Search Results

Search found 3582 results on 144 pages for 'digital camera'.

Page 2/144 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Creating predefinied camera views - How do I move the camera to make sense while using Controller?

    - by Deukalion
    I'm trying to understand 3D but the one thing I can't seem to understand is the Camera. Right now I'm rendering four 3D Cubes with textures and I set the Project Matrix: public BasicCamera3D(float fieldOfView, float aspectRatio, float clipStart, float clipEnd, Vector3 cameraPosition, Vector3 cameraLookAt) { projection_fieldOfView = MathHelper.ToRadians(fieldOfView); projection_aspectRatio = aspectRatio; projection_clipstart = clipStart; projection_clipend = clipEnd; matrix_projection = Matrix.CreatePerspectiveFieldOfView(projection_fieldOfView, aspectRatio, clipStart, clipEnd); view_cameraposition = cameraPosition; view_cameralookat = cameraLookAt; matrix_view = Matrix.CreateLookAt(cameraPosition, cameraLookAt, Vector3.Up); } BasicCamera3D gameCamera = new BasicCamera3D(45f, GraphicsDevice.Viewport.AspectRatio, 1.0f, 1000f, new Vector3(0, 0, 8), new Vector3(0, 0, 0)); This creates a sort of "Top-Down" camera, with 8 (still don't get the unit type here - it's not pixels I guess?) But, if I try to position the camera at the side to make "Side-View" or "Reverse Side View" camera, the camera is rotating to much until it's turned around it a couple of times. I render the boxes at: new Vector3(-1, 0, 0) new Vector3(0, 0, 0) new Vector3(1, 0, 0) new Vector3(1, 0, 1) and with the Top-Down camera it shows good, but I don't get how I can make the camera show the side or 45 degrees from top (Like 3rd person action games) because the logic doesn't make sense. Also, since every object you render needs a new BasicEffect with a new projection/view/world - can you still use the "same" camera always so you don't have to create a new View/Matrix and such for each object. It's seems weird. If someone could help me get the camera to navigate around my objects "naturally" so I can be able to set a few predtermined views to choose from it would be really helpful. Are there some sort of algorithm to calculate the view for this and perhaps not simply one value? Examples: Top-Down-View: I have an object at 0, 0, 0 when I turn the right stick on the Xbox 360 Controller it should rotate around that object kind of, not flip and turn upside down, disappear and then magically appear as a tiny dot somewhere I have no clue where it is like it feels like it does now. Side-View: I have an object at 0, 0, 0 when I rotate to sides or up and down, the camera should be able to show a little more of the periphery to each side (depending on which you look at), and the same while moving up or down.

    Read the article

  • Only draw visible objects to the camera in 2D

    - by Deukalion
    I have Map, each map has an array of Ground, each Ground consists of an array of VertexPositionTexture and a texture name reference so it renders a texture at these points (as a shape through triangulation). Now when I render my map I only want to get a list of all objects that are visible in the camera. (So I won't loop through more than I have to) Structs: public struct Map { public Ground[] Ground { get; set; } } public struct Ground { public int[] Indexes { get; set; } public VertexPositionNormalTexture[] Points { get; set; } public Vector3 TopLeft { get; set; } public Vector3 TopRight { get; set; } public Vector3 BottomLeft { get; set; } public Vector3 BottomRight { get; set; } } public struct RenderBoundaries<T> { public BoundingBox Box; public T Items; } when I load a map: foreach (Ground ground in CurrentMap.Ground) { Boundaries.Add(new RenderBoundaries<Ground>() { Box = BoundingBox.CreateFromPoints(new Vector3[] { ground.TopLeft, ground.TopRight, ground.BottomLeft, ground.BottomRight }), Items = ground }); } TopLeft, TopRight, BottomLeft, BottomRight are simply the locations of each corner that the shape make. A rectangle. When I try to loop through only the objects that are visible I do this in my Draw method: public int Draw(GraphicsDevice device, ICamera camera) { BoundingFrustum frustum = new BoundingFrustum(camera.View * camera.Projection); // Visible count int count = 0; EffectTexture.World = camera.World; EffectTexture.View = camera.View; EffectTexture.Projection = camera.Projection; foreach (EffectPass pass in EffectTexture.CurrentTechnique.Passes) { pass.Apply(); foreach (RenderBoundaries<Ground> render in Boundaries.Where(m => frustum.Contains(m.Box) != ContainmentType.Disjoint)) { // Draw ground count++; } } return count; } When I try adding just one ground, then moving the camera so the ground is out of frame it still returns 1 which means it still gets draw even though it's not within the camera's view. Am I doing something or wrong or can it be because of my Camera? Any ideas why it doesn't work?

    Read the article

  • Setting Up an IP Camera in ZoneMinder from Ubuntu

    - by Chris S
    I recently bought a TV-IP312W wireless IP camera. I've completed the basic setup on the camera itself, and confirmed I can stream video using the utility CamViewer. Now I'm trying to access the camera from ZoneMinder, so I can setup monitors and alerts. However, I'm finding the documentation a bit laking. Following the tutorial and a forum post, I've install ZoneMinder, and can access the web interface, but I'm getting stuck at the "Check that your Camera Works!" section. I can add a monitor, but after I add the configuration: Source Type: FFMPEG Source Path: http://192.168.1.105/cgi/mjpg/mjpeg.cgi?.mjpeg all I get is a broken image. What am I doing wrong?

    Read the article

  • Draw Bug 2D player Camera

    - by RedShft
    I have just implemented a 2D player camera for my game, everything works properly except the player on the screen jitters when it moves between tiles. What I mean by jitter, is that if the player is moving the camera updates the tileset to be drawn and if the player steps to the right, the camera snaps that way. The movement is not smooth. I'm guessing this is occurring because of how I implemented the function to calculate the current viewable area or how my draw function works. I'm not entirely sure how to fix this. This camera system was entirely of my own creation and a first attempt at that, so it's very possible this is not a great way of doing things. My camera class, pulls information from the current tileset and calculates the viewable area. Right now I am targettng a resolution of 800 by 600. So I try to fit the appropriate amount of tiles for that resolution. My camera class, after calculating the current viewable tileset relative to the players location, returns a slice of the original tileset to be drawn. This tileset slice is updated every frame according to the players position. This slice is then passed to the map class, which draws the tile on screen. //Map Draw Function //This draw function currently matches the GID of the tile to it's location on the //PNG file of the tileset and then draws this portion on the screen void Draw(SDL_Surface* background, int[] _tileSet) { enforce( tilesetImage != null, "Tileset is null!"); enforce( background != null, "BackGround is null!"); int i = 0; int j = 0; SDL_Rect DestR, SrcR; SrcR.x = 0; SrcR.y = 0; SrcR.h = 32; SrcR.w = 32; foreach(tile; _tileSet) { //This code is matching the current tiles ID to the tileset image SrcR.x = cast(short)(tileWidth * (tile >= 11 ? (tile - ((tile / 10) * 10) - 1) : tile - 1)); SrcR.y = cast(short)(tileHeight * (tile > 10 ? (tile / 10) : 0)); //Applying the tile to the surface SDL_BlitSurface( tilesetImage, &SrcR, background, &DestR ); //this keeps track of what column/row we are on i++; if ( i == mapWidth ) { i = 0; j++; } DestR.x = cast(short)(i * tileWidth); DestR.y = cast(short)(j * tileHeight); } } //Camera Class class Camera { private: //A rectangle representing the view area SDL_Rect viewArea; //In number of tiles int viewAreaWidth; int viewAreaHeight; //This is the x and y coordinate of the camera in MAP SPACE IN PIXELS vect2 cameraCoordinates; //The player location in map space IN PIXELS vect2 playerLocation; //This is the players location in screen space; vect2 playerScreenLoc; int playerTileCol; int playerTileRow; int cameraTileCol; int cameraTileRow; //The map is stored in a single array with the tile ids //this corresponds to the index of the starting and ending tile int cameraStartTile, cameraEndTile; //This is a slice of the current tile set int[] tileSetCopy; int mapWidth; int mapHeight; int tileWidth; int tileHeight; public: this() { this.viewAreaWidth = 25; this.viewAreaHeight = 19; this.cameraCoordinates = vect2(0, 0); this.playerLocation = vect2(0, 0); this.viewArea = SDL_Rect (0, 0, 0, 0); this.tileWidth = 32; this.tileHeight = 32; } void Init(vect2 playerPosition, ref int[] tileSet, int mapWidth, int mapHeight ) { playerLocation = playerPosition; this.mapWidth = mapWidth; this.mapHeight = mapHeight; CalculateCurrentCameraPosition( tileSet, playerPosition ); //writeln( "Tile Set Copy: ", tileSetCopy ); //writeln( "Orginal Tile Set: ", tileSet ); } void CalculateCurrentCameraPosition( ref int[] tileSet, vect2 playerPosition ) { playerLocation = playerPosition; playerTileCol = cast(int)((playerLocation.x / tileWidth) + 1); playerTileRow = cast(int)((playerLocation.y / tileHeight) + 1); //writeln( "Player Tile (Column, Row): ","(", playerTileCol, ", ", playerTileRow, ")"); cameraTileCol = playerTileCol - (viewAreaWidth / 2); cameraTileRow = playerTileRow - (viewAreaHeight / 2); CameraMapBoundsCheck(); //writeln( "Camera Tile Start (Column, Row): ","(", cameraTileCol, ", ", cameraTileRow, ")"); cameraStartTile = ( (cameraTileRow - 1) * mapWidth ) + cameraTileCol - 1; //writeln( "Camera Start Tile: ", cameraStartTile ); cameraEndTile = cameraStartTile + ( viewAreaWidth * viewAreaHeight ) * 2; //writeln( "Camera End Tile: ", cameraEndTile ); tileSetCopy = tileSet[cameraStartTile..cameraEndTile]; } vect2 CalculatePlayerScreenLocation() { cameraCoordinates.x = cast(float)(cameraTileCol * tileWidth); cameraCoordinates.y = cast(float)(cameraTileRow * tileHeight); playerScreenLoc = playerLocation - cameraCoordinates + vect2(32, 32);; //writeln( "Camera Coordinates: ", cameraCoordinates ); //writeln( "Player Location (Map Space): ", playerLocation ); //writeln( "Player Location (Screen Space): ", playerScreenLoc ); return playerScreenLoc; } void CameraMapBoundsCheck() { if( cameraTileCol < 1 ) cameraTileCol = 1; if( cameraTileRow < 1 ) cameraTileRow = 1; if( cameraTileCol + 24 > mapWidth ) cameraTileCol = mapWidth - 24; if( cameraTileRow + 19 > mapHeight ) cameraTileRow = mapHeight - 19; } ref int[] GetTileSet() { return tileSetCopy; } int GetViewWidth() { return viewAreaWidth; } }

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Rotate sprite to face 3D camera

    - by omikun
    I am trying to rotate a sprite so it is always facing a 3D camera. shaders->setUniform("camera", gCamera.matrix()); glm::mat4 scale = glm::scale(glm::mat4(), glm::vec3(5e5, 5e5, 5e5)); glm::vec3 look = gCamera.position(); glm::vec3 right = glm::cross(gCamera.up(), look); glm::vec3 up = glm::cross(look, right); glm::mat4 newTransform = glm::lookAt(glm::vec3(0), gCamera.position(), up) * scale; shaders->setUniform("model", newTransform); In the vertex shader: gl_Position = camera * model * vec4(vert, 1); The object will track the camera if I move the camera up or down, but if I rotate the camera around it, it will rotate in the other direction so I end up seeing its front twice and its back twice as I rotate around it 360. What am I doing wrong?

    Read the article

  • Limit the amount a camera can pitch

    - by ChocoMan
    I'm having problems trying to limit the range my camera can pitch. Currently my camera can pitch around a model without restriction, but having a hard time trying to find the value of the degree/radian the camera is currently at after pitching. Here is what I got so far: // Moves camera with thumbstick Pitch = pController.ThumbSticks.Right.Y * MathHelper.ToRadians(speedAngleMAX); // Pitch Camera around model public void cameraPitch(float pitch) { pitchAngle = ModelLoad.camTarget - ModelLoad.CameraPos; axisPitch = Vector3.Cross(Vector3.Up, pitchAngle); // pitch constrained to model's orientation axisPitch.Normalize(); ModelLoad.CameraPos = Vector3.Transform(ModelLoad.CameraPos - ModelLoad.camTarget, Matrix.CreateFromAxisAngle(axisPitch, pitch)) + ModelLoad.camTarget; } I've tried restraining the Y-camera position of ModelLoad.CameraPos.Y, but doing so gave me some unwanted results.

    Read the article

  • Camera not staying behind model while moving in circle

    - by ChocoMan
    I have a camera behind a model (3rd Person) and I'm having problems KEEPING it behind the model. When I first start my game, you see the back of the model. If the model moves forward, backward or strafe left or right, the camera moves along accordingly. When the model rotates (stationary), the camera rotates accordingly with the model still pointing at the model's back. So far, so good. The problem comes when the player is BOTH moving and rotating at the same time. Take for example a model moving in a circular pattern like running around a track. As the model moves in this motion, the model rotates slightly more with each complete rotation. Eventually, instead of looking at the model's back, eventually you will see the model in a profile view and before you know it, the model's front is facing the camera. And when you stop moving the model, the model stays in that position. So, as long as my model is stationary and rotating in one place, the camera rotates correctly. But as soon as there is any sort movement while rotating, the model is offset by a mysterious increasing amount. How can I keep the camera maintaining the same view no matter how I move AND rotate at the same time? // Rotates model and pitches camera on its own axis public void modelRotMovement(GamePadState pController) { /* For rotating the model left or right. * Camera maintains distance from model * throughout rotation and if model moves * to a new position. */ Yaw = pController.ThumbSticks.Right.X * MathHelper.ToRadians(speedAngleMAX); AddRotation = Quaternion.CreateFromAxisAngle(Vector3.Up, yaw); //AddRotation = Quaternion.CreateFromYawPitchRoll(Yaw, 0, 0); ModelLoad.MRotation *= AddRotation; MOrientation = Matrix.CreateFromQuaternion(ModelLoad.MRotation); Pitch = pController.ThumbSticks.Right.Y * MathHelper.ToRadians(speedAngleMAX); AddPitch = Quaternion.CreateFromAxisAngle(Vector3.Up, pitch); ModelLoad.CRotation *= AddPitch; COrientation = Matrix.CreateFromQuaternion(ModelLoad.CRotation); } // Orbit (yaw) Camera around model public void cameraYaw(float yaw) { Vector3 yawAngle = ModelLoad.CameraPos - ModelLoad.camTarget; Vector3 axisYaw = Vector3.Up; ModelLoad.CameraPos = Vector3.Transform(yawAngle, Matrix.CreateFromAxisAngle(axisYaw, yaw)) + ModelLoad.camTarget; }

    Read the article

  • Automatically zoom out the camera to show all players

    - by user36159
    I am building a game in XNA that takes place in a rectangular arena. The game is multiplayer and each player may go where they like within the arena. The camera is a perspective camera that looks directly downwards. The camera should be automatically repositioned based on the game state. Currently, the xy position is a weighted sum of the xy positions of important entities. I would like the camera's z position to be calculated from the xy coordinates so that it zooms out to the point where all important entities are visible. My current approach is to: hw = the greatest x distance from the camera to an important entity hh = the greatest y distance from the camera to an important entity Calculate z = max(hw / tan(FoVx), hh / tan(FoVy)) My code seems to almost work as it should, but the resulting z values are always too low by a factor of about 4. Any ideas?

    Read the article

  • Automatically zoom out the camera to show all players (XNA)

    - by user36159
    I am building a game in XNA that takes place in a rectangular arena. The game is multiplayer and each player may go where they like within the arena. The camera is a persepective camera that looks directly downwards. The camera should be automatically repositioned based on the game state. Currently, the xy position is a weighted sum of the xy positions of important entities. I would like the camera's z position to be calculated from the xy coordinates so that it zooms out to the point where all important entities are visible. My current approach is to: hw = the greatest x distance from the camera to an important entity hh = the greatest y distance from the camera to an important entity Calculate z = max(hw / tan(FoVx), hh / tan(FoVy)) My code seems to almost work as it should, but the resulting z values are always too low by a factor of about 4. Any ideas?

    Read the article

  • Drag camera/view in a 3D world

    - by Dono
    I'm trying to make a Draggable view in a 3D world. Currently, I've made it using mouse position on the screen, but, when I move the distance traveled by my mouse is not equal to the distance traveled in the 3D world. So, I've tried to do that : Compute a ray from mouse position to 3D world. Calculate intersection with the ground. Check intersection difference old position <- new position. Translate camera with the difference. I've got a problem with this method: The ray is computed with the current camera's position I move the camera I compute the new ray with new camera position. The difference between old ray and new ray is now invalid. So, graphically my camera don't stop to move to previous/new position everytime. How can I do a draggable camera with another solution ? Thanks!

    Read the article

  • Camera frustum calculation coming out wrong

    - by Telanor
    I'm trying to calculate a view/projection/bounding frustum for the 6 directions of a point light and I'm having trouble with the views pointing along the Y axis. Our game uses a right-handed, Y-up system. For the other 4 directions I create the LookAt matrix using (0, 1, 0) as the up vector. Obviously that doesn't work when looking along the Y axis so for those I use an up vector of (-1, 0, 0) for -Y and (1, 0, 0) for +Y. The view matrix seems to come out correctly (and the projection matrix always stays the same), but the bounding frustum is definitely wrong. Can anyone see what I'm doing wrong? This is the code I'm using: camera.Projection = Matrix.PerspectiveFovRH((float)Math.PI / 2, ShadowMapSize / (float)ShadowMapSize, 1, 5); for(var i = 0; i < 6; i++) { var renderTargetView = shadowMap.GetRenderTargetView((TextureCubeFace)i); var up = DetermineLightUp((TextureCubeFace) i); var forward = DirectionToVector((TextureCubeFace) i); camera.View = Matrix.LookAtRH(this.Position, this.Position + forward, up); camera.BoundingFrustum = new BoundingFrustum(camera.View * camera.Projection); } private static Vector3 DirectionToVector(TextureCubeFace direction) { switch (direction) { case TextureCubeFace.NegativeX: return -Vector3.UnitX; case TextureCubeFace.NegativeY: return -Vector3.UnitY; case TextureCubeFace.NegativeZ: return -Vector3.UnitZ; case TextureCubeFace.PositiveX: return Vector3.UnitX; case TextureCubeFace.PositiveY: return Vector3.UnitY; case TextureCubeFace.PositiveZ: return Vector3.UnitZ; default: throw new ArgumentOutOfRangeException("direction"); } } private static Vector3 DetermineLightUp(TextureCubeFace direction) { switch (direction) { case TextureCubeFace.NegativeY: return -Vector3.UnitX; case TextureCubeFace.PositiveY: return Vector3.UnitX; default: return Vector3.UnitY; } } Edit: Here's what the values are coming out to for the PositiveX and PositiveY directions: Constants: Position = {X:0 Y:360 Z:0} camera.Projection = [M11:0.9999999 M12:0 M13:0 M14:0] [M21:0 M22:0.9999999 M23:0 M24:0] [M31:0 M32:0 M33:-1.25 M34:-1] [M41:0 M42:0 M43:-1.25 M44:0] PositiveX: up = {X:0 Y:1 Z:0} target = {X:1 Y:360 Z:0} camera.View = [M11:0 M12:0 M13:-1 M14:0] [M21:0 M22:1 M23:0 M24:0] [M31:1 M32:0 M33:0 M34:0] [M41:0 M42:-360 M43:0 M44:1] camera.BoundingFrustum: Matrix = [M11:0 M12:0 M13:1.25 M14:1] [M21:0 M22:0.9999999 M23:0 M24:0] [M31:0.9999999 M32:0 M33:0 M34:0] [M41:0 M42:-360 M43:-1.25 M44:0] Top = {A:0.7071068 B:-0.7071068 C:0 D:254.5584} Bottom = {A:0.7071068 B:0.7071068 C:0 D:-254.5584} Left = {A:0.7071068 B:0 C:0.7071068 D:0} Right = {A:0.7071068 B:0 C:-0.7071068 D:0} Near = {A:1 B:0 C:0 D:-1} Far = {A:-1 B:0 C:0 D:5} PositiveY: up = {X:0 Y:0 Z:-1} target = {X:0 Y:361 Z:0} camera.View = [M11:-1 M12:0 M13:0 M14:0] [M21:0 M22:0 M23:-1 M24:0] [M31:0 M32:-1 M33:0 M34:0] [M41:0 M42:0 M43:360 M44:1] camera.BoundingFrustum: Matrix = [M11:-0.9999999 M12:0 M13:0 M14:0] [M21:0 M22:0 M23:1.25 M24:1] [M31:0 M32:-0.9999999 M33:0 M34:0] [M41:0 M42:0 M43:-451.25 M44:-360] Top = {A:0 B:0.7071068 C:0.7071068 D:-254.5585} Bottom = {A:0 B:0.7071068 C:-0.7071068 D:-254.5585} Left = {A:-0.7071068 B:0.7071068 C:0 D:-254.5585} Right = {A:0.7071068 B:0.7071068 C:0 D:-254.5585} Near = {A:0 B:1 C:0 D:-361} Far = {A:0 B:-1 C:0 D:365} When I use the resulting BoundingFrustum to cull regions outside of it, this is the result: Pass PositiveX: Drew 3 regions Pass NegativeX: Drew 6 regions Pass PositiveY: Drew 400 regions Pass NegativeY: Drew 36 regions Pass PositiveZ: Drew 3 regions Pass NegativeZ: Drew 6 regions There are only 400 regions to draw and the light is in the center of them. As you can see, the PositiveY direction is drawing every single region. With the near/far planes of the perspective matrix set as small as they are, there's no way a single frustum could contain every single region.

    Read the article

  • Light mask map and camera for static lights in XNA Platformer

    - by JiminyCricket
    Using the example for some basic light maps found here : http://blog.josack.com/2011/07/xna-2d-dynamic-lighting.html, I've managed to create a lightmap texture using individual lightmaps and display it over a 2D tiled world as in the Platformer example. I'm using the very basic 2D camera example as found here : http://www.david-amador.com/2009/10/xna-camera-2d-with-zoom-and-rotation/, and the problem is that the lightmap texture scrolls with the player sprite. This looks pretty good and would be excellent for lighting the player sprite as it moves. But, I also want to be able to place static lights (or some initial position for the lights) that do not move with the player or camera. When I turn off the camera or give it a static position, it works as a series of static lights so I believe it's probably caused by the camera transformation matrix following the player around. I'm using RenderTarget2Ds, one for the main game screen after all the backgrounds and tiles are rendered, and one for the "lightmap" which consists of a black background and a bunch of lighting textures which are merged with it using additive blending. For now, I'm doing all of this in PlatformerGame.cs where the camera transformation and position is set and the level.Draw() call is made. I can't figure out how to separate the drawing of the lightmap and the camera following the player. I was thinking it would be better to render the shadows and lighting directly in the drawing of the level itself, but I'm not sure how to do that either because this technique requires RenderTarget2Ds and calling SpriteBatch.Begin()/End().

    Read the article

  • Isometric Camera trouble - can't rotate or move correctly

    - by Deukalion
    I'm trying to create a 3D editor, but I've been having some trouble with the Camera and understanding each component. I've created 2 camera that works OK, but now I'm trying to implement an Isometric Camera in XNA without success on the rotation and movement of the camera. All I get working is Zoom. (Cube with x=3f, y=3f, z=1f in center) And this is the constructor for my IsometricCamera (inherits from ICamera, with methods for Rotation, Movement and Zoom, and Properties for World/View/Projection matrices) public IsometricCamera3D(GraphicsDevice device, float startClip = -1000f, float endClip = 1000f) { matrix_projection = Matrix.CreateOrthographic(device.Viewport.Width, device.Viewport.Height, startClip, endClip); rotation = Vector3.Zero; matrix_view = Matrix.CreateScale(zoom) * Matrix.CreateRotationY(MathHelper.ToRadians(45 + 180)) * Matrix.CreateRotationX(MathHelper.ToRadians(30)) * Matrix.CreateRotationZ(MathHelper.ToRadians(120)) * Matrix.CreateTranslation(rotation.X, rotation.Y, rotation.Z); } Problem is when I rotate it, all that happens is that the Cube gets more or less shiny and nothing happens. What is wrong and how should I create my View matrix to move it / rotate it correctly? Rotate, Move and Zoom looks like: MethodName(Vector3 rotation/movement), Zoom(float value); and just increases the value, then calls an update to recreate the View Matrix according to the code in the constructor. Currently, in my editor I use MiddleButton + Mouse Movement to rotate the camera, but it's not working as the other camera. But in my default camera I use World Matrix to move, but I guess that's not the best way to go which is why I'm trying this.

    Read the article

  • Implementing Camera Zoom in a 2D Engine

    - by Luke
    I'm currently trying to implement camera scaling/zoom in my 2D Engine. Normally I calculate the Sprite's drawing size and position similar to this pseudo code: render() { var x = sprite.x; var y = sprite.y; var sizeX = sprite.width * sprite.scaleX; // width of the sprite on the screen var sizeY = sprite.height * sprite.scaleY; // height of the sprite on the screen } To implement the scaling i changed the code to this: class Camera { var scaleX; var scaleY; var zoom; var finalScaleX; // = scaleX * zoom var finalScaleY; // = scaleY * zoom } render() { var x = sprite.x * Camera.finalScaleX; var y = sprite.y * Camera.finalScaleY; var sizeX = sprite.width * sprite.scaleX * Camera.finalScaleX; var sizeY = sprite.height * sprite.scaleY * Camera.finalScaleY; } The problem is that when the zoom is smaller than 1.0 all sprites are moved toward the top-left corner of the screen. This is expected when looking at the code but i want the camera to zoom on the center of the screen. Any tips on how to do that are welcome. :)

    Read the article

  • Recommendations for an inexpensive Surveillance Camera Kit that I can remotely access

    - by dr dork
    Hello! I just saw a deal on Newegg for this surveillance camera kit and it got me to thinking about installing a setup in my house. Can anyone recommend a decent surveillance camera kit, nothing fancy, that will allow me to access it from any computer (whether it's through a webpage or client program I need to install)? Thanks so much in advance for your help, I'm going to start researching this question right now.

    Read the article

  • Recommendations for a Surveillance Camera Kit that I can remotely access

    - by dr dork
    Hello! I just saw a deal on Newegg for this surveillance camera kit and it got me to thinking about installing a setup in my house. Can anyone recommend a decent surveillance camera kit, nothing fancy, that will allow me to access it from any computer (whether it's through a webpage or client program I need to install)? Thanks so much in advance for your help, I'm going to start researching this question right now.

    Read the article

  • Problem importing pictures from a digital camera with Windows 7

    - by snark
    Hi, Since I'm using Windows 7 (Beta, then RC, now RTM), I have issues when I download pictures from my digital cameras. It happens with my 2 cameras: a Canon Powershot S2 IS and a Canon Ixus 80 IS. When I plug a camera (any of them) to a USB port and switch it on in Play mode, the Autoplay function of Windows 7 starts with this screen: I select "Import pictures and videos" to call the native Windows 7 tool. It searches a bit for pictures to download from the camera and starts the transfer. However, during the transfer, I often get errors like this one: If I use "Try again", it works fine the second time and the picture is retrieved correctly. It's very annoying when it happens 20 or 30 times in a 500-picture download. I cannot leave it running standalone, as I have to watch for the errors and click on "Try again". Any idea what is causing these errors? I tried changing the USB port (normally the cameras are connected via a USB hub but it happens also when I connect them directly to a MB USB port) and the USB cable, but no success. I also checked the SD card by connecting them with a card reader and running a ChkDsk on them but it found no errors on the cards. Update: No problem when I copy the pictures manually with the Windows Explorer. And no problem either when I access the card with a reader. The builtin import tool of Windows is convenient as it sorts the pictures automatically by date (1 folder per day). And this is the way I sort my pictures

    Read the article

  • OpenGL - Calculating camera view matrix

    - by Karle
    Problem I am calculating the model, view and projection matrices independently to be used in my shader as follows: gl_Position = projection * view * model * vec4(in_Position, 1.0); When I try to calculate my camera's view matrix the Z axis is flipped and my camera seems like it is looking backwards. My program is written in C# using the OpenTK library. Translation (Working) I've created a test scene as follows: From my understanding of the OpenGL coordinate system they are positioned correctly. The model matrix is created using: Matrix4 translation = Matrix4.CreateTranslation(modelPosition); Matrix4 model = translation; The view matrix is created using: Matrix4 translation = Matrix4.CreateTranslation(-cameraPosition); Matrix4 view = translation; Rotation (Not-Working) I now want to create the camera's rotation matrix. To do this I use the camera's right, up and forward vectors: // Hard coded example orientation: // Normally calculated from up and forward // Similar to look-at camera. Vector3 r = Vector.UnitX; Vector3 u = Vector3.UnitY; Vector3 f = -Vector3.UnitZ; Matrix4 rot = new Matrix4( r.X, r.Y, r.Z, 0, u.X, u.Y, u.Z, 0, f.X, f.Y, f.Z, 0, 0.0f, 0.0f, 0.0f, 1.0f); This results in the following matrix being created: I know that multiplying by the identity matrix would produce no rotation. This is clearly not the identity matrix and therefore will apply some rotation. I thought that because this is aligned with the OpenGL coordinate system is should produce no rotation. Is this the wrong way to calculate the rotation matrix? I then create my view matrix as: // OpenTK is row-major so the order of operations is reversed: Matrix4 view = translation * rot; Rotation almost works now but the -Z/+Z axis has been flipped, with the green cube now appearing closer to the camera. It seems like the camera is looking backwards, especially if I move it around. My goal is to store the position and orientation of all objects (including the camera) as: Vector3 position; Vector3 up; Vector3 forward; Apologies for writing such a long question and thank you in advance. I've tried following tutorials/guides from many sites but I keep ending up with something wrong. Edit: Projection Matrix Set-up Matrix4 projection = Matrix4.CreatePerspectiveFieldOfView( (float)(0.5 * Math.PI), (float)display.Width / display.Height, 0.1f, 1000.0f);

    Read the article

  • Rotate camera around player and set new forward directions

    - by Samurai Fox
    I have a 3rd person camera which can rotate around the player. When I look at the back of the player and press forward, player goes forward. Then I rotate 360 around the player and "forward direction" is tilted for 90 degrees. So every 360 turn there is 90 degrees of direction change. For example when camera is facing the right side of the player, when I press button to move forward, I want player to turn to the left and make that the "new forward". I have Player object with Camera as child object. Camera object has Camera script. Inside Camera script there are Player and Camera classes. Player object itself, has Input Controller. Also I'm making this script for joystick/ controller primarily. My camera script so far: using UnityEngine; using System.Collections; public class CameraScript : MonoBehaviour { public GameObject Target; public float RotateSpeed = 10, FollowDistance = 20, FollowHeight = 10; float RotateSpeedPerTime, DesiredRotationAngle, DesiredHeight, CurrentRotationAngle, CurrentHeight, Yaw, Pitch; Quaternion CurrentRotation; void LateUpdate() { RotateSpeedPerTime = RotateSpeed * Time.deltaTime; DesiredRotationAngle = Target.transform.eulerAngles.y; DesiredHeight = Target.transform.position.y + FollowHeight; CurrentRotationAngle = transform.eulerAngles.y; CurrentHeight = transform.position.y; CurrentRotationAngle = Mathf.LerpAngle(CurrentRotationAngle, DesiredRotationAngle, 0); CurrentHeight = Mathf.Lerp(CurrentHeight, DesiredHeight, 0); CurrentRotation = Quaternion.Euler(0, CurrentRotationAngle, 0); transform.position = Target.transform.position; transform.position -= CurrentRotation * Vector3.forward * FollowDistance; transform.position = new Vector3(transform.position.x, CurrentHeight, transform.position.z); Yaw = Input.GetAxis("Right Horizontal") * RotateSpeedPerTime; Pitch = Input.GetAxis("Right Vertical") * RotateSpeedPerTime; transform.Translate(new Vector3(Yaw, -Pitch, 0)); transform.position = new Vector3(transform.position.x, transform.position.y, transform.position.z); transform.LookAt(Target.transform); } }

    Read the article

  • Fuji camera "mounts" but folder not in Dolphin After Kubuntu 13.10 upgrade

    - by user207207
    Fuji camera mount reported in attached devices but not visible in Dolphin After Kubuntu 13.10 upgrade Have reinstalled the driver, and a few other suggestions, for other cameras mounts failing on previous Ubuntu upgrades. I have already spent a couple of hours trying to get my photo's off the camera, very annoying. Worked perfectly in 11.04, 11.10, 12.04, 12.10 and 13.04. dmesg | tail; lsusb; lsb_release -a [ 6181.858786] CPUM: APIC 03 at 00000000fee00000 (mapped at ffffc90009400000) - ver 0x80050010, lint0=0x10700 lint1=0x10400 pc=0x00400 thmr=0x10000 [17261.396236] CPUM: APIC 00 at 00000000fee00000 (mapped at ffffc90000c6a000) - ver 0x80050010, lint0=0x10700 lint1=0x00400 pc=0x00400 thmr=0x10000 [17261.396239] CPUM: APIC 03 at 00000000fee00000 (mapped at ffffc90000c72000) - ver 0x80050010, lint0=0x10700 lint1=0x10400 pc=0x00400 thmr=0x10000 [17261.396241] CPUM: APIC 02 at 00000000fee00000 (mapped at ffffc90000c70000) - ver 0x80050010, lint0=0x10700 lint1=0x10400 pc=0x00400 thmr=0x10000 [17261.396255] CPUM: APIC 01 at 00000000fee00000 (mapped at ffffc90000c6e000) - ver 0x80050010, lint0=0x10700 lint1=0x10400 pc=0x00400 thmr=0x10000 [32456.884907] usb 2-5: new high-speed USB device number 2 using ehci-pci [32457.654046] usb 2-5: New USB device found, idVendor=04cb, idProduct=01e8 [32457.654050] usb 2-5: New USB device strings: Mfr=0, Product=2, SerialNumber=3 [32457.654052] usb 2-5: Product: Digital Camera [32457.654053] usb 2-5: SerialNumber: 4C3230302020091117CAA59WP18548 Bus 002 Device 002: ID 04cb:01e8 Fuji Photo Film Co., Ltd Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 003: ID 2013:024f PCTV Systems nanoStick T2 290e Bus 001 Device 002: ID 046d:082d Logitech, Inc. HD Pro Webcam C920 Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub No LSB modules are available. Distributor ID: Ubuntu vissibleDescription: Ubuntu 13.10 Release: 13.10 Codename: saucy sudo apt-get install gvfs-bin gvfs-mount gphoto2://[usb:002,002] Error mounting location: Error initializing camera: -108: No such file or directory ...... I have reported a bug in Dolphin, which has been transferred to Solid. Further information : I ran solid-hardware list details udi = '/org/kde/solid/udev/sys/devices/pci0000:00/0000:00:04.1/usb2/2-5' parent = '/org/kde/solid/udev' (string) vendor = '04cb' (string) product = 'Digital Camera' (string) description = 'Camera' (string) Block.major = 189 (0xbd) (int) Block.minor = 137 (0x89) (int) Block.device = '/dev/bus/usb/002/010' (string) Camera.supportedProtocols = {'ptp'} (string list) Camera.supportedDrivers = {'gphoto'} (string list) I still can't get my photo's off, I can see the folders using the Gimp menu. If anyone has got any ideas, I'm willing to try them.

    Read the article

  • EU Digital Agenda scores 85/100

    - by trond-arne.undheim
    If the Digital Agenda was a bottle of wine and I were wine critic Robert Parker, I would say the Digital Agenda has "a great bouquet, many good elements, with astringent, dry and puckering mouth feel that will not please everyone, but still displaying some finesse. A somewhat controlled effort with no surprises and a few noticeable flaws in the delivery. Noticeably shorter aftertaste than advertised by the producers. Score: 85/100. Enjoy now". The EU Digital Agenda states that "standards are vital for interoperability" and has a whole chapter on interoperability and standards. With this strong emphasis, there is hope the EU's outdated standardization system finally is headed for reform. It has been 23 years since the legal framework of standardisation was completed by Council Decision 87/95/EEC8 in the Information and Communications Technology (ICT) sector. Standardization is market driven. For several decades the IT industry has been developing standards and specifications in global open standards development organisations (fora/consortia), many of which have transparency procedures and practices far superior to the European Standards Organizations. The Digital Agenda rightly states: "reflecting the rise and growing importance of ICT standards developed by certain global fora and consortia". Some fora/consortia, of course, are distorted, influenced by single vendors, have poor track record, and need constant vigilance, but they are the minority. Therefore, the recognition needs to be accompanied by eligibility criteria focused on openness. Will the EU reform its ICT standardization by the end of 2010? Possibly, and only if DG Enterprise takes on board that Information and Communications Technologies (ICTs) have driven half of the productivity growth in Europe over the past 15 years, a prominent fact in the EU's excellent Digital Competitiveness report 2010 published on Monday 17 May. It is ok to single out the ICT sector. It simply is the most important sector right now as it fuels growth in all other sectors. Let's not wait for the entire standardization package which may take another few years. Europe does not have time. The Digital Agenda is an umbrella strategy with deliveries from a host of actors across the Commission. For instance, the EU promises to issue "guidance on transparent ex-ante disclosure rules for essential intellectual property rights and licensing terms and conditions in the context of standard setting", by 2011 in the Horisontal Guidelines now out for public consultation by DG COMP and to some extent by DG ENTR's standardization policy reform. This is important. The EU will issue procurement guidance as interoperability frameworks are put into practice. This is a joint responsibility of several DGs, and is likely to suffer coordination problems, controversy and delays. We have seen plenty of the latter already and I have commented on the Commission's own interoperability elsewhere, with mixed luck. :( Yesterday, I watched the cartoonesque Korean western film The Good, the Bad and the Weird. In the movie (and I meant in the movie only), a bandit, a thief, and a bounty hunter, all excellent at whatever they do, fight for a treasure map. Whether that is a good analogy for the situation within the Commission, others are better judges of than I. However, as a movie fanatic, I still await the final shoot-out, and, as in the film, the only certainty is that "life is about chasing and being chased". The missed opportunity (in this case not following up the push from Member States to better define open standards based interoperability) is a casualty of the chaos ensued in the European Wild West (and I mean that in the most endearing sense, and my excuses beforehand to actors who possibly justifiably cannot bear being compared to fictional movie characters). Instead of exposing the ongoing fight, the EU opted for the legalistic use of the term "standards" throughout the document. This is a term that--to the EU-- excludes most standards used by the IT industry world wide. So, while it, for a moment, meant "weapon down", it will not lead to lasting peace. The Digital Agenda calls for the Member States to "Implement commitments on interoperability and standards in the Malmö and Granada Declarations by 2013". This is a far cry from the actual Ministerial Declarations which called upon the Commission to help them with this implementation by recognizing and further defining open standards based interoperability. Unless there is more forthcoming from the Commission, the market's judgement will be: you simply fall short. Generally, I think the EU focus now should be "from policy to practice" and the Digital Agenda does indeed stop short of tackling some highly practical issues. There is need for progress beyond the Digital Agenda. Here are some suggestions that would help Europe re-take global leadership on openness, public sector reform, and economic growth: A strong European software strategy centred around open standards based interoperability by 2011. An ambitious new eCommission strategy for 2011-15 focused on migration to open standards by 2015. Aligning the IT portfolio across the Commission into one Digital Agenda DG by 2012. Focusing all best practice exchange in eGovernment on one social networking site, epractice.eu (full disclosure: I had a role in getting that site up and running) Prioritizing public sector needs in global standardization over European standardization by 2014.

    Read the article

  • Revolutionizing Digital Commerce

    - by bwalstra
    The confluence of the Internet, the pace of change in technology, and the demands of the value-conscious consumer are accelerating the evolution of the global digital marketplace at an unprecedented rate. Success in the new digital economy has become inextricably linked with the agility to launch innovative products, services, and new business models efficiently with minimal risk. A major obstacle to agility, and by extension to success in digital commerce, is the fact that by and large information technology (IT) infrastructure is tightly coupled with particular business models. Enterprises, through well intentioned but misconstrued costsaving belief, continue to customize existing infrastructure and create now silos to support new business models. In reality, this approach results in rigid, inflexible business processes and exposes the enterprise to unnecessary risks, higher opportunity costs, and lower profit margins. Oracle, a leading supplier of business solutions to the enterprise, is enabling the business strategies necessary to succeed in the digital economy by offering a modern, open, modular, and functionally comprehensive revenue management solution that decouples IT infrastructure from business models. Enterprises using the Oracle solution are able to focus on core competencies and innovate unimpeded, assuring that business and IT systems will seamlessly adapt to changing conditions of the digital economy. Revolutionizing Digital Commerce:  An Oracle Revenue Management Solution

    Read the article

  • How do I move the camera sideways in Libgdx?

    - by Bubblewrap
    I want to move the camera sideways (strafe). I had the following in mind, but it doesn't look like there are standard methods to achieve this in Libgdx. If I want to move the camera sideways by x, I think I need to do the following: Create a Matrix4 mat Determine the orthogonal vector v between camera.direction and camera.up Translate mat by v*x Multiply camera.position by mat Will this approach do what I think it does, and is it a good way to do it? And how can I do this in libgdx? I get "stuck" at step 2, as I have not found any standard method in Libgdx to calculate an orthogonal vector. EDIT: I think I can use camera.direction.crs(camera.up) to find v. I'll try this approach tonight and see if it works. EDIT2: I got it working and didn't need the matrix after all: Vector3 right = camera.direction.cpy().crs(camera.up).nor(); camera.position.add(right.mul(x));

    Read the article

  • Problem with webcam after changing camera input to my iPhone's camera [closed]

    - by andrew
    While trying to use my iPhone as a webcam I changed the paths for the camera input - now I can neither use the built-in webcam nor my iPhone's camera This is the website where I got the information from: http://www.kudanai.com/2010/11/howto-use-your-iphone-as-webcam-in.html I got stuck at the loopback part. I would just like to know how to set the path back to my built-in camera so I can at least use that. Or if there is some way to reset the camera input settings. I'm using an Inspiron 1525 running Ubuntu 12.04 LTS. memory:2.9 GiB Processor:Intel® Core™2 Duo CPU T5750 @ 2.00GHz × 2 OS type: 64-bit

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >