Search Results

Search found 3508 results on 141 pages for 'face detection'.

Page 2/141 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Collision Detection fails with AI cars

    - by amit.r007
    I am making a car parking game in flash and AS3 wherein I drive my car along with other AI traffic cars moving along a specified path using Guidelines. I am using CDK for collision detection. The collision detection works fine with few AI cars, but doesn't seems to be working as required for few AI cars. When an AI car is moving on a path in a straight line it works fine.... but when the AI Car turns at 90 degress..... my car goes into the AI car (Overlapping) and it hits at the center of that AI car and then collision is Detected.... ..... I made a New path and used a new Sprite for AI car... but still the problem pursues....

    Read the article

  • Fraud Detection with the SQL Server Suite Part 2

    - by Dejan Sarka
    This is the second part of the fraud detection whitepaper. You can find the first part in my previous blog post about this topic. My Approach to Data Mining Projects It is impossible to evaluate the time and money needed for a complete fraud detection infrastructure in advance. Personally, I do not know the customer’s data in advance. I don’t know whether there is already an existing infrastructure, like a data warehouse, in place, or whether we would need to build one from scratch. Therefore, I always suggest to start with a proof-of-concept (POC) project. A POC takes something between 5 and 10 working days, and involves personnel from the customer’s site – either employees or outsourced consultants. The team should include a subject matter expert (SME) and at least one information technology (IT) expert. The SME must be familiar with both the domain in question as well as the meaning of data at hand, while the IT expert should be familiar with the structure of data, how to access it, and have some programming (preferably Transact-SQL) knowledge. With more than one IT expert the most time consuming work, namely data preparation and overview, can be completed sooner. I assume that the relevant data is already extracted and available at the very beginning of the POC project. If a customer wants to have their people involved in the project directly and requests the transfer of knowledge, the project begins with training. I strongly advise this approach as it offers the establishment of a common background for all people involved, the understanding of how the algorithms work and the understanding of how the results should be interpreted, a way of becoming familiar with the SQL Server suite, and more. Once the data has been extracted, the customer’s SME (i.e. the analyst), and the IT expert assigned to the project will learn how to prepare the data in an efficient manner. Together with me, knowledge and expertise allow us to focus immediately on the most interesting attributes and identify any additional, calculated, ones soon after. By employing our programming knowledge, we can, for example, prepare tens of derived variables, detect outliers, identify the relationships between pairs of input variables, and more, in only two or three days, depending on the quantity and the quality of input data. I favor the customer’s decision of assigning additional personnel to the project. For example, I actually prefer to work with two teams simultaneously. I demonstrate and explain the subject matter by applying techniques directly on the data managed by each team, and then both teams continue to work on the data overview and data preparation under our supervision. I explain to the teams what kind of results we expect, the reasons why they are needed, and how to achieve them. Afterwards we review and explain the results, and continue with new instructions, until we resolve all known problems. Simultaneously with the data preparation the data overview is performed. The logic behind this task is the same – again I show to the teams involved the expected results, how to achieve them and what they mean. This is also done in multiple cycles as is the case with data preparation, because, quite frankly, both tasks are completely interleaved. A specific objective of the data overview is of principal importance – it is represented by a simple star schema and a simple OLAP cube that will first of all simplify data discovery and interpretation of the results, and will also prove useful in the following tasks. The presence of the customer’s SME is the key to resolving possible issues with the actual meaning of the data. We can always replace the IT part of the team with another database developer; however, we cannot conduct this kind of a project without the customer’s SME. After the data preparation and when the data overview is available, we begin the scientific part of the project. I assist the team in developing a variety of models, and in interpreting the results. The results are presented graphically, in an intuitive way. While it is possible to interpret the results on the fly, a much more appropriate alternative is possible if the initial training was also performed, because it allows the customer’s personnel to interpret the results by themselves, with only some guidance from me. The models are evaluated immediately by using several different techniques. One of the techniques includes evaluation over time, where we use an OLAP cube. After evaluating the models, we select the most appropriate model to be deployed for a production test; this allows the team to understand the deployment process. There are many possibilities of deploying data mining models into production; at the POC stage, we select the one that can be completed quickly. Typically, this means that we add the mining model as an additional dimension to an existing DW or OLAP cube, or to the OLAP cube developed during the data overview phase. Finally, we spend some time presenting the results of the POC project to the stakeholders and managers. Even from a POC, the customer will receive lots of benefits, all at the sole risk of spending money and time for a single 5 to 10 day project: The customer learns the basic patterns of frauds and fraud detection The customer learns how to do the entire cycle with their own people, only relying on me for the most complex problems The customer’s analysts learn how to perform much more in-depth analyses than they ever thought possible The customer’s IT experts learn how to perform data extraction and preparation much more efficiently than they did before All of the attendees of this training learn how to use their own creativity to implement further improvements of the process and procedures, even after the solution has been deployed to production The POC output for a smaller company or for a subsidiary of a larger company can actually be considered a finished, production-ready solution It is possible to utilize the results of the POC project at subsidiary level, as a finished POC project for the entire enterprise Typically, the project results in several important “side effects” Improved data quality Improved employee job satisfaction, as they are able to proactively contribute to the central knowledge about fraud patterns in the organization Because eventually more minds get to be involved in the enterprise, the company should expect more and better fraud detection patterns After the POC project is completed as described above, the actual project would not need months of engagement from my side. This is possible due to our preference to transfer the knowledge onto the customer’s employees: typically, the customer will use the results of the POC project for some time, and only engage me again to complete the project, or to ask for additional expertise if the complexity of the problem increases significantly. I usually expect to perform the following tasks: Establish the final infrastructure to measure the efficiency of the deployed models Deploy the models in additional scenarios Through reports By including Data Mining Extensions (DMX) queries in OLTP applications to support real-time early warnings Include data mining models as dimensions in OLAP cubes, if this was not done already during the POC project Create smart ETL applications that divert suspicious data for immediate or later inspection I would also offer to investigate how the outcome could be transferred automatically to the central system; for instance, if the POC project was performed in a subsidiary whereas a central system is available as well Of course, for the actual project, I would repeat the data and model preparation as needed It is virtually impossible to tell in advance how much time the deployment would take, before we decide together with customer what exactly the deployment process should cover. Without considering the deployment part, and with the POC project conducted as suggested above (including the transfer of knowledge), the actual project should still only take additional 5 to 10 days. The approximate timeline for the POC project is, as follows: 1-2 days of training 2-3 days for data preparation and data overview 2 days for creating and evaluating the models 1 day for initial preparation of the continuous learning infrastructure 1 day for presentation of the results and discussion of further actions Quite frequently I receive the following question: are we going to find the best possible model during the POC project, or during the actual project? My answer is always quite simple: I do not know. Maybe, if we would spend just one hour more for data preparation, or create just one more model, we could get better patterns and predictions. However, we simply must stop somewhere, and the best possible way to do this, according to my experience, is to restrict the time spent on the project in advance, after an agreement with the customer. You must also never forget that, because we build the complete learning infrastructure and transfer the knowledge, the customer will be capable of doing further investigations independently and improve the models and predictions over time without the need for a constant engagement with me.

    Read the article

  • Collision Detection Code Structure with Sloped Tiles

    - by ProgrammerGuy123
    Im making a 2D tile based game with slopes, and I need help on the collision detection. This question is not about determining the vertical position of the player given the horizontal position when on a slope, but rather the structure of the code. Here is my pseudocode for the collision detection: void Player::handleTileCollisions() { int left = //find tile that's left of player int right = //find tile that's right of player int top = //find tile that's above player int bottom = //find tile that's below player for(int x = left; x <= right; x++) { for(int y = top; y <= bottom; y++) { switch(getTileType(x, y)) { case 1: //solid tile { //resolve collisions break; } case 2: //sloped tile { //resolve collisions break; } default: //air tile or whatever else break; } } } } When the player is on a sloped tile, he is actually inside the tile itself horizontally, that way the player doesn't look like he is floating. This creates a problem because when there is a sloped tile next to a solid square tile, the player can't move passed it because this algorithm resolves any collisions with the solid tile. Here is a gif showing this problem: So what is a good way to structure my code so that when the player is inside a sloped tile, solid tiles get ignored?

    Read the article

  • Coarse Collision Detection in highly dynamic environment

    - by Millianz
    I'm currently working a 3D space game with A LOT of dynamic objects that are all moving (there is pretty much no static environment). I have the collision detection and resolution working just fine, but I am now trying to optimize the collision detection (which is currently O(N^2) -- linear search). I thought about multiple options, a bounding volume hierarchy, a Binary Spatial Partitioning tree, an Octree or a Grid. I however need some help with deciding what's best for my situation. A grid seems unfeasible simply due to the space requirements and cache coherence problems. Since everything is so dynamic however, it seems to be that trees aren't ideal either, since they would have to be completely rebuilt every frame. I must admit I never implemented a physics engine that required spatial partitioning, do I indeed need to rebuild the tree every frame (assuming that everything is constantly moving) or can I update the trees after integrating? Advice is much appreciated - to give some more background: You're flying a space ship in an asteroid field, and there are lots and lots of asteroids and some enemy ships, all of which shoot bullets. EDIT: I came across the "Sweep an Prune" algorithm, which seems like the right thing for my purposes. It appears like the right mixture of fast building of the data structures involved and detailed enough partitioning. This is the best resource I can find: http://www.codercorner.com/SAP.pdf If anyone has any suggestions whether or not I'm going in the right direction, please let me know.

    Read the article

  • Collision Detection for a 2D RPG

    - by PHMitrious
    First of all, I have done some research on this topic before asking, and I'm asking this question as a mean to get some opinions on this topic, so I don't make a decision only on my own, but taking into account other people's experience as well. I'm starting a 2D online RPG project. I am using SFML for graphics and input and I'm creating a basic game structure and all for the game, creating modules for each part of the game. Well, let me get to the point I just wanted to give you guys some context. I want to decide on how I'm going to work with collision detection. Well I'm kinda going to work on maps with a tile map divided in layers (as usual) and add an extra 2 layers - not exactly in the map - for objects. So I'll have collisions between objects and agents (players - npcs - monsters - spells etc) and agents and tiles. The seconds one can be easily solved the first one need a little bit of work. I considered both creating a basic collision test engine using polygons and a quadtree to diminish tests since I'm going to be working with big maps with lots of objects - creating both a physical and graphical world representation. And I also considered using a physics engine like Box2D for collision tests. I think the first approach would take more work on my part but the second one would have the overhead of using a whole physics engine for just collision detection and no physics. What do you guys think ?

    Read the article

  • improve Collision detection memory usage (blocks with bullets)

    - by Eddy
    i am making a action platform 2D game, something like Megaman. I am using XNA to make it. already made player phisics,collisions, bullets, enemies and AIs, map editor, scorolling X Y camera (about 75% of game is finished ). as i progressed i noticed that my game would be more interesting to play if bullets would be destroyed on collision with regular(stationary ) map blocks, only problem is that if i use my collision detection (each bullet with each block) sometimes it begins to lag(btw if my bullet exits the screen player can see it is removed from bullet list) So how to improve my collision detection so that memory usage would be so high? :) ( on a map 300x300 blocks for example don't think that bigger map should be made); int block = 0; int bulet= 0; bool destroy_bullet = false; while (bulet < bullets.Count) { while (block < blocks.Count) { if (bullets[bulet].P_Bul_rec.Intersects( blocks[block].rect)) {//bullets and block are Lists that holds objects of bullet and block classes //P_Bul_rec just bullet rectangle destroy_bullet = true; } block++; } if (destroy_bullet) { bullets.RemoveAt(bulet); destroy_bullet = false; } else { bulet++; } block = 0; }

    Read the article

  • Java : 2D Collision Detection

    - by neko
    I'm been working on 2D rectangle collision for weeks and still cannot get this problem fixed. The problem I'm having is how to adjust a player to obstacles when it collides. I'm referencing this link. The player sometime does not get adjusted to obstacles. Also, it sometimes stuck in obstacle guy after colliding. Here, the player and the obstacle are inheriting super class Sprite I can detect collision between the two rectangles and the point by ; public Point getSpriteCollision(Sprite sprite, double newX, double newY) { // set each rectangle Rectangle spriteRectA = new Rectangle( (int)getPosX(), (int)getPosY(), getWidth(), getHeight()); Rectangle spriteRectB = new Rectangle( (int)sprite.getPosX(), (int)sprite.getPosY(), sprite.getWidth(), sprite.getHeight()); // if a sprite is colliding with the other sprite if (spriteRectA.intersects(spriteRectB)){ System.out.println("Colliding"); return new Point((int)getPosX(), (int)getPosY()); } return null; } and to adjust sprites after a collision: // Update the sprite's conditions public void update() { // only the player is moving for simplicity // collision detection on x-axis (just x-axis collision detection at this moment) double newX = x + vx; // calculate the x-coordinate of sprite move Point sprite = getSpriteCollision(map.getSprite().get(1), newX, y);// collision coordinates (x,y) if (sprite == null) { // if the player is no colliding with obstacle guy x = newX; // move } else { // if collided if (vx > 0) { // if the player was moving from left to right x = (sprite.x - vx); // this works but a bit strange } else if (vx < 0) { x = (sprite.x + vx); // there's something wrong with this too } } vx=0; y+=vy; vy=0; } I think there is something wrong in update() but cannot fix it. Now I only have a collision with the player and an obstacle guy but in future, I'm planning to have more of them and making them all collide with each other. What would be a good way to do it? Thanks in advance.

    Read the article

  • Confusion with floats converted into ints during collision detection

    - by TheBroodian
    So in designing a 2D platformer, I decided that I should be using a Vector2 to track the world location of my world objects to retain some sub-pixel precision for slow-moving objects and other such subtle nuances, yet representing their bodies with Rectangles, because as far as collision detection and resolution is concerned, I don't need sub-pixel precision. I thought that the following line of thought would work smoothly... Vector2 wrldLocation; Point WorldLocation; Rectangle collisionRectangle; public void Update(GameTime gameTime) { Vector2 moveAmount = velocity * (float)gameTime.ElapsedGameTime.TotalSeconds wrldLocation += moveAmount; WorldLocation = new Point((int)wrldLocation.X, (int)wrldLocation.Y); collisionRectangle = new Rectangle(WorldLocation.X, WorldLocation.Y, genericWidth, genericHeight); } and I guess in theory it sort of works, until I try to use it in conjunction with my collision detection, which works by using Rectangle.Offset() to project where collisionRectangle would supposedly end up after applying moveAmount to it, and if a collision is found, finding the intersection and subtracting the difference between the two intersecting sides to the given moveAmount, which would theoretically give a corrected moveAmount to apply to the object's world location that would prevent it from passing through walls and such. The issue here is that Rectangle.Offset() only accepts ints, and so I'm not really receiving an accurate adjustment to moveAmount for a Vector2. If I leave out wrldLocation from my previous example, and just use WorldLocation to keep track of my object's location, everything works smoothly, but then obviously if my object is being given velocities less than 1 pixel per update, then the velocity value may as well be 0, which I feel further down the line I may regret. Does anybody have any suggestions about how I might go about resolving this?

    Read the article

  • Pixel Perfect Collision Detection in Cocos2dx

    - by Happybirthday
    I am trying to port the pixel perfect collision detection in Cocos2d-x the original version was made for Cocos2D and can be found here: http://www.cocos2d-iphone.org/forums/topic/pixel-perfect-collision-detection-using-color-blending/ Here is my code for the Cocos2d-x version bool CollisionDetection::areTheSpritesColliding(cocos2d::CCSprite *spr1, cocos2d::CCSprite *spr2, bool pp, CCRenderTexture* _rt) { bool isColliding = false; CCRect intersection; CCRect r1 = spr1-boundingBox(); CCRect r2 = spr2-boundingBox(); intersection = CCRectMake(fmax(r1.getMinX(),r2.getMinX()), fmax( r1.getMinY(), r2.getMinY()) ,0,0); intersection.size.width = fmin(r1.getMaxX(), r2.getMaxX() - intersection.getMinX()); intersection.size.height = fmin(r1.getMaxY(), r2.getMaxY() - intersection.getMinY()); // Look for simple bounding box collision if ( (intersection.size.width0) && (intersection.size.height0) ) { // If we're not checking for pixel perfect collisions, return true if (!pp) { return true; } unsigned int x = intersection.origin.x; unsigned int y = intersection.origin.y; unsigned int w = intersection.size.width; unsigned int h = intersection.size.height; unsigned int numPixels = w * h; //CCLog("Intersection X and Y %d, %d", x, y); //CCLog("Number of pixels %d", numPixels); // Draw into the RenderTexture _rt-beginWithClear( 0, 0, 0, 0); // Render both sprites: first one in RED and second one in GREEN glColorMask(1, 0, 0, 1); spr1-visit(); glColorMask(0, 1, 0, 1); spr2-visit(); glColorMask(1, 1, 1, 1); // Get color values of intersection area ccColor4B *buffer = (ccColor4B *)malloc( sizeof(ccColor4B) * numPixels ); glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, buffer); _rt-end(); // Read buffer unsigned int step = 1; for(unsigned int i=0; i 0 && color.g 0) { isColliding = true; break; } } // Free buffer memory free(buffer); } return isColliding; } My code is working perfectly if I send the "pp" parameter as false. That is if I do only a bounding box collision but I am not able to get it working correctly for the case when I need Pixel Perfect collision. I think the opengl masking code is not working as I intended. Here is the code for "_rt" _rt = CCRenderTexture::create(visibleSize.width, visibleSize.height); _rt-setPosition(ccp(origin.x + visibleSize.width * 0.5f, origin.y + visibleSize.height * 0.5f)); this-addChild(_rt, 1000000); _rt-setVisible(true); //For testing I think I am making a mistake with the implementation of this CCRenderTexture Can anyone guide me with what I am doing wrong ? Thank you for your time :)

    Read the article

  • Android Touch Event Collision Detection

    - by chrissb
    I'm relatively new to both Java and Android, so hopefully the problem I'm having is stemming from something pretty minor that I've overlooked. I've got a (very early stage) game that I've started working on, for Android using Java. At this stage, when the user touches the screen, if they touched a point at which there is an enemy, the enemies health is decreased and they become immobile (for the current implementation at least). The issue that I'm having is that the touch detection doesn't always seem to work. I've got a testing sprite set up that goes to the eventX and eventY coordinates of the touch down event, and it always seems to collide with the enemy object. Yet, the enemy doesn't always register as being hit, and sometimes a hit is registered when the sprite indicates the touch coordinates were outside of the enemies bounding box. I realise that this probably doesn't mean much without any code, so here's what I've got so far. Be gentle, as this is literally my first attempt at something more than basic movement etc. First off, the MainGamePanel class registers the touch event, and informs the levelmanager class (which is what I set up to monitor/handle enemies) public boolean onTouchEvent(MotionEvent event) { if (event.getAction() == MotionEvent.ACTION_DOWN){ levelManager.handleActionDown((int)event.getX(), (int)event.getY()); targetX=event.getX(); targetY=event.getY(); } if (event.getAction() == MotionEvent.ACTION_MOVE) { //the gestures } if (event.getAction() == MotionEvent.ACTION_UP) { //touch was released } return true; } From there, in the levelmanager class the touch event is passed on to all of the enemies within a list array: public static void handleActionDown(int eventX,int eventY){ hit=false; for (enemy1 en : enemy1array){ en.handleActionDown(eventX, eventY); } } The rest of the collision code is handled within the enemies handleActionDown function: public void handleActionDown(int eventX, int eventY) { if(eventX>this.x-enemy1bitmap.getWidth() && eventX<this.x+enemy1bitmap.getWidth() && eventY>this.y-enemy1bitmap.getHeight() && eventY<this.x+enemy1bitmap.getHeight()){ takeDamage(1); levelmanager.setHit(); } } I should probably be using getWidth()/2 and getHeight()/2 for it to be more accurate, but I expanded the area to test this - although I've noticed no improvement. At this stage, the games detection over whether or not the enemy is hit is spotty at best. Generally it takes two or three attempts before a collision is successfully registered, even though the sprite that is being used for testing and set to the eventX and eventY coordinates always indicates that the collision should have worked. Hopefully someone can steer me in the right direction here, and if more information is needed, ask away! Cheers, -Chris

    Read the article

  • Different bounding volumes for culling and collision detection

    - by Serthy
    Should an object in a 3D-engine use different bounding volumes for collision-detection (broad-phase) and culling? Basically class renderBounds and class physBounds versus class boundingVolume? Each of this classes then could either contain the same type of volumes (AABB's, kDOP's, sphere's etc.) or a special fitting one for the particular object. (note: without considering of using an external physics engine)

    Read the article

  • HTML5 platformer collision detection problem

    - by fnx
    I'm working on a 2D platformer game, and I'm having a lot of trouble with collision detection. I've looked trough some tutorials, questions asked here and Stackoverflow, but I guess I'm just too dumb to understand what's wrong with my code. I've wanted to make simple bounding box style collisions and ability to determine on which side of the box the collision happens, but no matter what I do, I always get some weird glitches, like the player gets stuck on the wall or the jumping is jittery. You can test the game here: Platform engine test. Arrow keys move and z = run, x = jump, c = shoot. Try to jump into the first pit and slide on the wall. Here's the collision detection code: function checkCollisions(a, b) { if ((a.x > b.x + b.width) || (a.x + a.width < b.x) || (a.y > b.y + b.height) || (a.y + a.height < b.y)) { return false; } else { handleCollisions(a, b); return true; } } function handleCollisions(a, b) { var a_top = a.y, a_bottom = a.y + a.height, a_left = a.x, a_right = a.x + a.width, b_top = b.y, b_bottom = b.y + b.height, b_left = b.x, b_right = b.x + b.width; if (a_bottom + a.vy > b_top && distanceBetween(a_bottom, b_top) + a.vy < distanceBetween(a_bottom, b_bottom)) { a.topCollision = true; a.y = b.y - a.height + 2; a.vy = 0; a.canJump = true; } else if (a_top + a.vy < b_bottom && distanceBetween(a_top, b_bottom) + a.vy < distanceBetween(a_top, b_top)) { a.bottomCollision = true; a.y = b.y + b.height; a.vy = 0; } else if (a_right + a.vx > b_left && distanceBetween(a_right, b_left) < distanceBetween(a_right, b_right)) { a.rightCollision = true; a.x = b.x - a.width - 3; //a.vx = 0; } else if (a_left + a.vx < b_right && distanceBetween(a_left, b_right) < distanceBetween(a_left, b_left)) { a.leftCollision = true; a.x = b.x + b.width + 3; //a.vx = 0; } } function distanceBetween(a, b) { return Math.abs(b-a); }

    Read the article

  • Isometric Collision Detection

    - by Sleepy Rhino
    I am having some issues with trying to detect collision of two isometric tile. I have tried plotting the lines between each point on the tile and then checking for line intercepts however that didn't work (probably due to incorrect formula) After looking into this for awhile today I believe I am thinking to much into it and there must be a easier way. I am not looking for code just some advise on the best way to achieve detection of overlap

    Read the article

  • @font-face not working on a client site?

    - by metal-gear-solid
    this is css code @font-face { font-family: 'FuturaStdBook'; src: url('site/font-face/futurastd-medium-webfont.eot'); src: local('?'), url('site/font-face/futurastd-medium-webfont.woff') format('woff'), url('site/font-face/futurastd-medium-webfont.ttf') format('truetype'), url('site/font-face/futurastd-medium-webfont.svg#webfont') format('svg'); font-weight: normal; font-style: normal; } h2 {font-family:'FuturaStdBook', sans-serif} Can it be related to mime type?

    Read the article

  • 2D Tile Based Collision Detection

    - by MrPlosion1243
    There are a lot of topics about this and it seems each one addresses a different problem, this topic does the same. I was looking into tile collision detection and found this where David Gouveia explains a great way to get around the person's problem by separating the two axis. So I implemented the solution and it all worked perfectly from all the testes I through at it. Then I implemented more advanced platforming physics and the collision detection broke down. Unfortunately I have not been able to get it to work again which is where you guys come in :)! I will present the code first: public void Update(GameTime gameTime) { if(Input.GetKeyDown(Keys.A)) { velocity.X -= moveAcceleration; } else if(Input.GetKeyDown(Keys.D)) { velocity.X += moveAcceleration; } if(Input.GetKeyDown(Keys.Space)) { if((onGround && isPressable) || (!onGround && airTime <= maxAirTime && isPressable)) { onGround = false; airTime += (float)gameTime.ElapsedGameTime.TotalSeconds; velocity.Y = initialJumpVelocity * (1.0f - (float)Math.Pow(airTime / maxAirTime, Math.PI)); } } else if(Input.GetKeyReleased(Keys.Space)) { isPressable = false; } if(onGround) { velocity.X *= groundDrag; velocity.Y = 0.0f; } else { velocity.X *= airDrag; velocity.Y += gravityAcceleration; } velocity.Y = MathHelper.Clamp(velocity.Y, -maxFallSpeed, maxFallSpeed); velocity.X = MathHelper.Clamp(velocity.X, -maxMoveSpeed, maxMoveSpeed); position += velocity * (float)gameTime.ElapsedGameTime.TotalSeconds; position = new Vector2((float)Math.Round(position.X), (float)Math.Round(position.Y)); if(Math.Round(velocity.X) != 0.0f) { HandleCollisions2(Direction.Horizontal); } if(Math.Round(velocity.Y) != 0.0f) { HandleCollisions2(Direction.Vertical); } } private void HandleCollisions2(Direction direction) { int topTile = (int)Math.Floor((float)Bounds.Top / Tile.PixelTileSize); int bottomTile = (int)Math.Ceiling((float)Bounds.Bottom / Tile.PixelTileSize) - 1; int leftTile = (int)Math.Floor((float)Bounds.Left / Tile.PixelTileSize); int rightTile = (int)Math.Ceiling((float)Bounds.Right / Tile.PixelTileSize) - 1; for(int x = leftTile; x <= rightTile; x++) { for(int y = topTile; y <= bottomTile; y++) { Rectangle tileBounds = new Rectangle(x * Tile.PixelTileSize, y * Tile.PixelTileSize, Tile.PixelTileSize, Tile.PixelTileSize); Vector2 depth; if(Tile.IsSolid(x, y) && Intersects(tileBounds, direction, out depth)) { if(direction == Direction.Horizontal) { position.X += depth.X; } else { onGround = true; isPressable = true; airTime = 0.0f; position.Y += depth.Y; } } } } } From the code you can see when velocity.X is not equal to zero the HandleCollisions() Method is called along the horizontal axis and likewise for the vertical axis. When velocity.X is not equal to zero and velocity.Y is equal to zero it works fine. When velocity.Y is not equal to zero and velocity.X is equal to zero everything also works fine. However when both axis are not equal to zero that's when it doesn't work and I don't know why. I basically teleport to the left side of a tile when both axis are not equal to zero and there is a air block next to me. Hopefully someone can see the problem with this because I sure don't as far as I'm aware nothing has even changed from what I'm doing to what the linked post's solution is doing. Thanks.

    Read the article

  • Switching my collision detection to array lists caused it to stop working

    - by Charlton Santana
    I have made a collision detection system which worked when I did not use array list and block generation. It is weird why it's not working but here's the code, and if anyone could help I would be very grateful :) The first code if the block generation. private static final List<Block> BLOCKS = new ArrayList<Block>(); Random rnd = new Random(System.currentTimeMillis()); int randomx = 400; int randomy = 400; int blocknum = 100; String Title = "blocktitle" + blocknum; private Block block; public void generateBlocks(){ if(blocknum > 0){ int offset = rnd.nextInt(250) + 100; //500 is the maximum offset, this is a constant randomx += offset;//ofset will be between 100 and 400 int randomyoff = rnd.nextInt(80); //500 is the maximum offset, this is a constant randomy = platformheighttwo - 6 - randomyoff;//ofset will be between 100 and 400 block = new Block(BitmapFactory.decodeResource(getResources(), R.drawable.block2), randomx, randomy); BLOCKS.add(block); blocknum -= 1; } The second is where the collision detection takes place note: the block.draw(canvas); works perfectly. It's the blocks that don't work. for(Block block : BLOCKS) { block.draw(canvas); if (sprite.bottomrx < block.bottomrx && sprite.bottomrx > block.bottomlx && sprite.bottomry < block.bottommy && sprite.bottomry > block.topry ){ Log.d(TAG, "Collided!!!!!!!!!!!!1"); } // bottom left touching block? if (sprite.bottomlx < block.bottomrx && sprite.bottomlx > block.bottomlx && sprite.bottomly < block.bottommy && sprite.bottomly > block.topry ){ Log.d(TAG, "Collided!!!!!!!!!!!!1"); } // top right touching block? if (sprite.toprx < block.bottomrx && sprite.toprx > block.bottomlx && sprite.topry < block.bottommy && sprite.topry > block.topry ){ Log.d(TAG, "Collided!!!!!!!!!!!!1"); } //top left touching block? if (sprite.toprx < block.bottomrx && sprite.toprx > block.bottomlx && sprite.topry < block.bottommy && sprite.topry > block.topry ){ Log.d(TAG, "Collided!!!!!!!!!!!!1"); } } The values eg bottomrx are in the block.java file..

    Read the article

  • Problems with moving 2D circle/box collision detection

    - by dario3004
    This is my first game ever and I'm a newbie in computer physics. I've got this code for the collision detection and it works fine for BOTTOM and TOP collision.It miss the collision detection with the paddle's edge and angles so I've (roughly) tried to implement it. Main method that is called for bouncing, it checks if it bounce with wall, or with top (+ right/left side) or with bottom (+ right/left side): protected void handleBounces(float px, float py) { handleWallBounce(px, py); if(mBall.y < getHeight()/4){ if (handleRedFastBounce(mRed, px, py)) return; if (handleRightSideBounce(mRed,px,py)) return; if (handleLeftSideBounce(mRed,px,py)) return; } if(mBall.y > getHeight()/4 * 3){ if (handleBlueFastBounce(mBlue, px, py)) return; if (handleRightSideBounce(mBlue,px,py)) return; if (handleLeftSideBounce(mBlue,px,py)) return; } } This is the code for the BOTTOM bounce: protected boolean handleRedFastBounce(Paddle paddle, float px, float py) { if (mBall.goingUp() == false) return false; // next position tx = mBall.x; ty = mBall.y - mBall.getRadius(); // actual position ptx = px; pty = py - mBall.getRadius(); dyp = ty - paddle.getBottom(); xc = tx + (tx - ptx) * dyp / (ty - pty); if ((ty < paddle.getBottom() && pty > paddle.getBottom() && xc > paddle.getLeft() && xc < paddle.getRight())) { mBall.x = xc; mBall.y = paddle.getBottom() + mBall.getRadius(); mBall.bouncePaddle(paddle); playSound(mPaddleSFX); increaseDifficulty(); return true; } else return false; } As long as I understood it should be something like this: So I tried to make the "left side" and "right side" bounce method: protected boolean handleLeftSideBounce(Paddle paddle, float px, float py){ // next position tx = mBall.x + mBall.getRadius(); ty = mBall.y; // actual position ptx = px + mBall.getRadius(); pty = py; dyp = tx - paddle.getLeft(); yc = ty + (pty - ty) * dyp / (ptx - tx); if (ptx < paddle.getLeft() && tx > paddle.getLeft()){ System.out.println("left side bounce1"); System.out.println("yc: " + yc + "top: " + paddle.getTop() + " bottom: " + paddle.getBottom()); if (yc > paddle.getTop() && yc < paddle.getBottom()){ System.out.println("left side bounce2"); mBall.y = yc; mBall.x = paddle.getLeft() - mBall.getRadius(); mBall.bouncePaddle(paddle); playSound(mPaddleSFX); increaseDifficulty(); return true; } } return false; } I think I'm quite near to the solution but I'm having big troubles with the new "yc" formula. I tried so many versions of it but since I don't know the theory behind it I can't adjust for the Y axis. Since the Y axis is inverted I even tried this: yc = ty - (pty - ty) * dyp / (ptx - tx); I tried Googling it but I can't seem to find a solution for it. Also this method fails when ball touches the angle and I don't think is a nice way because it just test "one" point of the ball and probably there will be many cases in which the ball won't bounce.

    Read the article

  • 3D collision detection with meshes using only raycasting?

    - by Nick
    I'm building a game using WebGL and Three.js, and so far I have a terrain with a guy walking on it. I simply cast a ray downwards to know the terrain height. How can I do this for other 3D objects, like the inside of a house? Is this possible by casting many rays in every direction of the player? If not, I would like to know how I can achieve the simplest collision detection possible for other meshes. Do you have to cast a ray to every triangle in every mesh nearby?

    Read the article

  • Collision Detection Game Design and Architecture

    - by Chompas
    I've reading some articles about collision detection. My question here is about ideas on the design for it. Baically I have a C++ game that has a main loop with entities with an update method. Based on keyboard input, these characters updates their positions. My question is not about how to detect collisions, it's about getting ideas in which is the best way to implement this. The game has a main character but also enemies that have to collide between them, so I'm not sure where to make all the iterations for checking collisions and if the right way is to check everything against everything. Thanks in advance.

    Read the article

  • Collision detection of convex shapes on voxel terrain

    - by Dave
    I have some standard convex shapes (cubes, capsules) on a voxel terrain. It is very easy to detect single vertex collisions. However, it becomes computationally expensive when many vertices are involved. To clarify, currently my algorithm represents a cube as multiple vertices covering every face of the cube, not just the corners. This is because the cubes can be much bigger than the voxels, so multiple sample points (vertices) are required (the distance between sample points must be at least the width of a voxel). This very rapidly becomes intractable. It would be great if there were some standard algorithm(s) for collision detection between convex shapes and arbitrary voxel based terrain (like there is with OBB's and seperating axis theorem etc). Any help much appreciated.

    Read the article

  • Collision detection with heightmap based terrain

    - by Truman's world
    I am developing a 2D tank game. The terrain is generated by Midpoint Displacement Algorithm, so the terrain is represented by an array: index ---> height of terrain [0] ---> 5 [1] ---> 8 [2] ---> 4 [3] ---> 6 [4] ---> 8 [5] ---> 9 ... ... The rendered mountain looks like this: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0 1 2 3 4 5 ... I want tanks to be able to move smoothly on the terrain (I mean tanks can rotate according to the height when they move), but the surface of the terrain is not flat, it is polygonal. Can anyone give me some help with collision detection in this situation? Thanks in advance.

    Read the article

  • Narrow-phase collision detection algorithms

    - by Marian Ivanov
    There are three phases of collision detection. Broadphase: It loops between all objecs that can interact, false positives are allowed, if it would speed up the loop. Narrowphase: Determines whether they collide, and sometimes, how, no false positives Resolution: Resolves the collision. The question I'm asking is about the narrowphase. There are multiple algorithms, differing in complexity and accuracy. Hitbox intersection: This is an a-posteriori algorithm, that has the lowest complexity, but also isn't too accurate, Color intersection: Hitbox intersection for each pixel, a-posteriori, pixel-perfect, not accuratee in regards to time, higher complexity Separating axis theorem: This is used more often, accurate for triangles, however, a-posteriori, as it can't find the edge, when taking last frame in account, it's more stable Linear raycasting: A-priori algorithm, useful for semi-realistic-looking physics, finds the intersection point, even more accurate than SAT, but with more complexity Spline interpolation: A-priori, even more accurate than linear rays, even more coplexity. There are probably many more that I've forgot about. The question is, in when is it better to use SAT, when rays, when splines, and whether there is anything better.

    Read the article

  • Typical collision detection

    - by marcg11
    I would like to know how is the typical collision detection of most games. For example, you control a character which can move in 2 dimensional directions (except up and down). Now lets asume he walks into a wall, most of the games depending on character angle and the BB normal face will only stop the player in one axis, but will continue moving in the other along the wall axis. How is that done? I've only managed to stop the character from going through the wall by seting the position to the last one in the past frame if the new position colllisions the bounding box. But this just makes the player stop sharply and unrealisticly.

    Read the article

  • Making an efficient collision detection system

    - by Sri Harsha Chilakapati
    I'm very new to game development (just started 3 months ago) and I'm learning through creating a game engine. It's located here. In terms of collision, I know only brute-force detection, in which case, the game slows down if there are a number of objects. So my question is How should I program the collisions? I want them to happen automatically for every object and call the object's collision(GObject other) method on each collision. Are there any new algorithms which can make this fast? If so, can anybody shed some light on this topic?

    Read the article

  • Making a collision detection system

    - by Sri Harsha Chilakapati
    I'm very new to game development (just started 3 months ago) and I've learning through creating a game engine. It's located here. In terms of collision, I know only brutefoce detection, in which case, the game slows down if there are a number of objects. So my question is How should I program the collisions? I want them to happen automatically for every object and call the object's collision(GObject other) method on each collision. Are there any new algorithms which can make this fast? If so, can anybody6 sh6ed some light on this topic? And I think of making it like the game maker Thanks

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >