData, new AsyncCallback(UpdateDone), PollDataProc); } public void UpdateDone(IAsyncResult ar) { AsyncPollData PollDataProc = (AsyncPollData)ar.AsyncState; PollDataProc.EndInvoke(ref pData, ar); // The Exception occurs here: lblStatus.Text = pData.LastError; } public static void PollUsage(ref POLLDATA PData) { PData.LastError = "Some string"; return; }

    Read the article

  • WPF Combobox: Autocomplete

    - by user279244
    Hi, I have implemented a Autocomplete enabled Combobox in WPF. It is like below... private void cbxSession_Loaded(object sender, RoutedEventArgs e) { cbxSession.ApplyTemplate(); TextBox textBox = cbxSession.Template.FindName("PART_EditableTextBox", cbxSession) as TextBox; textBox.IsReadOnly = false; if (textBox != null) { textBox.KeyUp += new KeyEventHandler(textBox_KeyUp); textBox.KeyUp += delegate { ///open the drop down and start filtering based on what the user types into the combobox cbxSession.IsDropDownOpen = true; cbxSession.Items.Filter += a => { if (a.ToString().ToUpper().Contains(textBox.Text.ToUpper())) return true; else return false; }; }; } } void textBox_KeyUp(object sender, KeyEventArgs e) { if ((e.Key == System.Windows.Input.Key.Up) || (e.Key == System.Windows.Input.Key.Down)) { e.Handled = true; } else if (e.Key == System.Windows.Input.Key.Enter) { e.Handled = true; cbxSession.IsDropDownOpen = false; } } void textBox_KeyDown(object sender, KeyEventArgs e) { cbxSession.SelectionChanged -= cbxSession_SelectionChanged; if (e.Key == System.Windows.Input.Key.Enter) { e.Handled = true; cbxSession.SelectionChanged += cbxSession_SelectionChanged; } if ((e.Key == System.Windows.Input.Key.Up) || (e.Key == System.Windows.Input.Key.Down)) { e.Handled = true; } } private void cbxSession_DropDownClosed(object sender, EventArgs e) { if (cbxSession.Text != "") { TextBox textBox = cbxSession.Template.FindName("PART_EditableTextBox", cbxSession) as TextBox; if (!cbxSession.Items.Contains(textBox.Text)) { textBox.Text = cbxSession.Text; } } } private void cbxSession_DropDownOpened(object sender, EventArgs e) { cbxSession.Items.Filter += a => { return true; }; } <ComboBox x:Name="cbxSession" Width="260" Canvas.Top="5" Canvas.Left="79" Height="25" Visibility="Visible" SelectionChanged="cbxSession_SelectionChanged" MaxDropDownHeight="200" IsTextSearchEnabled="False" IsEditable="True" IsReadOnly="True" Loaded="cbxSession_Loaded" DropDownClosed="cbxSession_DropDownClosed" StaysOpenOnEdit="True" DropDownOpened="cbxSession_DropDownOpened"> <ComboBox.ItemsPanel> <ItemsPanelTemplate> <VirtualizingStackPanel IsVirtualizing="True" IsItemsHost="True"/> </ItemsPanelTemplate> </ComboBox.ItemsPanel> </ComboBox> But, the problem I am facing is... When I try searching, the first character goes missing. And this happens only once. Secondly, When I am using Arrow buttons to the filtered items, the ComboboxSelectionChanged event is fired. Is there any way to make it fire only on the click of 'Enter'

    Read the article

  • WPF: Asynchronous progress bar

    - by SumGuy
    I'm trying to create a progress bar that will work asynchronously to the main process. I'm created a new event and invoked it however everytime I then try to perform operations on the progress bar I recieve the following error: "The calling thread cannot access this object because a different thread owns it" The following code is an attempt to send an instance of the progress bar to the event as an object, it obviously failed but it gives you an idea of what the code looks like. private event EventHandler importing; void MdbDataImport_importing(object sender, EventArgs e) { ProgressBar pb = (ProgressBar)sender; while (true) { if (pb.Value >= 200) pb.Value = 0; pb.Value += 10; } } private void btnImport_Click(object sender, RoutedEventArgs e) { importing += new EventHandler(MdbDataImport_importing); IAsyncResult aResult = null; aResult = importing.BeginInvoke(pbDataImport, null, null, null); importing.EndInvoke(aResult); } Does anyone have ideas of how to do this. Thanks in advance SumGuy.

    Read the article

  • facebook application using iframe on Facebook Developer Toolkit 3.0

    - by adveb
    hey i am trying to build facebook iframe application using the Facebook Developer Toolkit 3.01 asp.net c#. i am working by the ifrmae sample of the toolkit can be download here. www.facebooktoolkit.codeplex.com/releases/view/39727 this is my facebook application that is the same as the iframe sample. http://apps.facebook.com/alefbet/ this is my code, it has 2 pages, master page and default. this 2 pages are the same as the iframe sample. 1) this is the master page. public partial class IFrameMaster : Facebook.Web.CanvasIFrameMasterPage { public IFrameMaster() { RequireLogin = true; } } 2) this is the default.aspx public partial class Default : System.Web.UI.Page { private const string SCRIPT_BLOCK_NAME = "dynamicScript"; protected void Page_Load(object sender, EventArgs e) { if (IsPostBack) { if (Master.Api.Users.HasAppPermission(Enums.ExtendedPermissions.email)) { SendThankYouEmail(); } Response.Redirect("ThankYou.aspx"); } else { if (Master.Api.Users.HasAppPermission(Enums.ExtendedPermissions.email)) { emailPermissionPanel.Visible = false; } CreateScript(); } } private void SendThankYouEmail() { var subject = "Thank you for telling us your favorite color"; var body = "Thank you for telling us what your favorite color is. We hope you have enjoyed using this application. Encourage your friends to tell us their favorite color as well!"; this.Master.Api.Notifications.SendEmail(this.Master.Api.Session.UserId.ToString(), subject, body, string.Empty); } private void CreateScript() { var saveColorScript = @" function saveColor(color) { document.getElementById('" + colorInput.ClientID + @"').value = color; } function submitForm() { document.getElementById('" + form.ClientID + @"').submit(); } "; if (!ClientScript.IsClientScriptBlockRegistered(SCRIPT_BLOCK_NAME)) { ClientScript.RegisterClientScriptBlock(this.GetType(), SCRIPT_BLOCK_NAME, saveColorScript); } } } my directory structure is 1)the master page is in the root. 2)the default.aspx is in the root/alfbet directory. 3)i have also have the xd_receiver.htm inside root/channel directory. that inside the master page their is the folowing line: <script type="text/javascript"> FB_RequireFeatures(["XFBML"], function() { FB.Facebook.init("c81f17ee4d4ffc5113c55f8b99fdcab5", "channel/xd_receiver.htm"); }); </script> the problem is that the applicatin dosent work apps.facebook.com/alefbet/default.aspx why it dosent work ? please help me and others who also obstacle in this issue. i tryied lots of things, one of them was to display the user id. for that i put label in the default.aspx and wrote lblTest.Text = Master.Api.Users.GetInfo().uid.ToString(); and it dosent event get to this line. i know it because it keeps display in the label.text the word "label" thank you very much.

    Read the article

< Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >